51
|
Abstract
Molecular imaging (mainly PET and MR imaging) has played important roles in gynecologic oncology. Emerging MR-based technologies, including DWI, CEST, DCE-MR imaging, MRS, and DNP, as well as FDG-PET and many novel PET radiotracers, will continuously improve practices. In combination with radiomics analysis, a new era of decision making in personalized medicine and precisely guided radiation treatment planning or real-time surgical interventions is being entered into, which will directly impact on patient survival. Prospective trials with well-defined endpoints are encouraged to evaluate the multiple facets of these emerging imaging tools in the management of gynecologic malignancies.
Collapse
Affiliation(s)
- Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fu-Shin Street, Kueishan, Taoyuan 333, Taiwan
| | - Chyong-Huey Lai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fu-Shin Street, Kueishan, Taoyuan 333, Taiwan.
| | - Tzu-Chen Yen
- Department of Nuclear Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fu-Shin Street, Kueishan, Taoyuan 333, Taiwan
| |
Collapse
|
52
|
Cancer Metabolism and Tumor Heterogeneity: Imaging Perspectives Using MR Imaging and Spectroscopy. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:6053879. [PMID: 29114178 PMCID: PMC5654284 DOI: 10.1155/2017/6053879] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/31/2017] [Accepted: 08/27/2017] [Indexed: 12/26/2022]
Abstract
Cancer cells reprogram their metabolism to maintain viability via genetic mutations and epigenetic alterations, expressing overall dynamic heterogeneity. The complex relaxation mechanisms of nuclear spins provide unique and convertible tissue contrasts, making magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) pertinent imaging tools in both clinics and research. In this review, we summarized MR methods that visualize tumor characteristics and its metabolic phenotypes on an anatomical, microvascular, microstructural, microenvironmental, and metabolomics scale. The review will progress from the utilities of basic spin-relaxation contrasts in cancer imaging to more advanced imaging methods that measure tumor-distinctive parameters such as perfusion, water diffusion, magnetic susceptibility, oxygenation, acidosis, redox state, and cell death. Analytical methods to assess tumor heterogeneity are also reviewed in brief. Although the clinical utility of tumor heterogeneity from imaging is debatable, the quantification of tumor heterogeneity using functional and metabolic MR images with development of robust analytical methods and improved MR methods may offer more critical roles of tumor heterogeneity data in clinics. MRI/MRS can also provide insightful information on pharmacometabolomics, biomarker discovery, disease diagnosis and prognosis, and treatment response. With these future directions in mind, we anticipate the widespread utilization of these MR-based techniques in studying in vivo cancer biology to better address significant clinical needs.
Collapse
|
53
|
Baligand C, Qin H, True-Yasaki A, Gordon J, von Morze C, Santos JD, Wilson D, Raffai R, Cowley PM, Baker AJ, Kurhanewicz J, Lovett DH, Wang ZJ. Hyperpolarized 13 C magnetic resonance evaluation of renal ischemia reperfusion injury in a murine model. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3765. [PMID: 28708304 PMCID: PMC5618802 DOI: 10.1002/nbm.3765] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 05/10/2023]
Abstract
Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease (CKD). Persistent oxidative stress and mitochondrial dysfunction are implicated across diverse forms of AKI and in the transition to CKD. In this study, we applied hyperpolarized (HP) 13 C dehydroascorbate (DHA) and 13 C pyruvate magnetic resonance spectroscopy (MRS) to investigate the renal redox capacity and mitochondrial pyruvate dehydrogenase (PDH) activity, respectively, in a murine model of AKI at baseline and 7 days after unilateral ischemia reperfusion injury (IRI). Compared with the contralateral sham-operated kidneys, the kidneys subjected to IRI showed a significant decrease in the HP 13 C vitamin C/(vitamin C + DHA) ratio, consistent with a decrease in redox capacity. The kidneys subjected to IRI also showed a significant decrease in the HP 13 C bicarbonate/pyruvate ratio, consistent with impaired PDH activity. The IRI kidneys showed a significantly higher HP 13 C lactate/pyruvate ratio at day 7 compared with baseline, although the 13 C lactate/pyruvate ratio was not significantly different between the IRI and contralateral sham-operated kidneys at day 7. Arterial spin labeling magnetic resonance imaging (MRI) demonstrated significantly reduced perfusion in the IRI kidneys. Renal tissue analysis showed corresponding increased reactive oxygen species (ROS) and reduced PDH activity in the IRI kidneys. Our results show the feasibility of HP 13 C MRS for the non-invasive assessment of oxidative stress and mitochondrial PDH activity following renal IRI.
Collapse
Affiliation(s)
- Celine Baligand
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Hecong Qin
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Aisha True-Yasaki
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Jeremy Gordon
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Cornelius von Morze
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Justin DeLos Santos
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David Wilson
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Robert Raffai
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Patrick M. Cowley
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Anthony J. Baker
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - John Kurhanewicz
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - David H. Lovett
- Medicine, San Francisco VAMC/University of California San Francisco, San Francisco, CA
| | - Zhen Jane Wang
- Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| |
Collapse
|
54
|
Zaimenko I, Lisec J, Stein U, Brenner W. Approaches and techniques to characterize cancer metabolism in vitro and in vivo. Biochim Biophys Acta Rev Cancer 2017; 1868:412-419. [PMID: 28887205 DOI: 10.1016/j.bbcan.2017.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/25/2017] [Indexed: 02/02/2023]
Abstract
Cancer metabolism is wired to sustain uncontrollable cell proliferation and ensure cell survival. Given the multitude of available approaches to study metabolic alterations it remains a challenging task to select the most appropriate method. In this mini-review we describe how cancer metabolism can be studied in vitro and in vivo providing an overview of available approaches and techniques, discussing their advantages and drawbacks and guiding through selection of an appropriate method to address particular research needs. This work is particularly intended to those cancer researchers who are new in the field but want to investigate metabolic alterations in their cancer model systems.
Collapse
Affiliation(s)
- Inna Zaimenko
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine Berlin, Germany; Berlin School of Integrative Oncology, Charité - Universitätsmedizin Berlin, Germany
| | - Jan Lisec
- Metabolomics Unit at Charité - Universitätsmedizin Berlin, Medical Department of Hematology, Oncology, and Tumor Immunology, Molekulares Krebsforschungszentrum (MKFZ), Berlin, Germany; German Cancer Consortium, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Max-Delbrück-Center for Molecular Medicine Berlin, Germany; German Cancer Consortium, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Winfried Brenner
- German Cancer Consortium, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Germany; Berlin Experimental Radionuclide Imaging Center (BERIC), Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
55
|
Abstract
Cancer and other diseases are increasingly understood in terms of their metabolic disturbances. This thinking has revolutionized the field of ex vivo metabolomics and motivated new approaches to detect metabolites in living systems, including proton magnetic resonance spectroscopy (1H-MRS), hyperpolarized 13C MRS, and PET. For PET, imaging abnormal metabolism in vivo is hardly new. Positron-labeled small-molecule metabolites have been used for decades in humans, including 18F-FDG, which is used frequently to detect upregulated glycolysis in tumors. Many current 18F metabolic tracers including 18F-FDG have evolved from their 11C counterparts, chemically identical to endogenous substrates and thus approximating intrinsic biochemical pathways. This mimicry has stimulated the development of new radiochemical methods to incorporate 11C and inspired the synthesis of a large number of 11C endogenous radiotracers. This is in spite of the 20-minute half-life of 11C, which generally limits its use in patients to centers with an on-site cyclotron. Innovation in 11C chemistry has persisted in the face of this limitation, because (1) the radiochemists involved are inspired, (2) the methods of 11C incorporation are diverse, and (3) 11C compounds often show more predictable in vivo behavior, thus representing an important first step in the validation of new tracer concepts. In this mini-review we will discuss some of the general motivations behind PET tracers, rationales for the use of 11C, and some of the special challenges encountered in the synthesis of 11C endogenous compounds. Most importantly, we will try to highlight the exceptional creativity used in early 11C tracer syntheses, which used enzyme-catalyzed and other "green" methods before these concepts were commonplace.
