51
|
The significance of gene mutations across eight major cancer types. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:88-99. [PMID: 31416581 DOI: 10.1016/j.mrrev.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
Mutations occur spontaneously, which can be induced by either chemicals (e.g. benzene) or biological factors (e.g. virus). Not all mutations cause noticeable changes in cellular functions. However, mutation in key cellular genes leads to developmental disorders. It is one of the main ways in which proto-oncogenes can be changed into their oncogenic state. The progressive accumulation of multiple mutations throughout life leads to cancer. In the past few decades, extensive research on cancer biology has discovered many genes and pathways having role in cancer development. In this review, we tried to summarize the current knowledge of mutational effect on different cancer types and its consequences in brief for future reference and guidance of researchers in cancer biology.
Collapse
|
52
|
Augello MA, Liu D, Deonarine LD, Robinson BD, Huang D, Stelloo S, Blattner M, Doane AS, Wong EWP, Chen Y, Rubin MA, Beltran H, Elemento O, Bergman AM, Zwart W, Sboner A, Dephoure N, Barbieri CE. CHD1 Loss Alters AR Binding at Lineage-Specific Enhancers and Modulates Distinct Transcriptional Programs to Drive Prostate Tumorigenesis. Cancer Cell 2019; 35:603-617.e8. [PMID: 30930119 PMCID: PMC6467783 DOI: 10.1016/j.ccell.2019.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/06/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
Deletion of the gene encoding the chromatin remodeler CHD1 is among the most common alterations in prostate cancer (PCa); however, the tumor-suppressive functions of CHD1 and reasons for its tissue-specific loss remain undefined. We demonstrated that CHD1 occupied prostate-specific enhancers enriched for the androgen receptor (AR) and lineage-specific cofactors. Upon CHD1 loss, the AR cistrome was redistributed in patterns consistent with the oncogenic AR cistrome in PCa samples and drove tumor formation in the murine prostate. Notably, this cistrome shift was associated with a unique AR transcriptional signature enriched for pro-oncogenic pathways unique to this tumor subclass. Collectively, these data credential CHD1 as a tumor suppressor in the prostate that constrains AR binding/function to limit tumor progression.
Collapse
Affiliation(s)
- Michael A Augello
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deli Liu
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lesa D Deonarine
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dennis Huang
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Suzan Stelloo
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Mirjam Blattner
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashley S Doane
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Elissa W P Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark A Rubin
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Himisha Beltran
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Andrea Sboner
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Noah Dephoure
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Christopher E Barbieri
- Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
53
|
Abstract
The genomics of prostate cancer (PCA) has been difficult to study compared with some other cancer types for a multitude of reasons, despite significant efforts since the early 1980s. Overcoming some of these obstacles has paved the way for greater insight into the genomics of PCA. The advent of high-throughput technologies coming from the initial use of microsatellite and oligonucleotide probes gave rise to techniques like comparative genomic hybridization (CGH). With the introduction of massively parallel genomic sequencing, referred to as next-generation sequencing (NGS), a deeper understanding of cancer genomics in general has occurred. Along with these technologic advances, there has been the development of computational biology and statistical approaches to address novel large data sets characterized by single base resolution. This review will provide a historic perspective of PCA genomics with an emphasis on the cardinal mutations and alterations observed to be consistently seen in PCA for both hormone-naïve localized PCA and castration-resistant prostate cancer (CRPC). There will be a focus on alterations that have the greatest potential to play a role in disease progression and therapy management.
Collapse
Affiliation(s)
- Mark A Rubin
- Englander Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, New York 10065
- Sandra and Edward Meyer Cancer Center at Weill Cornell Medical College, New York, New York 10021
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York 10021
- Department of BioMedical Research, University of Bern, 3012 Bern, Switzerland
| | - Francesca Demichelis
- Englander Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, New York 10065
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| |
Collapse
|
54
|
Abstract
Prostatic adenocarcinoma (PCa) remains a significant health concern. Although localized PCa can be effectively treated, disseminated disease remains uniformly fatal. PCa is reliant on androgen receptor (AR); as such, first-line therapy for metastatic PCa entails suppression of AR signaling. Although initially effective, recurrent tumors reactivate AR function, leading to a lethal stage of disease termed castration-resistant PCa (CRPC). Recent findings implicate AR signaling in control of DNA repair and show that alterations in DNA damage repair pathways are strongly associated with disease progression and poor outcome. This review will address the DNA repair alterations observed in the clinical setting, explore the anticipated molecular and cellular consequence of DNA repair dysfunction, and consider clinical strategies for targeting tumors with altered DNA repair.
Collapse
Affiliation(s)
- Matthew J Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania,19107.,The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania,19107.,Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| |
Collapse
|
55
|
Chen E, Yang F, He H, Li Q, Zhang W, Xing J, Zhu Z, Jiang J, Wang H, Zhao X, Liu R, Lei L, Dong J, Pei Y, Yang Y, Pan J, Zhang P, Liu S, Du L, Zeng Y, Yang J. Alteration of tumor suppressor BMP5 in sporadic colorectal cancer: a genomic and transcriptomic profiling based study. Mol Cancer 2018; 17:176. [PMID: 30572883 PMCID: PMC6302470 DOI: 10.1186/s12943-018-0925-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Background Although the genetic spectrum of human colorectal cancer (CRC) is mainly characterized by APC, KRAS and TP53 mutations, driver genes in tumor initiation have not been conclusively demonstrated. In this study, we aimed to identify novel markers for CRC. Methods We performed exome analysis of sporadic colorectal cancer (sCRC) coding regions to screen loss of function (LoF) mutation genes, and carried out systems-level approaches to confirm top rank gene in this study. Results We identified loss of BMP5 is an early event in CRC. Deep sequencing identified BMP5 was mutated in 7.7% (8/104) of sCRC samples, with 37.5% truncating mutation frequency. Notably, BMP5 negative expression and its prognostic value is uniquely significant in sCRC but not in other tumor types. Furthermore, BMP5 expression was positively correlated with E-cadherin in CRC patients and its dysregulation play a vital role in epithelial-mesenchymal transition (EMT), thus triggering tumor initiation and development. RNA sequencing identified, independent of BMP/Smads pathway, BMP5 signaled though Jak-Stat pathways to inhibit the activation of oncogene EPSTI1. Conclusions Our result support a novel concept that the importance of BMP5 in sCRC. The tumor suppressor role of BMP5 highlights its crucial role in CRC initiation and development. Electronic supplementary material The online version of this article (10.1186/s12943-018-0925-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Fangfang Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Hongjuan He
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Qiqi Li
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Wei Zhang
- Department of Pathology, The Helmholtz Sino-German Laboratory for Cancer Research, Tangdu Hospital, the Fourth Military Medical University, Xian, 710038, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xian, China
| | - Ziqing Zhu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Jingjing Jiang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Hua Wang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Xiaojuan Zhao
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Ruitao Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Lei Lei
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Jing Dong
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Yuchen Pei
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 100 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai, 201210, China
| | - Ying Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Junqiang Pan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Pan Zhang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Shuzhen Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Le Du
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Yuan Zeng
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Jin Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China.
| |
Collapse
|
56
|
Dan C, Zhang H, Zeng W, Huang L, Gong X, Li H, Yang E, Wang L, Yao Q. HNF1B expression regulates ECI2 gene expression, potentially serving a role in prostate cancer progression. Oncol Lett 2018; 17:1094-1100. [PMID: 30655870 PMCID: PMC6312955 DOI: 10.3892/ol.2018.9677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 09/28/2018] [Indexed: 01/28/2023] Open
Abstract
Prostate cancer is the most common form of cancer in men, with increased incidence rates observed in older individuals. Prostate cancer is primarily driven via activation of the androgen receptor (AR), the principal transcriptional factor governing prostate cancer cellular programming and its associated metabolism. One of the downstream targets of AR is hepatocyte nuclear factor-1β (HNF1B), an important oncogenic transcription factor in prostate cancer. In the present study, the regulatory role of HNF1B in enoyl-CoA-(Δ) isomerase 2 (ECI2) expression in the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model was investigated. Using this model, tumor progression and associated pathological alterations at 12, 18 and 24 weeks were analyzed. Histological sectioning revealed pathological alterations over time, including thickening of glandular epithelial cells (12 weeks), increases in cellular proliferation (18 weeks), and extensive thickening and hardening of the tissue layer (24 weeks). Expression levels of HNF1B and ECI2 proteins were validated by immunohistochemistry and western blotting at different stages of prostate cancer development. HNF1B and ECI2 exhibited minimal differences in protein expression at 12 weeks in TRAMP+ mice. However, by 18 weeks, TRAMP+ mice exhibited multi-fold increases in HNF1B expression levels, along with downregulation of ECI2. These effects were reversed at 24 weeks, indicating an important time-dependent regulation of gene expression. Taken together, these results demonstrated that upon tumor progression, the initial tumor-protective effect of HNF1B is lost along with downregulated expression of HNF1B and increased expression of ECI2.
Collapse
Affiliation(s)
- Chao Dan
- Department of Urology and Andrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Haiyan Zhang
- Department of Blood Transfusion, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wenjing Zeng
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Huang
- Department of Urology and Andrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiaoxin Gong
- Department of Urology and Andrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hao Li
- Department of Urology and Andrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Erjiang Yang
- Department of Urology and Andrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Li Wang
- Department of Urology and Andrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qisheng Yao
- Department of Urology and Andrology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
57
|
Current progress and questions in germline genetics of prostate cancer. Asian J Urol 2018; 6:3-9. [PMID: 30775244 PMCID: PMC6363602 DOI: 10.1016/j.ajur.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
Dramatic progress has been made in the area of germline genetics of prostate cancer (PCa) in the past decade. Both common and rare genetic variants with effects on risk ranging from barely detectable to outright practice-changing have been identified. For men with high risk PCa, the application of genetic testing for inherited pathogenic mutations is becoming standard of care. A major question exists about which additional populations of men to test, as men at all risk levels can potentially benefit by knowing their unique genetic profile of germline susceptibility variants. This article will provide a brief overview of some current issues in understanding inherited susceptibility for PCa.
Collapse
|
58
|
Udager AM, Tomlins SA. Molecular Biomarkers in the Clinical Management of Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:a030601. [PMID: 29311125 PMCID: PMC6211380 DOI: 10.1101/cshperspect.a030601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer, one of the most common noncutaneous malignancies in men, is a heterogeneous disease with variable clinical outcome. Although the majority of patients harbor indolent tumors that are essentially cured by local therapy, subsets of patients present with aggressive disease or recur/progress after primary treatment. With this in mind, modern clinical approaches to prostate cancer emphasize the need to reduce overdiagnosis and overtreatment via personalized medicine. Advances in our understanding of prostate cancer pathogenesis, coupled with recent technologic innovations, have facilitated the development and validation of numerous molecular biomarkers, representing a range of macromolecules assayed from a variety of patient sample types, to help guide the clinical management of prostate cancer, including early detection, diagnosis, prognostication, and targeted therapeutic selection. Herein, we review the current state of the art regarding prostate cancer molecular biomarkers, emphasizing those with demonstrated utility in clinical practice.
