51
|
Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc Natl Acad Sci U S A 2010; 107:16268-73. [PMID: 20805469 DOI: 10.1073/pnas.1002696107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zmpste24 (also called FACE-1) is a metalloproteinase involved in the maturation of lamin A, an essential component of the nuclear envelope. Zmpste24-deficient mice exhibit multiple defects that phenocopy human accelerated aging processes such as Hutchinson-Gilford progeria syndrome. In this work, we report that progeroid Zmpste24(-/-) mice present profound transcriptional alterations in genes that regulate the somatotroph axis, together with extremely high circulating levels of growth hormone (GH) and a drastic reduction in plasma insulin-like growth factor 1 (IGF-1). We also show that recombinant IGF-1 treatment restores the proper balance between IGF-1 and GH in Zmpste24(-/-) mice, delays the onset of many progeroid features, and significantly extends the lifespan of these progeroid animals. Our findings highlight the importance of IGF/GH balance in longevity and may be of therapeutic interest for devastating human progeroid syndromes associated with nuclear envelope abnormalities.
Collapse
|
52
|
Duan C, Ren H, Gao S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 2010; 167:344-51. [PMID: 20403355 DOI: 10.1016/j.ygcen.2010.04.009] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 04/07/2010] [Accepted: 04/14/2010] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor (IGF) signaling pathway consists of multiple IGF ligands, IGF receptors, and IGF-binding proteins (IGFBPs). Studies in a variety of animal and cellular systems suggest that the IGF signaling pathway plays a key role in regulating skeletal muscle growth, differentiation, and in maintaining homeostasis of the adult muscle tissues. Intriguingly, IGFs stimulate both myoblast proliferation and differentiation, which are two mutually exclusive biological events during myogenesis. Both of these actions are mediated through the same IGF-1 receptor. Recent studies have shed new insights into the molecular mechanisms underlying these paradoxical actions of IGFs in muscle cells. In this article, we provide a brief review of our current understanding of the IGF signaling system and discuss recent findings on how local oxygen availability and IGFBPs act to specify IGF actions in muscle cells.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
53
|
Savage MO, Burren CP, Rosenfeld RG. The continuum of growth hormone-IGF-I axis defects causing short stature: diagnostic and therapeutic challenges. Clin Endocrinol (Oxf) 2010; 72:721-8. [PMID: 20050859 DOI: 10.1111/j.1365-2265.2009.03775.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The growth hormone (GH)-IGF-I axis is essential for normal foetal and childhood growth. Defects at different sites in the axis frequently result in short stature which may compromise adult height. We describe a continuum of clinically relevant abnormalities from GH deficiency through to GH resistance and discuss the implementation and interpretation of investigations. We consider appropriate therapy for patients with abnormal auxology and subnormal adult height prognosis, highlighting new data to clarify therapeutic choices leading to optimal clinical outcome.
Collapse
Affiliation(s)
- Martin O Savage
- Department of Endocrinology, William Harvey Research Institute, Barts and the Royal London School of Medicine & Dentistry, London, UK.
| | | | | |
Collapse
|
54
|
Mucci LA, Stark JR, Pollak MN, Li H, Kurth T, Stampfer MJ, Ma J. Plasma levels of acid-labile subunit, free insulin-like growth factor-I, and prostate cancer risk: a prospective study. Cancer Epidemiol Biomarkers Prev 2010; 19:484-91. [PMID: 20142246 DOI: 10.1158/1055-9965.epi-09-0836] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The acid-labile subunit (ALS) acts in the insulin-like growth (IGF) system by binding circulating IGF-I in a ternary complex with binding protein (IGFBP)-3 to prevent IGF-I from crossing the endothelial barrier. Given the role of the IGF system in prostate cancer, ALS may influence carcinogenesis by modulating IGF-I levels or bioavailability. METHODS We undertook a prospective study nested in the Physicians' Health Study to examine ALS, free IGF-I, and prostate cancer. We assayed circulating levels of ALS and IGF components among 545 incident cases and 545 matched controls. We calculated relative risks (RR) and 95% confidence intervals (95% CI) adjusted for life-style factors, total IGF-I, and IGFBP3. RESULTS ALS was positively correlated with total IGF-I (r = 0.58), IGFBP3 (r = 0.68), and free IGF-I (r = 0.36). Comparing highest versus lowest quartiles, we found no association between free IGF-I and prostate cancer risk (RR, 0.9; 95% CI, 0.6-1.3). In contrast, ALS was positively associated with risk among men in the 2nd (RR, 1.5; 94% CI, 1.0-2.3), 3rd (RR, 1.6; 94% CI, 1.1-2.5), and 4th quartiles (RR, 1.4; 94% CI, 0.9-2.1) compared with lowest quartile. The association was stronger for advanced stage tumors (RR, 2.0; 94% CI, 0.8-4.6). There was a suggestion of an interaction between ALS and total IGF-I, whereby high circulating IGF-I was associated with an increased risk of advanced prostate cancer among men with low but not higher ALS levels. DISCUSSION Plasma ALS is positively associated with prostate cancer risk, and may interact biologically with IGF-I to affect carcinogenesis. These data provide further support for the role of the IGF axis in prostate cancer.
Collapse
Affiliation(s)
- Lorelei A Mucci
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
55
|
Qiu Q, Yan X, Bell M, Di J, Tsang BK, Gruslin A. Mature IGF-II prevents the formation of "big" IGF-II/IGFBP-2 complex in the human circulation. Growth Horm IGF Res 2010; 20:110-117. [PMID: 19962924 DOI: 10.1016/j.ghir.2009.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 11/30/2022]
Abstract
IGF-II plays an important role in physiological and pathological processes involved in growth and metabolism. Despite the fact that "big" IGF-IIs, IGF-II(1-87) and IGF-II(1-104), have been identified in the circulation for decades in addition to "mature" IGF-II, the biological properties of these "big" IGF-IIs and the mechanisms regulating their bioavailability have not been fully elucidated. In this study we demonstrated that IGF-II (1-87), as an abundant "big" IGF-II form, exists at a molar ratio of 0.24 (CI 0.13-0.62) with respect to mature IGF-II in the normal human circulation. Mature and "big" IGF-II can equally form complexes with IGFBP-2 and IGFBP-3 in vitro, resulting in the inhibition of IGF-II's biological function. However, under physiological conditions which entails the presence of both "big" and mature IGF-II, "big" IGF-IIs preferably formed complexes with IGFBP-3 but not IGFBP-2, unlike mature IGF-II which was equally associated with both IGFBP-3 and IGFBP-2. "Big" IGF-II binding to IGFBP-2 was only evident when the "big"/mature IGF-II ratio approached 1 or higher. We concluded that mature IGF-II prevents the formation of "big" IGF-II/IGFBP-2 complex in the circulation of healthy human controls. This finding suggests the presence of previously unknown mechanisms in the regulation of IGF-II bioavailability. Elevation of the ratio of "big" to mature IGF-II in the circulation may result in altered bioavailability of "big" IGF-IIs. This mechanism is relevant in pathological conditions such as Non-Islet Cell Tumor-induced Hypoglycemia (NICTH) and Hepatitis C-associated Osteosclerosis (HCAO), in which "big" IGF-II(1-87) and IGF-II(1-104) are significantly elevated.
Collapse
Affiliation(s)
- Qing Qiu
- Chronic Disease Program, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
56
|
Dearth RK, Delgado DA, Hiney JK, Pathiraja T, Oesterreich S, Medina D, Dees WL, Lee AV. Parity-induced decrease in systemic growth hormone alters mammary gland signaling: a potential role in pregnancy protection from breast cancer. Cancer Prev Res (Phila) 2010; 3:312-21. [PMID: 20145191 DOI: 10.1158/1940-6207.capr-09-0074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Early full-term pregnancy is an effective natural protection against breast cancer in both humans and experimental rodents. The protective effect of an early pregnancy is, in part, linked to changes in circulating hormones that are involved in both normal breast development and breast cancer. For example, a reduction in circulating growth hormone (GH) has been shown to protect rats from carcinogen-induced mammary tumors. We examined the ability of a full-term pregnancy to alter the endocrine GH/insulin-like growth factor-I (IGF-I) axis and how this change affected normal mammary gland function in two commonly used rat models (Sprague-Dawley and Wistar Furth). Circulating GH and IGF-I were measured in blood drawn every 30 minutes from parous and age-matched virgin female rats. Mean serum GH levels were significantly decreased (P < 0.01) in parous compared with age-matched virgin rats for both strains. Changes in GH levels were independent of estrous cycle, indicated by a significant (P < 0.05) reduction in circulating levels of GH during estrus and diestrus in both parous strains. Despite the decrease in circulating GH, pituitary GH mRNA levels were unaltered in parous rats. Circulating IGF-I and hepatic IGF-I mRNA were also unaltered by parity in either rat strain. Immunoblot analysis of mammary glands showed decreases in phosphorylation of signal transducer and activator of transcription 5A and Janus-activated kinase 2, suggesting reduced action of GH in the mammary gland. Therefore, although the parity reduction in circulating GH does not affect circulating IGF-I levels, it is possible that reduced GH acts directly at the mammary gland and may play a role in pregnancy protection from breast cancer.