Collapse
Affiliation(s)
- Kiel Neumann
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Robert Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA.
| |
Collapse
|
56
|
Wibowo A, Park JM, Liu SC, Khosla C, Spielman DM. Real-Time in Vivo Detection of H 2O 2 Using Hyperpolarized 13C-Thiourea. ACS Chem Biol 2017; 12:1737-1742. [PMID: 28452454 DOI: 10.1021/acschembio.7b00130] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactive oxygen species (ROS) are essential cellular metabolites widely implicated in many diseases including cancer, inflammation, and cardiovascular and neurodegenerative disorders. Yet, ROS signaling remains poorly understood, and their measurements are a challenge due to high reactivity and instability. Here, we report the development of 13C-thiourea as a probe to detect and measure H2O2 dynamics with high sensitivity and spatiotemporal resolution using hyperpolarized 13C magnetic resonance spectroscopic imaging. In particular, we show 13C-thiourea to be highly polarizable and to possess a long spin-lattice relaxation time (T1), which enables real-time monitoring of ROS-mediated transformation. We also demonstrate that 13C-thiourea reacts readily with H2O2 to give chemically distinguishable products in vitro and validate their detection in vivo in a mouse liver. This study suggests that 13C-thiourea is a promising agent for noninvasive detection of H2O2 in vivo. More broadly, our findings outline a viable clinical application for H2O2 detection in patients with a range of diseases.
Collapse
Affiliation(s)
- Arif Wibowo
- Department
of Biochemistry, Stanford University, Stanford, California 94305, United States
| | - Jae Mo Park
- Advanced
Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Shie-Chau Liu
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| | - Chaitan Khosla
- Department
of Biochemistry, Stanford University, Stanford, California 94305, United States
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
ChEM-H, Stanford University, Stanford, California 94305, United States
| | - Daniel M. Spielman
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
57
|
Cho A, Lau JYC, Geraghty BJ, Cunningham CH, Keshari KR. Noninvasive Interrogation of Cancer Metabolism with Hyperpolarized 13C MRI. J Nucl Med 2017; 58:1201-1206. [PMID: 28596156 DOI: 10.2967/jnumed.116.182170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/01/2017] [Indexed: 12/14/2022] Open
Abstract
This review will highlight recent advances in hyperpolarized 13C MR spectroscopic imaging, which can be used to noninvasively interrogate tumor metabolism. After providing an overview of MR and hyperpolarization, we will discuss the latest advances in data acquisition techniques. Next, we will shift our focus to hyperpolarized probe design and provide an overview of the latest hyperpolarized 13C MR spectroscopic imaging probes developed in the last several years.
Collapse
Affiliation(s)
- Andrew Cho
- Weill Cornell Medical College, New York, New York
| | - Justin Y C Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin J Geraghty
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kayvan R Keshari
- Weill Cornell Medical College, New York, New York .,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
58
|
Bonvento G, Valette J, Flament J, Mochel F, Brouillet E. Imaging and spectroscopic approaches to probe brain energy metabolism dysregulation in neurodegenerative diseases. J Cereb Blood Flow Metab 2017; 37:1927-1943. [PMID: 28276944 PMCID: PMC5464722 DOI: 10.1177/0271678x17697989] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/10/2017] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
Changes in energy metabolism are generally considered to play an important role in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Whether these changes are causal or simply a part of self-defense mechanisms is a matter of debate. Furthermore, energy defects have often been discussed solely in the context of their probable neuronal origin without considering the cellular heterogeneity of the brain. Recent data point towards the existence of a tri-cellular compartmentation of brain energy metabolism between neurons, astrocytes, and oligodendrocytes, each cell type having a distinctive metabolic profile. Still, the number of methods to follow energy metabolism in patients is extremely limited and existing clinical techniques are blind to most cellular processes. There is a need to better understand how brain energy metabolism is regulated in health and disease through experiments conducted at different scales in animal models to implement new methods in the clinical setting. The purpose of this review is to offer a brief overview of the broad spectrum of methodological approaches that have emerged in recent years to probe energy metabolism in more detail. We conclude that multi-modal neuroimaging is needed to follow non-cell autonomous energy metabolism dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Gilles Bonvento
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Valette
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
- INSERM US 27, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 6, Institut du Cerveau et de la Moelle épinière, Paris, France
- Department of Genetics, AP-HP Hôpital Pitié-Salpêtrière, Paris, France
- University Pierre and Marie Curie, Neurometabolic Research Group, Paris, France
| | - Emmanuel Brouillet
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
59
|
Xie D, Kim S, Kohli V, Banerjee A, Yu M, Enriquez JS, Luci JJ, Que EL. Hypoxia-Responsive 19F MRI Probes with Improved Redox Properties and Biocompatibility. Inorg Chem 2017; 56:6429-6437. [PMID: 28537705 DOI: 10.1021/acs.inorgchem.7b00500] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
19F magnetic resonance imaging (MRI), an emerging modality in biomedical imaging, has shown promise for in vitro and in vivo preclinical studies. Here we present a series of fluorinated Cu(II)ATSM derivatives for potential use as 19F magnetic resonance agents for sensing cellular hypoxia. The synthesized complexes feature a hypoxia-targeting Cu2+ coordination core, nine equivalent fluorine atoms connected via a variable-length poly(ethylene glycol) linker. Introduction of the fluorine moiety maintains the planar coordination geometry of the Cu2+ center, while the linker length modulates the Cu2+/+ reduction potential, 19F NMR relaxation properties, and lipophilicity. In particular, the 19F NMR relaxation properties were quantitatively evaluated by the Solomon-Bloembergen model, revealing a regular pattern of relaxation enhancement tuned by the distance between Cu2+ and F atoms. Finally, the potential utility of these complexes for sensing reductive environments was demonstrated using both 19F MR phantom imaging and 19F NMR, including experiments in intact live cells.
Collapse
Affiliation(s)
- Da Xie
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Seyong Kim
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Vikraant Kohli
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Arnab Banerjee
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Meng Yu
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - José S Enriquez
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| | - Jeffrey J Luci
- Department of Neuroscience, The University of Texas at Austin , Austin, Texas 78712, United States.,Imaging Research Center, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street Stop A5300, Austin, Texas 78712, United States
| |
Collapse
|
60
|
MR Molecular Imaging of Brain Cancer Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy. Top Magn Reson Imaging 2017; 25:187-196. [PMID: 27748711 DOI: 10.1097/rmr.0000000000000104] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metabolic reprogramming is an important hallmark of cancer. Alterations in many metabolic pathways support the requirement for cellular building blocks that are essential for cancer cell proliferation. This metabolic reprogramming can be imaged using magnetic resonance spectroscopy (MRS). H MRS can inform on alterations in the steady-state levels of cellular metabolites, but the emergence of hyperpolarized C MRS has now also enabled imaging of metabolic fluxes in real-time, providing a new method for tumor detection and monitoring of therapeutic response. In the case of glioma, preclinical cell and animal studies have shown that the hyperpolarized C MRS metabolic imaging signature is specific to tumor type and can distinguish between mutant IDH1 glioma and primary glioblastoma. Here, we review these findings, first describing the main metabolic pathways that are altered in the different glioma subtypes, and then reporting on the use of hyperpolarized C MRS and MR spectroscopic imaging (MRSI) to probe these pathways. We show that the future translation of this hyperpolarized C MRS molecular metabolic imaging method to the clinic promises to improve the noninvasive detection, characterization, and response-monitoring of brain tumors resulting in improved patient diagnosis and clinical management.
Collapse
|
61
|
Chio IIC, Tuveson DA. ROS in Cancer: The Burning Question. Trends Mol Med 2017; 23:411-429. [PMID: 28427863 PMCID: PMC5462452 DOI: 10.1016/j.molmed.2017.03.004] [Citation(s) in RCA: 340] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
Abstract
An unanswered question in human health is whether antioxidation prevents or promotes cancer. Antioxidation has historically been viewed as chemopreventive, but emerging evidence suggests that antioxidants may be supportive of neoplasia. We posit this contention to be rooted in the fact that ROS do not operate as one single biochemical entity, but as diverse secondary messengers in cancer cells. This cautions against therapeutic strategies to increase ROS at a global level. To leverage redox alterations towards the development of effective therapies necessitates the application of biophysical and biochemical approaches to define redox dynamics and to functionally elucidate specific oxidative modifications in cancer versus normal cells. An improved understanding of the sophisticated workings of redox biology is imperative to defeating cancer.
Collapse
Affiliation(s)
- Iok In Christine Chio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
62
|
Hyperpolarized 13C Spectroscopic Evaluation of Oxidative Stress in a Rodent Model of Steatohepatitis. Sci Rep 2017; 7:46014. [PMID: 28425467 PMCID: PMC5397869 DOI: 10.1038/srep46014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become highly prevalent, now considered the most common liver disease in the western world. Approximately one-third of patients with NASH develop non-alchoholic steatohepatitis (NASH), histologically defined by lobular and portal inflammation, and accompanied by marked oxidative stress. Patients with NASH are at increased risk for cirrhosis and hepatocellular carcinoma, and diagnosis currently requires invasive biopsy. In animal models of NASH, particularly the methionine-choline deficient (MCD) model, profound changes are seen in redox enzymes and key intracellular antioxidants. To study antioxidant status in NASH non-invasively, we applied the redox probe hyperpolarized [1-13C] dehydroascorbic acid (HP DHA), which is reduced to Vitamin C (VitC) rapidly in the normal liver. In MCD mice, we observed a significant decrease in HP DHA to VitC conversion that accompanied hepatic fat deposition. When these animals were subsequently placed on a normal diet, resonance ratios reverted to those seen in control mice. These findings suggest that HP DHA, a potentially clinically translatable imaging agent, holds special promise in imaging NASH and other metabolic syndromes, to monitor disease progression and response to targeted therapies.