Collapse
Affiliation(s)
- Aaron M Udager
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5054
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5054
- Department of Urology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5948
- Comprehensive Cancer Center, Michigan Medicine, Ann Arbor, Michigan 48109-0944
- Michigan Center for Translational Pathology, Ann Arbor, Michigan 48109-5940
| |
Collapse
|
59
|
Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG, Agarwal S, Jansson KH, Yang Q, McGowen KM, Yin J, Alilin AN, Karzai FH, Dahut WL, Corey E, Kelly K. A PDX/Organoid Biobank of Advanced Prostate Cancers Captures Genomic and Phenotypic Heterogeneity for Disease Modeling and Therapeutic Screening. Clin Cancer Res 2018; 24:4332-4345. [PMID: 29748182 PMCID: PMC6125202 DOI: 10.1158/1078-0432.ccr-18-0409] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/06/2018] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Purpose: Prostate cancer translational research has been hampered by the lack of comprehensive and tractable models that represent the genomic landscape of clinical disease. Metastatic castrate-resistant prostate cancer (mCRPC) patient-derived xenografts (PDXs) recapitulate the genetic and phenotypic diversity of the disease. We sought to establish a representative, preclinical platform of PDX-derived organoids that is experimentally facile for high-throughput and mechanistic analysis.Experimental Design: Using 20 models from the LuCaP mCRPC PDX cohort, including adenocarcinoma and neuroendocrine lineages, we systematically tested >20 modifications to prostate organoid conditions. Organoids were evaluated for genomic and phenotypic stability and continued reliance on the AR signaling pathway. The utility of the platform as a genotype-dependent model of drug sensitivity was tested with olaparib and carboplatin.Results: All PDX models proliferated as organoids in culture. Greater than 50% could be continuously cultured long-term in modified conditions; however, none of the PDXs could be established long-term as organoids under previously reported conditions. In addition, the modified conditions improved the establishment of patient biopsies over current methods. The genomic heterogeneity of the PDXs was conserved in organoids. Lineage markers and transcriptomes were maintained between PDXs and organoids. Dependence on AR signaling was preserved in adenocarcinoma organoids, replicating a dominant characteristic of CRPC. Finally, we observed maximum cytotoxicity to the PARP inhibitor olaparib in BRCA2-/- organoids, similar to responses observed in patients.Conclusions: The LuCaP PDX/organoid models provide an expansive, genetically characterized platform to investigate the mechanisms of pathogenesis as well as therapeutic responses and their molecular correlates in mCRPC. Clin Cancer Res; 24(17); 4332-45. ©2018 AACR.
Collapse
Affiliation(s)
- Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Caitlin M Tice
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Crystal Tran
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keith H Jansson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Qi Yang
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Kerry M McGowen
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Aian Neil Alilin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Fatima H Karzai
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - William L Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
60
|
Vatrano S, Volante M, Duregon E, Giorcelli J, Izzo S, Rapa I, Votta A, Germano A, Scagliotti G, Berruti A, Terzolo M, Papotti AM. Detailed genomic characterization identifies high heterogeneity and histotype-specific genomic profiles in adrenocortical carcinomas. Mod Pathol 2018; 31:1257-1269. [PMID: 29581542 DOI: 10.1038/s41379-018-0042-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 01/02/2023]
Abstract
Molecular characterization of adrenocortical carcinoma has been recently established, but the correlation between molecular profiles and clinical and pathological characteristics is still poorly defined with no data available about genetic heterogeneity along disease progression. In this scenario, a detailed molecular profile was correlated with clinical and pathological characteristics in adrenocortical carcinoma patients to identify potentially novel biomarkers. Targeted next-generation sequencing and copy number variation analyses for 18 most frequently altered genes in adrenocortical carcinoma were assessed on 62 adult cases (including 10 with matched primary and metastatic/recurrence samples) and results correlated with major clinical and pathological characteristics of tumors. A total of 433 somatic deleterious genetic alterations (328 gene mutations and 105 copy number variations) were identified in 57/62 cases, five resulted wild type for all genes tested. TERT, CDK4, ZNRF3,and RB1 were altered in more than 30% of cases. Among histological variants genotypes were significantly different. Lowest mutation burden was found in the oncocytic type (p = 0.006), whereas the highest with a prevalence of RB1 (p = 0.001) and CDK4 (p = 0.002) was found in the conventional and myxoid ones, respectively. None of the 10 cases with matched samples showed a stable genotype along tumor progression, although allelic frequencies or percentages of altered nuclei at fluorescence in situ hybridization were in most cases similar among different tumor samples for genes that were stable along tumor progression. Among individual genes, an altered p53/Rb1 pathway was the strongest adverse molecular signature, being associated with high Ki-67 index, high tumor stage, aggressive disease status, and shorter disease-free survival. The genomic signature in adrenocortical carcinoma is changing along tumor progression and is associated with specific clinical and pathological features, including histological variant and prognosis.
Collapse
Affiliation(s)
- Simona Vatrano
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Marco Volante
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy.
| | - Eleonora Duregon
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Jessica Giorcelli
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Stefania Izzo
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Ida Rapa
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Arianna Votta
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Antonina Germano
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - Giorgio Scagliotti
- Department of Oncology, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | | | - Massimo Terzolo
- Internal Medicine, Department of Clinical and Biological Sciences, University of Turin at San Luigi Hospital, Orbassano, Turin, Italy
| | - And Mauro Papotti
- Department of Oncology, University of Turin at Molinette Hospital, Turin, Italy
| |
Collapse
|
61
|
Pan CC, Tsuzuki T, Morii E, Fushimi H, Chen PCH, Epstein JI. Whole-exome sequencing demonstrates recurrent somatic copy number alterations and sporadic mutations in specialized stromal tumors of the prostate. Hum Pathol 2018; 76:9-16. [DOI: 10.1016/j.humpath.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/30/2022]
|
62
|
Genetic alterations analysis in prognostic stratified groups identified TP53 and ARID1A as poor clinical performance markers in intrahepatic cholangiocarcinoma. Sci Rep 2018; 8:7119. [PMID: 29740198 PMCID: PMC5940669 DOI: 10.1038/s41598-018-25669-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
The incidence and mortality rates of intrahepatic cholangiocarcinoma have been rising worldwide. Few patients present an early-stage disease that is amenable to curative surgery and after resection, high recurrence rates persist. To identify new independent marker related to aggressive behaviour, two prognostic groups of patient were selected and divided according to prognostic performance. All patients alive at 36 months were included in good prognostic performers, while all patients died due to disease within 36 months in poor prognostic performers. Using high-coverage target sequencing we analysed principal genetic alterations in two groups and compared results to clinical data. In the 33 cases included in poor prognosis group, TP53 was most mutated gene (p = 0.011) and exclusively present in these cases. Similarly, ARID1A was exclusive of this group (p = 0.024). TP53 and ARID1A are mutually exclusive in this study. Statistical analysis showed mutations in TP53 and ARID1A genes and amplification of MET gene as independent predictors of poor prognosis (TP53, p = 0.0031, ARID1A, p = 0.0007, MET, p = 0.0003 in Cox analysis). LOH in PTEN was also identified as marker of disease recurrence (p = 0.04) in univariate analysis. This work improves our understanding of aggressiveness related to this tumour type and has identified novel prognostic markers of clinical outcome.
Collapse
|
63
|
Prostate Cancer Genomics: Recent Advances and the Prevailing Underrepresentation from Racial and Ethnic Minorities. Int J Mol Sci 2018; 19:ijms19041255. [PMID: 29690565 PMCID: PMC5979433 DOI: 10.3390/ijms19041255] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/15/2018] [Accepted: 04/15/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (CaP) is the most commonly diagnosed non-cutaneous cancer and the second leading cause of male cancer deaths in the United States. Among African American (AA) men, CaP is the most prevalent malignancy, with disproportionately higher incidence and mortality rates. Even after discounting the influence of socioeconomic factors, the effect of molecular and genetic factors on racial disparity of CaP is evident. Earlier studies on the molecular basis for CaP disparity have focused on the influence of heritable mutations and single-nucleotide polymorphisms (SNPs). Most CaP susceptibility alleles identified based on genome-wide association studies (GWAS) were common, low-penetrance variants. Germline CaP-associated mutations that are highly penetrant, such as those found in HOXB13 and BRCA2, are usually rare. More recently, genomic studies enabled by Next-Gen Sequencing (NGS) technologies have focused on the identification of somatic mutations that contribute to CaP tumorigenesis. These studies confirmed the high prevalence of ERG gene fusions and PTEN deletions among Caucasian Americans and identified novel somatic alterations in SPOP and FOXA1 genes in early stages of CaP. Individuals with African ancestry and other minorities are often underrepresented in these large-scale genomic studies, which are performed primarily using tumors from men of European ancestry. The insufficient number of specimens from AA men and other minority populations, together with the heterogeneity in the molecular etiology of CaP across populations, challenge the generalizability of findings from these projects. Efforts to close this gap by sequencing larger numbers of tumor specimens from more diverse populations, although still at an early stage, have discovered distinct genomic alterations. These research findings can have a direct impact on the diagnosis of CaP, the stratification of patients for treatment, and can help to address the disparity in incidence and mortality of CaP. This review examines the progress of understanding in CaP genetics and genomics and highlight the need to increase the representation from minority populations.
Collapse
|
64
|
A mononucleotide repeat in PRRT2 is an important, frequent target of mismatch repair deficiency in cancer. Oncotarget 2018; 8:6043-6056. [PMID: 27907910 PMCID: PMC5351611 DOI: 10.18632/oncotarget.13464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 10/21/2016] [Indexed: 02/06/2023] Open
Abstract
The DNA mismatch repair (MMR) system corrects DNA replication mismatches thereby contributing to the maintenance of genomic stability. MMR deficiency has been observed in prostate cancer but its impact on the genomic landscape of these tumours is not known. In order to identify MMR associated mutations in prostate cancer we have performed whole genome sequencing of the MMR deficient PC346C prostate cancer cell line. We detected a total of 1196 mutations in PC346C which was 1.5-fold higher compared to a MMR proficient prostate cancer sample (G089). Of all different mutation classes, frameshifts in mononucleotide repeat (MNR) sequences were significantly enriched in the PC346C sample. As a result, a selection of genes with frameshift mutations in MNR was further assessed regarding its mutational status in a comprehensive panel of prostate, ovarian, endometrial and colorectal cancer cell lines. We identified PRRT2 and DAB2IP to be frequently mutated in MMR deficient cell lines, colorectal and endometrial cancer patient samples. Further characterization of PRRT2 revealed an important role of this gene in cancer biology. Both normal prostate cell lines and a colorectal cancer cell line showed increased proliferation, migration and invasion when expressing the mutated form of PRRT2 (ΔPRRT2). The wild-type PRRT2 (PRRT2wt) had an inhibitory effect in proliferation, consistent with the low expression level of PRRT2 in cancer versus normal prostate samples.
Collapse
|
65
|
Rubin MA, Demichelis F. The Genomics of Prostate Cancer: emerging understanding with technologic advances. Mod Pathol 2018; 31:S1-11. [PMID: 29297493 DOI: 10.1038/modpathol.2017.166] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 01/06/2023]
Abstract
With the advent of next-generation sequencing technologies and large whole-exome and genome studies in prostate and other cancers, our understanding of the landscape of genomic alterations has dramatically been refined. In additional to well-known alterations in genomic regions involving 8p, 8q, 10q23, common ETS translocations and androgen receptor amplifications, newer technology have uncovered recurrent mutations in SPOP, FOXA1, MED12, IDH and complex large scale genomic alterations (eg, chromoplexy). This review surveys the enhanced landscape of genomic alterations in clinically localized and advanced prostate cancer.
