51
|
Martinello M, Orkin C, Cooke G, Bhagani S, Gane E, Kulasegaram R, Shaw D, Tu E, Petoumenos K, Marks P, Grebely J, Dore GJ, Nelson M, Matthews GV. Short-Duration Pan-Genotypic Therapy With Glecaprevir/Pibrentasvir for 6 Weeks Among People With Recent Hepatitis C Viral Infection. Hepatology 2020; 72:7-18. [PMID: 31652357 DOI: 10.1002/hep.31003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/21/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS Among treatment-naive individuals with chronic hepatitis C viral (HCV) infection and without cirrhosis, glecaprevir/pibrentasvir for 8 weeks is recommended. The aim of this analysis was to evaluate the efficacy of glecaprevir/pibrentasvir for 6 weeks in people with acute and recent HCV infection. APPROACH AND RESULTS In this open-label, single-arm, multicenter, international pilot study, adults with recent HCV (duration of infection < 12 months) received glecaprevir/pibrentasvir 300/120 mg daily for 6 weeks. Primary infection was defined by first positive anti-HCV antibody and/or HCV RNA within 6 months of enrollment and either acute clinical hepatitis within the past 12 months (symptomatic seroconversion illness or alanine aminotransferase > 10 × upper limit of normal) or anti-HCV antibody seroconversion within 18 months. Reinfection was defined as new positive HCV RNA within 6 months of enrollment and evidence of prior spontaneous or treatment-induced clearance. The primary endpoint was sustained virologic response at 12 weeks posttreatment (SVR12). Thirty men (median age 43 years, 90% men who have sex with men) received treatment, of whom 77% (n = 23) were human immunodeficiency virus-positive, 47% (n = 14) had ever injected drugs, and 13% (n = 4) had HCV reinfection. The majority had HCV genotype 1 (83%, n = 25), followed by genotype 4 (10%, n = 3) and genotype 3 (7%, n = 2). At baseline, median estimated duration of infection was 29 weeks (range 13, 52) and median HCV RNA was 6.2 log10 IU/mL (range 0.9, 7.7). SVR12 in the intention-to-treat and per-protocol populations was achieved in 90% (27/30) and 96% (27/28), respectively. There was one case of relapse, and there were two cases of nonvirological failure (death, n = 1; loss to follow-up, n = 1). No treatment-related serious adverse events were seen. CONCLUSIONS Glecaprevir/pibrentasvir for 6 weeks was highly effective among people with acute and recent HCV infection, supporting further evaluation of shortened-duration pan-genotypic therapy in this setting.
Collapse
Affiliation(s)
- Marianne Martinello
- Kirby Institute, University of New South Wales Sydney, Sydney, Australia.,St. Vincent's Hospital, Sydney, Australia.,Department of Infectious Diseases, Blacktown Mt. Druitt Hospital, Sydney, Australia
| | | | - Graham Cooke
- Department of Infectious Diseases, Imperial College NHS Trust, St. Mary's Hospital, London, UK
| | - Sanjay Bhagani
- Department of Infectious Diseases/HIV Medicine, Royal Free Hospital, London, UK
| | - Edward Gane
- New Zealand Liver Transplant Unit, Auckland City Hospital, Auckland, New Zealand
| | | | - David Shaw
- Department of Infectious Diseases, Royal Adelaide Hospital, Adelaide, Australia
| | - Elise Tu
- Kirby Institute, University of New South Wales Sydney, Sydney, Australia
| | - Kathy Petoumenos
- Kirby Institute, University of New South Wales Sydney, Sydney, Australia
| | - Philippa Marks
- Kirby Institute, University of New South Wales Sydney, Sydney, Australia
| | - Jason Grebely
- Kirby Institute, University of New South Wales Sydney, Sydney, Australia
| | - Gregory J Dore
- Kirby Institute, University of New South Wales Sydney, Sydney, Australia.,St. Vincent's Hospital, Sydney, Australia
| | - Mark Nelson
- Chelsea and Westminster Hospital, London, UK
| | - Gail V Matthews
- Kirby Institute, University of New South Wales Sydney, Sydney, Australia.,St. Vincent's Hospital, Sydney, Australia
| |
Collapse
|
52
|
Bellomo N, Bingham R, Chaplain MAJ, Dosi G, Forni G, Knopoff DA, Lowengrub J, Twarock R, Virgillito ME. A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES : M3AS 2020; 30:1591-1651. [PMID: 35309741 PMCID: PMC8932953 DOI: 10.1142/s0218202520500323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper is devoted to the multidisciplinary modelling of a pandemic initiated by an aggressive virus, specifically the so-called SARS-CoV-2 Severe Acute Respiratory Syndrome, corona virus n.2. The study is developed within a multiscale framework accounting for the interaction of different spatial scales, from the small scale of the virus itself and cells, to the large scale of individuals and further up to the collective behaviour of populations. An interdisciplinary vision is developed thanks to the contributions of epidemiologists, immunologists and economists as well as those of mathematical modellers. The first part of the contents is devoted to understanding the complex features of the system and to the design of a modelling rationale. The modelling approach is treated in the second part of the paper by showing both how the virus propagates into infected individuals, successfully and not successfully recovered, and also the spatial patterns, which are subsequently studied by kinetic and lattice models. The third part reports the contribution of research in the fields of virology, epidemiology, immune competition, and economy focussed also on social behaviours. Finally, a critical analysis is proposed looking ahead to research perspectives.