Collapse
|
63
|
Adamson EB, Ludwig KD, Mummy DG, Fain SB. Magnetic resonance imaging with hyperpolarized agents: methods and applications. Phys Med Biol 2017; 62:R81-R123. [PMID: 28384123 DOI: 10.1088/1361-6560/aa6be8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, hyperpolarized (HP) contrast agents have been under active development for MRI applications to address the twin challenges of functional and quantitative imaging. Both HP helium (3He) and xenon (129Xe) gases have reached the stage where they are under study in clinical research. HP 129Xe, in particular, is poised for larger scale clinical research to investigate asthma, chronic obstructive pulmonary disease, and fibrotic lung diseases. With advances in polarizer technology and unique capabilities for imaging of 129Xe gas exchange into lung tissue and blood, HP 129Xe MRI is attracting new attention. In parallel, HP 13C and 15N MRI methods have steadily advanced in a wide range of pre-clinical research applications for imaging metabolism in various cancers and cardiac disease. The HP [1-13C] pyruvate MRI technique, in particular, has undergone phase I trials in prostate cancer and is poised for investigational new drug trials at multiple institutions in cancer and cardiac applications. This review treats the methodology behind both HP gases and HP 13C and 15N liquid state agents. Gas and liquid phase HP agents share similar technologies for achieving non-equilibrium polarization outside the field of the MRI scanner, strategies for image data acquisition, and translational challenges in moving from pre-clinical to clinical research. To cover the wide array of methods and applications, this review is organized by numerical section into (1) a brief introduction, (2) the physical and biological properties of the most common polarized agents with a brief summary of applications and methods of polarization, (3) methods for image acquisition and reconstruction specific to improving data acquisition efficiency for HP MRI, (4) the main physical properties that enable unique measures of physiology or metabolic pathways, followed by a more detailed review of the literature describing the use of HP agents to study: (5) metabolic pathways in cancer and cardiac disease and (6) lung function in both pre-clinical and clinical research studies, concluding with (7) some future directions and challenges, and (8) an overall summary.
Collapse
Affiliation(s)
- Erin B Adamson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States of America
| | | | | | | |
Collapse
|
64
|
Siddiqui S, Kadlecek S, Pourfathi M, Xin Y, Mannherz W, Hamedani H, Drachman N, Ruppert K, Clapp J, Rizi R. The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv Drug Deliv Rev 2017; 113:3-23. [PMID: 27599979 PMCID: PMC5783573 DOI: 10.1016/j.addr.2016.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 02/06/2023]
Abstract
Until recently, molecular imaging using magnetic resonance (MR) has been limited by the modality's low sensitivity, especially with non-proton nuclei. The advent of hyperpolarized (HP) MR overcomes this limitation by substantially enhancing the signal of certain biologically important probes through a process known as external nuclear polarization, enabling real-time assessment of tissue function and metabolism. The metabolic information obtained by HP MR imaging holds significant promise in the clinic, where it could play a critical role in disease diagnosis and therapeutic monitoring. This review will provide a comprehensive overview of the developments made in the field of hyperpolarized MR, including advancements in polarization techniques and delivery, probe development, pulse sequence optimization, characterization of healthy and diseased tissues, and the steps made towards clinical translation.
Collapse
Affiliation(s)
- Sarmad Siddiqui
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Mannherz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hooman Hamedani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas Drachman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kai Ruppert
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin Clapp
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rahim Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
65
|
Ceron CS, Baligand C, Joshi S, Wanga S, Cowley PM, Walker JP, Song SH, Mahimkar R, Baker AJ, Raffai RL, Wang ZJ, Lovett DH. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury. Am J Physiol Renal Physiol 2017; 312:F1166-F1183. [PMID: 28331061 PMCID: PMC5495883 DOI: 10.1152/ajprenal.00461.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH2-terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.
Collapse
Affiliation(s)
- Carla S Ceron
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Celine Baligand
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - Sunil Joshi
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Shaynah Wanga
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Patrick M Cowley
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Joy P Walker
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Sang Heon Song
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Rajeev Mahimkar
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Anthony J Baker
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Robert L Raffai
- Department of Surgery, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California
| | - Zhen J Wang
- Department of Radiology, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California; and
| | - David H Lovett
- Department of Medicine, San Francisco Department of Veterans Affairs Medical Center/University of California San Francisco, San Francisco, California;
| |
Collapse
|
66
|
Affiliation(s)
- Brandon Faubert
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8502
| | - Ralph J. DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8502
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8502
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8502
| |
Collapse
|
67
|
Park JM, Khemtong C, Liu SC, Hurd RE, Spielman DM. In vivo assessment of intracellular redox state in rat liver using hyperpolarized [1- 13 C]Alanine. Magn Reson Med 2017; 77:1741-1748. [PMID: 28261868 DOI: 10.1002/mrm.26662] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 02/08/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The intracellular lactate to pyruvate concentration ratio is a commonly used tissue assay biomarker of redox, being proportional to free cytosolic [NADH]/[NAD+ ]. In this study, we assessed the use of hyperpolarized [1-13 C]alanine and the subsequent detection of the intracellular products of [1-13 C]pyruvate and [1-13 C]lactate as a useful substrate for assessing redox levels in the liver in vivo. METHODS Animal experiments were conducted to measure in vivo metabolism at baseline and after ethanol infusion. A solution of 80-mM hyperpolarized [1-13 C]alanine was injected intravenously at baseline (n = 8) and 45 min after ethanol infusion (n = 4), immediately followed by the dynamic acquisition of 13 C MRS spectra. RESULTS In vivo rat liver spectra showed peaks from [1-13 C] alanine and the products of [1-13 C]lactate, [1-13 C]pyruvate, and 13 C-bicarbonate. A significantly increased 13 C-lactate/13 C-pyruvate ratio was observed after ethanol infusion (8.46 ± 0.58 at baseline versus 13.58 ± 0.69 after ethanol infusion; P < 0.001) consistent with the increased NADH produced by liver metabolism of ethanol to acetaldehyde and then acetate. A decrease in 13 C-bicarbonate production was also noted, potentially reflecting ethanol-induced mitochondrial redox changes. CONCLUSION A method to measure in vivo tissue redox using hyperpolarized [1-13 C]alanine is presented, with the validity of the proposed 13 C-pyruvate/13 C-lactate metric tested using an ethanol challenge to alter liver redox state. Magn Reson Med 77:1741-1748, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Jae Mo Park
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shie-Chau Liu
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Ralph E Hurd
- Applied Science Laboratory, GE Healthcare, Menlo Park, California, USA
| | - Daniel M Spielman
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
68
|
Timm KN, Hu DE, Williams M, Wright AJ, Kettunen MI, Kennedy BWC, Larkin TJ, Dzien P, Marco-Rius I, Bohndiek SE, Brindle KM. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy. J Biol Chem 2017; 292:1737-1748. [PMID: 27994059 PMCID: PMC5290948 DOI: 10.1074/jbc.m116.761536] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic.
Collapse
Affiliation(s)
- Kerstin N Timm
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - De-En Hu
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Michael Williams
- the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Alan J Wright
- the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Mikko I Kettunen
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Brett W C Kennedy
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Timothy J Larkin
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Piotr Dzien
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Irene Marco-Rius
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Sarah E Bohndiek
- the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Department of Physics, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Kevin M Brindle
- From the Department of Biochemistry, University of Cambridge, Cambridge CB2 0RE, United Kingdom; the Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom.
| |
Collapse
|
69
|
Imaging oxygen metabolism with hyperpolarized magnetic resonance: a novel approach for the examination of cardiac and renal function. Biosci Rep 2017; 37:BSR20160186. [PMID: 27899435 PMCID: PMC5270319 DOI: 10.1042/bsr20160186] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 12/24/2022] Open
Abstract
Every tissue in the body critically depends on meeting its energetic demands with sufficient oxygen supply. Oxygen supply/demand imbalances underlie the diseases that inflict the greatest socio-economic burden globally. The purpose of this review is to examine how hyperpolarized contrast media, used in combination with MR data acquisition methods, may advance our ability to assess oxygen metabolism non-invasively and thus improve management of clinical disease. We first introduce the concept of hyperpolarization and how hyperpolarized contrast media have been practically implemented to achieve translational and clinical research. We will then analyse how incorporating hyperpolarized contrast media could enable realization of unmet technical needs in clinical practice. We will focus on imaging cardiac and renal oxygen metabolism, as both organs have unique physiological demands to satisfy their requirements for tissue oxygenation, their dysfunction plays a fundamental role in society’s most prevalent diseases, and each organ presents unique imaging challenges. It is our aim that this review attracts a multi-disciplinary audience and sparks collaborations that utilize an exciting, emergent technology to advance our ability to treat patients adversely affected by an oxygen supply/demand mismatch.