Collapse
Affiliation(s)
- Mark A Rubin
- Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY, USA.,Sandra and Edward Meyer Cancer Center at Weill Cornell Medical College, New York, NY, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Francesca Demichelis
- Institute for Precision Medicine, Weill Cornell Medical College-New York Presbyterian Hospital, New York, NY, USA.,Centre of Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
66
|
Gillard M, Lack J, Pontier A, Gandla D, Hatcher D, Sowalsky AG, Rodriguez-Nieves J, Vander Griend D, Paner G, VanderWeele D. Integrative Genomic Analysis of Coincident Cancer Foci Implicates CTNNB1 and PTEN Alterations in Ductal Prostate Cancer. Eur Urol Focus 2017; 5:433-442. [PMID: 29229583 DOI: 10.1016/j.euf.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/20/2017] [Accepted: 12/02/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Ductal adenocarcinoma of the prostate is an aggressive subtype, with high rates of biochemical recurrence and overall poor prognosis. It is frequently found coincident with conventional acinar adenocarcinoma. The genomic features driving evolution to its ductal histology and the biology associated with its poor prognosis remain unknown. OBJECTIVE To characterize genomic features distinguishing ductal adenocarcinoma from coincident acinar adenocarcinoma foci from the same patient. DESIGN, SETTING, AND PARTICIPANTS Ten patients with coincident acinar and ductal prostate cancer underwent prostatectomy. Laser microdissection was used to separately isolate acinar and ductal foci. DNA and RNA were extracted, and used for integrative genomic and transcriptomic analyses. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Single nucleotide mutations, small indels, copy number estimates, and expression profiles were identified. Phylogenetic relationships between coincident foci were determined, and characteristics distinguishing ductal from acinar foci were identified. RESULTS AND LIMITATIONS Exome sequencing, copy number estimates, and fusion genes demonstrated coincident ductal and acinar adenocarcinoma diverged from a common progenitor, yet they harbored distinct alterations unique to each focus. AR expression and activity were similar in both histologies. Nine of 10 cases had mutually exclusive CTNNB1 hotspot mutations or phosphatase and tensin homolog (PTEN) alterations in the ductal component, and these were absent in the acinar foci. These alterations were associated with changes in expression in WNT- and PI3K-pathway genes. CONCLUSIONS Coincident ductal and acinar histologies typically are clonally related and thus arise from the same cell of origin. Ductal foci are enriched for cases with either a CTNNB1 hotspot mutation or a PTEN alteration, and are associated with WNT- or PI3K-pathway activation. These alterations are mutually exclusive and may represent distinct subtypes. PATIENT SUMMARY The aggressive subtype ductal adenocarcinoma is closely related to conventional acinar prostate cancer. Ductal foci contain additional alterations, however, leading to frequent activation of two targetable pathways.
Collapse
Affiliation(s)
- Marc Gillard
- Department of Surgery, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Justin Lack
- Center for Cancer Research Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrea Pontier
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Divya Gandla
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David Hatcher
- Department of Surgery, University of Chicago, Chicago, IL, USA
| | - Adam G Sowalsky
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jose Rodriguez-Nieves
- Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Gladell Paner
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - David VanderWeele
- Department of Medicine, University of Chicago, Chicago, IL, USA; Laboratory for Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
67
|
Jefferies MT, Cox AC, Shorning BY, Meniel V, Griffiths D, Kynaston HG, Smalley MJ, Clarke AR. PTEN loss and activation of K-RAS and β-catenin cooperate to accelerate prostate tumourigenesis. J Pathol 2017; 243:442-456. [PMID: 29134654 PMCID: PMC6128396 DOI: 10.1002/path.4977] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022]
Abstract
Aberrant phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK) and WNT signalling are emerging as key events in the multistep nature of prostate tumourigenesis and progression. Here, we report a compound prostate cancer murine model in which these signalling pathways cooperate to produce a more aggressive prostate cancer phenotype. Using Cre-LoxP technology and the probasin promoter, we combined the loss of Pten (Ptenfl/fl ), to activate the PI3K signalling pathway, with either dominant stabilized β-catenin [Catnb+/lox(ex3) ] or activated K-RAS (K-Ras+/V12 ) to aberrantly activate WNT and MAPK signalling, respectively. Synchronous activation of all three pathways (triple mutants) significantly reduced survival (median 96 days) as compared with double mutants [median: 140 days for Catnb+/lox(ex3) Ptenfl/fl ; 182 days for Catnb+/lox(ex3) K-Ras+/V12 ; 238 days for Ptenfl/fl K-Ras+/V12 ], and single mutants [median: 383 days for Catnb+/lox(ex3) ; 407 days for Ptenfl/fl ], reflecting the accelerated tumourigenesis. Tumours followed a stepwise progression from mouse prostate intraepithelial neoplasia to invasive adenocarcinoma, similar to that seen in human disease. There was significantly elevated cellular proliferation, tumour growth and percentage of invasive adenocarcinoma in triple mutants as compared with double mutants and single mutants. Triple mutants showed not only activated AKT, extracellular-signal regulated kinase 1/2, and nuclear β-catenin, but also significantly elevated signalling through mechanistic target of rapamycin complex 1 (mTORC1). In summary, we show that combined deregulation of the PI3K, MAPK and WNT signalling pathways drives rapid progression of prostate tumourigenesis, and that deregulation of all three pathways results in tumours showing aberrant mTORC1 signalling. As mTORC1 signalling is emerging as a key driver of androgen deprivation therapy resistance, our findings are important for understanding the biology of therapy-resistant prostate cancer and identifying potential approaches to overcome this. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Matthew T. Jefferies
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Adam C. Cox
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
- Department of Urology, Morriston Hospital, Swansea, UK
| | - Boris Y. Shorning
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
| | - Valerie Meniel
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
| | - David Griffiths
- Department of Pathology, University Hospital of Wales, Cardiff, UK
| | - Howard G. Kynaston
- Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, UK
- Department of Urology, University Hospital of Wales, Cardiff
| | - Matthew J. Smalley
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
| | - Alan R. Clarke
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, UK
| |
Collapse
|
68
|
Pan H, Jansson KH, Beshiri ML, Yin J, Fang L, Agarwal S, Nguyen H, Corey E, Zhang Y, Liu J, Fan H, Lin H, Kelly K. Gambogic acid inhibits thioredoxin activity and induces ROS-mediated cell death in castration-resistant prostate cancer. Oncotarget 2017; 8:77181-77194. [PMID: 29100379 PMCID: PMC5652772 DOI: 10.18632/oncotarget.20424] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/26/2017] [Indexed: 01/19/2023] Open
Abstract
Advanced prostate cancer (PrCa) is treated with androgen deprivation therapy, and although there is usually a significant initial response, recurrence arises as castrate resistant prostate cancer (CRPC). New approaches are needed to treat this genetically heterogeneous, phenotypically plastic disease. CRPC with combined homozygous alterations to PTEN and TP53 comprise about 30% of clinical samples. We screened eleven traditional Chinese medicines against a panel of androgen-independent Pten/Tp53 null PrCa-derived cell lines and identified gambogic acid (GA) as a highly potent growth inhibitor. Mechanistic analyses revealed that GA disrupted cellular redox homeostasis, observed as elevated reactive oxygen species (ROS), leading to apoptotic and ferroptotic death. Consistent with this, we determined that GA inhibited thioredoxin, a necessary component of cellular anti-oxidative, protein-reducing activity. In other clinically relevant models, GA displayed submicromolar, growth inhibitory activity against a number of genomically-representative, CRPC patient derived xenograft organoid cultures. Inhibition of ROS with N-acetyl-cysteine partially reversed growth inhibition in CRPC organoids, demonstrating ROS imbalance and implying that GA may have additional mechanisms of action. These data suggest that redox imbalances initiated by GA may be useful, especially in combination therapies, for treating the heterogeneity and plasticity that contributes to the therapeutic resistance of CRPC.
Collapse
Affiliation(s)
- Hong Pan
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
- Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keith H. Jansson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael L. Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Holly Nguyen
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Ying Zhang
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jie Liu
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - HuiTing Fan
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - HongSheng Lin
- Laboratory of Cancer, Guang’anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
69
|
Ren S, Wei GH, Liu D, Wang L, Hou Y, Zhu S, Peng L, Zhang Q, Cheng Y, Su H, Zhou X, Zhang J, Li F, Zheng H, Zhao Z, Yin C, He Z, Gao X, Zhau HE, Chu CY, Wu JB, Collins C, Volik SV, Bell R, Huang J, Wu K, Xu D, Ye D, Yu Y, Zhu L, Qiao M, Lee HM, Yang Y, Zhu Y, Shi X, Chen R, Wang Y, Xu W, Cheng Y, Xu C, Gao X, Zhou T, Yang B, Hou J, Liu L, Zhang Z, Zhu Y, Qin C, Shao P, Pang J, Chung LWK, Xu J, Wu CL, Zhong W, Xu X, Li Y, Zhang X, Wang J, Yang H, Wang J, Huang H, Sun Y. Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify New Genetic Alterations Driving Disease Progression. Eur Urol 2017; 73:322-339. [PMID: 28927585 DOI: 10.1016/j.eururo.2017.08.027] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/24/2017] [Indexed: 01/25/2023]
Abstract
BACKGROUND Global disparities in prostate cancer (PCa) incidence highlight the urgent need to identify genomic abnormalities in prostate tumors in different ethnic populations including Asian men. OBJECTIVE To systematically explore the genomic complexity and define disease-driven genetic alterations in PCa. DESIGN, SETTING, AND PARTICIPANTS The study sequenced whole-genome and transcriptome of tumor-benign paired tissues from 65 treatment-naive Chinese PCa patients. Subsequent targeted deep sequencing of 293 PCa-relevant genes was performed in another cohort of 145 prostate tumors. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The genomic alteration landscape in PCa was analyzed using an integrated computational pipeline. Relationships with PCa progression and survival were analyzed using nonparametric test, log-rank, and multivariable Cox regression analyses. RESULTS AND LIMITATIONS We demonstrated an association of high frequency of CHD1 deletion with a low rate of TMPRSS2-ERG fusion and relatively high percentage of mutations in androgen receptor upstream activator genes in Chinese patients. We identified five putative clustered deleted tumor suppressor genes and provided experimental and clinical evidence that PCDH9, deleted/loss in approximately 23% of tumors, functions as a novel tumor suppressor gene with prognostic potential in PCa. Furthermore, axon guidance pathway genes were frequently deregulated, including gain/amplification of PLXNA1 gene in approximately 17% of tumors. Functional and clinical data analyses showed that increased expression of PLXNA1 promoted prostate tumor growth and independently predicted prostate tumor biochemical recurrence, metastasis, and poor survival in multi-institutional cohorts of patients with PCa. A limitation of this study is that other genetic alterations were not experimentally investigated. CONCLUSIONS There are shared and salient genetic characteristics of PCa in Chinese and Caucasian men. Novel genetic alterations in PCDH9 and PLXNA1 were associated with disease progression. PATIENT SUMMARY We reported the first large-scale and comprehensive genomic data of prostate cancer from Asian population. Identification of these genetic alterations may help advance prostate cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Gong-Hong Wei
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; Division of Genomics and Bioinformatics, CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Hong Kong, China
| | - Lihua Peng
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qin Zhang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yanbing Cheng
- BGI-Shenzhen, Shenzhen, China; Division of Genomics and Bioinformatics, CUHK-BGI Innovation Institute of Trans-Omics, The Chinese University of Hong Kong, Hong Kong, China
| | - Hong Su
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhou
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | | | - Fuqiang Li
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | | | - Zhikun Zhao
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China; School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Changjun Yin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Xin Gao
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Haiyen E Zhau
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chia-Yi Chu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jason Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Colin Collins
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Stanislav V Volik
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Robert Bell
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Danfeng Xu
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongwei Yu
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Lianhui Zhu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Meng Qiao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hang-Mao Lee
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yuehong Yang
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Yasheng Zhu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaolei Shi
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Wang
- Department of Pathology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Weidong Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yanqiong Cheng
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xu Gao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tie Zhou
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bo Yang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianguo Hou
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Liu
- BGI-Shenzhen, Shenzhen, China
| | - Zhensheng Zhang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Shao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Pang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jianfeng Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, IL, USA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China; China National GeneBank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | | | | | - Jian Wang
- BGI-Shenzhen, Shenzhen, China; James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China; James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, China; Department of Biology, University of Copenhagen, Copenhagen, Denmark; The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark; King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
70
|
Nguyen HM, Vessella RL, Morrissey C, Brown LG, Coleman IM, Higano CS, Mostaghel EA, Zhang X, True LD, Lam H, Roudier M, Lange PH, Nelson PS, Corey E. LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the Molecular Heterogeneity of Advanced Disease an--d Serve as Models for Evaluating Cancer Therapeutics. Prostate 2017; 77:654-671. [PMID: 28156002 PMCID: PMC5354949 DOI: 10.1002/pros.23313] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Metastatic prostate cancer is a common and lethal disease for which there are no therapies that produce cures or long-term durable remissions. Clinically relevant preclinical models are needed to increase our understanding of biology of this malignancy and to evaluate new agents that might provide effective treatment. Our objective was to establish and characterize patient-derived xenografts (PDXs) from advanced prostate cancer (PC) for investigation of biology and evaluation of new treatment modalities. METHODS Samples of advanced PC obtained from primary prostate cancer obtained at surgery or from metastases collected at time of death were implanted into immunocompromised mice to establish PDXs. Established PDXs were propagated in vivo. Genomic, transcriptomic, and STR profiles were generated. Responses to androgen deprivation and docetaxel in vivo were characterized. RESULTS We established multiple PDXs (LuCaP series), which represent the major genomic and phenotypic features of the disease in humans, including amplification of androgen receptor, PTEN deletion, TP53 deletion and mutation, RB1 loss, TMPRSS2-ERG rearrangements, SPOP mutation, hypermutation due to MSH2/MSH6 genomic aberrations, and BRCA2 loss. The PDX models also exhibit variation in intra-tumoral androgen levels. Our in vivo results show heterogeneity of response to androgen deprivation and docetaxel, standard therapies for advanced PC, similar to the responses of patients to these treatments. CONCLUSIONS The LuCaP PDX series reflects the diverse molecular composition of human castration-resistant PC and allows for hypothesis-driven cause-and-effect studies of mechanisms underlying treatment response and resistance. Prostate 77: 654-671, 2017. © 2017 The Authors. The Prostate Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Holly M. Nguyen