Collapse
Affiliation(s)
- Robert K Dearth
- Breast Center, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Cannata D, Vijayakumar A, Fierz Y, LeRoith D. The GH/IGF-1 axis in growth and development: new insights derived from animal models. Adv Pediatr 2010; 57:331-51. [PMID: 21056746 DOI: 10.1016/j.yapd.2010.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dara Cannata
- Division of Endocrinology, Diabetes and Bone Diseases, The Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Atran 4th Floor-36, PO Box 1055, New York, NY 10029-6574, USA
| | | | | | | |
Collapse
|
58
|
Affiliation(s)
- Kenneth A Voss
- Toxicology and Mycotoxin Research Unit, United States Department of Agriculture, Agricultural Research Service, Athens, Georgia 30604-5677, USA.
| |
Collapse
|
59
|
Wu Y, Sun H, Yakar S, LeRoith D. Elevated levels of insulin-like growth factor (IGF)-I in serum rescue the severe growth retardation of IGF-I null mice. Endocrinology 2009; 150:4395-403. [PMID: 19497975 PMCID: PMC2819739 DOI: 10.1210/en.2009-0272] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IGF-I plays a vital role in growth and development and acts in an endocrine and an autocrine/paracrine fashion. The purpose of the current study was to clarify whether elevated levels of IGF-I in serum can rescue the severe growth retardation and organ development and function of igf-I null mice. To address that, we overexpressed a rat igf-I transgene specifically in the liver of igf-I null mice. We found that in the total absence of tissue IGF-I, elevated levels of IGF-I in serum can support normal body size at puberty and after puberty but are insufficient to fully support the female reproductive system (evident by irregular estrous cycle, impaired development of ovarian corpus luteum, reduced number of uterine glands and endometrial hypoplasia, all leading to decreased number of pregnancies and litter size). We conclude that most autocrine/paracrine actions of IGF-I that determine organ growth and function can be compensated by elevated levels of endocrine IGF-I. However, in mice, full compensatory responses are evident later in development, suggesting that autocrine/paracrine IGF-I is critical for neonatal development. Furthermore, we show that tissue IGF-I is necessary for the development of the female reproductive system and cannot be compensated by elevated levels of serum IGF-I.
Collapse
Affiliation(s)
- Yingjie Wu
- Division of Endocrinology, Diabetes, and Bone Disease, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | |
Collapse
|
60
|
Ohlsson C, Mohan S, Sjögren K, Tivesten A, Isgaard J, Isaksson O, Jansson JO, Svensson J. The role of liver-derived insulin-like growth factor-I. Endocr Rev 2009; 30:494-535. [PMID: 19589948 PMCID: PMC2759708 DOI: 10.1210/er.2009-0010] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IGF-I is expressed in virtually every tissue of the body, but with much higher expression in the liver than in any other tissue. Studies using mice with liver-specific IGF-I knockout have demonstrated that liver-derived IGF-I, constituting a major part of circulating IGF-I, is an important endocrine factor involved in a variety of physiological and pathological processes. Detailed studies comparing the impact of liver-derived IGF-I and local bone-derived IGF-I demonstrate that both sources of IGF-I can stimulate longitudinal bone growth. We propose here that liver-derived circulating IGF-I and local bone-derived IGF-I to some extent have overlapping growth-promoting effects and might have the capacity to replace each other (= redundancy) in the maintenance of normal longitudinal bone growth. Importantly, and in contrast to the regulation of longitudinal bone growth, locally derived IGF-I cannot replace (= lack of redundancy) liver-derived IGF-I for the regulation of a large number of other parameters including GH secretion, cortical bone mass, kidney size, prostate size, peripheral vascular resistance, spatial memory, sodium retention, insulin sensitivity, liver size, sexually dimorphic liver functions, and progression of some tumors. It is clear that a major role of liver-derived IGF-I is to regulate GH secretion and that some, but not all, of the phenotypes in the liver-specific IGF-I knockout mice are indirect, mediated via the elevated GH levels. All of the described multiple endocrine effects of liver-derived IGF-I should be considered in the development of possible novel treatment strategies aimed at increasing or reducing endocrine IGF-I activity.
Collapse
Affiliation(s)
- Claes Ohlsson
- Division of Endocrinology, Institute of Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Ueki I, Giesy SL, Harvatine KJ, Kim JW, Boisclair YR. The acid-labile subunit is required for full effects of exogenous growth hormone on growth and carbohydrate metabolism. Endocrinology 2009; 150:3145-52. [PMID: 19299456 PMCID: PMC2703525 DOI: 10.1210/en.2008-1740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Normal postnatal growth is dependent in part on overlapping actions of GH and IGF-I. These actions reflect GH stimulation of IGF-I production in liver and extrahepatic tissues, representing respectively the endocrine and autocrine/paracrine arms of the IGF system. Recent experiments in genetically modified mice show that each source of IGF-I can compensate for absence of the other but do not resolve their relative role in postnatal growth. In an effort to address this issue, we studied the GH responsiveness of mice harboring a null mutation of the acid-labile subunit (ALS). Null ALS mice have a substantial reduction in endocrine IGF-I but, unlike other models of plasma IGF-I deficiency, have no obvious additional endocrine defects. Wild type and null ALS mice of both sexes received daily sc injections of saline or recombinant bovine GH between d 35 and 63 of postnatal age. The GH-stimulated body weight gain of null ALS mice was reduced by more than 30% relative to wild type mice, irrespective of sex. Reductions in GH responsiveness were also seen for kidney and linear growth. Absence of ALS eliminated the ability of GH to increase plasma IGF-I despite intact GH-dependent stimulation of IGF-I expression in liver, adipose tissue, and skeletal muscle. GH treatment was also less efficient in antagonizing insulin action in null ALS mice. Overall, these results suggest that the GH effects mediated by endocrine IGF-I depends on ALS, and accordingly null ALS mice are less responsive to exogenous GH therapy.
Collapse
Affiliation(s)
- Iori Ueki
- Department of Animal Science, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
62
|
Wu M, Wang A, Bernard GC, Hall JB, Beal WE, Michael Akers R, Boisclair YR, Jiang H. Increased degradation of insulin-like growth factor-I in serum from feed-deprived steers. Domest Anim Endocrinol 2008; 35:343-51. [PMID: 18760890 DOI: 10.1016/j.domaniend.2008.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 07/04/2008] [Accepted: 07/05/2008] [Indexed: 11/25/2022]
Abstract
Severe feed restriction decreases serum insulin-like growth factor I (IGF-I) concentration in animals, and this decrease is thought to be due to reduced IGF-I production in the liver. The objective of this study was to determine whether feed deprivation also increases degradation of serum IGF-I and serum levels of IGF binding protein 3 (IGFBP-3) and acid-labile subunit (ALS), which inhibit IGF-I degradation and increase IGF-I retention in the blood by forming a ternary complex with IGF-I, in cattle. Five steers had free access to pasture, and another five were deprived of feed for 60 h. Serum concentration of IGF-I and liver abundance of IGF-I mRNA at the end of the 60-h period were 50% and 80% lower, respectively, in feed-deprived steers than in fed steers. Less (125)I-labeled IGF-I remained intact after a 45-h incubation in sera of feed-deprived steers than in sera of fed steers, suggesting that serum IGF-I is more quickly degraded in feed-deprived animals. Serum levels of IGFBP-3 and ALS were decreased by 40% and 30%, respectively, in feed-deprived steers compared with fed steers. These decreases were associated with more than 50% reductions in IGFBP-3 and ALS mRNA in the liver, the major source of serum IGFBP-3 and ALS. Taken together, these results suggest that feed deprivation reduces serum concentration of IGF-I in cattle not only by decreasing IGF-I gene expression in the liver, but also by increasing IGF-I degradation and reducing IGF-I retention in the blood through decreasing IGFBP-3 and ALS production in the liver.