Collapse
|
70
|
Halbrook CJ, Lyssiotis CA. Employing Metabolism to Improve the Diagnosis and Treatment of Pancreatic Cancer. Cancer Cell 2017; 31:5-19. [PMID: 28073003 DOI: 10.1016/j.ccell.2016.12.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/03/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma is on pace to become the second leading cause of cancer-related death. The high mortality rate results from a lack of methods for early detection and the inability to successfully treat patients once diagnosed. Pancreatic cancer cells have extensively reprogrammed metabolism, which is driven by oncogene-mediated cell-autonomous pathways, the unique physiology of the tumor microenvironment, and interactions with non-cancer cells. In this review, we discuss how recent efforts delineating rewired metabolic networks in pancreatic cancer have revealed new in-roads to develop detection and treatment strategies for this dreadful disease.
Collapse
Affiliation(s)
- Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
71
|
Hyperpolarization MRI: Preclinical Models and Potential Applications in Neuroradiology. Top Magn Reson Imaging 2016; 25:31-7. [PMID: 26848559 DOI: 10.1097/rmr.0000000000000076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyperpolarization is a novel technology that can dramatically increase signal to noise in magnetic resonance. The method is being applied to small injectable endogenous molecules, which can be used to monitor transient in vivo metabolic events, in real time. The emergence of hyperpolarized C-labeled probes, specifically C pyruvate, has enabled monitoring of core cellular metabolic events. Neuro-oncological applications have been demonstrated in preclinical models. Many more applications of this technology are envisioned, with transformative potential in magnetic resonance imaging.
Collapse
|
72
|
Hyperpolarized MRS: New tool to study real-time brain function and metabolism. Anal Biochem 2016; 529:270-277. [PMID: 27665679 DOI: 10.1016/j.ab.2016.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/31/2016] [Accepted: 09/21/2016] [Indexed: 11/23/2022]
Abstract
The advent of dissolution dynamic nuclear polarization (DNP) led to the emergence of a new kind of magnetic resonance (MR) measurements providing the opportunity to probe metabolism in vivo in real time. It has been shown that, following the injection of hyperpolarized substrates prepared using dissolution DNP, specific metabolic bioprobes that can be used to differentiate between healthy and pathological tissue in preclinical and clinical studies can be readily detected by MR thanks to the tremendous signal enhancement. The present article aims at reviewing the studies of cerebral function and metabolism based on the use of hyperpolarized MR. The constraints and future opportunities that this technology could offer are discussed.
Collapse
|
73
|
Tee SS, DiGialleonardo V, Eskandari R, Jeong S, Granlund KL, Miloushev V, Poot AJ, Truong S, Alvarez JA, Aldeborgh HN, Keshari KR. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field. Sci Rep 2016; 6:32846. [PMID: 27597137 PMCID: PMC5011774 DOI: 10.1038/srep32846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023] Open
Abstract
Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting 13C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength.
Collapse
Affiliation(s)
- Sui Seng Tee
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Valentina DiGialleonardo
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roozbeh Eskandari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sangmoo Jeong
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kristin L Granlund
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vesselin Miloushev
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex J Poot
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | - Hannah N Aldeborgh
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Medical College, NY 10065, USA
| |
Collapse
|
74
|
Najac C, Chaumeil MM, Kohanbash G, Guglielmetti C, Gordon JW, Okada H, Ronen SM. Detection of inflammatory cell function using (13)C magnetic resonance spectroscopy of hyperpolarized [6-(13)C]-arginine. Sci Rep 2016; 6:31397. [PMID: 27507680 PMCID: PMC4979036 DOI: 10.1038/srep31397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 01/11/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are highly prevalent inflammatory cells that play a key role in tumor development and are considered therapeutic targets. MDSCs promote tumor growth by blocking T-cell-mediated anti-tumoral immune response through depletion of arginine that is essential for T-cell proliferation. To deplete arginine, MDSCs express high levels of arginase, which catalyzes the breakdown of arginine into urea and ornithine. Here, we developed a new hyperpolarized (13)C probe, [6-(13)C]-arginine, to image arginase activity. We show that [6-(13)C]-arginine can be hyperpolarized, and hyperpolarized [(13)C]-urea production from [6-(13)C]-arginine is linearly correlated with arginase concentration in vitro. Furthermore we show that we can detect a statistically significant increase in hyperpolarized [(13)C]-urea production in MDSCs when compared to control bone marrow cells. This increase was associated with an increase in intracellular arginase concentration detected using a spectrophotometric assay. Hyperpolarized [6-(13)C]-arginine could therefore serve to image tumoral MDSC function and more broadly M2-like macrophages.
Collapse
Affiliation(s)
- Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Myriam M. Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Surgery, University of California San Francisco, San Francisco, CA, USA
| | | | - Jeremy W. Gordon
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
75
|
Lane AN, Higashi RM, Fan TWM. Preclinical models for interrogating drug action in human cancers using Stable Isotope Resolved Metabolomics (SIRM). Metabolomics 2016; 12:118. [PMID: 27489532 PMCID: PMC4968890 DOI: 10.1007/s11306-016-1065-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIMS In this review we compare the advantages and disadvantages of different model biological systems for determining the metabolic functions of cells in complex environments, how they may change in different disease states, and respond to therapeutic interventions. BACKGROUND All preclinical drug-testing models have advantages and drawbacks. We compare and contrast established cell, organoid and animal models with ex vivo organ or tissue culture and in vivo human experiments in the context of metabolic readout of drug efficacy. As metabolism reports directly on the biochemical state of cells and tissues, it can be very sensitive to drugs and/or other environmental changes. This is especially so when metabolic activities are probed by stable isotope tracing methods, which can also provide detailed mechanistic information on drug action. We have developed and been applying Stable Isotope-Resolved Metabolomics (SIRM) to examine metabolic reprogramming of human lung cancer cells in monoculture, in mouse xenograft/explant models, and in lung cancer patients in situ (Lane et al. 2011; T. W. Fan et al. 2011; T. W-M. Fan et al. 2012; T. W. Fan et al. 2012; Xie et al. 2014b; Ren et al. 2014a; Sellers et al. 2015b). We are able to determine the influence of the tumor microenvironment using these models. We have now extended the range of models to fresh human tissue slices, similar to those originally described by O. Warburg (Warburg 1923), which retain the native tissue architecture and heterogeneity with a paired benign versus cancer design under defined cell culture conditions. This platform offers an unprecedented human tissue model for preclinical studies on metabolic reprogramming of human cancer cells in their tissue context, and response to drug treatment (Xie et al. 2014a). As the microenvironment of the target human tissue is retained and individual patient's response to drugs is obtained, this platform promises to transcend current limitations of drug selection for clinical trials or treatments. CONCLUSIONS AND FUTURE WORK Development of ex vivo human tissue and animal models with humanized organs including bone marrow and liver show considerable promise for analyzing drug responses that are more relevant to humans. Similarly using stable isotope tracer methods with these improved models in advanced stages of the drug development pipeline, in conjunction with tissue biopsy is expected significantly to reduce the high failure rate of experimental drugs in Phase II and III clinical trials.
Collapse
Affiliation(s)
- Andrew N Lane
- Center for Environmental and Systems Biochemistry, University of Kentucky
| | - Richard M Higashi
- Center for Environmental and Systems Biochemistry, University of Kentucky
| | - Teresa W-M Fan
- Center for Environmental and Systems Biochemistry, University of Kentucky
| |
Collapse
|
76
|
Reed GD, von Morze C, Verkman AS, Koelsch BL, Chaumeil MM, Lustig M, Ronen SM, Bok RA, Sands JM, Larson PEZ, Wang ZJ, Larsen JHA, Kurhanewicz J, Vigneron DB. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry. Tomography 2016; 2:125-135. [PMID: 27570835 PMCID: PMC4996281 DOI: 10.18383/j.tom.2016.00127] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools.