Collapse
Affiliation(s)
- Nicola Bellomo
- Departamento de Matemática Aplicada, University of Granada, Spain
- IMATI CNR, Pavia, Italy, and Politecnico of Torino, Italy
| | - Richard Bingham
- Departments of Mathematics and Biology, York Cross-disciplinary Centre for Systems Analysis, University of York, UK
| | - Mark A. J. Chaplain
- Mathematical Institute, School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, Scotland, UK
| | - Giovanni Dosi
- Institute of Economics and EMbeDS, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, I-56127, Pisa, Italy
| | | | - Damian A. Knopoff
- Centro de Investigacion y Estudios de Matematica (CONICET) and Famaf (UNC), Medina Allende s/n, 5000, Cordoba, Argentina
| | | | - Reidun Twarock
- Departments of Mathematics and Biology, York Cross-disciplinary Centre for Systems Analysis, University of York, UK
| | - Maria Enrica Virgillito
- Institute of Economics and EMbeDS, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, I-56127, Pisa, Italy
| |
Collapse
|
53
|
Zitzmann C, Schmid B, Ruggieri A, Perelson AS, Binder M, Bartenschlager R, Kaderali L. A Coupled Mathematical Model of the Intracellular Replication of Dengue Virus and the Host Cell Immune Response to Infection. Front Microbiol 2020; 11:725. [PMID: 32411105 PMCID: PMC7200986 DOI: 10.3389/fmicb.2020.00725] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Dengue virus (DV) is a positive-strand RNA virus of the Flavivirus genus. It is one of the most prevalent mosquito-borne viruses, infecting globally 390 million individuals per year. The clinical spectrum of DV infection ranges from an asymptomatic course to severe complications such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS), the latter because of severe plasma leakage. Given that the outcome of infection is likely determined by the kinetics of viral replication and the antiviral host cell immune response (HIR) it is of importance to understand the interaction between these two parameters. In this study, we use mathematical modeling to characterize and understand the complex interplay between intracellular DV replication and the host cells' defense mechanisms. We first measured viral RNA, viral protein, and virus particle production in Huh7 cells, which exhibit a notoriously weak intrinsic antiviral response. Based on these measurements, we developed a detailed intracellular DV replication model. We then measured replication in IFN competent A549 cells and used this data to couple the replication model with a model describing IFN activation and production of IFN stimulated genes (ISGs), as well as their interplay with DV replication. By comparing the cell line specific DV replication, we found that host factors involved in replication complex formation and virus particle production are crucial for replication efficiency. Regarding possible modes of action of the HIR, our model fits suggest that the HIR mainly affects DV RNA translation initiation, cytosolic DV RNA degradation, and naïve cell infection. We further analyzed the potential of direct acting antiviral drugs targeting different processes of the DV lifecycle in silico and found that targeting RNA synthesis and virus assembly and release are the most promising anti-DV drug targets.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Center for Functional Genomics of Microbes, Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Bianca Schmid
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Lars Kaderali
- Center for Functional Genomics of Microbes, Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
54
|
Rossotti R, Tavelli A, Bonora S, Cingolani A, Lo Caputo S, Saracino A, Soria A, Marinaro L, Uberti-Foppa C, Mussini C, Puoti M, d'Arminio Monforte A. Safety and efficacy of daclatasvir at doses other than 60 mg daily in HIV/HCV co-infected subjects: Data from the ICONA/HepaICONA foundation cohorts. Dig Liver Dis 2020; 52:447-451. [PMID: 31959479 DOI: 10.1016/j.dld.2019.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Daclatasvir (DCV) is a HCV NS5A inhibitor whose plasma exposure may be influenced by co-administration with inducers or inhibitors of CYP3A4 such as many antiretrovirals. AIMS Describe the use of different DCV dosages; assess if dose prescription complies with Summaries of Product Characteristics (SmPC); evaluate safety and efficacy of 60 versus 30/90 mg and adequate (i.e. concordant with SmPC) versus incorrect prescriptions. METHODS Retrospective analysis of patients included in ICONA/HepaICONA starting a DCV-including treatment. Incidence rates of liver adverse events (LAE) were calculated; Poisson regression model was used to identify factors associated with LAE. RESULTS 311 patients were included: 250 (80.4%) received DCV at a dosage of 60 mg, 52 (16.7%) 30 mg and 9 (2.9%) 90 mg. An inadequate dosage was used in 18 individuals (5.8%). No difference in SVR was observed (93.8% with 60 mg and 94.2% with 30/90 mg, p = 0.910; 93.5% with adequate and 100% with incorrect dosage, p = 0.277). There were 36 LAE with no differences in the two-paired groups. Decompensated liver disease was a risk factor for LAE (aRR = 2.37; p = 0.034), while HIV RNA < 50 copies/ml resulted protective (aRR = 0.22; p = 0.003). CONCLUSIONS DCV use resulted in high SVR rate regardless of dosage and correctness of prescription.
Collapse
Affiliation(s)
- Roberto Rossotti
- Infectious Diseases Department, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.
| | | | - Stefano Bonora
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo Di Savoia Hospital, University of Turin, Turin, Italy
| | - Antonella Cingolani
- Infectious Diseases Unit, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Sergio Lo Caputo
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University Hospital Policlinico, University of Bari, Bari, Italy
| | - Alessandro Soria
- Clinic of Infectious Diseases, ASST Monza, San Gerardo Hospital, Italy
| | - Letizia Marinaro
- Department of Medical Sciences, Unit of Infectious Diseases, Amedeo Di Savoia Hospital, University of Turin, Turin, Italy
| | | | - Cristina Mussini
- Infectious Disease Unit, University Hospital Policlinico, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Puoti
- Infectious Diseases Department, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | |
Collapse
|
55
|
Ni D, Li Y, Qiu Y, Pu J, Lu S, Zhang J. Combining Allosteric and Orthosteric Drugs to Overcome Drug Resistance. Trends Pharmacol Sci 2020; 41:336-348. [PMID: 32171554 DOI: 10.1016/j.tips.2020.02.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/06/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023]
Abstract
Historically, most drugs target protein orthosteric sites. The gradual emergence of resistance hampers their therapeutic effectiveness, posing a challenge to drug development. Coadministration of allosteric and orthosteric drugs provides a revolutionary strategy to circumvent drug resistance, as drugs targeting the topologically distinct allosteric sites can restore or even enhance the efficacy of orthosteric drugs. Here, we comprehensively review the latest successful examples of such combination treatments against drug resistance, with a focus on their modes of action and the underlying structural mechanisms. Our work supplies an innovative insight into such promising methodology against the recalcitrant drug resistance conundrum and will be instructive for future clinical therapeutics.