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Robert L. Vessella
- Department of UrologyUniversity of WashingtonSeattleWashington
- Puget Sound Veteran AdministrationSeattleWashington
| | - Colm Morrissey
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Lisha G. Brown
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Ilsa M. Coleman
- Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington
| | - Celestia S. Higano
- Division of Clinical ResearchFred Hutchinson Cancer Research CenterSeattleWashington
- Division of OncologyDepartment of MedicineUniversity of WashingtonSeattleWashington
| | - Elahe A. Mostaghel
- Division of Clinical ResearchFred Hutchinson Cancer Research CenterSeattleWashington
| | - Xiaotun Zhang
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Lawrence D. True
- Department of PathologyUniversity of WashingtonSeattleWashington
| | - Hung‐Ming Lam
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Martine Roudier
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Paul H. Lange
- Department of UrologyUniversity of WashingtonSeattleWashington
| | - Peter S. Nelson
- Department of UrologyUniversity of WashingtonSeattleWashington
- Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleWashington
- Department of PathologyUniversity of WashingtonSeattleWashington
| | - Eva Corey
- Department of UrologyUniversity of WashingtonSeattleWashington
| |
Collapse
|
71
|
Mikhaylenko DS, Efremov GD, Strelnikov VV, Zaletaev DV, Alekseev BY. Somatic Mutation Analyses in Studies of the Clonal Evolution and Diagnostic Targets of Prostate Cancer. Curr Genomics 2017; 18:236-243. [PMID: 28659719 PMCID: PMC5476950 DOI: 10.2174/1389202917666161102095900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PC) is the most common uro-oncological disease in the global population and still requires a more efficient laboratory diagnosis. Point mutations of oncogenes and tumor sup-pressor genes are the most frequent molecular genetic events in carcinogenesis. The mutations are re-sponsible, to a great extent, for the clonal evolution of cancer and can be considered as primary candi-date molecular markers of PC. Using next-generation sequencing to analyze the mutations in PC, the main molecular PC subtypes were identified, which depended on the presence of fusion genes and FOXA1, CHD1, and SPOP point mutations; other driver mutations responsible for the progression of PC subclones were also characterized. This review summarizes the data on early PC genetic markers (an mtDNA deletion, and TMPRSS2:ERG expression), as well as these somatic mutations at later stages of PC. Emphasis is placed on a switch in AR synthesis to a constitutively active variant and the point muta-tions that facilitate PC transition to a castration-refractory state that is resistant to new AR inhibitors. Based on the current whole-exome sequencing data, the frequencies and localizations of the somatic mu-tations that may provide new genetic diagnostic markers and drug targets are described.
Collapse
Affiliation(s)
- Dmitry S Mikhaylenko
- Pathology Department, Molecular Genetics Group, N. Lopatkin Research Institute of Urology and Interventional Radiology - Branch of the National Medical Research Radiological Center, Moscow, Russia.,Laboratory of Human Molecular Genetics, Institute of Molecular Medicine of the Sechenov First Moscow State Medical University, Moscow, Russia
| | - Gennady D Efremov
- Pathology Department, Molecular Genetics Group, N. Lopatkin Research Institute of Urology and Interventional Radiology - Branch of the National Medical Research Radiological Center, Moscow, Russia
| | | | - Dmitry V Zaletaev
- Laboratory of Human Molecular Genetics, Institute of Molecular Medicine of the Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris Y Alekseev
- Pathology Department, Molecular Genetics Group, N. Lopatkin Research Institute of Urology and Interventional Radiology - Branch of the National Medical Research Radiological Center, Moscow, Russia
| |
Collapse
|
72
|
Yang L, Wang S, Zhou M, Chen X, Jiang W, Zuo Y, Lv Y. Molecular classification of prostate adenocarcinoma by the integrated somatic mutation profiles and molecular network. Sci Rep 2017; 7:738. [PMID: 28389666 PMCID: PMC5429686 DOI: 10.1038/s41598-017-00872-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer is one of the most common cancers in men and a leading cause of cancer death worldwide, displaying a broad range of heterogeneity in terms of clinical and molecular behavior. Increasing evidence suggests that classifying prostate cancers into distinct molecular subtypes is critical to exploring the potential molecular variation underlying this heterogeneity and to better treat this cancer. In this study, the somatic mutation profiles of prostate cancer were downloaded from the TCGA database and used as the source nodes of the random walk with restart algorithm (RWRA) for generating smoothed mutation profiles in the STRING network. The smoothed mutation profiles were selected as the input matrix of the Graph-regularized Nonnegative Matrix Factorization (GNMF) for classifying patients into distinct molecular subtypes. The results were associated with most of the clinical and pathological outcomes. In addition, some bioinformatics analyses were performed for the robust subtyping, and good results were obtained. These results indicated that prostate cancers can be usefully classified according to their mutation profiles, and we hope that these subtypes will help improve the treatment stratification of this cancer in the future.
Collapse
Affiliation(s)
- Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| | - Shiyuan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaowen Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Wei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Yongchun Zuo
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, 010021, China.
| | - Yingli Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
73
|
Simbolo M, Mafficini A, Sikora KO, Fassan M, Barbi S, Corbo V, Mastracci L, Rusev B, Grillo F, Vicentini C, Ferrara R, Pilotto S, Davini F, Pelosi G, Lawlor RT, Chilosi M, Tortora G, Bria E, Fontanini G, Volante M, Scarpa A. Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol 2017; 241:488-500. [PMID: 27873319 PMCID: PMC5324596 DOI: 10.1002/path.4853] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 10/29/2016] [Accepted: 11/15/2016] [Indexed: 12/14/2022]
Abstract
Next-generation sequencing (NGS) was applied to 148 lung neuroendocrine tumours (LNETs) comprising the four World Health Organization classification categories: 53 typical carcinoid (TCs), 35 atypical carcinoid (ACs), 27 large-cell neuroendocrine carcinomas, and 33 small-cell lung carcinomas. A discovery screen was conducted on 46 samples by the use of whole-exome sequencing and high-coverage targeted sequencing of 418 genes. Eighty-eight recurrently mutated genes from both the discovery screen and current literature were verified in the 46 cases of the discovery screen, and validated on additional 102 LNETs by targeted NGS; their prevalence was then evaluated on the whole series. Thirteen of these 88 genes were also evaluated for copy number alterations (CNAs). Carcinoids and carcinomas shared most of the altered genes but with different prevalence rates. When mutations and copy number changes were combined, MEN1 alterations were almost exclusive to carcinoids, whereas alterations of TP53 and RB1 cell cycle regulation genes and PI3K/AKT/mTOR pathway genes were significantly enriched in carcinomas. Conversely, mutations in chromatin-remodelling genes, including those encoding histone modifiers and members of SWI-SNF complexes, were found at similar rates in carcinoids (45.5%) and carcinomas (55.0%), suggesting a major role in LNET pathogenesis. One AC and one TC showed a hypermutated profile associated with a POLQ damaging mutation. There were fewer CNAs in carcinoids than in carcinomas; however ACs showed a hybrid pattern, whereby gains of TERT, SDHA, RICTOR, PIK3CA, MYCL and SRC were found at rates similar to those in carcinomas, whereas the MEN1 loss rate mirrored that of TCs. Multivariate survival analysis revealed RB1 mutation (p = 0.0005) and TERT copy gain (p = 0.016) as independent predictors of poorer prognosis. MEN1 mutation was associated with poor prognosis in AC (p = 0.0045), whereas KMT2D mutation correlated with longer survival in SCLC (p = 0.0022). In conclusion, molecular profiling may complement histology for better diagnostic definition and prognostic stratification of LNETs. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Michele Simbolo
- ARC‐Net Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
- Department of Diagnostics and Public Health, Section of Anatomical PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Andrea Mafficini
- ARC‐Net Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
| | - Katarzyna O Sikora
- ARC‐Net Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
- Department of Diagnostics and Public Health, Section of Anatomical PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Matteo Fassan
- ARC‐Net Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
| | - Stefano Barbi
- Department of Diagnostics and Public Health, Section of Anatomical PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Vincenzo Corbo
- ARC‐Net Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
- Department of Diagnostics and Public Health, Section of Anatomical PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Luca Mastracci
- Department of Surgical and Diagnostic Sciences (DISC)University of Genova and IRCCS S. Martino‐IST University HospitalGenoaItaly
| | - Borislav Rusev
- ARC‐Net Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
- Department of Diagnostics and Public Health, Section of Anatomical PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Federica Grillo
- Department of Surgical and Diagnostic Sciences (DISC)University of Genova and IRCCS S. Martino‐IST University HospitalGenoaItaly
| | - Caterina Vicentini
- ARC‐Net Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
- Department of Diagnostics and Public Health, Section of Anatomical PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Roberto Ferrara
- Department of Medicine, Section of Medical OncologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Sara Pilotto
- Department of Medicine, Section of Medical OncologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Federico Davini
- Unit of Thoracic SurgeryUniversity and Hospital Trust of PisaPisaItaly
| | - Giuseppe Pelosi
- Department of Oncology and Haemato‐OncologyUniversità degli Studi di MilanoMilanoItaly
| | - Rita T Lawlor
- ARC‐Net Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
- Department of Diagnostics and Public Health, Section of Anatomical PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Marco Chilosi
- Department of Diagnostics and Public Health, Section of Anatomical PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Giampaolo Tortora
- Department of Medicine, Section of Medical OncologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Emilio Bria
- Department of Medicine, Section of Medical OncologyUniversity and Hospital Trust of VeronaVeronaItaly
| | - Gabriella Fontanini
- Department of Surgical, Medical, Molecular Pathology and Critical AreaUniversity of PisaPisaItaly
| | - Marco Volante
- Department of OncologyUniversity of Turin at San Luigi HospitalOrbassanoTorinoItaly
| | - Aldo Scarpa
- ARC‐Net Research CentreUniversity and Hospital Trust of VeronaVeronaItaly
- Department of Diagnostics and Public Health, Section of Anatomical PathologyUniversity and Hospital Trust of VeronaVeronaItaly
| |
Collapse
|
74
|
Emami NC, Leong L, Wan E, Van Blarigan EL, Cooperberg MR, Tenggara I, Carroll PR, Chan JM, Witte JS, Simko JP. Tissue Sources for Accurate Measurement of Germline DNA Genotypes in Prostate Cancer Patients Treated With Radical Prostatectomy. Prostate 2017; 77:425-434. [PMID: 27900799 PMCID: PMC5479703 DOI: 10.1002/pros.23283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/03/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Benign tissue from a tumor-containing organ is commonly the only available source for obtaining a patient's unmutated genome for use in cancer research. While it is critical to identify histologically normal tissue that is independent of the tumor lineage, few additional considerations are applied to the choice of this material for such measurements. METHODS Normal formalin-fixed, paraffin-embedded seminal vesicle, and urethral tissues, in addition to whole blood, were collected from 31 prostate cancer patients having undergone radical prostatectomy. Genotype concordance was evaluated for DNA from each tissue source in relation to whole blood. RESULTS Overall, there was a greater genotype call rate for DNA derived from urethral tissue (97.0%) in comparison with patient-matched seminal vesicle tissues (95.9%, P = 0.0015). Furthermore, with reference to patient-matched whole blood, urethral samples exhibited higher genotype concordance (94.1%) than that of seminal vesicle samples (92.5%, P = 0.035). CONCLUSIONS These findings highlight the heterogeneity between diverse sources of DNA in genotype measurement and motivate the consideration of normal tissue biases in tumor-normal analyses. Prostate 77: 425-434, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nima C. Emami
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Lancelote Leong
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Eunice Wan
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
| | - Erin L. Van Blarigan
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Matthew R. Cooperberg
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Imelda Tenggara
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Peter R. Carroll
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - June M. Chan
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - John S. Witte
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Correspondence to: Jeffry P. Simko, 1825 4th St., Room M2360, San Francisco, CA 94158, 415-353-7171 (Phone), 415-353-7094 (Fax), . John S. Witte, 1450 3rd St., San Francisco, CA 94158, 415-502-6882 (Phone), 415-476-1356 (Fax),
| | - Jeffry P. Simko
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Anatomic Pathology, University of California, San Francisco, San Francisco, California
- Correspondence to: Jeffry P. Simko, 1825 4th St., Room M2360, San Francisco, CA 94158, 415-353-7171 (Phone), 415-353-7094 (Fax), . John S. Witte, 1450 3rd St., San Francisco, CA 94158, 415-502-6882 (Phone), 415-476-1356 (Fax),
| |
Collapse
|
75
|
Treviño V, Martínez-Ledesma E, Tamez-Peña J. Identification of outcome-related driver mutations in cancer using conditional co-occurrence distributions. Sci Rep 2017; 7:43350. [PMID: 28240231 PMCID: PMC5327384 DOI: 10.1038/srep43350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Previous methods proposed for the detection of cancer driver mutations have been based on the estimation of background mutation rate, impact on protein function, or network influence. In this paper, we instead focus on those factors influencing patient survival. To this end, an approximation of the log-rank test has been systematically applied, even though it assumes a large and similar number of patients in both risk groups, which is violated in cancer genomics. Here, we propose VALORATE, a novel algorithm for the estimation of the null distribution for the log-rank, independent of the number of mutations. VALORATE is based on conditional distributions of the co-occurrences between events and mutations. The results, achieved through simulations, comparisons with other methods, analyses of TCGA and ICGC cancer datasets, and validations, suggest that VALORATE is accurate, fast, and can identify both known and novel gene mutations. Our proposal and results may have important implications in cancer biology, bioinformatics analyses, and ultimately precision medicine.