Collapse
Affiliation(s)
- Galen D Reed
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California, USA
| | - Bertram L Koelsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Lustig
- Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA; Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jeff M Sands
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jan Henrik Ardenkjær Larsen
- GE Healthcare, Brøndby, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
77
|
Reed GD, von Morze C, Verkman AS, Koelsch BL, Chaumeil MM, Lustig M, Ronen SM, Bok RA, Sands JM, Larson PEZ, Wang ZJ, Larsen JHA, Kurhanewicz J, Vigneron DB. Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry. Tomography 2016. [PMID: 27570835 DOI: 10.18383/j.tom2016.00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
In vivo spin spin relaxation time (T2) heterogeneity of hyperpolarized [13C,15N2]urea in the rat kidney was investigated. Selective quenching of the vascular hyperpolarized 13C signal with a macromolecular relaxation agent revealed that a long-T2 component of the [13C,15N2]urea signal originated from the renal extravascular space, thus allowing the vascular and renal filtrate contrast agent pools of the [13C,15N2]urea to be distinguished via multi-exponential analysis. The T2 response to induced diuresis and antidiuresis was performed with two imaging agents: hyperpolarized [13C,15N2]urea and a control agent hyperpolarized bis-1,1-(hydroxymethyl)-1-13C-cyclopropane-2H8. Large T2 increases in the inner-medullar and papilla were observed with the former agent and not the latter during antidiuresis. Therefore, [13C,15N2]urea relaxometry is sensitive to two steps of the renal urea handling process: glomerular filtration and the inner-medullary urea transporter (UT)-A1 and UT-A3 mediated urea concentrating process. Simple motion correction and subspace denoising algorithms are presented to aid in the multi exponential data analysis. Furthermore, a T2-edited, ultra long echo time sequence was developed for sub-2 mm3 resolution 3D encoding of urea by exploiting relaxation differences in the vascular and filtrate pools.
Collapse
Affiliation(s)
- Galen D Reed
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California, USA
| | - Bertram L Koelsch
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Michael Lustig
- Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA; Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jeff M Sands
- Department of Medicine, Renal Division, Emory University, Atlanta, Georgia, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA
| | - Jan Henrik Ardenkjær Larsen
- GE Healthcare, Brøndby, Denmark; Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| | - Daniel B Vigneron
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA; Graduate Group in Bioengineering University of California San Francisco, San Francisco, California, USA, and University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
78
|
Tsujikawa T, Asahi S, Oh M, Sato Y, Narita N, Makino A, Mori T, Kiyono Y, Tsuchida T, Kimura H, Fujieda S, Okazawa H. Assessment of the Tumor Redox Status in Head and Neck Cancer by 62Cu-ATSM PET. PLoS One 2016; 11:e0155635. [PMID: 27187778 PMCID: PMC4871355 DOI: 10.1371/journal.pone.0155635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 05/02/2016] [Indexed: 12/23/2022] Open
Abstract
Purpose Tumor redox is an important factor for cancer progression, resistance to treatments, and a poor prognosis. The aim of the present study was to define tumor redox (over-reduction) using 62Cu-diacetyl-bis(N4-methylthiosemicarbazone) (62Cu-ATSM) PET and compare its prognostic potential in head and neck cancer (HNC) with that of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG). Methods Thirty HNC patients (stage II–IV) underwent pretreatment 62Cu-ATSM and 18F-FDG PET scans. Maximum standardized uptake values (SUVATSM and SUVFDG) and tumor-to-muscle activity concentration ratios (TMRATSM and TMRFDG) were measured. Reductive-tumor-volume (RTV) was then determined at four thresholds (40%, 50%, 60%, and 70% SUVATSM), and total-lesion-reduction (TLR) was calculated as the product of the mean SUV and RTV for 62Cu-ATSM. In 18F-FDG, metabolic-tumor-volume (MTV) and total-lesion-glycolysis (TLG) were obtained at a threshold of 40%. A ROC analysis was performed to determine % thresholds for RTV and TLR showing the best predictive performance, and these were then used to determine the optimal cut-off values to stratify patients for each parameter. Progression-free-survival (PFS) and cause-specific-survival (CSS) were evaluated by the Kaplan-Meier method. Results The means ± standard deviations of PFS and CSS periods were 16.4±13.4 and 19.2±12.4 months, respectively. A ROC analysis determined that the 70% SUVATSM threshold for RTV and TLR was the best for predicting disease progression and cancer death. Optimal cut-offs for each index were SUVATSM = 3.6, SUVFDG = 7.9, TMRATSM = 3.2, TMRFDG = 5.6, RTV = 2.9, MTV = 8.1, TLR = 14.0, and TLG = 36.5. When the cut-offs for TMRATSM and TLR were set as described above in 62Cu-ATSM PET, patients with higher TMRATSM (p = 0.03) and greater TLR (p = 0.02) showed significantly worse PFS, while patients with greater TLR had significantly worse CSS (p = 0.02). Only MTV in 18F-FDG PET predicted differences in PSF and CSS (p = 0.03 and p = 0.03, respectively). Conclusion Tumor redox parameters measured by 62Cu-ATSM PET may be determinants of HNC patient outcomes and help define optimal patient-specific treatments.
Collapse
Affiliation(s)
- Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
- * E-mail:
| | - Satoko Asahi
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Myungmi Oh
- Department of Otolaryngology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yoshitaka Sato
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Norihiko Narita
- Department of Otolaryngology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| | - Tatsuro Tsuchida
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Department of Otolaryngology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
79
|
Recent Developments in Combined PET/MRI. CURRENT RADIOLOGY REPORTS 2016. [DOI: 10.1007/s40134-016-0149-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
80
|
Walker CM, Merritt M, Wang JX, Bankson JA. Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J Vis Exp 2016:e53607. [PMID: 27166971 DOI: 10.3791/53607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Imaging of hyperpolarized substrates by magnetic resonance shows great clinical promise for assessment of critical biochemical processes in real time. Due to fundamental constraints imposed by the hyperpolarized state, exotic imaging and reconstruction techniques are commonly used. A practical system for characterization of dynamic, multi-spectral imaging methods is critically needed. Such a system must reproducibly recapitulate the relevant chemical dynamics of normal and pathological tissues. The most widely utilized substrate to date is hyperpolarized [1-(13)C]-pyruvate for assessment of cancer metabolism. We describe an enzyme-based phantom system that mediates the conversion of pyruvate to lactate. The reaction is initiated by injection of the hyperpolarized agent into multiple chambers within the phantom, each of which contains varying concentrations of reagents that control the reaction rate. Multiple compartments are necessary to ensure that imaging sequences faithfully capture the spatial and metabolic heterogeneity of tissue. This system will aid the development and validation of advanced imaging strategies by providing chemical dynamics that are not available from conventional phantoms, as well as control and reproducibility that is not possible in vivo.
Collapse
Affiliation(s)
| | - Matthew Merritt
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center
| | - Jian-Xiong Wang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center
| | - James A Bankson
- Imaging Physics, University of Texas M.D. Anderson Cancer Center;
| |
Collapse
|
81
|
Carroll VN, Truillet C, Shen B, Flavell RR, Shao X, Evans MJ, VanBrocklin HF, Scott PJH, Chin FT, Wilson DM. [(11)C]Ascorbic and [(11)C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun (Camb) 2016; 52:4888-90. [PMID: 26963495 PMCID: PMC4854297 DOI: 10.1039/c6cc00895j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Here we report the radiosynthesis of an endogenous redox pair, [(11)C]ascorbic acid ([(11)C]VitC) and [(11)C]dehydroascorbic acid ([(11)C]DHA), the reduced and oxidized forms of vitamin C, and their application to ROS sensing. These results provide the basis for in vivo detection of ROS using positron emission tomography (PET).
Collapse
Affiliation(s)
- V. N. Carroll
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - C. Truillet
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - B. Shen
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - R. R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - X. Shao
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - M. J. Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - H. F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| | - P. J. H. Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - F. T. Chin
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - D. M. Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94107, United States
| |
Collapse
|
82
|
Abstract
The field of metabolism research has made a dramatic resurgence in recent years, fueled by a newfound appreciation of the interactions between metabolites and phenotype. Metabolic substrates and their products can be biomarkers of a wide range of pathologies, including cancer, but our understanding of their in vivo interactions and pathways has been hindered by the robustness of noninvasive imaging approaches. The past 3 decades have been flushed with the development of new techniques for the study of metabolism in vivo. These methods include nuclear-based, predominantly positron emission tomography and magnetic resonance imaging, many of which have been translated to the clinic. The purpose of this review was to introduce both long-standing imaging strategies as well as novel approaches to the study of perturbed metabolic pathways in the setting of carcinogenesis. This will involve descriptions of nuclear probes labeled with C and F as well C for study using hyperpolarized magnetic resonance imaging. Highlighting both advantages and disadvantages of each approach, the aim of this summary was to provide the reader with a framework for interrogation of metabolic aberrations in their system of interest.