Collapse
Affiliation(s)
- Duan Ni
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yun Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuran Qiu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Pu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
56
|
Cardozo EF, Ji D, Lau G, Schinazi RF, Chen GF, Ribeiro RM, Perelson AS. Disentangling the lifespans of hepatitis C virus-infected cells and intracellular vRNA replication-complexes during direct-acting anti-viral therapy. J Viral Hepat 2020; 27:261-269. [PMID: 31670859 PMCID: PMC7031045 DOI: 10.1111/jvh.13229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/06/2019] [Accepted: 10/16/2019] [Indexed: 01/25/2023]
Abstract
The decay rate of hepatitis C virus (HCV)-infected cells during therapy has been used to determine the duration of treatment needed to attain a sustained virologic response, but with direct-acting anti-virals (DAA), this rate has been difficult to estimate. Here, we show that it is possible to estimate it, by simultaneously analysing the viral load and alanine aminotransferase (ALT) kinetics during combination DAA therapy. We modelled the HCV RNA and ALT serum kinetics in 26 patients with chronic HCV genotype 1b infection, under four different sofosbuvir-based combination treatments. In all patients, ALT decayed exponentially to a set point in the normal range by 1-3 weeks after initiation of therapy. The model indicates that the ALT decay rate during the first few weeks after initiation of therapy reflects the death rate of infected cells, with an estimated median half-life of 2.5 days in this patient population. This information allows independent estimation of the rate of loss of intracellular replication complexes during therapy. Our model also predicts that the final ALT set point is not related to the release of ALT by dying HCV-infected cells. Using ALT data, one can separately obtain information about the rate of 'cure' of HCV-infected cells versus their rate of death, something not possible when analysing only HCV RNA data. This information can be used to compare the effects of different DAA combinations and to rationally evaluate their anti-viral effects.
Collapse
Affiliation(s)
- E. Fabian Cardozo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dong Ji
- The Fifth Medical Center of Chinese PLA General Hospital (302 Hospital)-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, China
| | - George Lau
- The Fifth Medical Center of Chinese PLA General Hospital (302 Hospital)-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, China;,Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong SAR, China
| | - Raymond F. Schinazi
- Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Guo-feng Chen
- The Fifth Medical Center of Chinese PLA General Hospital (302 Hospital)-Hong Kong Humanity and Health Hepatitis C Diagnosis and Treatment Centre, Beijing, China
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA;,Laboratório de Biomatemática, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
57
|
Zappulo E, Scotto R, Buonomo AR, Maraolo AE, Pinchera B, Gentile I. Efficacy and safety of a fixed dose combination tablet of asunaprevir + beclabuvir + daclatasvir for the treatment of Hepatitis C. Expert Opin Pharmacother 2020; 21:261-273. [PMID: 31914336 DOI: 10.1080/14656566.2019.1697674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Hepatitis C virus (HCV) is estimated to infect approximately 70 million people worldwide. If left untreated, chronic infection can progress to cirrhosis, liver failure or hepatocellular carcinoma. The advent of new direct-acting antivirals (DAA) has revolutionized patients' chances of treatment and viral elimination. Currently, several DAA options are available on the market.Areas covered: This review focuses on the pharmacokinetics, efficacy, tolerability and safety profile of DCV-TRIO, a twice-daily fixed-dose combination of daclatasvir, asunaprevir and beclabuvir approved in Japan for the treatment of genotype 1 HCV infection.Expert opinion: The DCV-TRIO combination achieved good response rates in genotype 1 patients (SVR12 ≥ 95% in naïve subtype 1b), independently from IL28B genotype, cirrhotic status and prior interferon exposure. On the other hand, unsatisfying response rates were reported in DAA-experienced patients and the risk of RAS selection should not be underestimated. Moreover, DCV-TRIO lacks differentiation from its earlier-launched DAA rivals, presents an inconvenient twice-daily dosing schedule and is not recommended in patients with advanced liver and kidney disease. All these drawbacks considerably limit its effective commercial potential. However, it can be a therapeutic option against HCV in tailored approaches according to the needs of different markets across the world.Abbreviations AE: adverse event; ALT: alanine aminotransferase; AST: aspartate aminotransferase; ASV: asunaprevir; AUC: area under the curve; BCRP: Breast Cancer Resistance Protein; BCV: boceprevir; BID: bis in die; CI: confidence intervals; CLcr: creatinine clearance; DAA: direct acting antivirals; DCV: daclatasvir; EC50: Half maximal effective concentration; GT: genotype; HCV: Hepatitis C virus; IFN: Interferon; NHL: non-Hodgkin lymphoma; OATP: Organic anion transporting polypeptides; OR: odds ratio; P-gp: P-glycoprotein; PK: pharmacokinetics; QD: quo die; RAS: resistance-associated substitutions; SVR: sustained virological response; USD: Unites States dollar.
Collapse
Affiliation(s)
- Emanuela Zappulo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Riccardo Scotto
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Antonio Riccardo Buonomo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Alberto Enrico Maraolo
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Biagio Pinchera
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| | - Ivan Gentile
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, Naples, Italy
| |
Collapse
|
58
|
Visualization of Positive and Negative Sense Viral RNA for Probing the Mechanism of Direct-Acting Antivirals against Hepatitis C Virus. Viruses 2019; 11:v11111039. [PMID: 31717338 PMCID: PMC6893808 DOI: 10.3390/v11111039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022] Open
Abstract
RNA viruses are highly successful pathogens and are the causative agents for many important diseases. To fully understand the replication of these viruses it is necessary to address the roles of both positive-strand RNA ((+)RNA) and negative-strand RNA ((−)RNA), and their interplay with viral and host proteins. Here we used branched DNA (bDNA) fluorescence in situ hybridization (FISH) to stain both the abundant (+)RNA and the far less abundant (−)RNA in both hepatitis C virus (HCV)- and Zika virus-infected cells, and combined these analyses with visualization of viral proteins through confocal imaging. We were able to phenotypically examine HCV-infected cells in the presence of uninfected cells and revealed the effect of direct-acting antivirals on HCV (+)RNA, (−)RNA, and protein, within hours of commencing treatment. Herein, we demonstrate that bDNA FISH is a powerful tool for the study of RNA viruses that can provide insights into drug efficacy and mechanism of action.
Collapse
|
59
|
Goyal A, Liao LE, Perelson AS. Within-host mathematical models of hepatitis B virus infection: Past, present, and future. ACTA ACUST UNITED AC 2019; 18:27-35. [PMID: 31930181 DOI: 10.1016/j.coisb.2019.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mathematical modeling has been instrumental in enhancing our understanding of the viral dynamics of hepatitis B virus (HBV) infection. We give a primer on HBV infection in humans and a brief overview of the development of within-host mathematical models of HBV infection. In the last decade, models have advanced from considering chronic HBV infections under therapy to the pathogenesis of infection. We also summarize estimates of key viral dynamic parameters that have varied greatly among studies, and show that they impact model predictions. Future directions for mathematical modeling of HBV infection are proposed to better understand emerging therapies, the HBV life cycle, predicting cure, and the mechanisms involved in the immune response to HBV infection.