Collapse
Affiliation(s)
- Miaozong Wu
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0306, United States
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Yakar S, Rosen CJ, Bouxsein ML, Sun H, Mejia W, Kawashima Y, Wu Y, Emerton K, Williams V, Jepsen K, Schaffler MB, Majeska RJ, Gavrilova O, Gutierrez M, Hwang D, Pennisi P, Frystyk J, Boisclair Y, Pintar J, Jasper H, Domene H, Cohen P, Clemmons D, LeRoith D. Serum complexes of insulin-like growth factor-1 modulate skeletal integrity and carbohydrate metabolism. FASEB J 2008; 23:709-19. [PMID: 18952711 DOI: 10.1096/fj.08-118976] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Serum insulin-like growth factor (IGF) -1 is secreted mainly by the liver and circulates bound to IGF-binding proteins (IGFBPs), either as binary complexes or ternary complexes with IGFBP-3 or IGFBP-5 and an acid-labile subunit (ALS). The purpose of this study was to genetically dissect the role of IGF-1 circulatory complexes in somatic growth, skeletal integrity, and metabolism. Phenotypic comparisons of controls and four mouse lines with genetic IGF-1 deficits-liver-specific IGF-1 deficiency (LID), ALS knockout (ALSKO), IGFBP-3 (BP3) knockout, and a triply deficient LID/ALSKO/BP3 line-produced several novel findings. 1) All deficient strains had decreased serum IGF-1 levels, but this neither predicted growth potential or skeletal integrity nor defined growth hormone secretion or metabolic abnormalities. 2) IGF-1 deficiency affected development of both cortical and trabecular bone differently, effects apparently dependent on the presence of different circulating IGF-1 complexes. 3) IGFBP-3 deficiency resulted in increased linear growth. In summary, each IGF-1 complex constituent appears to play a distinct role in determining skeletal phenotype, with different effects on cortical and trabecular bone compartments.
Collapse
Affiliation(s)
- Shoshana Yakar
- Endocrinology/Diabetes and Bone Disease, The Mt. Sinai School of Medicine, One Gustave L Levy Place, Box 1055, New York, NY 10029-6574, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Lin WY, Hu YJ, Lee YH. Hepatocyte nuclear factor-1alpha regulates glucocorticoid receptor expression to control postnatal body growth. Am J Physiol Gastrointest Liver Physiol 2008; 295:G542-51. [PMID: 18583462 PMCID: PMC2536778 DOI: 10.1152/ajpgi.00081.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatocyte nuclear factor 1alpha (HNF-1alpha) is a homeodomain-containing transcription factor and is important in postnatal growth and development in mice. In the HNF-1alpha-deficient liver, the expressions of a large set of growth hormone (GH)-responsive genes were significantly downregulated. By analyzing various HNF-1alpha mutant mice, we disclosed a mechanism by which hepatic HNF-1alpha regulates the expression of GH-responsive genes that are crucial for growth and development. We found that HNF-1alpha is required for the normal expression of glucocorticoid receptor (GR) specifically in livers. In the liver, GR, together with STAT5, is known to mediate the GH action by transactivating the GH-responsive genes that function in body growth and development. We further demonstrated that HNF-1alpha modulated GR gene expression by directly transactivating the GR gene promoter via a cryptic regulatory element located 3 bp upstream of the translation start site in exon 2 of the GR gene locus.
Collapse
Affiliation(s)
- Wan-Yi Lin
- Laboratory of Molecular Pathology, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Jie Hu
- Laboratory of Molecular Pathology, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ying-Hue Lee
- Laboratory of Molecular Pathology, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
65
|
Williams RM, McDonald A, O'Savage M, Dunger DB. Mecasermin rinfabate: rhIGF-I/rhIGFBP-3 complex: iPLEX. Expert Opin Drug Metab Toxicol 2008; 4:311-24. [PMID: 18363546 DOI: 10.1517/17425255.4.3.311] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Mecasermin rinfabate (iPLEX), comprising rhIGF-I complexed to rhIGFBP-3, was developed in an attempt to prolong the half-life of IGF-I and potentially reduce side effects. It is administered as a once-daily subcutaneous injection. Treatment with rhIGF-I has been explored in a number of growth and endocrine disorders. OBJECTIVE To review the published literature regarding the pharmacokinetics, safety profile and clinical efficacy of Mecasermin rinfabate. METHODS A comprehensive search via the NCBI PubMed portal was performed using the search terms rhIGF-I/rhIGFBP-3 complex, iPLEX and Somatokine. RESULTS The effects of Mecasermin rinfabate have been explored in a number of clinical situations including diabetes, severe insulin resistance, osteopaenia, burns and growth hormone insensitivity syndrome, with outcomes similar to those of rhIGF-I alone. CONCLUSIONS The biological effects of Mecasermin rinfabate are largely similar to those previously reported with rhIGF-I. There are little published data pertaining to pharmacokinetic properties in human subjects, and the side effect profile appears similar to that of rhIGF-I alone.
Collapse
Affiliation(s)
- Rachel M Williams
- University of Cambridge, Department of Paediatrics, Addenbrookes Hospital, Box 116, Hills Road, Cambridge CB2 2QQ, UK
| | | | | | | |
Collapse
|
66
|
Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev 2008; 29:535-59. [PMID: 18436706 PMCID: PMC2726838 DOI: 10.1210/er.2007-0036] [Citation(s) in RCA: 548] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 04/03/2008] [Indexed: 12/18/2022]
Abstract
GH and IGF-I are important regulators of bone homeostasis and are central to the achievement of normal longitudinal bone growth and bone mass. Although GH may act directly on skeletal cells, most of its effects are mediated by IGF-I, which is present in the systemic circulation and is synthesized by peripheral tissues. The availability of IGF-I is regulated by IGF binding proteins. IGF-I enhances the differentiated function of the osteoblast and bone formation. Adult GH deficiency causes low bone turnover osteoporosis with high risk of vertebral and nonvertebral fractures, and the low bone mass can be partially reversed by GH replacement. Acromegaly is characterized by high bone turnover, which can lead to bone loss and vertebral fractures, particularly in patients with coexistent hypogonadism. GH and IGF-I secretion are decreased in aging individuals, and abnormalities in the GH/IGF-I axis play a role in the pathogenesis of the osteoporosis of anorexia nervosa and after glucocorticoid exposure.
Collapse
Affiliation(s)
- Andrea Giustina
- Department of Medical and Surgical Sciences, University of Brescia, Brescia, Italy.
| | | | | |
Collapse
|
67
|
Abstract
The growth hormone-insulin-like growth factor-I (GH-IGF-I) axis plays a key role in intra-uterine growth and development. This review will describe the consequences of genetic defects in various components of the GH-IGF-I axis on intra-uterine growth and development. Animal knockout experiments have provided evidence for the GH-independent secretion of IGF-I and its effect in utero. Reports of patients with a deletion or mutation of the IGF-I and IGF1R genes have provided insight into the role of intra-uterine IGF-I in the human. Homozygous defects of the IGF-I gene have dramatic effects on intra-uterine growth and development, whereas heterozygous defects of the IGF1R gene have a more variable clinical presentation. The phenotype in relation to the genotype of the different disorders will be reviewed in this chapter.
Collapse
Affiliation(s)
- Marie J E Walenkamp
- Department of Paediatrics, J6-S, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | |
Collapse
|
68
|
Heath KE, Argente J, Barrios V, Pozo J, Díaz-González F, Martos-Moreno GA, Caimari M, Gracia R, Campos-Barros A. Primary acid-labile subunit deficiency due to recessive IGFALS mutations results in postnatal growth deficit associated with low circulating insulin growth factor (IGF)-I, IGF binding protein-3 levels, and hyperinsulinemia. J Clin Endocrinol Metab 2008; 93:1616-24. [PMID: 18303074 DOI: 10.1210/jc.2007-2678] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Up to 90% of circulating IGF-I and IGF-II are carried bound to either IGF binding protein (IGFBP)-3 or IGFBP-5 and the acid-labile subunit (ALS) in the form of tertiary complexes that extend their circulating half-life. Three cases of complete ALS deficiency have been recently reported in short-stature patients with very low circulating IGF-I and IGFBP-3 levels who presented with homozygous or compound heterozygous mutations in the ALS encoding gene (IGFALS; 16p13.3), thus supporting a role for ALS in the regulation of the bioavailability of IGFs during postnatal growth. OBJECTIVE We present the molecular and clinical characterization of two novel IGFALS mutations that caused complete ALS deficiency in three unrelated patients with postnatal growth deficit, low IGF-I and IGFBP-3 levels, and no GH deficiency. RESULTS IGFALS mutation screening identified a novel homozygous IGFALS missense mutation, which altered a conserved residue, N276S, in two of the probands. The third proband presented a novel homozygous nonsense mutation, Q320X, that is predicted to generate a severely truncated ALS protein. The affected probands presented a similar phenotype characterized by a moderate postnatal growth deficit associated with undetectable ALS, low IGF-I, IGF-II, and IGFBP-3, and hyperinsulinemia, and, in two cases, delayed puberty. CONCLUSIONS Primary ALS deficiency due to IGFALS mutations should be considered as a possible cause of postnatal growth deficit in IGF-I-deficient patients in the absence of GH deficiency or insensitivity. Determination of serum ALS levels and basal insulinemia can be helpful in the differential diagnosis of patients with idiopathic IGF-I deficiency.