Collapse
|
83
|
DeVience SJ, Mayer D. Speeding up dynamic spiral chemical shift imaging with incoherent sampling and low-rank matrix completion. Magn Reson Med 2016; 77:951-960. [PMID: 26914541 DOI: 10.1002/mrm.26170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE To improve the temporal and spatial resolution of dynamic 13 C spiral chemical shift imaging via incoherent sampling and low-rank matrix completion (LRMC). METHODS Spiral CSI data were both simulated and acquired in rats, and undersampling was implemented retrospectively and prospectively by pseudorandomly omitting a fraction of the spiral interleaves. Undersampled data were reconstructed with both LRMC and a conventional inverse nonuniform fast Fourier transform (iNUFFT) and compared with fully sampled data. RESULTS Two-fold undersampling with LRMC reconstruction enabled a two-fold improvement in temporal or spatial resolution without significant artifacts or spatiotemporal distortion. Conversely, undersampling with iNUFFT reconstruction created strong artifacts that obscured the image. LRMC performed better at time points with strong metabolite signal. CONCLUSION Incoherent undersampling and LRMC provides a way to increase the spatiotemporal resolution of spiral CSI without degrading data integrity. Magn Reson Med 77:951-960, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Stephen J DeVience
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dirk Mayer
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
84
|
Ito S, Hyodo F. Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals. Sci Rep 2016; 6:21407. [PMID: 26892591 PMCID: PMC4759784 DOI: 10.1038/srep21407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/22/2016] [Indexed: 11/14/2022] Open
Abstract
Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. The relative locational relationship of spectral peaks in the DNP spectra between the AFR (520 and 525 MHz), 14N-labeled carbamoyl-PROXYL (14N-CmP) (526.5 MHz), and Oxo63 (522 MHz) was different from that in the X-band ESR spectra, but were similar to that in the 300-MHz ESR spectra. The ratio of DNP enhancement to radical concentration for the AFR was higher than those for 14N-CmP, Oxo63, and flavin semiquinone radicals. The spectroscopic DNP properties observed for the AFR were essentially the same as those for AFR mediated by pyrroloquinoline quinone. Moreover, we made a success of in vivo DNP-MR imaging of the CoQ0-mediated AFR which was administered by the subcutaneous and oral injections as an imaging probe.
Collapse
Affiliation(s)
- Shinji Ito
- Innovation Center for Medical Redox Navigation, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
85
|
Salamanca-Cardona L, Keshari KR. (13)C-labeled biochemical probes for the study of cancer metabolism with dynamic nuclear polarization-enhanced magnetic resonance imaging. Cancer Metab 2015; 3:9. [PMID: 26380082 PMCID: PMC4570227 DOI: 10.1186/s40170-015-0136-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/07/2015] [Indexed: 11/30/2022] Open
Abstract
In recent years, advances in metabolic imaging have become dependable tools for the diagnosis and treatment assessment in cancer. Dynamic nuclear polarization (DNP) has recently emerged as a promising technology in hyperpolarized (HP) magnetic resonance imaging (MRI) and has reached clinical relevance with the successful visualization of [1-13C] pyruvate as a molecular imaging probe in human prostate cancer. This review focuses on introducing representative compounds relevant to metabolism that are characteristic of cancer tissue: aerobic glycolysis and pyruvate metabolism, glutamine addiction and glutamine/glutamate metabolism, and the redox state and ascorbate/dehydroascorbate metabolism. In addition, a brief introduction of probes that can be used to trace necrosis, pH changes, and other pathways relevant to cancer is presented to demonstrate the potential that HP MRI has to revolutionize the use of molecular imaging for diagnosis and assessment of treatments in cancer.
Collapse
Affiliation(s)
- Lucia Salamanca-Cardona
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065 USA
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
86
|
Olivares O, Däbritz JHM, King A, Gottlieb E, Halsey C. Research into cancer metabolomics: Towards a clinical metamorphosis. Semin Cell Dev Biol 2015; 43:52-64. [PMID: 26365277 DOI: 10.1016/j.semcdb.2015.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 12/26/2022]
Abstract
The acknowledgement that metabolic reprogramming is a central feature of cancer has generated high expectations for major advances in both diagnosis and treatment of malignancies through addressing metabolism. These have so far only been partially fulfilled, with only a few clinical applications. However, numerous diagnostic and therapeutic compounds are currently being evaluated in either clinical trials or pre-clinical models and new discoveries of alterations in metabolic genes indicate future prognostic or other applicable relevance. Altogether, these metabolic approaches now stand alongside other available measures providing hopes for the prospects of metabolomics in the clinic. Here we present a comprehensive overview of both ongoing and emerging clinical, pre-clinical and technical strategies for exploiting unique tumour metabolic traits, highlighting the current promises and anticipations of research in the field.
Collapse
Affiliation(s)
- Orianne Olivares
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK
| | - J Henry M Däbritz
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK
| | - Ayala King
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK
| | - Eyal Gottlieb
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, UK.
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, UK.
| |
Collapse
|
87
|
Hingorani DV, Bernstein AS, Pagel MD. A review of responsive MRI contrast agents: 2005-2014. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:245-65. [PMID: 25355685 PMCID: PMC4414668 DOI: 10.1002/cmmi.1629] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
This review focuses on MRI contrast agents that are responsive to a change in a physiological biomarker. The response mechanisms are dependent on six physicochemical characteristics, including the accessibility of water to the agent, tumbling time, proton exchange rate, electron spin state, MR frequency or superparamagnetism of the agent. These characteristics can be affected by changes in concentrations or activities of enzymes, proteins, nucleic acids, metabolites, or metal ions, or changes in redox state, pH, temperature, or light. A total of 117 examples are presented, including ones that employ nuclei other than (1) H, which attests to the creativity of multidisciplinary research efforts to develop responsive MRI contrast agents.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Chemistry and Biochemistry, University of Arizona, USA
| | - Adam S Bernstein
- Department of Biomedical Engineering, University of Arizona, USA
| | - Mark D Pagel
- Department of Chemistry and Biochemistry, University of Arizona, USA
- Department of Biomedical Engineering, University of Arizona, USA
- Department of Medical Imaging, University of Arizona, USA
- University of Arizona Cancer Center, University of Arizona, USA
| |
Collapse
|
88
|
Chaumeil MM, Najac C, Ronen SM. Studies of Metabolism Using (13)C MRS of Hyperpolarized Probes. Methods Enzymol 2015; 561:1-71. [PMID: 26358901 DOI: 10.1016/bs.mie.2015.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
First described in 2003, the dissolution dynamic nuclear polarization (DNP) technique, combined with (13)C magnetic resonance spectroscopy (MRS), has since been used in numerous metabolic studies and has become a valuable metabolic imaging method. DNP dramatically increases the level of polarization of (13)C-labeled compounds resulting in an increase in the signal-to-noise ratio (SNR) of over 50,000 fold for the MRS spectrum of hyperpolarized compounds. The high SNR enables rapid real-time detection of metabolism in cells, tissues, and in vivo. This chapter will present a comprehensive review of the DNP approaches that have been used to monitor metabolism in living systems. First, the list of (13)C DNP probes developed to date will be presented, with a particular focus on the most commonly used probe, namely [1-(13)C] pyruvate. In the next four sections, we will then describe the different factors that need to be considered when designing (13)C DNP probes for metabolic studies, conducting in vitro or in vivo hyperpolarized experiments, as well as acquiring, analyzing, and modeling hyperpolarized (13)C data.
Collapse
Affiliation(s)
- Myriam M Chaumeil
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Chloé Najac
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
| |
Collapse
|
89
|
Abstract
Non-invasive (13)C magnetic resonance spectroscopy measurements of the uptake and subsequent metabolism of (13)C-labeled substrates is a powerful method for studying metabolic fluxes in vivo. However, the technique has been hampered by a lack of sensitivity, which has limited both the spatial and temporal resolution. The introduction of dissolution dynamic nuclear polarization in 2003, which by radically enhancing the nuclear spin polarization of (13)C nuclei in solution can increase their sensitivity to detection by more than 10(4)-fold, revolutionized the study of metabolism using magnetic resonance, with temporal and spatial resolutions in the seconds and millimeter ranges, respectively. The principal limitation of the technique is the short half-life of the polarization, which at ∼20-30 s in vivo limits studies to relatively fast metabolic reactions. Nevertheless, pre-clinical studies with a variety of different substrates have demonstrated the potential of the method to provide new insights into tissue metabolism and have paved the way for the first clinical trial of the technique in prostate cancer. The technique now stands on the threshold of more general clinical translation. I consider here what the clinical applications might be, which are the substrates that most likely will be used, how will we analyze the resulting kinetic data, and how we might further increase the levels of polarization and extend polarization lifetime.