Collapse
Affiliation(s)
- Ashish Goyal
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Laura E Liao
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico, 87545, USA
| |
Collapse
|
60
|
Reinharz V, Churkin A, Lewkiewicz S, Dahari H, Barash D. A Parameter Estimation Method for Multiscale Models of Hepatitis C Virus Dynamics. Bull Math Biol 2019; 81:3675-3721. [PMID: 31338739 PMCID: PMC7375976 DOI: 10.1007/s11538-019-00644-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Mathematical models that are based on differential equations require detailed knowledge about the parameters that are included in the equations. Some of the parameters can be measured experimentally while others need to be estimated. When the models become more sophisticated, such as in the case of multiscale models of hepatitis C virus dynamics that deal with partial differential equations (PDEs), several strategies can be tried. It is possible to use parameter estimation on an analytical approximation of the solution to the multiscale model equations, namely the long-term approximation, but this limits the scope of the parameter estimation method used and a long-term approximation needs to be derived for each model. It is possible to transform the PDE multiscale model to a system of ODEs, but this has an effect on the model parameters themselves and the transformation can become problematic for some models. Finally, it is possible to use numerical solutions for the multiscale model and then use canned methods for the parameter estimation, but the latter is making the user dependent on a black box without having full control over the method. The strategy developed here is to start by working directly on the multiscale model equations for preparing them toward the parameter estimation method that is fully coded and controlled by the user. It can also be adapted to multiscale models of other viruses. The new method is described, and illustrations are provided using a user-friendly simulator that incorporates the method.
Collapse
Affiliation(s)
- Vladimir Reinharz
- Department of Computer Science, Ben-Gurion University, Beersheba, Israel
| | - Alexander Churkin
- Department of Software Engineering, Sami Shamoon College of Engineering, Beersheba, Israel
| | - Stephanie Lewkiewicz
- Department of Mathematics, University of California at Los Angeles, Los Angeles, CA, USA
| | - Harel Dahari
- Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywoood, IL, USA
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beersheba, Israel.
| |
Collapse
|
61
|
Canini L, Lemenuel-Diot A, Brennan BJ, Smith PF, Perelson AS. A pharmacokinetic/viral kinetic model to evaluate treatment of chronic HCV infection with a non-nucleoside polymerase inhibitor. Antivir Ther 2019; 23:353-361. [PMID: 29317572 DOI: 10.3851/imp3216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Viral kinetic models have proven useful in characterizing treatment effectiveness during HCV therapy with interferon (IFN) as well as with direct-acting antivirals (DAAs). METHODS Here we use a pharmacokinetic/viral kinetic (PK/VK) model to describe HCV RNA kinetics during treatment with setrobuvir, a non-nucleosidic inhibitor of the HCV NS5B polymerase enzyme. Using PK data from three studies in healthy volunteers and PK and VK data from a Phase I study, where setrobuvir was administered for 3 days, we fitted a two-compartment PK model with first-order absorption and lag-time, an Emax pharmacodynamics model and a standard biphasic VK model. RESULTS Setrobuvir's EC50 and Hill coefficient and the viral clearance rate were significantly different (P=0.014, P<0.001 and P=0.004, respectively) between patients infected with HCV subtypes 1b and 1a, leading to an increased viral load decline in patients infected with genotype 1b virus. CONCLUSIONS Understanding the combined effects of PK/VK on the performance of a non-nucleoside polymerase inhibitor such as setrobuvir could provide valuable insights into their use in combination with other DAAs as well as to optimize future therapy. Further, our work suggests that patients infected with subtype 1a would need higher doses than those infected with subtype 1b to achieve the same effectiveness. Whether this is true for other non-nucleoside polymerase inhibitors needs to be examined.
Collapse
Affiliation(s)
- Laetitia Canini
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA.,Present address: Center for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | | | - Barbara J Brennan
- Clinical Pharmacology, Pharma Research and Early Development, Roche, Nutley, NJ, USA
| | - Patrick F Smith
- d3 Medicine, a Certara Company, Parsippany, NJ, USA.,University at Buffalo, School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
62
|
Wu R, Geng D, Chi X, Wang X, Gao X, Xu H, Shi Y, Guan Y, Wang Y, Jin J, Ding Y, Niu J. Computational analysis of naturally occurring resistance-associated substitutions in genes NS3, NS5A, and NS5B among 86 subtypes of hepatitis C virus worldwide. Infect Drug Resist 2019; 12:2987-3015. [PMID: 31571951 PMCID: PMC6756830 DOI: 10.2147/idr.s218584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background and objective Direct-acting antivirals (DAA) facing resistance continue to be used in some areas worldwide. Thus, identifying hepatitis C virus (HCV) genotypes/subtypes and loci with certain prevalent resistance-associated substitutions (RASs) deserves attention. We investigated the global and regional frequencies of naturally occurring RASs among all confirmed HCV subtypes (n=86) and explored co-occurring and mutually exclusive RAS pairs within and between genes NS3, NS5A, and NS5B. Methods A total of 213,908 HCV sequences available as of July 10, 2019 were retrieved from the NCBI nucleotide database. After curation, 17,312 NS3, 8,478 NS5A, and 25,991 NS5B sequence fragments from DAA-naïve patients were screened for RASs. MEGA 6.0 was used to translate aligned nucleotide sequences into amino acid sequences, and RAS pairs were identified by hypergeometric analysis. Results RAS prevalence varied significantly among HCV subtypes. For example, D168E, highly resistanct to all protease inhibitors except voxilaprevir, was nearly absent in all subtypes except in 43.48% of GT5a sequences. RASs in NS3 exhibiting significantly different global distribution included Q80K in GT1a with the highest frequency in North America (54.49%), followed by in Europe (22.66%), Asia (6.98%), Oceania (6.62%), and South America (1.03%). The prevalence of NS3 S122G in GT1b was highest in Asia (26.6%) and lowest in Europe (2.64%). NS5A L28M, R30Q, and Y93H in GT1b, L31M in GT2b, and NS5B C316N in GT1b was most prevalent in Asia. A150V in GT3a, associated with sofosbuvir treatment failure, was most prevalent in Asia (44.09%), followed by Europe (31.19%), Oceania (24.29%), and North America (19.05%). Multiple mutually exclusive or co-occurring RAS pairs were identified, including Q80K+R155K and R155K+D168G in GT1a and L159F+C316N and R30Q (NS5A)+C316N (NS5B) in GT1b. Conclusion Our data may be of special relevance for those countries where highly effective antivirals might not be available. Considering the specific RASs prevalence will help the clinicians to make optimal treatment choices. The RASs pairs would benefit anti-HCV drug development.