Collapse
Affiliation(s)
- Victor Treviño
- Escuela de Medicina, Tecnologico de Monterrey, Av. Morones Prieto 3000 Pte. Monterrey, Nuevo Leon 64710, Mexico
| | - Emmanuel Martínez-Ledesma
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - José Tamez-Peña
- Escuela de Medicina, Tecnologico de Monterrey, Av. Morones Prieto 3000 Pte. Monterrey, Nuevo Leon 64710, Mexico
| |
Collapse
|
76
|
Sowalsky AG, Kissick HT, Gerrin SJ, Schaefer RJ, Xia Z, Russo JW, Arredouani MS, Bubley GJ, Sanda MG, Li W, Ye H, Balk SP. Gleason Score 7 Prostate Cancers Emerge through Branched Evolution of Clonal Gleason Pattern 3 and 4. Clin Cancer Res 2017; 23:3823-3833. [PMID: 28119368 DOI: 10.1158/1078-0432.ccr-16-2414] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/19/2016] [Accepted: 01/04/2017] [Indexed: 01/01/2023]
Abstract
Purpose: The molecular features that account for the distinct histology and aggressive biological behavior of Gleason pattern 4 (Gp4) versus Gp3 prostate cancer, and whether Gp3 tumors progress directly to Gp4, remain to be established.Experimental Design: Whole-exome sequencing and transcriptome profiling of laser capture-microdissected adjacent Gp3 and cribiform Gp4 were used to determine the relationship between these entities.Results: Sequencing confirmed that adjacent Gp3 and Gp4 were clonal based on multiple shared genomic alterations. However, large numbers of unique mutations in the Gp3 and Gp4 tumors showed that the Gp4 were not derived directly from the Gp3. Remarkably, the Gp3 tumors retain their indolent-appearing morphology despite acquisition of multiple genomic alterations, including tumor suppressor losses. Although there were no consistent genomic alterations that distinguished Gp3 from Gp4, pairwise transcriptome analyses identified increased c-Myc and decreased p53 activity in Gp4 versus adjacent clonal Gp3 foci.Conclusions: These findings establish that at least a subset of Gp3 and aggressive Gp4 tumors have a common origin, and support a branched evolution model wherein the Gp3 and Gp4 tumors emerge early from a common precursor and subsequently undergo substantial divergence. Genomic alterations detectable in the Gp3 may distinguish these tumors from truly indolent Gp3. Screening for a panel of these genomic alterations in men who have prostate biopsies showing only Gp3 (Gleason score 6, Gs6) may allow for more precise selection of men who can be safely managed by active surveillance versus those who may benefit from further intervention. Clin Cancer Res; 23(14); 3823-33. ©2017 AACR.
Collapse
Affiliation(s)
- Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.,Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Haydn T Kissick
- Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Winship Cancer Institute, Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Sean J Gerrin
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Rachel J Schaefer
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Zheng Xia
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Joshua W Russo
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - M Simo Arredouani
- Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Glenn J Bubley
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Martin G Sanda
- Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.,Winship Cancer Institute, Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Wei Li
- Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| | - Steven P Balk
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
77
|
Li Y, Buijs-Gladdines JGCAM, Canté-Barrett K, Stubbs AP, Vroegindeweij EM, Smits WK, van Marion R, Dinjens WNM, Horstmann M, Kuiper RP, Buijsman RC, Zaman GJR, van der Spek PJ, Pieters R, Meijerink JPP. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med 2016; 13:e1002200. [PMID: 27997540 PMCID: PMC5172551 DOI: 10.1371/journal.pmed.1002200] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/11/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment. METHODS AND FINDINGS We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor's ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL. CONCLUSIONS Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome.
Collapse
Affiliation(s)
- Yunlei Li
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Jessica G. C. A. M. Buijs-Gladdines
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Kirsten Canté-Barrett
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Andrew P. Stubbs
- Department of Bioinformatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eric M. Vroegindeweij
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Willem K. Smits
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Ronald van Marion
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Martin Horstmann
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Co-operative Study Group for Childhood Acute Lymphoblastic Leukemia, Hamburg, Germany
| | - Roland P. Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Rob Pieters
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jules P. P. Meijerink
- Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children’s Hospital, Rotterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
78
|
Wilczak W, Rashed S, Hube-Magg C, Kluth M, Simon R, Büscheck F, Clauditz TS, Grupp K, Minner S, Tsourlakis MC, Möller-Koop C, Graefen M, Adam M, Haese A, Wittmer C, Sauter G, Izbicki JR, Huland H, Schlomm T, Steurer S, Krech T, Lebok P. Up-regulation of mismatch repair genes MSH6, PMS2 and MLH1 parallels development of genetic instability and is linked to tumor aggressiveness and early PSA recurrence in prostate cancer. Carcinogenesis 2016; 38:19-27. [DOI: 10.1093/carcin/bgw116] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/31/2016] [Indexed: 11/13/2022] Open
|
79
|
Spratt DE, Zumsteg ZS, Feng FY, Tomlins SA. Translational and clinical implications of the genetic landscape of prostate cancer. Nat Rev Clin Oncol 2016; 13:597-610. [PMID: 27245282 PMCID: PMC5030163 DOI: 10.1038/nrclinonc.2016.76] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past several years, analyses of data from high-throughput studies have elucidated many fundamental insights into prostate cancer biology. These insights include the identification of molecular alterations and subtypes that drive tumour progression, recurrent aberrations in signalling pathways, the existence of substantial intertumoural and intratumoural heterogeneity, Darwinian evolution in response to therapeutic pressures and the complicated multidirectional patterns of spread between primary tumours and metastatic sites. However, these concepts have not yet been fully translated into clinical tools to improve prognostication, prediction and personalization of treatment of patients with prostate cancer. The current and future clinical implications of 'omics' level knowledge is not only revolutionizing our understanding of prostate cancer biology, but is also shaping ongoing, and future clinical investigations and practice. In this Review, we summarize these advances, and the remaining challenges surrounding tumour heterogeneity and the ability to overcome treatment resistance are also described.
Collapse
Affiliation(s)
- Daniel E Spratt
- Department of Radiation Oncology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Zachary S Zumsteg
- Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd, West Hollywood, CA 90048, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, 1524 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, Ann Arbor, Michigan, USA
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Department of Urology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, 1524 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, Ann Arbor, Michigan, USA
| |
Collapse
|
80
|
Nghiem B, Zhang X, Lam HM, True LD, Coleman I, Higano CS, Nelson PS, Pritchard CC, Morrissey C. Mismatch repair enzyme expression in primary and castrate resistant prostate cancer. Asian J Urol 2016; 3:223-228. [PMID: 29264190 PMCID: PMC5730872 DOI: 10.1016/j.ajur.2016.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 12/23/2022] Open
Abstract
Objective Although the utility of immunohistochemistry (IHC) for assessing mismatch repair (MMR) protein expression has been demonstrated in solid tumors including primary prostate cancer (PCa), its utility has not been assessed in castration-resistant PCa (CRPC). Methods Tissue microarrays were constructed from 127 radical prostatectomies and 155 CRPC metastases from 50 patients. MMR (MLH1, MSH2, MSH6, and PMS2) expression was assessed by IHC and gene expression arrays. Associations between MMR protein expression in PCa and CRPC and biochemical recurrence (BCR) or time from diagnosis to death respectively were determined. Results There was no correlation between levels of MMR protein and BCR. Absence of MSH2 and MSH6 was the most pronounced at 15% and 22% in PCa and 17.8% and 16% in CRPC patients, respectively. MSH2 and MSH6 protein were absent in 9.4% and 8% of PCa and CRPC respectively. Absence of individual MMR proteins did not correlate with BCR or time from diagnosis to death. However absent MSH2/MSH6 in CRPC was associated with shorter time to death (p = 0.0006). Loss of MSH2 was verified at the gene expression level. This finding correlated with microsatellite instability previously reported in this CRPC cohort. Conclusion The absence of MLH1, MSH2, MSH6, and PMS2 protein and combinations thereof are frequent in PCa. Loss of MSH2/MSH6 protein may predict poor outcome in patients with CRPC.
Collapse
Affiliation(s)
- Belinda Nghiem
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Xiaotun Zhang
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA, USA
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Ilsa Coleman
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Celestia S. Higano
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Peter S. Nelson
- Divison of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Colin C. Pritchard
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA, USA
- Corresponding author. Genitourinary Cancer Research Laboratory, Department of Urology, Box 356510, University of Washington, Seattle, WA, USA.Genitourinary Cancer Research LaboratoryDepartment of UrologyUniversity of WashingtonBox 356510SeattleWAUSA
| |
Collapse
|
81
|
Yang CC, Fazli L, Loguercio S, Zharkikh I, Aza-Blanc P, Gleave ME, Wolf DA. Downregulation of c-SRC kinase CSK promotes castration resistant prostate cancer and pinpoints a novel disease subclass. Oncotarget 2016; 6:22060-71. [PMID: 26091350 PMCID: PMC4673146 DOI: 10.18632/oncotarget.4279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 01/03/2023] Open
Abstract
SRC kinase is activated in castration resistant prostate cancer (CRPC), phosphorylates the androgen receptor (AR), and causes its ligand-independent activation as a transcription factor. However, activating SRC mutations are exceedingly rare in human tumors, and mechanisms of ectopic SRC activation therefore remain largely unknown. Performing a functional genomics screen, we found that downregulation of SRC inhibitory kinase CSK is sufficient to overcome growth arrest induced by depriving human prostate cancer cells of androgen. CSK knockdown led to ectopic SRC activation, increased AR signaling, and resistance to anti-androgens. Consistent with the in vitro observations, stable knockdown of CSK conferred castration resistance in mouse xenograft models, while sensitivity to the tyrosine kinase inhibitor dasatinib was retained. Finally, CSK was found downregulated in a distinct subset of CRPCs marked by AR amplification and ETS2 deletion but lacking PTEN and RB1 mutations. These results identify CSK downregulation as a principal driver of SRC activation and castration resistance and validate SRC as a drug target in a molecularly defined subclass of CRPCs.