Collapse
Affiliation(s)
- Karen E Heath
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
CONTEXT The somatomedin/IGF hypothesis was based on the observation that GH was inactive when added to an in vitro incubation system but required a GH-dependent substance in the circulation to mediate its activity. Newer experimental evidence has led to several modifications of the hypothesis, but none of the proposed modifications accounts for all of the integrated actions of GH and IGF-I. In this paper, we propose an augmentative/counteractive modification of the existing hypothesis that takes into account all the actions of the GH-IGF system. EVIDENCE ACQUISITION The modification is based on experimental evidence published since the hypothesis was originally developed. EVIDENCE SYNTHESIS The modification is based on an integration of the results of published experimental evidence regarding the actions of GH and the IGF complex. CONCLUSION We propose a new augmentative/counteractive modification of the hypothesis that the actions of the GH-IGF system provide a distinct evolutionary advantage to the organism by augmenting the anabolic actions of GH while countering its potentially deleterious effects of hyperglycemia and depletion of lipid stores.
Collapse
Affiliation(s)
- Solomon A Kaplan
- Department of Pediatrics, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, California 90095-1752, USA.
| | | |
Collapse
|
70
|
Domené HM, Scaglia PA, Lteif A, Mahmud FH, Kirmani S, Frystyk J, Bedecarrás P, Gutiérrez M, Jasper HG. Phenotypic effects of null and haploinsufficiency of acid-labile subunit in a family with two novel IGFALS gene mutations. J Clin Endocrinol Metab 2007; 92:4444-50. [PMID: 17726072 DOI: 10.1210/jc.2007-1152] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT IGF-I deficiency may result from impairment of GH secretion or action, or from defects in IGF-I synthesis, transport, or action. Complete deficiency of the acid-labile subunit (ALS), previously described in two male patients, the only known inherited alteration in IGF-I transport, is characterized by severe circulating IGF-I and IGF binding protein (IGFBP)-3 deficiency with only mild growth retardation. OBJECTIVE Our objective was to study the characterization, at biochemical and molecular levels, of the cause for severe circulating IGF-I and IGFBP-3 deficiency in a male patient with mild growth retardation. PATIENTS We report an adolescent male with delayed growth and pubertal development (Tanner stage I, -2.00 sd score for height at the age of 15.3 yr), profound circulating IGF-I and IGFBP-3 deficiency, and poor response to GH treatment. RESULTS The index case, as well as one of his brothers, and his sister were found to be compound heterozygotes for two novel IGFALS gene mutations: C540R, a missense point mutation; and S195_197Rdup, a 9-bp duplication. The parents and youngest brother were found to be carriers for one of these two mutations. The three affected siblings had marked reduction of IGF-I and IGFBP-3 levels, undetectable serum levels of ALS, inability to form ternary complexes, and moderate insulin resistance. All of them attained a normal near-adult height (between -1.0 and -0.5 sd score), which was nonetheless lower than that of their heterozygous brother. The IGF system was only modestly affected in the heterozygous carriers. CONCLUSIONS This study confirms the critical role of ALS in forming ternary complexes and the maintenance of normal levels of IGF-I and IGFBP-3. Insulin resistance, pubertal delay in male patients, and poor GH responsiveness seem to be frequent findings in ALS deficiency. However, haploinsufficiency of the IGFALS gene has no discernible clinical effects with only modest impact on the IGF system.
Collapse
Affiliation(s)
- Horacio M Domené
- Centro de Investigaciones Endocrinológicas, Hospital de Niños "R. Gutiérrez," Gallo 1330, 1425 Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Li S, Ren J, Huang L. Characterization of the porcine insulin-like growth factor-binding protein, acid-labile subunit gene: full-length cDNA and DNA sequence, polymorphisms and expression profile. J Anim Breed Genet 2007; 124:133-8. [PMID: 17550354 DOI: 10.1111/j.1439-0388.2007.00645.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factor-binding protein acid-labile subunit (IGFALS) is an important glycoprotein in the circulation complex for insulin-like growth factors-I and -II (IGFs). So far only a partial porcine IGFALS sequence is available. We herein report the isolation, characterization, polymorphism identification and expression analysis of the porcine IGFALS gene. A 2000-bp full-length cDNA sequence was determined with 5'- and 3'-Rapid Amplification of cDNA End (RACE) assay. It contains a 1821-bp open reading frame encoding a protein of 606 amino acids with a calculated molecular mass of 66 kDa and a theoretical isoelectric point of 6.89. The deduced IGFALS protein shares high identity (70-80%) with other mammalian IGFALS. We also obtained a full-length genomic DNA sequence of the gene. Similar to the other mammalian orthologues, particularly in terms of exon size and exon/intron boundaries, the porcine IGFALS gene spans a transcription unit of 2990 bp, consisting of two exons and one intron. Three single nucleotide polymorphisms (synonymous mutations) were identified in the DNA sequence. RT-PCR assays indicate that IGFALS is expressed ubiquitously in pigs and transcripts are particularly abundant in the liver, lung, white adipose tissue, prostate, epididymis, thyroid and bladder.
Collapse
Affiliation(s)
- S Li
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | | | | |
Collapse
|
72
|
Abstract
Animal knockout experiments have offered the opportunity to study genes that play a role in growth and development. In the last few years, reports of patients with genetic defects in GH-IGF-I axis have greatly increased our knowledge of genetically determined causes of short stature. We will present the animal data and human reports of genetic disorders in the GH-IGF-I axis in order to describe the role of the GH-IGF-I axis in intrauterine and postnatal growth. In addition, the effects of the GH-IGF-I axis on the development and function of different organ systems such as brain, inner ear, eye, skeleton, glucose homeostasis, gonadal function, and immune system will be discussed. The number of patients with genetic defects in the GH-IGF-I axis is small, and a systematic diagnostic approach and selective genetic analysis in a patient with short stature are essential to identify more patients. Finally, the implications of a genetic defect in the GH-IGF-I axis for the patient and the therapeutic options will be discussed.
Collapse
Affiliation(s)
- M J E Walenkamp
- Department of Pediatrics J6-S, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | |
Collapse
|
73
|
Savage MO, Camacho-Hübner C, David A, Metherell LA, Hwa V, Rosenfeld RG, Clark AJL. Idiopathic short stature: will genetics influence the choice between GH and IGF-I therapy? Eur J Endocrinol 2007; 157 Suppl 1:S33-7. [PMID: 17785695 DOI: 10.1530/eje-07-0292] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Idiopathic short stature (ISS) includes a range of conditions. Some are caused by defects in the GH-IGF-I axis. ISS is an approved indication for GH therapy in the USA and a similar approval in Europe may be imminent. Genetic analysis for single-gene defects has made enormous contributions to understanding the physiology of growth regulation. Can this type of investigation help in predicting growth responses to GH or IGF-I therapy? METHODS The rationale for choice of GH or IGF-I therapy in ISS is reviewed. Many ISS patients have low IGF-I, but most can generate IGF-I levels in response to short-term GH administration. Some GH resistance seems to be present. Mutation analysis in several cohorts of GHIS and ISS patients is reviewed. RESULTS Low IGF-I levels suggest either unrecognised GH deficiency or GH resistance. In classical GHIS patients, there was a positive relationship between IGFBP-3 levels and height SDS. No relationship exists between mutations and phenotype. There is a wide variability of phenotype in patients carrying identical mutations. Heterozygous GH receptor (GHR) mutations were present in <5% of ISS patients and their role in causing growth defects is questionable. Exceptions are dominant negative mutations that have been shown to disturb growth. CONCLUSIONS Analysis for single-gene defects does not give sensitive predictions of phenotype and cannot predict responses to GH or IGF-I therapy. Endocrine abnormalities have closer correlations with phenotype and may thus be a better guide to therapeutic responsiveness.