Collapse
Affiliation(s)
- Ruihong Wu
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Dongfeng Geng
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Xiumei Chi
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Xiaomei Wang
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Xiuzhu Gao
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Hongqin Xu
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Ying Shi
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Yazhe Guan
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Yang Wang
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Jinglan Jin
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Yanhua Ding
- Phase I Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Junqi Niu
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| |
Collapse
|
63
|
Sofia MJ. The Discovery and Development of Daclatasvir: An Inhibitor of the Hepatitis C Virus NS5A Replication Complex. ACTA ACUST UNITED AC 2019. [PMCID: PMC7122418 DOI: 10.1007/7355_2018_47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
64
|
Zeinali S, Shahrokhi M. Adaptive Control Strategy for Treatment of Hepatitis C Infection. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sahar Zeinali
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran 11155-9465, Iran
| | - Mohammad Shahrokhi
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran 11155-9465, Iran
| |
Collapse
|
65
|
Raja R, Baral S, Dixit NM. Interferon at the cellular, individual, and population level in hepatitis C virus infection: Its role in the interferon-free treatment era. Immunol Rev 2019; 285:55-71. [PMID: 30129199 DOI: 10.1111/imr.12689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The advent of powerful direct-acting antiviral agents (DAAs) has revolutionized the treatment of hepatitis C. DAAs cure nearly all patients with short duration, oral treatments. Significant efforts are now underway to optimize DAA-based treatments. We discuss the potential role of interferon in this optimization. Clinical studies present compelling evidence that DAAs perform better in treatment-naive individuals than in individuals who previously failed treatment with interferon, a surprising correlation because interferon and DAAs are thought to act independently. Recent mathematical models explore a mechanistic hypothesis underlying this correlation. The hypothesis invokes the action of interferon at the cellular, individual, and population levels. Strong interferon responses prevent the productive infection of cells, reduce viral replication, and impede the development of resistance to DAAs in infected individuals and improve cure rates elicited by DAAs in treated populations. The models develop descriptions of these processes, integrate them into a comprehensive framework, and capture clinical data quantitatively, providing a successful test of the hypothesis. Individuals with strong endogenous interferon responses thus present a promising subpopulation for reducing DAA treatment durations. This review discusses the conceptual advances made by the models, highlights the new insights they unravel, and examines their applicability to optimize DAA-based treatments.
Collapse
Affiliation(s)
- Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Subhasish Baral
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
66
|
Raja R, Pareek A, Newar K, Dixit NM. Mutational pathway maps and founder effects define the within-host spectrum of hepatitis C virus mutants resistant to drugs. PLoS Pathog 2019; 15:e1007701. [PMID: 30934020 PMCID: PMC6459561 DOI: 10.1371/journal.ppat.1007701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/11/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Knowledge of the within-host frequencies of resistance-associated amino acid variants (RAVs) is important to the identification of optimal drug combinations for the treatment of hepatitis C virus (HCV) infection. Multiple RAVs may exist in infected individuals, often below detection limits, at any resistance locus, defining the diversity of accessible resistance pathways. We developed a multiscale mathematical model to estimate the pre-treatment frequencies of the entire spectrum of mutants at chosen loci. Using a codon-level description of amino acids, we performed stochastic simulations of intracellular dynamics with every possible nucleotide variant as the infecting strain and estimated the relative infectivity of each variant and the resulting distribution of variants produced. We employed these quantities in a deterministic multi-strain model of extracellular dynamics and estimated mutant frequencies. Our predictions captured database frequencies of the RAV R155K, resistant to NS3/4A protease inhibitors, presenting a successful test of our formalism. We found that mutational pathway maps, interconnecting all viable mutants, and strong founder effects determined the mutant spectrum. The spectra were vastly different for HCV genotypes 1a and 1b, underlying their differential responses to drugs. Using a fitness landscape determined recently, we estimated that 13 amino acid variants, encoded by 44 codons, exist at the residue 93 of the NS5A protein, illustrating the massive diversity of accessible resistance pathways at specific loci. Accounting for this diversity, which our model enables, would help optimize drug combinations. Our model may be applied to describe the within-host evolution of other flaviviruses and inform vaccine design strategies.
Collapse
Affiliation(s)
- Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Aditya Pareek
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Kapil Newar
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
67
|
Kalemera M, Mincheva D, Grove J, Illingworth CJR. Building a mechanistic mathematical model of hepatitis C virus entry. PLoS Comput Biol 2019; 15:e1006905. [PMID: 30883541 PMCID: PMC6445459 DOI: 10.1371/journal.pcbi.1006905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/02/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022] Open
Abstract
The mechanism by which hepatitis C virus (HCV) gains entry into cells is a complex one, involving a broad range of host proteins. Entry is a critical phase of the viral lifecycle, and a potential target for therapeutic or vaccine-mediated intervention. However, the mechanics of HCV entry remain poorly understood. Here we describe a novel computational model of viral entry, encompassing the relationship between HCV and the key host receptors CD81 and SR-B1. We conduct experiments to thoroughly quantify the influence of an increase or decrease in receptor availability upon the extent of viral entry. We use these data to build and parameterise a mathematical model, which we then validate by further experiments. Our results are consistent with sequential HCV-receptor interactions, whereby initial interaction between the HCV E2 glycoprotein and SR-B1 facilitates the accumulation CD81 receptors, leading to viral entry. However, we also demonstrate that a small minority of viruses can achieve entry in the absence of SR-B1. Our model estimates the impact of the different obstacles that viruses must surmount to achieve entry; among virus particles attaching to the cell surface, around one third of viruses accumulate sufficient CD81 receptors, of which 4-8% then complete the subsequent steps to achieve productive infection. Furthermore, we make estimates of receptor stoichiometry; in excess of 10 receptors are likely to be required to achieve viral entry. Our model provides a tool to investigate the entry characteristics of HCV variants and outlines a framework for future quantitative studies of the multi-receptor dynamics of HCV entry.