Collapse
Affiliation(s)
- Chih-Cheng Yang
- Tumor Initiation & Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.,Functional Genomics Core, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Ladan Fazli
- Vancouver Prostate Centre, Vancouver, BC, Canada V6H 3Z6
| | - Salvatore Loguercio
- San Diego Center for Systems Biology, La Jolla, CA 92037, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Irina Zharkikh
- Tumor Analysis Core, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Pedro Aza-Blanc
- Functional Genomics Core, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | - Dieter A Wolf
- Tumor Initiation & Maintenance Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.,San Diego Center for Systems Biology, La Jolla, CA 92037, USA.,School of Pharmaceutical Sciences & Center for Stress Signaling Networks, Xiamen University, Xiamen 361102, China
| |
Collapse
|
82
|
Yap TA, Smith AD, Ferraldeschi R, Al-Lazikani B, Workman P, de Bono JS. Drug discovery in advanced prostate cancer: translating biology into therapy. Nat Rev Drug Discov 2016; 15:699-718. [DOI: 10.1038/nrd.2016.120] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
83
|
Abstract
Although most prostate cancer (PCa) cases are not life-threatening, approximately 293 000 men worldwide die annually due to PCa. These lethal cases are thought to be caused by coordinated genomic alterations that accumulate over time. Recent genome-wide analyses of DNA from subjects with PCa have revealed most, if not all, genetic changes in both germline and PCa tumor genomes. In this article, I first review the major, somatically acquired genomic characteristics of various subtypes of PCa. I then recap key findings on the relationships between genomic alterations and clinical parameters, such as biochemical recurrence or clinical relapse, metastasis and cancer-specific mortality. Finally, I outline the need for, and challenges with, validation of recent findings in prospective studies for clinical utility. It is clearer now than ever before that the landscape of somatically acquired aberrations in PCa is highlighted by DNA copy number alterations (CNAs) and TMPRSS2-ERG fusion derived from complex rearrangements, numerous single nucleotide variations or mutations, tremendous heterogeneity, and continuously punctuated evolution. Genome-wide CNAs, PTEN loss, MYC gain in primary tumors, and TP53 loss/mutation and AR amplification/mutation in advanced metastatic PCa have consistently been associated with worse cancer prognosis. With this recently gained knowledge, it is now an opportune time to develop DNA-based tests that provide more accurate patient stratification for prediction of clinical outcome, which will ultimately lead to more personalized cancer care than is possible at present.
Collapse
Affiliation(s)
- Wennuan Liu
- Program for Personalized Cancer Care, Research Institute, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
84
|
Schmitt MW, Loeb LA, Salk JJ. The influence of subclonal resistance mutations on targeted cancer therapy. Nat Rev Clin Oncol 2016; 13:335-47. [PMID: 26483300 PMCID: PMC4838548 DOI: 10.1038/nrclinonc.2015.175] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clinical oncology is being revolutionized by the increasing use of molecularly targeted therapies. This paradigm holds great promise for improving cancer treatment; however, allocating specific therapies to the patients who are most likely to derive a durable benefit continues to represent a considerable challenge. Evidence continues to emerge that cancers are characterized by extensive intratumour genetic heterogeneity, and that patients being considered for treatment with a targeted agent might, therefore, already possess resistance to the drug in a minority of cells. Indeed, multiple examples of pre-existing subclonal resistance mutations to various molecularly targeted agents have been described, which we review herein. Early detection of pre-existing or emerging drug resistance could enable more personalized use of targeted cancer therapy, as patients could be stratified to receive the therapies that are most likely to be effective. We consider how monitoring of drug resistance could be incorporated into clinical practice to optimize the use of targeted therapies in individual patients.
Collapse
Affiliation(s)
- Michael W Schmitt
- Departments of Biochemistry and Pathology, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Box 19024, Seattle, WA 98109, USA
| | - Lawrence A Loeb
- Departments of Biochemistry and Pathology, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
| | - Jesse J Salk
- Departments of Biochemistry and Pathology, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Box 357705, Seattle, WA 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Box 19024, Seattle, WA 98109, USA
| |
Collapse
|
85
|
Decker B, Karyadi DM, Davis BW, Karlins E, Tillmans LS, Stanford JL, Thibodeau SN, Ostrander EA. Biallelic BRCA2 Mutations Shape the Somatic Mutational Landscape of Aggressive Prostate Tumors. Am J Hum Genet 2016; 98:818-829. [PMID: 27087322 PMCID: PMC4863563 DOI: 10.1016/j.ajhg.2016.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/02/2016] [Indexed: 01/07/2023] Open
Abstract
To identify clinically important molecular subtypes of prostate cancer (PCa), we characterized the somatic landscape of aggressive tumors via deep, whole-genome sequencing. In our discovery set of ten tumor/normal subject pairs with Gleason scores of 8-10 at diagnosis, coordinated analysis of germline and somatic variants, including single-nucleotide variants, indels, and structural variants, revealed biallelic BRCA2 disruptions in a subset of samples. Compared to the other samples, the PCa BRCA2-deficient tumors exhibited a complex and highly specific mutation signature, featuring a 2.88-fold increased somatic mutation rate, depletion of context-specific C>T substitutions, and an enrichment for deletions, especially those longer than 10 bp. We next performed a BRCA2 deficiency-targeted reanalysis of 150 metastatic PCa tumors, and each of the 18 BRCA2-mutated samples recapitulated the BRCA2 deficiency-associated mutation signature, underscoring the potent influence of these lesions on somatic mutagenesis and tumor evolution. Among all 21 individuals with BRCA2-deficient tumors, only about half carried deleterious germline alleles. Importantly, the somatic mutation signature in tumors with one germline and one somatic risk allele was indistinguishable from those with purely somatic mutations. Our observations clearly demonstrate that BRCA2-disrupted tumors represent a unique and clinically relevant molecular subtype of aggressive PCa, highlighting both the promise and utility of this mutation signature as a prognostic and treatment-selection biomarker. Further, any test designed to leverage BRCA2 status as a biomarker for PCa must consider both germline and somatic mutations and all types of deleterious mutations.
Collapse
Affiliation(s)
- Brennan Decker
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Danielle M Karyadi
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Brian W Davis
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Eric Karlins
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Lori S Tillmans
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stephen N Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
86
|
Jiang L, Huang J, Higgs BW, Hu Z, Xiao Z, Yao X, Conley S, Zhong H, Liu Z, Brohawn P, Shen D, Wu S, Ge X, Jiang Y, Zhao Y, Lou Y, Morehouse C, Zhu W, Sebastian Y, Czapiga M, Oganesyan V, Fu H, Niu Y, Zhang W, Streicher K, Tice D, Zhao H, Zhu M, Xu L, Herbst R, Su X, Gu Y, Li S, Huang L, Gu J, Han B, Jallal B, Shen H, Yao Y. Genomic Landscape Survey Identifies SRSF1 as a Key Oncodriver in Small Cell Lung Cancer. PLoS Genet 2016; 12:e1005895. [PMID: 27093186 PMCID: PMC4836692 DOI: 10.1371/journal.pgen.1005895] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/03/2016] [Indexed: 11/19/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive disease with poor survival. A few sequencing studies performed on limited number of samples have revealed potential disease-driving genes in SCLC, however, much still remains unknown, particularly in the Asian patient population. Here we conducted whole exome sequencing (WES) and transcriptomic sequencing of primary tumors from 99 Chinese SCLC patients. Dysregulation of tumor suppressor genes TP53 and RB1 was observed in 82% and 62% of SCLC patients, respectively, and more than half of the SCLC patients (62%) harbored TP53 and RB1 mutation and/or copy number loss. Additionally, Serine/Arginine Splicing Factor 1 (SRSF1) DNA copy number gain and mRNA over-expression was strongly associated with poor survival using both discovery and validation patient cohorts. Functional studies in vitro and in vivo demonstrate that SRSF1 is important for tumorigenicity of SCLC and may play a key role in DNA repair and chemo-sensitivity. These results strongly support SRSF1 as a prognostic biomarker in SCLC and provide a rationale for personalized therapy in SCLC. SCLC patients are initially highly chemo-sensitive with response rates of greater than 80% in both limited and extensive diseases, but suffer uniform disease recurrence or progression in a very short period of time. In the absence of well-defined genomic biomarkers and insights into the resistance mechanism, many targeted treatments have yielded negative results in the last decade Using integrated next generation sequencing (NGS) technology in combination with a high quality surgical sample set with comprehensive clinical annotation, our study not only identified novel recurrent genetic alterations in genes such as CDH10 and DNA repair pathways which may influence outcomes in SCLC patients, but also discovered the expression of SRSF1, an RNA-splicing factor which can both regulate key oncogenic and survival pathways such as BCL2, and play a critical role in patient survival.
Collapse
Affiliation(s)
- Liyan Jiang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Huang
- Medimmune, Gaithersburg, Maryland, United States of America
| | | | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhan Xiao
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Xin Yao
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Sarah Conley
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Haihong Zhong
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Zheng Liu
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Philip Brohawn
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Dong Shen
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Song Wu
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Xiaoxiao Ge
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Jiang
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yizhuo Zhao
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Lou
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | - Wei Zhu
- Medimmune, Gaithersburg, Maryland, United States of America
| | | | - Meggan Czapiga
- Medimmune, Gaithersburg, Maryland, United States of America
| | | | - Haihua Fu
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
| | - Yanjie Niu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | | | - David Tice
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Heng Zhao
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ronald Herbst
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Xinying Su
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
| | - Yi Gu
- Asia & Emerging Markets iMed, AstraZeneca R&D, Shanghai, China
| | - Shyoung Li
- Beijing Genomics Institute, Shenzhen GuangDong, China
| | - Lihua Huang
- Beijing Genomics Institute, Shenzhen GuangDong, China
| | - Jianren Gu
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Baohui Han
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bahija Jallal
- Medimmune, Gaithersburg, Maryland, United States of America
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Collaborative Innovation Center of Cancer Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, China
- * E-mail: (HS); (YY)
| | - Yihong Yao
- Medimmune, Gaithersburg, Maryland, United States of America
- * E-mail: (HS); (YY)
| |
Collapse
|
87
|
Moschini M, Spahn M, Mattei A, Cheville J, Karnes RJ. Incorporation of tissue-based genomic biomarkers into localized prostate cancer clinics. BMC Med 2016; 14:67. [PMID: 27044421 PMCID: PMC4820857 DOI: 10.1186/s12916-016-0613-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/30/2016] [Indexed: 12/17/2022] Open
Abstract
Localized prostate cancer (PCa) is a clinically heterogeneous disease, which presents with variability in patient outcomes within the same risk stratification (low, intermediate or high) and even within the same Gleason scores. Genomic tools have been developed with the purpose of stratifying patients affected by this disease to help physicians personalize therapies and follow-up schemes. This review focuses on these tissue-based tools. At present, four genomic tools are commercially available: Decipher™, Oncotype DX®, Prolaris® and ProMark®. Decipher™ is a tool based on 22 genes and evaluates the risk of adverse outcomes (metastasis) after radical prostatectomy (RP). Oncotype DX® is based on 17 genes and focuses on the ability to predict outcomes (adverse pathology) in very low-low and low-intermediate PCa patients, while Prolaris® is built on a panel of 46 genes and is validated to evaluate outcomes for patients at low risk as well as patients who are affected by high risk PCa and post-RP. Finally, ProMark® is based on a multiplexed proteomics assay and predicts PCa aggressiveness in patients found with similar features to Oncotype DX®. These biomarkers can be helpful for post-biopsy decision-making in low risk patients and post-radical prostatectomy in selected risk groups. Further studies are needed to investigate the clinical benefit of these new technologies, the financial ramifications and how they should be utilized in clinics.