Collapse
Affiliation(s)
- Martin O Savage
- Endocrinology Centre, William Harvey Research Institute, Queen Mary, University of London, London, EC1M 6BQ UK.
| | | | | | | | | | | | | |
Collapse
|
74
|
Domené HM, Martínez AS, Frystyk J, Bengolea SV, Ropelato MG, Scaglia PA, Chen JW, Heuck C, Wolthers OD, Heinrich JJ, Jasper HG. Normal growth spurt and final height despite low levels of all forms of circulating insulin-like growth factor-I in a patient with acid-labile subunit deficiency. HORMONE RESEARCH 2007; 67:243-9. [PMID: 17213728 DOI: 10.1159/000098479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/03/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND In a recently described patient with acid-labile subunit (ALS) deficiency, the inability to form ternary complexes resulted in a marked reduction in circulating total insulin-like growth factor (IGF)-I, whereas skeletal growth was only marginally affected. To further study the role of circulating versus locally produced IGF-I in skeletal growth in this patient, we now describe in detail growth changes and their relationship with several components of the circulating IGF system. DESIGN AND METHODS We followed growth and development up to the final height in a patient with complete ALS deficiency and determined both spontaneous and growth hormone (GH)-stimulated changes in the IGF system, including measurements of total, free and bioactive IGF-I, total IGF-II and insulin-like growth factor binding protein (IGFBP)-1, IGFBP-2 and IGFBP-3. RESULTS The patient had a delayed growth and pubertal onset. Six months of GH treatment had no effect on growth. At the age of 19.3 years, he spontaneously completed puberty and had a normal growth spurt for a late adolescent (peak height velocity of 8.4 cm/year). A normal final height was attained at 21.3 years (167.5 cm; -0.78 SDS). During as well as after puberty, basal levels of total, free and bioactive IGF-I were low, as were total IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3. GH treatment for 6 months normalized free IGF-I and increased bioactive IGF-I, but had no effect on growth velocity. CONCLUSIONS This case story shows that in the presence of complete ALS deficiency, a height within normal limits can be obtained despite low levels of all forms of circulating IGF-I. Furthermore, the patient presented a delayed but normal growth spurt without any marked increment of circulating IGF-I.
Collapse
Affiliation(s)
- Horacio M Domené
- Endocrinology Research Center (CEDIE), Division of Endocrinology, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Savage MO, Attie KM, David A, Metherell LA, Clark AJL, Camacho-Hübner C. Endocrine assessment, molecular characterization and treatment of growth hormone insensitivity disorders. ACTA ACUST UNITED AC 2006; 2:395-407. [PMID: 16932322 DOI: 10.1038/ncpendmet0195] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 03/08/2006] [Indexed: 02/06/2023]
Abstract
Advances in the diagnosis and treatment of growth hormone insensitivity disorders have occurred in the past 15 years. We discuss the current status of endocrine and molecular evaluation, focusing on the pediatric age range. All the identified mutations of the growth hormone receptor are included. Treatment with recombinant human insulin-like growth factor (rhIGF) 1 in classical cases is summarized and new targets for treatment are discussed, together with therapy using the complex formed between rhIGF1 and rhIGF-binding protein 3.
Collapse
Affiliation(s)
- Martin O Savage
- Paediatric Endocrinology Unit, William Harvey Research Institute, St Bartholomew's Hospital and the London School of Medicine & Dentistry, London, UK.
| | | | | | | | | | | |
Collapse
|
76
|
Veldhuis JD, Roemmich JN, Richmond EJ, Bowers CY. Somatotropic and gonadotropic axes linkages in infancy, childhood, and the puberty-adult transition. Endocr Rev 2006; 27:101-40. [PMID: 16434512 DOI: 10.1210/er.2005-0006] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Integrative neuroendocrine control of the gonadotropic and somatotropic axes in childhood, puberty, and young adulthood proceeds via multiple convergent and divergent pathways in the human and experimental animal. Emerging ensemble concepts are required to embody independent, parallel, and interacting mechanisms that subserve physiological adaptations and pathological disruption of reproduction and growth. Significant advances in systems biology will be needed to address these challenges.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Endocrine Research Unit, Department of Internal Medicine, Mayo Medical School, Mayo School of Graduate Medical Education, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | |
Collapse
|
77
|
Abstract
Insulin-like growth factors (IGFs) promote longitudinal growth and display anabolic effects in adult bone by acting through endocrine and autocrine/paracrine mechanisms. Binding of IGF-I to its specific tyrosine-kinase receptor leads to interaction with the intracellular proteins, insulin receptor substrate-1 and -2, and the activation of distinct intracellular signaling pathways. In cartilage, IGF-I regulates the differentiation of chondrocytes and stimulates the synthesis of components of the extracellular matrix. In bone tissue, IGF-I increases the function of the differentiated osteoblasts and mediates selected anabolic actions of parathyroid hormone. Genetically modified mice, in which selected components of the IGF system were targeted in a tissue-specific fashion, have documented that circulating IGF-I is essential for physiological skeletal growth and adult bone remodeling and that local autocrine/paracrine IGF-I activities are required for optimal trabecular bone mass and mineralization. Studies in humans have indicated a correlation between serum IGF-I levels and bone mineral density. However, there is little information on the use of IGF-I in patients with metabolic bone disease.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- a Dipartimento di Neuroscienze e Riabilitazione, Instituto Giannina, Gaslini, Genova, Italy.
| | | |
Collapse
|
78
|
Silha JV, Murphy LJ. Insulin-like growth factor binding proteins in development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:55-89. [PMID: 16370136 DOI: 10.1007/0-387-26274-1_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IGFBPs regulate growth and development by regulating IGF transport to tissues and IGF bioavailability to IGF receptors at cell membrane level. IGFBP excess leads predominantly to inhibition of IGF action and growth retardation with impaired organogenesis. Absence of human and also mouse ALS leads to decreased IGF-I levels in circulation and causes mild growth retardation. Although IGFBP KO mice demonstrate relatively minor phenotypes, the possibility of compensatory mechanisms that mask the phenotypic manifestation of lack of individual binding proteins needs to be further investigated. Recent studies of hepatic regeneration in IGFBP-1 KO mice and also with mutant IGFBP-3 Tg mice provide some limited support for the existence of IGF-independent mechanism of action in vivo.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
79
|
Campos-Barros A, Heath KE, Argente J. Genetic Basis of Proportional Short Stature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 567:341-83. [PMID: 16370145 DOI: 10.1007/0-387-26274-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Angel Campos-Barros
- Hospital Infantil Universitario Niño Jesús, Department of Paediatric Endocrinology, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
80
|
Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005; 26:916-43. [PMID: 16131630 DOI: 10.1210/er.2004-0024] [Citation(s) in RCA: 355] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, much interest has been devoted to defining the role of the IGF system in the nervous system. The ubiquitous IGFs, their cell membrane receptors, and their carrier binding proteins, the IGFBPs, are expressed early in the development of the nervous system and are therefore considered to play a key role in these processes. In vitro studies have demonstrated that the IGF system promotes differentiation and proliferation and sustains survival, preventing apoptosis of neuronal and brain derived cells. Furthermore, studies of transgenic mice overexpressing components of the IGF system or mice with disruptions of the same genes have clearly shown that the IGF system plays a key role in vivo.