Collapse
Affiliation(s)
- Mphatso Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, United Kingdom
| | - Dilyana Mincheva
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, United Kingdom
| | | |
Collapse
|
68
|
Knodel MM, Targett-Adams P, Grillo A, Herrmann E, Wittum G. Advanced Hepatitis C Virus Replication PDE Models within a Realistic Intracellular Geometric Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E513. [PMID: 30759770 PMCID: PMC6388173 DOI: 10.3390/ijerph16030513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) RNA replication cycle is a dynamic intracellular process occurring in three-dimensional space (3D), which is difficult both to capture experimentally and to visualize conceptually. HCV-generated replication factories are housed within virus-induced intracellular structures termed membranous webs (MW), which are derived from the Endoplasmatic Reticulum (ER). Recently, we published 3D spatiotemporal resolved diffusion⁻reaction models of the HCV RNA replication cycle by means of surface partial differential equation (sPDE) descriptions. We distinguished between the basic components of the HCV RNA replication cycle, namely HCV RNA, non-structural viral proteins (NSPs), and a host factor. In particular, we evaluated the sPDE models upon realistic reconstructed intracellular compartments (ER/MW). In this paper, we propose a significant extension of the model based upon two additional parameters: different aggregate states of HCV RNA and NSPs, and population dynamics inspired diffusion and reaction coefficients instead of multilinear ones. The combination of both aspects enables realistic modeling of viral replication at all scales. Specifically, we describe a replication complex state consisting of HCV RNA together with a defined amount of NSPs. As a result of the combination of spatial resolution and different aggregate states, the new model mimics a cis requirement for HCV RNA replication. We used heuristic parameters for our simulations, which were run only on a subsection of the ER. Nevertheless, this was sufficient to allow the fitting of core aspects of virus reproduction, at least qualitatively. Our findings should help stimulate new model approaches and experimental directions for virology.
Collapse
Affiliation(s)
- Markus M Knodel
- Department of Mathematics, Chair of Applied Mathematics 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany.
| | | | - Alfio Grillo
- Dipartimento di Scienze Matematiche (DISMA) "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino (TO), Italy.
| | - Eva Herrmann
- Department of Medicine, Institute for Biostatistics and Mathematic Modeling, Goethe Universität Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| | - Gabriel Wittum
- Goethe Center for Scientific Computing (G-CSC), Goethe Universität Frankfurt, Kettenhofweg 139, 60325 Frankfurt am Main, Germany.
- Applied Mathematics and Computational Science, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
69
|
Mathematical Analysis of a Transformed ODE from a PDE Multiscale Model of Hepatitis C Virus Infection. Bull Math Biol 2019; 81:1427-1441. [PMID: 30644067 DOI: 10.1007/s11538-018-00564-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023]
Abstract
Mathematical modeling has revealed the quantitative dynamics during the process of viral infection and evolved into an important tool in modern virology. Coupled with analyses of clinical and experimental data, the widely used basic model of viral dynamics described by ordinary differential equations (ODEs) has been well parameterized. In recent years, age-structured models, called "multiscale model," formulated by partial differential equations (PDEs) have also been developed and become useful tools for more detailed data analysis. However, in general, PDE models are considerably more difficult to subject to mathematical and numerical analyses. In our recently reported study, we successfully derived a mathematically identical ODE model from a PDE model, which helps to overcome the limitations of the PDE model with regard to clinical data analysis. Here, we derive the basic reproduction number from the identical ODE model and provide insight into the global stability of all possible steady states of the ODE model.
Collapse
|
70
|
Alazard-Dany N, Denolly S, Boson B, Cosset FL. Overview of HCV Life Cycle with a Special Focus on Current and Possible Future Antiviral Targets. Viruses 2019; 11:v11010030. [PMID: 30621318 PMCID: PMC6356578 DOI: 10.3390/v11010030] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C infection is the leading cause of liver diseases worldwide and a major health concern that affects an estimated 3% of the global population. Novel therapies available since 2014 and 2017 are very efficient and the WHO considers HCV eradication possible by the year 2030. These treatments are based on the so-called direct acting antivirals (DAAs) that have been developed through research efforts by academia and industry since the 1990s. After a brief overview of the HCV life cycle, we describe here the functions of the different targets of current DAAs, the mode of action of these DAAs and potential future inhibitors.
Collapse
Affiliation(s)
- Nathalie Alazard-Dany
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Solène Denolly
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - Bertrand Boson
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| | - François-Loïc Cosset
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, F-69007 Lyon, France.
| |
Collapse
|
71
|
Ashraf MU, Iman K, Khalid MF, Salman HM, Shafi T, Rafi M, Javaid N, Hussain R, Ahmad F, Shahzad-Ul-Hussan S, Mirza S, Shafiq M, Afzal S, Hamera S, Anwar S, Qazi R, Idrees M, Qureshi SA, Chaudhary SU. Evolution of efficacious pangenotypic hepatitis C virus therapies. Med Res Rev 2018; 39:1091-1136. [PMID: 30506705 DOI: 10.1002/med.21554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C compromises the quality of life of more than 350 million individuals worldwide. Over the last decade, therapeutic regimens for treating hepatitis C virus (HCV) infections have undergone rapid advancements. Initially, structure-based drug design was used to develop molecules that inhibit viral enzymes. Subsequently, establishment of cell-based replicon systems enabled investigations into various stages of HCV life cycle including its entry, replication, translation, and assembly, as well as role of host proteins. Collectively, these approaches have facilitated identification of important molecules that are deemed essential for HCV life cycle. The expanded set of putative virus and host-encoded targets has brought us one step closer to developing robust strategies for efficacious, pangenotypic, and well-tolerated medicines against HCV. Herein, we provide an overview of the development of various classes of virus and host-directed therapies that are currently in use along with others that are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Muhammad Usman Ashraf
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Hafiz Muhammad Salman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.,Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Talha Shafi
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Momal Rafi
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Nida Javaid
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rashid Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | | | - Shaper Mirza
- Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Shafiq
- Plant Biotechnology Laboratory, Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sadia Hamera
- Department of Plant Genetics, Institute of Life Sciences, University of Rostock, Germany
| | - Saima Anwar
- Department of Biomedical Engineering, University of Engineering and Technology, Lahore, Pakistan
| | - Romena Qazi
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital & Research Centre, Lahore, Pakistan
| | - Muhammad Idrees
- Virology Laboratory, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Sohail A Qureshi
- Institute of Integrative Biosciences, CECOS-University of Information Technology and Emerging Sciences, Peshawar, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| |
Collapse
|
72
|
Abstract
Viruses are a main cause of disease worldwide and many are without effective therapeutics or vaccines. A lack of understanding about how host responses work to control viral spread is one factor limiting effective management. How different immune components regulate infection dynamics is beginning to be better understood with the help of mathematical models. These models have been key in discriminating between hypotheses and in identifying rates of virus growth and clearance, dynamical control by different host factors and antivirals, and synergistic interactions during multi-pathogen infections. A recent focus in evaluating model predictions in the laboratory and clinic has illuminate the accuracy of models for a variety of viruses and highlighted the critical nature of theoretical approaches in virology. Here, I discuss recent model-driven exploration of host-pathogen interactions that have illustrated the importance of model validation in establishing the model's predictive capability and in defining new biology.