Collapse
Affiliation(s)
| | - Martin Spahn
- Department of Urology, University Hospital of Bern, Inselspital, Bern, Switzerland
| | - Agostino Mattei
- Klinik für Urologie, Luzerner Kantonsspital, Luzern, Switzerland
| | - John Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, MN, USA
| | | |
Collapse
|
88
|
Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, Etzioni R, Bolouri H, Montgomery B, White T, Lucas JM, Brown LG, Dumpit RF, DeSarkar N, Higano C, Yu EY, Coleman R, Schultz N, Fang M, Lange PH, Shendure J, Vessella RL, Nelson PS. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat Med 2016; 22:369-78. [PMID: 26928463 PMCID: PMC5045679 DOI: 10.1038/nm.4053] [Citation(s) in RCA: 546] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
Tumor heterogeneity may reduce the efficacy of molecularly guided systemic therapy for cancers that have metastasized. To determine whether the genomic alterations in a single metastasis provide a reasonable assessment of the major oncogenic drivers of other dispersed metastases in an individual, we analyzed multiple tumors from men with disseminated prostate cancer through whole-exome sequencing, array comparative genomic hybridization (CGH) and RNA transcript profiling, and we compared the genomic diversity within and between individuals. In contrast to the substantial heterogeneity between men, there was limited diversity among metastases within an individual. The number of somatic mutations, the burden of genomic copy number alterations and aberrations in known oncogenic drivers were all highly concordant, as were metrics of androgen receptor (AR) activity and cell cycle activity. AR activity was inversely associated with cell proliferation, whereas the expression of Fanconi anemia (FA)-complex genes was correlated with elevated cell cycle progression, expression of the E2F transcription factor 1 (E2F1) and loss of retinoblastoma 1 (RB1). Men with somatic aberrations in FA-complex genes or in ATM serine/threonine kinase (ATM) exhibited significantly longer treatment-response durations to carboplatin than did men without defects in genes encoding DNA-repair proteins. Collectively, these data indicate that although exceptions exist, evaluating a single metastasis provides a reasonable assessment of the major oncogenic driver alterations that are present in disseminated tumors within an individual, and thus may be useful for selecting treatments on the basis of predicted molecular vulnerabilities.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Genome Sciences, University of Washington, 3720 15 Ave. NE, Seattle, WA
| | - Ilsa Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Colm Morrissey
- Department of Urology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
| | - Xiaotun Zhang
- Department of Urology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
| | - Lawrence D. True
- Department of Pathology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
| | - Roman Gulati
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Ruth Etzioni
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Hamid Bolouri
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Bruce Montgomery
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
| | - Thomas White
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Jared M. Lucas
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Lisha G. Brown
- Department of Urology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
| | - Ruth F. Dumpit
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Navonil DeSarkar
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Celestia Higano
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
| | - Evan Y. Yu
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
| | - Roger Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Min Fang
- Department of Pathology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| | - Paul H. Lange
- Department of Urology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, 3720 15 Ave. NE, Seattle, WA
| | - Robert L. Vessella
- Department of Urology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
| | - Peter S. Nelson
- Department of Genome Sciences, University of Washington, 3720 15 Ave. NE, Seattle, WA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
- Department of Urology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
- Department of Pathology, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
- Department of Medicine, University of Washington, 1959 Northeast Pacific Street, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA
| |
Collapse
|
89
|
Retrospective Multicenter Study Investigating the Role of Targeted Next-Generation Sequencing of Selected Cancer Genes in Mucinous Adenocarcinoma of the Lung. J Thorac Oncol 2016; 11:504-15. [DOI: 10.1016/j.jtho.2016.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/01/2015] [Accepted: 01/07/2016] [Indexed: 01/09/2023]
|
90
|
Abstract
Although prostate cancer is the most common malignancy to affect men in the Western world, the molecular mechanisms underlying its development and progression remain poorly understood. Like all cancers, prostate cancer is a genetic disease that is characterized by multiple genomic alterations, including point mutations, microsatellite variations, and chromosomal alterations such as translocations, insertions, duplications, and deletions. In prostate cancer, but not other carcinomas, these chromosome alterations result in a high frequency of gene fusion events. The development and application of novel high-resolution technologies has significantly accelerated the detection of genomic alterations, revealing the complex nature and heterogeneity of the disease. The clinical heterogeneity of prostate cancer can be partly explained by this underlying genetic heterogeneity, which has been observed between patients from different geographical and ethnic populations, different individuals within these populations, different tumour foci within the same patient, and different cells within the same tumour focus. The highly heterogeneous nature of prostate cancer provides a real challenge for clinical disease management and a detailed understanding of the genetic alterations in all cells, including small subpopulations, would be highly advantageous.
Collapse
|
91
|
Marouf C, Göhler S, Filho MIDS, Hajji O, Hemminki K, Nadifi S, Försti A. Analysis of functional germline variants in APOBEC3 and driver genes on breast cancer risk in Moroccan study population. BMC Cancer 2016; 16:165. [PMID: 26920143 PMCID: PMC4768349 DOI: 10.1186/s12885-016-2210-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/21/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most prevalent cancer in women and a major public health problem in Morocco. Several Moroccan studies have focused on studying this disease, but more are needed, especially at the genetic and molecular levels. Therefore, we investigated the potential association of several functional germline variants in the genes commonly mutated in sporadic breast cancer. METHODS In this case-control study, we examined 36 single nucleotide polymorphisms (SNPs) in 13 genes (APOBEC3A, APOBEC3B, ARID1B, ATR, MAP3K1, MLL2, MLL3, NCOR1, RUNX1, SF3B1, SMAD4, TBX3, TTN), which were located in the core promoter, 5'-and 3'UTR or which were nonsynonymous SNPs to assess their potential association with inherited predisposition to breast cancer development. Additionally, we identified a ~29.5-kb deletion polymorphism between APOBEC3A and APOBEC3B and explored possible associations with BC. A total of 226 Moroccan breast cancer cases and 200 matched healthy controls were included in this study. RESULTS The analysis showed that12 SNPs in 8 driver genes, 4 SNPs in APOBEC3B gene and 1 SNP in APOBEC3A gene were associated with BC risk and/or clinical outcome at P ≤ 0.05 level. RUNX1_rs8130963 (odds ratio (OR) = 2.25; 95 % CI 1.42-3.56; P = 0.0005; dominant model), TBX3_rs8853 (OR = 2.04; 95 % CI 1.38-3.01; P = 0.0003; dominant model), TBX3_rs1061651 (OR= 2.14; 95 % CI1.43-3.18; P = 0.0002; dominant model), TTN_rs12465459 (OR = 2.02; 95 % confidence interval 1.33-3.07; P = 0.0009; dominant model), were the most significantly associated SNPs with BC risk. A strong association with clinical outcome were detected for the genes SMAD4 _rs3819122 with tumor size (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009) and TTN_rs2244492 with estrogen receptor (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009). CONCLUSION Our results suggest that genetic variations in driver and APOBEC3 genes were associated with the risk of BC and may have impact on clinical outcome. However, the reported association between the deletion polymorphism and BC risk was not confirmed in the Moroccan population. These preliminary findings require replication in larger studies.
Collapse
Affiliation(s)
- Chaymaa Marouf
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Laboratory of Genetics and Molecular Pathology-Medical School of Casablanca, Casablanca, Morocco. .,University Hassan II Ain Chock, Center Of Doctoral Sciences "In Health Sciences", Casablanca, Morocco.
| | - Stella Göhler
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | | | - Omar Hajji
- Department of Oncology, Littoral Clinic, Casablanca, Morocco.
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden.
| | - Sellama Nadifi
- Laboratory of Genetics and Molecular Pathology-Medical School of Casablanca, Casablanca, Morocco. .,University Hassan II Ain Chock, Center Of Doctoral Sciences "In Health Sciences", Casablanca, Morocco.
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Center for Primary Health Care Research, Clinical Research Center, Lund University, Malmö, Sweden.
| |
Collapse
|
92
|
Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer. Clin Exp Metastasis 2016; 33:325-37. [PMID: 26873136 DOI: 10.1007/s10585-016-9781-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
LuCaP serially transplantable patient-derived xenografts (PDXs) are valuable preclinical models of locally advanced or metastatic prostate cancer. Using spheroid culture methodology, we recently established cell lines from several LuCaP PDXs. Here, we characterized in depth the features of xenografts derived from LuCaP 136 spheroid cultures and found faithful retention of the phenotype of the original PDX. In vitro culture enabled luciferase transfection into LuCaP 136 spheroids, facilitating in vivo imaging. We showed that LuCaP 136 spheroids formed intratibial, orthotopic, and subcutaneous tumors when re-introduced into mice. Intratibial tumors responded to castration and were highly osteosclerotic. LuCaP 136 is a realistic in vitro-in vivo preclinical model of a subtype of bone metastatic prostate cancer.