Collapse
Affiliation(s)
- V C Russo
- Centre for Hormone Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
81
|
Niu T, Rosen CJ. The insulin-like growth factor-I gene and osteoporosis: a critical appraisal. Gene 2005; 361:38-56. [PMID: 16183214 DOI: 10.1016/j.gene.2005.07.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 06/16/2005] [Accepted: 07/08/2005] [Indexed: 12/17/2022]
Abstract
Osteoporosis, a disorder of skeletal fragility, is common in the elderly, and its prevalence is increasing as more individuals with low bone mineral density (BMD), the strongest predictor of fracture risk, are detected. Previous basic and clinical studies imply there is a significant role for insulin-like growth factor-I (IGF-I) in determining BMD. Recently, polymorphisms upstream of the P1 promoter region of the human IGF-I gene have been found to be associated with serum levels of IGF-I, BMD and fracture risk in various ethnic groups. Multiple quantitative trait loci (QTLs) have been identified that underlie serum IGF-I in a mouse intercross between two inbred strains. The most promising QTL on mouse chromosome 6 has provided clues for unraveling the molecular mechanisms that regulate osteoblast differentiation. Genomic engineering resulting in IGF-I deficient mice, and mice with targeted over-expression of IGF-I reinforce the essential role of IGF-I in bone development at both the embryonic and postnatal stages. Thus, it is apparent that significant new insights into the role of the IGF-I gene in bone remodeling occur through several distinct mechanisms: (1) the skeletal IGF regulatory system; (2) the systemic growth hormone/IGF-I axis; (3) parathyroid hormone signaling; (4) sex steroids; and (5) the OPG/RANKL/RANK cytokine system. Molecular dissection of the IGF regulatory system and its signaling pathway in bone may reveal novel therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Tianhua Niu
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
82
|
Lee DHL, Chun C, Kim SH, Lee CY. Expression of porcine acid-labile subunit (pALS) of the 150-kilodalton ternary insulin-like growth factor complex and initial characterization of recombinant pALS protein. BMB Rep 2005; 38:225-31. [PMID: 15826501 DOI: 10.5483/bmbrep.2005.38.2.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acid-labile subunit (ALS) is a component of the 150-kDa insulin-like growth factor-binding protein-3 (IGFBP-3) complex, which, by sequestering the majority of IGFs-I and -II and thereby prolonging the half-life of them in plasma, serves as a circulating reservoir of IGFs in mammalian species. A pGEX-2T plasmid and a baculovirus expression constructs harboring a coding sequence for glutathione-S-transferase (GST)-porcine ALS (pALS) fusion protein were expressed in BL21(DE3) E. coli and Sf9 insect cells, respectively. The expressed protein was purified by glutathione or Ni-NTN affinity chromatography, followed by cleavage of the fusion protein using Factor Xa. In addition, pALS and hIGFBP-3 were also produced in small amounts in the Xenopus oocyte expression system which does not require any purification procedure. A 65-kDa pALS polypeptide was obtained following the prokaryotic expression and the enzymatic digestion, but biochemical characterization of this polypeptide was precluded because of an extremely low expression efficiency. The baculovirus as well as Xenopus-expressed pALS exhibited the expected molecular mass of 85 kDa which was reduced into 75 and 65 kDa following deglycosylation of Asn-linked carbohydrates by Endo-F glycosidase, indicating that the expressed pALS was properly glycosylated. Moreover, irrespective of the source of pALS, the recombinant pALS and hIGFBP-3 formed a 130-kDa binary complex which could be immunoprecipitated by anti-hIGFBP-3 antibodies. Collectively, results indicate that an authentic pALS protein can be produced by the current expression systems.
Collapse
Affiliation(s)
- Dong-Hee Lee Lee
- Regional Animal Industry Research Center, Jinju National University, Jinju 660-758, Korea
| | | | | | | |
Collapse
|
83
|
Veldhuis JD, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, Mauras N, Bowers CY. Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev 2005; 26:114-46. [PMID: 15689575 DOI: 10.1210/er.2003-0038] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Body composition exhibits marked variations across the early human lifetime. The precise physiological mechanisms that drive such developmental adaptations are difficult to establish. This clinical challenge reflects an array of potentially confounding factors, such as marked intersubject differences in tissue compartments; the incremental nature of longitudinal intrasubject variations in body composition; technical limitations in quantitating the unobserved mass of mineral, fat, water, and muscle ad seriatim; and the multifold contributions of genetic, dietary, environmental, hormonal, nutritional, and behavioral signals to physical and sexual maturation. From an endocrine perspective (reviewed here), gonadal sex steroids and GH/IGF-I constitute prime determinants of evolving body composition. The present critical review examines hormonal regulation of body composition in infancy, childhood, and puberty.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Frystyk J. Free insulin-like growth factors -- measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm IGF Res 2004; 14:337-375. [PMID: 15336229 DOI: 10.1016/j.ghir.2004.06.001] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
IGF-I is a multipotent growth factor with important actions on normal tissue growth and regeneration. In addition, IGF-I has been suggested to have beneficial effects on glucose homeostasis due to its glucose lowering and insulin sensitizing actions. However, not all effects of IGF-I are considered to be favorable; thus, epidemiological studies suggest that IGF-I is also involved in the development of common cancers, atherosclerosis and type 2 diabetes. The biological actions of IGF-I are modulated by at least six IGF-binding proteins, which bind approximately 99% of the circulating IGF-I pool. So far, most in vivo studies have used serum or plasma total (extractable IGF-I) as an estimate of the bioactivity of IGF-I in vivo. However, within the last decade, validated assays for measurement of free IGF-I have been described. This review aims to discuss the current assays for free IGF-I and their advances in relation to the traditional measurement of total IGF-I. The literature overview will focus on the role of circulating free versus total IGF-I in the feedback regulation of GH release, and the possible involvement of the circulating IGF-system in glucose homeostasis.
Collapse
Affiliation(s)
- Jan Frystyk
- Medical Research Laboratories and Medical Department M, Aarhus University Hospital, Norrebrogade, Aarhus, Denmark.
| |
Collapse
|
85
|
Cloning of An Intron of the Gene Coding for Porcine Acid-Labile Subunit(pALS) of the 150-kDa Insulin-like Growth Factor Complex and the 3' ntranslated Region of pALS Complementary DNA and Confirmation of pALS Gene Expression in Multiple Tissues. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2004. [DOI: 10.5187/jast.2004.46.4.555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
86
|
Hansen TVO, Hammer NA, Nielsen J, Madsen M, Dalbaeck C, Wewer UM, Christiansen J, Nielsen FC. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice. Mol Cell Biol 2004; 24:4448-64. [PMID: 15121863 PMCID: PMC400488 DOI: 10.1128/mcb.24.10.4448-4464.2004] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). To characterize the physiological role of IMP1, we generated IMP1-deficient mice carrying a gene trap insertion in the Imp1 gene. Imp1(-/-) mice were on average 40% smaller than wild-type and heterozygous sex-matched littermates. Growth retardation was apparent from E17.5 and remained permanent into adult life. Moreover, Imp1(-/-) mice exhibited high perinatal mortality, and only 50% were alive 3 days after birth. In contrast to most other organs, intestinal epithelial cells continue to express IMP1 postnatally, and Imp1(-/-) mice exhibited impaired development of the intestine, with small and misshapen villi and twisted colon crypts. Analysis of target mRNAs and global expression profiling at E12.5 indicated that Igf2 translation was downregulated, whereas the postnatal intestine showed reduced expression of transcripts encoding extracellular matrix components, such as galectin- 1, lumican, tenascin-C, procollagen transcripts, and the Hsp47 procollagen chaperone. Taken together, the results demonstrate that IMP1 is essential for normal growth and development. Moreover, IMP1 may facilitate intestinal morphogenesis via regulation of extracellular matrix formation.
Collapse
Affiliation(s)
- Thomas V O Hansen
- Department of Clinical Biochemistry, University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Froment P, Staub C, Hembert S, Pisselet C, Magistrini M, Delaleu B, Seurin D, Levine JE, Johnson L, Binoux M, Monget P. Reproductive abnormalities in human insulin-like growth factor-binding protein-1 transgenic male mice. Endocrinology 2004; 145:2080-91. [PMID: 14726451 DOI: 10.1210/en.2003-0956] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Adult transgenic mice overexpressing human insulin-like growth factor-binding protein-1 in the liver present reproductive abnormalities in both sexes. In the present work, we have investigated the mechanisms responsible for limiting breeding capacity in these transgenic male mice. Homozygous adult transgenic male mice (3-6 months old) exhibited irregular copulatory behavior and a reduction of the number of pregnancies per female as well as of litter size per pregnancy. Genital tract weight, more specifically epididymal and seminal vesicle weights, were reduced by 45% in homozygous transgenic vs. nontransgenic mice. Homozygous transgenic mice exhibited a 30% reduction of the length of seminiferous tubules (P = 0.007), a 30% decrease in daily sperm production per testis (P = 0.019), and a 50% decrease in the number of spermatozoa in testis (P = 0.037), associated with morphological abnormalities of the sperm heads leading to an approximately 50% reduction of fertilized two-cell eggs (P = 0.002) and of implanted embryos on d 5.5 after mating (P = 0.004). The round spermatids also appeared altered in their morphology. In addition, Leydig cells in homozygous transgenic mice exhibited an altered appearance, with a 1.8-fold increase in lipid droplets in their cytoplasm (P < 0.001). Moreover, the concentration of 3beta-hydroxysteroid dehydrogenase was 66% lower in testis from transgenics compared with those from normal mice (P = 0.01), leading to a tendency toward lower plasma testosterone levels (P = 0.1). Interestingly, LH concentrations were increased by 40% in transgenic pituitary extracts (P = 0.02), and basal LH secretion by pituitary explants in vitro was increased by 60% in homozygous transgenic vs. normal mice (P = 0.04), suggesting an alteration of LH pulsatile secretion in vivo. In conclusion, these data suggest that the breeding impairment of human insulin-like growth factor-binding protein-1 transgenic males is due at least in part to an alteration of the process of spermatogenesis, leading to a diminution of sperm production and of its quality. Minor impairment of steroidogenesis may also contribute to the reduced reproductive capacity of these animals. Our observations are consistent with the idea that normal spermatogenesis and perhaps also steroidogenesis are dependent on the actions of sufficient concentrations of unbound IGF-I.