Collapse
|
73
|
Aboshabana R, Shalan S, Eid M, El-Enany N. Two validated spectrofluorimeteric and high performance liquid chromatography (HPLC) methods with fluorescence detection for the analysis of a new anti-hepatitis C drug, daclatasvir hydrochloride, in raw material or tablet form and in biological fluids. LUMINESCENCE 2018; 33:1333-1345. [DOI: 10.1002/bio.3551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/07/2018] [Accepted: 08/23/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Rasha Aboshabana
- Department of Analytical Chemistry, Faculty of Pharmacy; University of Mansoura; Mansoura Egypt
| | - Shereen Shalan
- Department of Analytical Chemistry, Faculty of Pharmacy; University of Mansoura; Mansoura Egypt
| | - Manal Eid
- Department of Analytical Chemistry, Faculty of Pharmacy; University of Mansoura; Mansoura Egypt
| | - Nahed El-Enany
- Department of Analytical Chemistry, Faculty of Pharmacy; University of Mansoura; Mansoura Egypt
| |
Collapse
|
74
|
Krishnan P, Pilot-Matias T, Schnell G, Tripathi R, Ng TI, Reisch T, Beyer J, Dekhtyar T, Irvin M, Xie W, Larsen L, Mensa FJ, Collins C. Pooled Resistance Analysis in Patients with Hepatitis C Virus Genotype 1 to 6 Infection Treated with Glecaprevir-Pibrentasvir in Phase 2 and 3 Clinical Trials. Antimicrob Agents Chemother 2018; 62:e01249-18. [PMID: 30061289 PMCID: PMC6153825 DOI: 10.1128/aac.01249-18] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Over 2,200 patients infected with hepatitis C virus (HCV) genotypes (GT) 1 to 6, with or without cirrhosis, who were treatment naive or experienced to interferon, ribavirin, and/or sofosbuvir were treated with glecaprevir/pibrentasvir for 8, 12, or 16 weeks in eight registrational phase 2 and 3 clinical studies. High rates of sustained virologic response at 12 weeks postdosing (SVR12) were achieved with a <1% virologic failure (VF) rate. The prevalence of baseline polymorphisms (BPs) in NS3 at amino acid position 155 or 168 was low (<3%) in patients infected with GT1, GT2, GT3, GT4, and GT6, while 41.9% of the GT5-infected patients had NS3-D168E; BPs were not detected at position 156 in NS3. The prevalence of NS5A-BPs was high across genotypes, driven by common polymorphisms at amino acid position 30 or 31 in GT2, 58 in GT4, and 28 in GT6. The prevalence of NS5A T/Y93 polymorphisms was 5.5% in GT1, 4.9% in GT3, and 12.5% in GT6. Consistent with the activity of glecaprevir and pibrentasvir against most amino acid polymorphisms in vitro, BPs in NS3 and/or NS5A did not have an impact on treatment outcome for patients infected with GT1 to GT6, with the exception of treatment-experienced GT3-infected patients treated for 12 weeks, for whom a 16-week regimen of glecaprevir/pibrentasvir was required to achieve SVR12 rates of ≥95%. Among the 22 patients experiencing VF, treatment-emergent substitutions were detected in NS3 in 50% of patients and in NS5A in 82% of patients, frequently as a combination of substitutions that conferred resistance to glecaprevir and/or pibrentasvir. The glecaprevir/pibrentasvir regimen, when the recommended durations are used, allows for a pan-genotypic treatment option without the need for baseline resistance testing.
Collapse
Affiliation(s)
- Preethi Krishnan
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | | | - Gretja Schnell
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Rakesh Tripathi
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Teresa I Ng
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Thomas Reisch
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Jill Beyer
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Tatyana Dekhtyar
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Michelle Irvin
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Wangang Xie
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Lois Larsen
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | - Federico J Mensa
- Research & Development, AbbVie, Inc., North Chicago, Illinois, USA
| | | |
Collapse
|
75
|
Ishida Y, Chung TL, Imamura M, Hiraga N, Sen S, Yokomichi H, Tateno C, Canini L, Perelson AS, Uprichard SL, Dahari H, Chayama K. Acute hepatitis B virus infection in humanized chimeric mice has multiphasic viral kinetics. Hepatology 2018; 68:473-484. [PMID: 29572897 PMCID: PMC6097938 DOI: 10.1002/hep.29891] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/09/2023]
Abstract
UNLABELLED Chimeric urokinase type plasminogen activator (uPA)/severely severe combined immunodeficiency (SCID) mice reconstituted with humanized livers are useful for studying hepatitis B virus (HBV) infection in the absence of an adaptive immune response. However, the detailed characterization of HBV infection kinetics necessary to enable in-depth mechanistic studies in this in vivo HBV infection model is lacking. To characterize HBV kinetics post-inoculation (p.i.) to steady state, 42 mice were inoculated with HBV. Serum HBV DNA was frequently measured from 1 minute to 63 days p.i. Total intrahepatic HBV DNA, HBV covalently closed circular DNA (cccDNA), and HBV RNA was measured in a subset of mice at 2, 4, 6, 10, and 13 weeks p.i. HBV half-life (t1/2 ) was estimated using a linear mixed-effects model. During the first 6 hours p.i., serum HBV declined in repopulated uPA/SCID mice with a t1/2 = 62 minutes (95% confidence interval [CI] = 59-67). Thereafter, viral decline slowed followed by a 2-day lower plateau. Subsequent viral amplification was multiphasic with an initial mean doubling time of t2 = 8 ± 3 hours followed by an interim plateau before prolonged amplification (t2 = 2 ± 0.5 days) to a final HBV steady state of 9.3 ± 0.3 log copies (cps)/mL. Serum HBV and intrahepatic HBV DNA were positively correlated (R2 = 0.98). CONCLUSION HBV infection in uPA/SCID chimeric mice is highly dynamic despite the absence of an adaptive immune response. Serum HBV t1/2 in humanized uPA/SCID mice was estimated to be ∼1 hour regardless of inoculum size. The HBV acute infection kinetics presented here is an important step in characterizing this experimental model system so that it can be effectively used to elucidate the dynamics of the HBV life cycle and thus possibly reveal effective antiviral drug targets. (Hepatology 2018).