Collapse
Affiliation(s)
- Kevin M Brindle
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K.,Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, U.K
| |
Collapse
|
90
|
Jiang W, Lumata L, Chen W, Zhang S, Kovacs Z, Sherry AD, Khemtong C. Hyperpolarized 15N-pyridine derivatives as pH-sensitive MRI agents. Sci Rep 2015; 5:9104. [PMID: 25774436 PMCID: PMC4360734 DOI: 10.1038/srep09104] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/19/2015] [Indexed: 01/02/2023] Open
Abstract
Highly sensitive MR imaging agents that can accurately and rapidly monitor changes in pH would have diagnostic and prognostic value for many diseases. Here, we report an investigation of hyperpolarized 15N-pyridine derivatives as ultrasensitive pH-sensitive imaging probes. These molecules are easily polarized to high levels using standard dynamic nuclear polarization (DNP) techniques and their 15N chemical shifts were found to be highly sensitive to pH. These probes displayed sharp 15N resonances and large differences in chemical shifts (Δδ >90 ppm) between their free base and protonated forms. These favorable features make these agents highly suitable candidates for the detection of small changes in tissue pH near physiological values.
Collapse
Affiliation(s)
- Weina Jiang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Lloyd Lumata
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Wei Chen
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - A Dean Sherry
- 1] Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA [2] Department of Chemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75083, USA
| | - Chalermchai Khemtong
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
91
|
Keshari KR, Wilson DM, Sai V, Bok R, Jen KY, Larson P, Van Criekinge M, Kurhanewicz J, Wang ZJ. Noninvasive in vivo imaging of diabetes-induced renal oxidative stress and response to therapy using hyperpolarized 13C dehydroascorbate magnetic resonance. Diabetes 2015; 64:344-52. [PMID: 25187363 PMCID: PMC4303960 DOI: 10.2337/db13-1829] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress has been proposed to be a unifying cause for diabetic nephropathy and a target for novel therapies. Here we apply a new endogenous reduction-oxidation (redox) sensor, hyperpolarized (HP) (13)C dehydroascorbate (DHA), in conjunction with MRI to noninvasively interrogate the renal redox capacity in a mouse diabetes model. The diabetic mice demonstrate an early decrease in renal redox capacity, as shown by the lower in vivo HP (13)C DHA reduction to the antioxidant vitamin C (VitC), prior to histological evidence of nephropathy. This correlates with lower tissue reduced glutathione (GSH) concentration and higher NADPH oxidase 4 (Nox4) expression, consistent with increased superoxide generation and oxidative stress. ACE inhibition restores the HP (13)C DHA reduction to VitC with concomitant normalization of GSH concentration and Nox4 expression in diabetic mice. HP (13)C DHA enables rapid in vivo assessment of altered redox capacity in diabetic renal injury and after successful treatment.
Collapse
Affiliation(s)
- Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David M Wilson
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Victor Sai
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Robert Bok
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Kuang-Yu Jen
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Peder Larson
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Mark Van Criekinge
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - John Kurhanewicz
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| | - Zhen J Wang
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
92
|
Wiens CN, Friesen-Waldner LJ, Wade TP, Sinclair KJ, McKenzie CA. Chemical shift encoded imaging of hyperpolarized (13) C pyruvate. Magn Reson Med 2014; 74:1682-9. [PMID: 25427313 DOI: 10.1002/mrm.25532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 12/11/2022]
Abstract
PURPOSE To demonstrate a reconstruction technique for separating signal from different hyperpolarized carbon-13 metabolites. METHODS A reconstruction method is described for chemical shift encoded separation of the signal from pyruvate and its downstream metabolites. This method uses consistency of the data with the signal model rather than an additional free-induction decay (FID) acquisition to estimate the B0 offset. Compressed sensing was also integrated into the reconstruction allowing reconstruction of metabolite images from undersampled datasets. The performance of the reconstruction was assessed using thermal phantoms, digital phantoms, and in vivo hyperpolarized [1-(13) C] pyruvate experiments. RESULTS Thermal and digital phantoms indicate that metabolite separation is feasible given Signal-to-noise ratio > 5 and an initial B0 offset estimate within -105 Hz to 90 Hz of the actual B0 offset. In vivo comparisons to an existing FID calibrated reconstruction show improved fidelity in regions with significant field map inhomogeneity provided that these field map variations are accounted for using an additional proton acquisition. Prospectively and retrospectively undersampled studies show acceleration factors of 2 are feasible using compressed sensing. CONCLUSION A reconstruction framework for the separation of signal from pyruvate and its downstream metabolites is shown. This reconstruction eliminates the need to acquire additional calibration FID acquisition and allows acceleration through compressed sensing.
Collapse
Affiliation(s)
- Curtis N Wiens
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Lanette J Friesen-Waldner
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Trevor P Wade
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario.,Robarts Research Institute, University of Western Ontario, London, Ontario
| | - Kevin J Sinclair
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario
| | - Charles A McKenzie
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario.,Robarts Research Institute, University of Western Ontario, London, Ontario
| |
Collapse
|
93
|
Comment A, Merritt ME. Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry 2014; 53:7333-57. [PMID: 25369537 PMCID: PMC4255644 DOI: 10.1021/bi501225t] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Hyperpolarized magnetic resonance
allows for noninvasive measurements
of biochemical reactions in vivo. Although this technique
provides a unique tool for assaying enzymatic activities in intact
organs, the scope of its application is still elusive for the wider
scientific community. The purpose of this review is to provide key
principles and parameters to guide the researcher interested in adopting
this technology to address a biochemical, biomedical, or medical issue.
It is presented in the form of a compendium containing the underlying
essential physical concepts as well as suggestions to help assess
the potential of the technique within the framework of specific research
environments. Explicit examples are used to illustrate the power as
well as the limitations of hyperpolarized magnetic resonance.
Collapse
Affiliation(s)
- Arnaud Comment
- Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
94
|
Abstract
Hyperpolarization using dissolution dynamic nuclear polarization has emerged as a versatile method to dramatically improve the MR signal of low-sensitivity nuclei. This technique facilitates the study of real-time metabolism in vitro and in vivo using (13)C-enriched substrates and has been applied to numerous models of human disease. In particular, several mechanisms underlying prostate cancer have been interrogated using hyperpolarized (13)C MR spectroscopy. This review highlights key metabolic shifts seen in prostate cancer, their study by hyperpolarized (13)C MR spectroscopy, and the development of new platforms for metabolic study.
Collapse
Affiliation(s)
- David M Wilson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| |
Collapse
|
95
|
Lerche MH, Jensen PR, Karlsson M, Meier S. NMR insights into the inner workings of living cells. Anal Chem 2014; 87:119-32. [PMID: 25084065 DOI: 10.1021/ac501467x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mathilde H Lerche
- Albeda Research , Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | | | | | | |
Collapse
|
96
|
Do QN, Ratnakar JS, Kovács Z, Sherry AD. Redox- and hypoxia-responsive MRI contrast agents. ChemMedChem 2014; 9:1116-29. [PMID: 24825674 PMCID: PMC4119595 DOI: 10.1002/cmdc.201402034] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 02/04/2023]
Abstract
The development of responsive or "smart" magnetic resonance imaging (MRI) contrast agents that can report specific biomarker or biological events has been the focus of MRI contrast agent research over the past 20 years. Among various biological hallmarks of interest, tissue redox and hypoxia are particularly important owing to their roles in disease states and metabolic consequences. Herein we review the development of redox-/hypoxia-sensitive T1 shortening and paramagnetic chemical exchange saturation transfer (PARACEST) MRI contrast agents. Traditionally, the relaxivity of redox-sensitive Gd(3+) -based complexes is modulated through changes in the ligand structure or molecular rotation, while PARACEST sensors exploit the sensitivity of the metal-bound water exchange rate to electronic effects of the ligand-pendant arms and alterations in the coordination geometry. Newer designs involve complexes of redox-active metal ions in which the oxidation states have different magnetic properties. The challenges of translating redox- and hypoxia-sensitive agents in vivo are also addressed.