Collapse
Affiliation(s)
- Pascal Froment
- Physiologie de la Reproduction et des Comportements, Unité Mixte de Recherche 6073, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique-Université F. Rabelais de Tours, 37380 Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Choi KY, Kyung YJ, Lee CY, Lee DH. Characterization of insulin-like growth factor-free interaction between insulin-like growth factor binding protein 3 and acid labile subunit expressed from Xenopus oocytes. BMB Rep 2004; 37:153-8. [PMID: 15469690 DOI: 10.5483/bmbrep.2004.37.2.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acid-labile subunit (ALS) is known to interact with the IGF binding protein (IGFBP) in the presence of insulin-like growth factors (IGFs). Studies, however, indicate that ALS forms a doublet with IGFBP3, independent of IGFs. To characterize the structural domain required for the IGF-free ALS-IGFBP3 interaction, seven recombinant human IGFBP3 mutants were generated: three deletion mutants and four site-specific mutants that had altering N-terminal regions of IGFBP3. ALS and IGFBP3 mRNAs were co-injected into Xenopus oocytes, and their products were cross-linked and immunoprecipitated using antisera against ALS or IGFBP3. Among the deletion mutants, the mutant of D40 (deleted in 11-40th amino acids) exerted no effect in the interaction with ALS, while D60 (Delta11-60) demonstrated a moderate reduction. D88 (Delta11-88), however, showed a significant decrease. In the case of site-specific mutants, the mutation that alterated the IGF binding site (codons 56 or 80) exerted a significant reduction in the interaction, whereas codons 72 or 87 showed no significant change in the interaction with ALS. The stability of the ALS-IGFBP3 interaction was analyzed according to a time-dependent mode. Consistent with the binding study, mutants on the IGF binding sites (56 or 80) consistently show a weakness in the ALS-IGFBP3 interaction when compared to the mutants that covered the non-IGF binding sites (72 or 87). This study suggests that the N-terminal of IGFBP3, especially the IGF binding site, plays an important role in interacting with ALS as well as in stabilizing the dual complex, independent of IGFs.
Collapse
Affiliation(s)
- Kyung-Yi Choi
- Department of Life Science, University of Seoul, 90 Jeonnong-dong, Seoul 130-743, Korea
| | | | | | | |
Collapse
|
89
|
Domené HM, Bengolea SV, Martínez AS, Ropelato MG, Pennisi P, Scaglia P, Heinrich JJ, Jasper HG. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N Engl J Med 2004; 350:570-7. [PMID: 14762184 DOI: 10.1056/nejmoa013100] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Horacio M Domené
- Endocrinology Research Center, Division of Endocrinology, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Affiliation(s)
- Torben Laursen
- Department of Pharmacology, The Bartholin Building, University of Aarhus, and Medical Department M (Endocrinology & Diabetes), Aarhus University Hospital, Kommunehospitalet, Aarhus 8000, Denmark.
| |
Collapse
|
91
|
Haluzik M, Yakar S, Gavrilova O, Setser J, Boisclair Y, LeRoith D. Insulin resistance in the liver-specific IGF-1 gene-deleted mouse is abrogated by deletion of the acid-labile subunit of the IGF-binding protein-3 complex: relative roles of growth hormone and IGF-1 in insulin resistance. Diabetes 2003; 52:2483-9. [PMID: 14514630 DOI: 10.2337/diabetes.52.10.2483] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Liver IGF-1 deficient (LID) mice demonstrate a 75% reduction in circulating IGF-1 levels and a corresponding fourfold increase in growth hormone (GH) levels. At 16 weeks of age, LID mice demonstrate, using the hyperinsulinemic-euglycemic clamp, insulin insensitivity in muscle, liver, and fat tissues. In contrast, mice with a gene deletion of the acid-labile subunit (ALSKO) demonstrate a 65% reduction in circulating IGF-1 levels, with normal GH levels and no signs of insulin resistance. To further clarify the relative roles of increased GH and decreased IGF-1 levels in the development of insulin resistance, we crossed the two mouse lines and created a double knockout mouse (LID+ALSKO). LID+ALSKO mice demonstrate a further reduction in circulating IGF-1 levels (85%) and a concomitant 10-fold increase in GH levels. Insulin tolerance tests showed an improvement in insulin responsiveness in the LID+ALSKO mice compared with controls; LID mice were very insulin insensitive. Surprisingly, insulin sensitivity, while improved in white adipose tissue and in muscle, was unchanged in the liver. The lack of improvement in liver insulin sensitivity may reflect the absence of IGF-1 receptors or increased triglyceride levels in the liver. The present study suggests that whereas GH plays a major role in inducing insulin resistance, IGF-1 may have a direct modulatory role.
Collapse
Affiliation(s)
- Martin Haluzik
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1758, USA
| | | | | | | | | | | |
Collapse
|
92
|
Kong SE, Baxter RC, Delhanty PJD. Age-dependent regulation of the acid-labile subunit in response to fasting-refeeding in rats. Endocrinology 2002; 143:4505-12. [PMID: 12446576 DOI: 10.1210/en.2002-220527] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The GH-dependent, hepatocyte-derived acid-labile subunit (ALS) regulates IGF release from the serum by forming ternary complexes containing IGF binding protein (IGFBP)-3 or IGFBP-5. Malnutrition suppresses ALS and IGF-I expression in a development-dependent manner. Our aim was to investigate whether the effect of feeding following fasting was similarly age dependent. We fasted juvenile and adult rats for 48 h and then refed them, collecting serum and liver tissue at 8, 24, and 48 h. These were compared with rats before fasting (0 h controls) and animals fed throughout the study (free-fed controls). During fasting, serum ALS fell to 25 +/- 5.3% of 0 h controls in juveniles but only 56 +/- 6% in adults. Within 24 h of refeeding, ALS in juveniles had returned to 0 h control levels, and by 48 h to free-fed levels, whereas there was no significant refeeding response in adults during this period. Circulating IGF-I and IGFBP-5 showed similar age-dependent responses to refeeding, rising significantly faster in juveniles. IGFBP-3 did not show this response. Furthermore, hepatic ALS and IGF-I mRNA showed no age-differential response to fasting and refeeding, suggesting posttranscriptional regulation. Neither regulation of hepatic GH receptor nor ALS clearance rates could explain the age-dependent effect. We hypothesize that development-dependent regulation of ALS and IGF-I during refeeding may involve a posttranscriptional hepatic response that is not GH dependent.
Collapse
Affiliation(s)
- Sung-Eun Kong
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | |
Collapse
|
93
|
Sjögren K, Jansson JO, Isaksson OGP, Ohlsson C. A model for tissue-specific inducible insulin-like growth factor-I (IGF-I) inactivation to determine the physiological role of liver-derived IGF-I. Endocrine 2002; 19:249-56. [PMID: 12624424 DOI: 10.1385/endo:19:3:249] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 11/15/2002] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factor-I (IGF-I) has important growthpromoting and metabolic effects and is expressed in virtually every tissue of the body. The highest expression is found in the liver, but the physiological role of liver-derived IGF-I is unknown. It has been difficult to separate the endocrine effects of liver-derived IGF-I from the autocrine/paracrine effects of locally produced IGF-I in peripheral tissues. Therefore, we have developed a mouse model with a liver-specific inducible deletion of the IGF-I gene (LI-IGF-I-/- mouse). The LI-IGF-I-/- mouse has dramatically reduced (>80%) serum IGF-I levels, demonstrating that the major part of serum IGF-I is liver-derived. Surprisingly, LI-IGFI -/- mice demonstrate a normal appendicular skeletal growth up to at least 12 mo of age despite the dramatic decrease in circulating IGF-I levels, indicating that liver-derived IGF-I is not required for appendicular skeletal growth. However, the adult axial skeletal growth is reduced in the LI-IGF-I-/- mice. Furthermore, the amount of cortical bone is reduced due to decreased radial growth of the cortical bone, while the trabecular bone mineral density is unchanged in the LI-IGFI -/- mice. The decreased levels of circulating IGF-I are associated with increased serum levels of growth hormone (GH), indicating a role for liver-derived IGFI in the negative-feedback regulation of GH secretion. Measurements of factors regulating GH secretion in the pituitary and in the hypothalamus revealed an increased expression of GH-releasing-hormone (GHRH) and GHsecretagogue (GHS) receptors in the pituitary of LI-IGFI -/- mice. This in turn results in an increased sensitivity to systemically administered GHRH and GHS, demonstrating that the regulatory action of liver-derived IGF-I on GH secretion is at the pituitary rather than at the hypothalamic level. The liver is an important metabolic organ and LI-IGF-I-/- mice are markedly hyperinsulinemic and yet normoglycemic, consistent with an adequately compensated insulin resistance. Interestingly, LI-IGF-I-/- mice display a reduced age-dependent fat mass accumulation compared with control mice. Furthermore, LI-IGF-I-/- mice have increased blood pressure attributable to increased peripheral resistance indicating a role for liver-derived IGF-I in the regulation of blood pressure. In conclusion, liver-derived IGF-I is important for carbohydrate and lipid metabolism and for the regulation of GH secretion at the pituitary level. Furthermore, it regulates adult axial skeletal growth and cortical radial growth while it is not required for appendicular skeletal growth.