Collapse
|
93
|
Borges GT, Vêncio EF, Quek SI, Chen A, Salvanha DM, Vêncio RZN, Nguyen HM, Vessella RL, Cavanaugh C, Ware CB, Troisch P, Liu AY. Conversion of Prostate Adenocarcinoma to Small Cell Carcinoma-Like by Reprogramming. J Cell Physiol 2016; 231:2040-7. [PMID: 26773436 DOI: 10.1002/jcp.25313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/14/2022]
Abstract
The lineage relationship between prostate adenocarcinoma and small cell carcinoma was studied by using the LuCaP family of xenografts established from primary neoplasm to metastasis. Expression of four stem cell transcription factor (TF) genes, LIN28A, NANOG, POU5F1, SOX2, were analyzed in the LuCaP lines. These genes, when force expressed in differentiated cells, can reprogram the recipients into stem-like induced pluripotent stem (iPS) cells. Most LuCaP lines expressed POU5F1, while LuCaP 145.1, representative of small cell carcinoma, expressed all four. Through transcriptome database query, many small cell carcinoma genes were also found in stem cells. To test the hypothesis that prostate cancer progression from "differentiated" adenocarcinoma to "undifferentiated" small cell carcinoma could involve re-expression of stem cell genes, the four TF genes were transduced via lentiviral vectors into five adenocarcinoma LuCaP lines-70CR, 73CR, 86.2, 92, 105CR-as done in iPS cell reprogramming. The resultant cells from these five transductions displayed a morphology of small size and dark appearing unlike the parentals. Transcriptome analysis of LuCaP 70CR* ("*" to denote transfected progeny) revealed a unique gene expression close to that of LuCaP 145.1. In a prostate principal components analysis space based on cell-type transcriptomes, the different LuCaP transcriptome datapoints were aligned to suggest a possible ordered sequence of expression changes from the differentiated luminal-like adenocarcinoma cell types to the less differentiated, more stem-like small cell carcinoma types, and LuCaP 70CR*. Prostate cancer progression can thus be molecularly characterized by loss of differentiation with re-expression of stem cell genes. J. Cell. Physiol. 231: 2040-2047, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gisely T Borges
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Pharmacy School, Federal University of Goiás, Goiânia, Brazil
| | - Eneida F Vêncio
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Oral Pathology, Dental School, Federal University of Goiás, Goiânia, Brazil
| | - Sue-Ing Quek
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Adeline Chen
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| | - Diego M Salvanha
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, São Paulo, Brazil
| | - Ricardo Z N Vêncio
- Department of Computing and Mathematics, FFCLRP, University of São Paulo, São Paulo, Brazil
| | - Holly M Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | - Robert L Vessella
- Department of Urology, University of Washington, Seattle, Washington.,Puget Sound VA Medical Center, Seattle, Washington
| | - Christopher Cavanaugh
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Carol B Ware
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington.,Department of Comparative Medicine, University of Washington, Seattle, Washington
| | | | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, Washington.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
94
|
Hovelson DH, McDaniel AS, Cani AK, Johnson B, Rhodes K, Williams PD, Bandla S, Bien G, Choppa P, Hyland F, Gottimukkala R, Liu G, Manivannan M, Schageman J, Ballesteros-Villagrana E, Grasso CS, Quist MJ, Yadati V, Amin A, Siddiqui J, Betz BL, Knudsen KE, Cooney KA, Feng FY, Roh MH, Nelson PS, Liu CJ, Beer DG, Wyngaard P, Chinnaiyan AM, Sadis S, Rhodes DR, Tomlins SA. Development and validation of a scalable next-generation sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia 2016; 17:385-99. [PMID: 25925381 PMCID: PMC4415141 DOI: 10.1016/j.neo.2015.03.004] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022] Open
Abstract
Next-generation sequencing (NGS) has enabled genome-wide personalized oncology efforts at centers and companies with the specialty expertise and infrastructure required to identify and prioritize actionable variants. Such approaches are not scalable, preventing widespread adoption. Likewise, most targeted NGS approaches fail to assess key relevant genomic alteration classes. To address these challenges, we predefined the catalog of relevant solid tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics analysis of >700,000 samples. To detect these variants, we developed the Oncomine Comprehensive Panel (OCP), an integrative NGS-based assay [compatible with < 20 ng of DNA/RNA from formalin-fixed paraffin-embedded (FFPE) tissues], coupled with an informatics pipeline to specifically identify relevant predefined variants and created a knowledge base of related potential treatments, current practice guidelines, and open clinical trials. We validated OCP using molecular standards and more than 300 FFPE tumor samples, achieving >95% accuracy for KRAS, epidermal growth factor receptor, and BRAF mutation detection as well as for ALK and TMPRSS2:ERG gene fusions. Associating positive variants with potential targeted treatments demonstrated that 6% to 42% of profiled samples (depending on cancer type) harbored alterations beyond routine molecular testing that were associated with approved or guideline-referenced therapies. As a translational research tool, OCP identified adaptive CTNNB1 amplifications/mutations in treated prostate cancers. Through predefining somatic variants in solid tumors and compiling associated potential treatment strategies, OCP represents a simplified, broadly applicable targeted NGS system with the potential to advance precision oncology efforts.
Collapse
Affiliation(s)
- Daniel H Hovelson
- Michigan Center for Translational Pathology, Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew S McDaniel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andi K Cani
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kate Rhodes
- Thermo Fisher Scientific, Ann Arbor, MI, USA
| | | | | | | | - Paul Choppa
- Thermo Fisher Scientific, Ann Arbor, MI, USA
| | | | | | - Guoying Liu
- Thermo Fisher Scientific, Ann Arbor, MI, USA
| | | | | | | | - Catherine S Grasso
- Department of Pathology, Oregon Health and Sciences University, Portland, OR, USA
| | - Michael J Quist
- Department of Pathology, Oregon Health and Sciences University, Portland, OR, USA
| | - Venkata Yadati
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anmol Amin
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bryan L Betz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karen E Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA; Department of Urology, Thomas Jefferson University, Philadelphia, PA, USA; Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen A Cooney
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, USA; Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Michael H Roh
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chia-Jen Liu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David G Beer
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Seth Sadis
- Thermo Fisher Scientific, Ann Arbor, MI, USA
| | - Daniel R Rhodes
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Thermo Fisher Scientific, Ann Arbor, MI, USA
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
95
|
Combination OX40 agonism/CTLA-4 blockade with HER2 vaccination reverses T-cell anergy and promotes survival in tumor-bearing mice. Proc Natl Acad Sci U S A 2016; 113:E319-27. [PMID: 26729864 DOI: 10.1073/pnas.1510518113] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy is gathering momentum as a primary therapy for cancer patients. However, monotherapies have limited efficacy in improving outcomes and benefit only a subset of patients. Combination therapies targeting multiple pathways can augment an immune response to improve survival further. Here, we demonstrate that dual aOX40 (anti-CD134)/aCTLA-4 (anti-cytotoxic T-lymphocyte-associated protein 4) immunotherapy generated a potent antigen-specific CD8 T-cell response, enhancing expansion, effector function, and memory T-cell persistence. Importantly, OX40 and CTLA-4 expression on CD8 T cells was critical for promoting their maximal expansion following combination therapy. Animals treated with combination therapy and vaccination using anti-DEC-205 (dendritic and epithelial cells, 205 kDa)-HER2 (human epidermal growth factor receptor 2) had significantly improved survival in a mammary carcinoma model. Vaccination with combination therapy uniquely restricted Th2-cytokine production by CD4 cells, relative to combination therapy alone, and enhanced IFNγ production by CD8 and CD4 cells. We observed an increase in MIP-1α (macrophage inflammatory protein-1α)/CCL3 [chemokine (C-C motif) ligand 3], MIP-1β/CCL4, RANTES (regulated on activation, normal T-cell expressed and excreted)/CCL5, and GM-CSF production by CD8 and CD4 T cells following treatment. Furthermore, this therapy was associated with extensive tumor destruction and T-cell infiltration into the tumor. Notably, in a spontaneous model of prostate adenocarcinoma, vaccination with combination therapy reversed anergy and enhanced the expansion and function of CD8 T cells recognizing a tumor-associated antigen. Collectively, these data demonstrate that the addition of a vaccine with combined aOX40/aCTLA-4 immunotherapy augmented antitumor CD8 T-cell function while limiting Th2 polarization in CD4 cells and improved overall survival.
Collapse
|
96
|
Novel Research on Fusion Genes and Next-Generation Sequencing. Prostate Cancer 2016. [DOI: 10.1016/b978-0-12-800077-9.00004-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
97
|
Upadhyay P, Gardi N, Desai S, Sahoo B, Singh A, Togar T, Iyer P, Prasad R, Chandrani P, Gupta S, Dutt A. TMC-SNPdb: an Indian germline variant database derived from whole exome sequences. Database (Oxford) 2016; 2016:baw104. [PMID: 27402678 PMCID: PMC4940432 DOI: 10.1093/database/baw104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023]
Abstract
Cancer is predominantly a somatic disease. A mutant allele present in a cancer cell genome is considered somatic when it's absent in the paired normal genome along with public SNP databases. The current build of dbSNP, the most comprehensive public SNP database, however inadequately represents several non-European Caucasian populations, posing a limitation in cancer genomic analyses of data from these populations. We present the T: ata M: emorial C: entre-SNP D: ata B: ase (TMC-SNPdb), as the first open source, flexible, upgradable, and freely available SNP database (accessible through dbSNP build 149 and ANNOVAR)-representing 114 309 unique germline variants-generated from whole exome data of 62 normal samples derived from cancer patients of Indian origin. The TMC-SNPdb is presented with a companion subtraction tool that can be executed with command line option or using an easy-to-use graphical user interface with the ability to deplete additional Indian population specific SNPs over and above dbSNP and 1000 Genomes databases. Using an institutional generated whole exome data set of 132 samples of Indian origin, we demonstrate that TMC-SNPdb could deplete 42, 33 and 28% false positive somatic events post dbSNP depletion in Indian origin tongue, gallbladder, and cervical cancer samples, respectively. Beyond cancer somatic analyses, we anticipate utility of the TMC-SNPdb in several Mendelian germline diseases. In addition to dbSNP build 149 and ANNOVAR, the TMC-SNPdb along with the subtraction tool is available for download in the public domain at the following:Database URL: http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNP/TMCSNPdp.html.
Collapse
Affiliation(s)
- Pawan Upadhyay
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| | - Nilesh Gardi
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| | - Sanket Desai
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| | - Bikram Sahoo
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| | - Ankita Singh
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| | - Trupti Togar
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| | - Prajish Iyer
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| | - Ratnam Prasad
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| | - Pratik Chandrani
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| | - Sudeep Gupta
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra 410012, India
| | - Amit Dutt
- Integrated Genomics Laboratory, Advanced Centre for Treatment Research Education in Cancer (ACTREC)
| |
Collapse
|
98
|
Ostrander EA, Davis BW, Ostrander GK. Transmissible Tumors: Breaking the Cancer Paradigm. Trends Genet 2015; 32:1-15. [PMID: 26686413 DOI: 10.1016/j.tig.2015.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 12/23/2022]
Abstract
Transmissible tumors are those that have transcended the bounds of their incipient hosts by evolving the ability to infect another individual through direct transfer of cancer cells, thus becoming parasitic cancer clones. Coitus, biting, and scratching are transfer mechanisms for the two primary species studied, the domestic dog (Canis lupus familiaris) and the Tasmanian devil (Sarcophilus harrisii). Canine transmissible venereal tumors (CTVT) are likely thousands of years old, and have successfully travelled from host to host around the world, while the Tasmanian devil facial tumor disease (DFTD) is much younger and geographically localized. The dog tumor is not necessarily lethal, while the devil tumor has driven the population to near extinction. Transmissible tumors are uniform in that they have complex immunologic profiles, which allow them to escape immune detection by their hosts, sometimes for long periods of time. In this review, we explore how transmissible tumors in CTVT, DFTD, and as well as the soft-shell clam and Syrian hamster, can advance studies of tumor biology.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda MD 20892, USA.
| | - Brian W Davis
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Building 50 Room 5351, Bethesda MD 20892, USA
| | - Gary K Ostrander
- Department of Biomedical Science, 600W College Ave, College of Medicine, Florida State University, Tallahassee, Tallahassee, FL 32306, USA
| |
Collapse
|
99
|
Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci U S A 2015; 113:E172-81. [PMID: 26621741 DOI: 10.1073/pnas.1521674112] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mutationally activated kinases play an important role in the progression and metastasis of many cancers. Despite numerous oncogenic alterations implicated in metastatic prostate cancer, mutations of kinases are rare. Several lines of evidence suggest that nonmutated kinases and their pathways are involved in prostate cancer progression, but few kinases have been mechanistically linked to metastasis. Using a mass spectrometry-based phosphoproteomics dataset in concert with gene expression analysis, we selected over 100 kinases potentially implicated in human metastatic prostate cancer for functional evaluation. A primary in vivo screen based on overexpression of candidate kinases in murine prostate cells identified 20 wild-type kinases that promote metastasis. We queried these 20 kinases in a secondary in vivo screen using human prostate cells. Strikingly, all three RAF family members, MERTK, and NTRK2 drove the formation of bone and visceral metastasis confirmed by positron-emission tomography combined with computed tomography imaging and histology. Immunohistochemistry of tissue microarrays indicated that these kinases are highly expressed in human metastatic castration-resistant prostate cancer tissues. Our functional studies reveal the strong capability of select wild-type protein kinases to drive critical steps of the metastatic cascade, and implicate these kinases in possible therapeutic intervention.
Collapse
|
100
|
Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:161648. [PMID: 26665001 PMCID: PMC4668301 DOI: 10.1155/2015/161648] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/30/2015] [Accepted: 10/18/2015] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) technologies have greatly impacted on every field of molecular research mainly because they reduce costs and increase throughput of DNA sequencing. These features, together with the technology's flexibility, have opened the way to a variety of applications including the study of the molecular basis of human diseases. Several analytical approaches have been developed to selectively enrich regions of interest from the whole genome in order to identify germinal and/or somatic sequence variants and to study DNA methylation. These approaches are now widely used in research, and they are already being used in routine molecular diagnostics. However, some issues are still controversial, namely, standardization of methods, data analysis and storage, and ethical aspects. Besides providing an overview of the NGS-based approaches most frequently used to study the molecular basis of human diseases at DNA level, we discuss the principal challenges and applications of NGS in the field of human genomics.
Collapse
|