Collapse
Affiliation(s)
- Quyen N. Do
- Department of Chemistry, The University of Texas at Dallas, 800 West Campbell, BE26, Richardson, TX 75080 (USA)
| | - James S. Ratnakar
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 (USA)
| | - Zoltán Kovács
- Department of Chemistry, The University of Texas at Dallas, 800 West Campbell, BE26, Richardson, TX 75080 (USA)
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 (USA)
| | - A. Dean Sherry
- Department of Chemistry, The University of Texas at Dallas, 800 West Campbell, BE26, Richardson, TX 75080 (USA)
- Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390 (USA)
| |
Collapse
|
97
|
Skamarauskas JT, Oakley F, Smith FE, Bawn C, Dunn M, Vidler DS, Clemence M, Blain PG, Taylor R, Gamcsik MP, Thelwall PE. Noninvasive in vivo magnetic resonance measures of glutathione synthesis in human and rat liver as an oxidative stress biomarker. Hepatology 2014; 59:2321-30. [PMID: 24242936 PMCID: PMC4160151 DOI: 10.1002/hep.26925] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/01/2013] [Indexed: 01/12/2023]
Abstract
UNLABELLED Oxidative stress (OS) plays a central role in the progression of liver disease and in damage to liver by toxic xenobiotics. We have developed methods for noninvasive assessment of hepatic OS defenses by measuring flux through the glutathione (GSH) synthesis pathway. (13) C-labeled GSH is endogenously produced and detected by in vivo magnetic resonance after administration of [2-(13) C]-glycine. We report on a successful first-ever human demonstration of this approach as well as preclinical studies demonstrating perturbed GSH metabolism in models of acute and chronic OS. Human studies employed oral administration of [2-(13) C]-glycine and (13) C spectroscopy on a 3T clinical magnetic resonance (MR) imaging scanner and demonstrated detection and quantification of endogenously produced (13) C-GSH after labeled glycine ingestion. Plasma analysis demonstrated that glycine (13) C fractional enrichment achieved steady state during the 6-hour ingestion period. Mean rate of synthesis of hepatic (13) C-labeled GSH was 0.32 ± 0.18 mmole/kg/hour. Preclinical models of acute OS and nonalcoholic steatohepatitis (NASH) comprised CCl4 -treated and high-fat, high-carbohydrate diet-fed Sprague-Dawley rats, respectively, using intravenous administration of [2-(13) C]-glycine and observation of (13) C-label metabolism on a 7T preclinical MR system. Preclinical studies demonstrated a 54% elevation of GSH content and a 31% increase in flux through the GSH synthesis pathway at 12 hours after acute insult caused by CCl4 administration, as well as a 23% decrease in GSH content and evidence of early steatohepatitis in the model of NASH. CONCLUSION Our data demonstrate in vivo (13) C-labeling and detection of GSH as a biomarker of tissue OS defenses, detecting chronic and acute OS insults. The methods are applicable to clinical research studies of hepatic OS in disease states over time as well as monitoring effects of therapeutic interventions.
Collapse
Affiliation(s)
- John T Skamarauskas
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK,Newcastle Magnetic Resonance Center, Newcastle UniversityNewcastle upon Tyne, UK
| | - Fiona Oakley
- Newcastle Magnetic Resonance Center, Newcastle UniversityNewcastle upon Tyne, UK
| | - Fiona E Smith
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK,Newcastle Magnetic Resonance Center, Newcastle UniversityNewcastle upon Tyne, UK
| | - Carlo Bawn
- Northern Institute for Cancer Research, Newcastle UniversityNewcastle upon Tyne, UK
| | - Michael Dunn
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK,Medical Toxicology Center, Newcastle UniversityNewcastle upon Tyne, UK
| | - Daniel S Vidler
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK,Medical Toxicology Center, Newcastle UniversityNewcastle upon Tyne, UK
| | | | - Peter G Blain
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK,Medical Toxicology Center, Newcastle UniversityNewcastle upon Tyne, UK
| | - Roy Taylor
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK,Newcastle Magnetic Resonance Center, Newcastle UniversityNewcastle upon Tyne, UK
| | - Michael P Gamcsik
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State UniversityRaleigh, NC,* Michael P. Gamcsik and Peter E. Thelwall are joint senior authors
| | - Peter E Thelwall
- Institute of Cellular Medicine, Newcastle UniversityNewcastle upon Tyne, UK,Newcastle Magnetic Resonance Center, Newcastle UniversityNewcastle upon Tyne, UK,* Michael P. Gamcsik and Peter E. Thelwall are joint senior authors
| |
Collapse
|
98
|
Koelsch BL, Keshari KR, Peeters TH, Larson PEZ, Wilson DM, Kurhanewicz J. Diffusion MR of hyperpolarized 13C molecules in solution. Analyst 2014; 138:1011-4. [PMID: 23304699 DOI: 10.1039/c2an36715g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We combined the high MR signal enhancement achieved using dissolution dynamic nuclear polarization (DNP) with a pulsed gradient double spin echo diffusion MR sequence to rapidly and accurately measure the diffusion coefficients of various hyperpolarized (13)C molecules in solution. Furthermore, with a diffusion-weighted imaging sequence we generate diffusion coefficient maps of multiple hyperpolarized metabolites simultaneously. While hyperpolarized experiments can measure rapid, non-equilibrium processes by avoiding signal averaging, continuous signal loss due to longitudinal relaxation (T(1)) complicates quantitation. By correcting for this signal loss, we demonstrate the feasibility of using hyperpolarized (13)C diffusion-weighted MR to accurately measure real-time (seconds) molecular transport phenomena. Potential applications include rapidly measuring molecular binding, cellular membrane transport, in vivo metabolite distribution and establishing a magnetic field independent hyperpolarized parameter.
Collapse
Affiliation(s)
- Bertram L Koelsch
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
99
|
A platform for designing hyperpolarized magnetic resonance chemical probes. Nat Commun 2014; 4:2411. [PMID: 24022444 PMCID: PMC3778512 DOI: 10.1038/ncomms3411] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 08/07/2013] [Indexed: 01/19/2023] Open
Abstract
Hyperpolarization is a highly promising technique for improving the sensitivity of magnetic resonance chemical probes. Here we report [15N, D9]trimethylphenylammonium as a platform for designing a variety of hyperpolarized magnetic resonance chemical probes. The platform structure shows a remarkably long 15N spin–lattice relaxation value (816 s, 14.1 T) for retaining its hyperpolarized spin state. The extended lifetime enables the detection of the hyperpolarized 15N signal of the platform for several tens of minutes and thus overcomes the intrinsic short analysis time of hyperpolarized probes. Versatility of the platform is demonstrated by applying it to three types of hyperpolarized chemical probes: one each for sensing calcium ions, reactive oxygen species (hydrogen peroxide) and enzyme activity (carboxyl esterase). All of the designed probes achieve high sensitivity with rapid reactions and chemical shift changes, which are sufficient to allow sensitive and real-time monitoring of target molecules by 15N magnetic resonance. Hyperpolarization of chemical nuclei is known to greatly increase sensitivity to characterization by magnetic resonance imaging. Here a new platform that allows for the design of a number of hyperpolarized probes for chemical sensing applications is demonstrated.
Collapse
|
100
|
Reed GD, von Morze C, Bok R, Koelsch BL, Van Criekinge M, Smith KJ, Shang H, Larson PEZ, Kurhanewicz J, Vigneron DB. High resolution (13)C MRI with hyperpolarized urea: in vivo T(2) mapping and (15)N labeling effects. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:362-71. [PMID: 24235273 PMCID: PMC4011557 DOI: 10.1109/tmi.2013.2285120] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
(13)C steady state free precession (SSFP) magnetic resonance imaging and effective spin-spin relaxation time (T2) mapping were performed using hyperpolarized [(13)C] urea and [(13) C,(15)N2] urea injected intravenously in rats. (15)N labeling gave large T2 increases both in solution and in vivo due to the elimination of a strong scalar relaxation pathway. The T2 increase was pronounced in the kidney, with [(13) C,(15) N2] urea giving T2 values of 6.3±1.3 s in the cortex and medulla, and 11±2 s in the renal pelvis. The measured T2 in the aorta was 1.3±0.3 s. [(13)C] urea showed shortened T2 values in the kidney of 0.23±0.03 s compared to 0.28±0.03 s measured in the aorta. The enhanced T2 of [(13)C,(15)N2] urea was utilized to generate large signal enhancement by SSFP acquisitions with flip angles approaching the fully refocused regime. Projection images at 0.94 mm in-plane resolution were acquired with both urea isotopes, with [(13)C,(15) N2] urea giving a greater than four-fold increase in signal-to-noise ratio over [(13)C] urea.
Collapse
Affiliation(s)
| | - Cornelius von Morze
- Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143 USA ()
| | - Robert Bok
- Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143 USA ()
| | - Bertram L. Koelsch
- Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143 USA ()
| | - Mark Van Criekinge
- Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143 USA ()
| | - Kenneth J. Smith
- Department of Chemistry, University of San Francisco, San Francisco, CA 94117 USA ()
| | - Hong Shang
- Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143 USA ()
| | - Peder E. Z. Larson
- Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143 USA ()
| | - John Kurhanewicz
- Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143 USA ()
| | - Daniel B. Vigneron
- Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, CA 94143 USA ()
| |
Collapse
|