Collapse
Affiliation(s)
- Klara Sjögren
- Research Centre for Endocrinology and Metabolism, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | |
Collapse
|
94
|
Yakar S, Wu Y, Setser J, Rosen CJ. The role of circulating IGF-I: lessons from human and animal models. Endocrine 2002; 19:239-48. [PMID: 12624423 DOI: 10.1385/endo:19:3:239] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Revised: 11/15/2002] [Accepted: 11/15/2002] [Indexed: 11/11/2022]
Abstract
Insulin-like growth factors (IGF-I and IGF-II) play a crucial role in regulating cell proliferation and differentiation. The IGFs have mitogenic and antiapoptotic effects on normal and transformed cells. These peptide growth factors are produced by virtually all tissues and act in an endocrine, autocrine, and paracrine fashion. The endocrine form of IGF-I originates mostly (75%) from the liver and IGF-binding proteins regulate its bioactivity. Compared to other peptide growth factors, the IGFs are in abundant supply in circulation. The role of this large reservoir of IGFs has been debated for many years. In the last few years substantial progress has been made in understanding the function of the endocrine IGF-I using new animal models. This review will revisit the IGF system with particular attention to the role of circulating IGF-I in growth regulation, metabolism, and cancer.
Collapse
Affiliation(s)
- Shoshana Yakar
- Section on Cellular and Molecular Physiology, Clinical Endocrinology Branch, NIDDK, National Institute of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
95
|
Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 2002. [PMID: 12235108 DOI: 10.1172/jci200215463] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IGF-1 is a growth-promoting polypeptide that is essential for normal growth and development. In serum, the majority of the IGFs exist in a 150-kDa complex including the IGF molecule, IGF binding protein 3 (IGFBP-3), and the acid labile subunit (ALS). This complex prolongs the half-life of serum IGFs and facilitates their endocrine actions. Liver IGF-1-deficient (LID) mice and ALS knockout (ALSKO) mice exhibited relatively normal growth and development, despite having 75% and 65% reductions in serum IGF-1 levels, respectively. Double gene disrupted mice were generated by crossing LID+ALSKO mice. These mice exhibited further reductions in serum IGF-1 levels and a significant reduction in linear growth. The proximal growth plates of the tibiae of LID+ALSKO mice were smaller in total height as well as in the height of the proliferative and hypertrophic zones of chondrocytes. There was also a 10% decrease in bone mineral density and a greater than 35% decrease in periosteal circumference and cortical thickness in these mice. IGF-1 treatment for 4 weeks restored the total height of the proximal growth plate of the tibia. Thus, the double gene disruption LID+ALSKO mouse model demonstrates that a threshold concentration of circulating IGF-1 is necessary for normal bone growth and suggests that IGF-1, IGFBP-3, and ALS play a prominent role in the pathophysiology of osteoporosis.
Collapse
Affiliation(s)
- Shoshana Yakar
- Section on Cellular and Molecular Physiology, Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
The existence of abundant high affinity binding proteins for the IGFs, the IGF binding proteins (IGFBPs), was first demonstrated more than 40 yr ago in the very early days of somatomedin research. With the development of molecular techniques and transgenic and knockout mouse models, the nature, complexity, and redundancy of the IGFBPs have now started to be elucidated. Indeed the functional role of the circulating IGFs and the originally proposed endocrine somatomedin hypothesis have recently been questioned. The limited reports to date indicate that IGFBP knockout mice have few phenotypic manifestations. In contrast, overexpression of IGFBPs in transgenic mice is associated with manifestations that provide some insight into the physiological role of the binding proteins. The predominant effect of generalized or tissue-specific overexpression of the IGFBPs has been growth inhibition as would be anticipated from inhibition of the actions of IGF-I and -II. In addition, impaired glucose homeostasis and reduced fecundity have been observed in both IGFBP-1- and IGFBP-3-overexpressing transgenic mice. This review examines the data reported to date for transgenic mouse models that overexpress IGFBPs. In addition, data from transgenic mice that overexpress the acid-labile subunit, an important component of the ternary complex, have also been reviewed.
Collapse
Affiliation(s)
- Josef V Silha
- Department of Physiology, University of Manitoba, Winnipeg R3E 0W3, Canada
| | | |
Collapse
|
97
|
Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 2002. [DOI: 10.1172/jci0215463] [Citation(s) in RCA: 585] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
98
|
Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 2002; 110:771-81. [PMID: 12235108 PMCID: PMC151128 DOI: 10.1172/jci15463] [Citation(s) in RCA: 308] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
IGF-1 is a growth-promoting polypeptide that is essential for normal growth and development. In serum, the majority of the IGFs exist in a 150-kDa complex including the IGF molecule, IGF binding protein 3 (IGFBP-3), and the acid labile subunit (ALS). This complex prolongs the half-life of serum IGFs and facilitates their endocrine actions. Liver IGF-1-deficient (LID) mice and ALS knockout (ALSKO) mice exhibited relatively normal growth and development, despite having 75% and 65% reductions in serum IGF-1 levels, respectively. Double gene disrupted mice were generated by crossing LID+ALSKO mice. These mice exhibited further reductions in serum IGF-1 levels and a significant reduction in linear growth. The proximal growth plates of the tibiae of LID+ALSKO mice were smaller in total height as well as in the height of the proliferative and hypertrophic zones of chondrocytes. There was also a 10% decrease in bone mineral density and a greater than 35% decrease in periosteal circumference and cortical thickness in these mice. IGF-1 treatment for 4 weeks restored the total height of the proximal growth plate of the tibia. Thus, the double gene disruption LID+ALSKO mouse model demonstrates that a threshold concentration of circulating IGF-1 is necessary for normal bone growth and suggests that IGF-1, IGFBP-3, and ALS play a prominent role in the pathophysiology of osteoporosis.
Collapse
Affiliation(s)
- Shoshana Yakar
- Section on Cellular and Molecular Physiology, Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Choi KY, Lee DH. Interaction Between Acid-Labile Subunit and Insulin-like Growth Factor Binding Protein 3 Expressed in Xenopus Oocytes. BMB Rep 2002; 35:186-93. [PMID: 12297028 DOI: 10.5483/bmbrep.2002.35.2.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acid-labile subunit (ALS) associates with the insulinlike growth factor (IGF)-I or II, and the IGF binding protein-3 (IGFBP-3) in order to form a 150-kD complex in the circulation. This complex may regulate the serum IGFs by restricting them in the vascular system and promoting their endocrine actions. Little is known about how ALS binds to IGFBP3, which connects the IGFs to ALS. Xenopus oocyte was utilized to study the function of ALS in assembling IGFs into the ternary complexes. Xenopus oocyte was shown to correctly translate in vitro transcribed mRNAs of ALS and IGFBP3. IGFBP3 and ALS mRNAs were injected in a mixture, and their products were immunoprecipitated by antisera against ALS and IGFBP3. Contrary to traditional reports that ALS interacts only with IGF-bound IGFBP3, this study shows that ALS is capable of forming a binary complex with IGFBP3 in the absence of IGF. When cross-linked by disuccinimidyl suberate, the band that represents the ALSIGFBP3 complex was evident on the PAGE. IGFBP3 movement was monitored according to the distribution between the hemispheres. Following a localized translation in the vegetal hemisphere, IGFBP3 remained in the vegetal half in the presence of ALS. However, the mutant IGFBP3 freely diffused into the animal half, despite the presence of ALS, which is different from the wild type IGFBP3. This study, therefore, suggests that ALS may play an important role in sequestering IGFBP3 polypeptides via the intermolecular aggregation. Studies using this heterologous model will lead to a better understanding of the IGFBP3 and ALS that assemble into the ternary structure and circulate the IGF system.
Collapse
Affiliation(s)
- Kyung-Yi Choi
- Department of Life Science, The University of Seoul, Seoul 130-743, Korea
| | | |
Collapse
|
100
|
D'Ercole AJ, Calikoglu AS. Editorial review: the case of local versus endocrine IGF-I actions: the jury is still out. Growth Horm IGF Res 2001; 11:261-265. [PMID: 11735243 DOI: 10.1054/ghir.2001.0243] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|