Collapse
Affiliation(s)
- Yuji Ishida
- PhoenixBio Co., Ltd., Hiroshima, Japan,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Tje Lin Chung
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA,Institute of Biostatistics and Mathematical Modeling, Department of Medicine, Goethe University, Frankfurt, Germany
| | - Michio Imamura
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Hiraga
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Suranjana Sen
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | | | - Chise Tateno
- PhoenixBio Co., Ltd., Hiroshima, Japan,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Laetitia Canini
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA,Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Susan L. Uprichard
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Kazuaki Chayama
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
76
|
Nano-magnetite/ionic liquid crystal modifiers of carbon nanotubes composite electrode for ultrasensitive determination of a new anti-hepatitis C drug in human serum. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
77
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
78
|
Ke R, Li H, Wang S, Ding W, Ribeiro RM, Giorgi EE, Bhattacharya T, Barnard RJO, Hahn BH, Shaw GM, Perelson AS. Superinfection and cure of infected cells as mechanisms for hepatitis C virus adaptation and persistence. Proc Natl Acad Sci U S A 2018; 115:E7139-E7148. [PMID: 29987026 PMCID: PMC6065014 DOI: 10.1073/pnas.1805267115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RNA viruses exist as a genetically diverse quasispecies with extraordinary ability to adapt to abrupt changes in the host environment. However, the molecular mechanisms that contribute to their rapid adaptation and persistence in vivo are not well studied. Here, we probe hepatitis C virus (HCV) persistence by analyzing clinical samples taken from subjects who were treated with a second-generation HCV protease inhibitor. Frequent longitudinal viral load determinations and large-scale single-genome sequence analyses revealed rapid antiviral resistance development, and surprisingly, dynamic turnover of dominant drug-resistant mutant populations long after treatment cessation. We fitted mathematical models to both the viral load and the viral sequencing data, and the results provided strong support for the critical roles that superinfection and cure of infected cells play in facilitating the rapid turnover and persistence of viral populations. More broadly, our results highlight the importance of considering viral dynamics and competition at the intracellular level in understanding rapid viral adaptation. Thus, we propose a theoretical framework integrating viral and molecular mechanisms to explain rapid viral evolution, resistance, and persistence despite antiviral treatment and host immune responses.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Wenge Ding
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
- Laboratory of Biomathematics, Faculty of Medicine, University of Lisbon, 1600-276 Lisbon, Portugal
| | - Elena E Giorgi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
- Santa Fe Institute, Santa Fe, NM 87501
| | | | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545;
- Santa Fe Institute, Santa Fe, NM 87501
| |
Collapse
|
79
|
Zitzmann C, Kaderali L. Mathematical Analysis of Viral Replication Dynamics and Antiviral Treatment Strategies: From Basic Models to Age-Based Multi-Scale Modeling. Front Microbiol 2018; 9:1546. [PMID: 30050523 PMCID: PMC6050366 DOI: 10.3389/fmicb.2018.01546] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Viral infectious diseases are a global health concern, as is evident by recent outbreaks of the middle east respiratory syndrome, Ebola virus disease, and re-emerging zika, dengue, and chikungunya fevers. Viral epidemics are a socio-economic burden that causes short- and long-term costs for disease diagnosis and treatment as well as a loss in productivity by absenteeism. These outbreaks and their socio-economic costs underline the necessity for a precise analysis of virus-host interactions, which would help to understand disease mechanisms and to develop therapeutic interventions. The combination of quantitative measurements and dynamic mathematical modeling has increased our understanding of the within-host infection dynamics and has led to important insights into viral pathogenesis, transmission, and disease progression. Furthermore, virus-host models helped to identify drug targets, to predict the treatment duration to achieve cure, and to reduce treatment costs. In this article, we review important achievements made by mathematical modeling of viral kinetics on the extracellular, intracellular, and multi-scale level for Human Immunodeficiency Virus, Hepatitis C Virus, Influenza A Virus, Ebola Virus, Dengue Virus, and Zika Virus. Herein, we focus on basic mathematical models on the population scale (so-called target cell-limited models), detailed models regarding the most important steps in the viral life cycle, and the combination of both. For this purpose, we review how mathematical modeling of viral dynamics helped to understand the virus-host interactions and disease progression or clearance. Additionally, we review different types and effects of therapeutic strategies and how mathematical modeling has been used to predict new treatment regimens.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
80
|
Venugopal V, Padmanabhan P, Raja R, Dixit NM. Modelling how responsiveness to interferon improves interferon-free treatment of hepatitis C virus infection. PLoS Comput Biol 2018; 14:e1006335. [PMID: 30001324 PMCID: PMC6057683 DOI: 10.1371/journal.pcbi.1006335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 07/24/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Direct-acting antiviral agents (DAAs) for hepatitis C treatment tend to fare better in individuals who are also likely to respond well to interferon-alpha (IFN), a surprising correlation given that DAAs target specific viral proteins whereas IFN triggers a generic antiviral immune response. Here, we posit a causal relationship between IFN-responsiveness and DAA treatment outcome. IFN-responsiveness restricts viral replication, which would prevent the growth of viral variants resistant to DAAs and improve treatment outcome. To test this hypothesis, we developed a multiscale mathematical model integrating IFN-responsiveness at the cellular level, viral kinetics and evolution leading to drug resistance at the individual level, and treatment outcome at the population level. Model predictions quantitatively captured data from over 50 clinical trials demonstrating poorer response to DAAs in previous non-responders to IFN than treatment-naïve individuals, presenting strong evidence supporting the hypothesis. Model predictions additionally described several unexplained clinical observations, viz., the percentages of infected individuals who 1) spontaneously clear HCV, 2) get chronically infected but respond to IFN-based therapy, and 3) fail IFN-based therapy but respond to DAA-based therapy, resulting in a comprehensive understanding of HCV infection and treatment. An implication of the causal relationship is that failure of DAA-based treatments may be averted by adding IFN, a strategy of potential use in settings with limited access to DAAs. A second, wider implication is that individuals with greater IFN-responsiveness would require shorter DAA-based treatment durations, presenting a basis and a promising population for response-guided therapy.
Collapse
Affiliation(s)
- Vishnu Venugopal
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Pranesh Padmanabhan
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Rubesh Raja
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
| | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
81
|
Esposito I, Marciano S, Trinks J. Pharmacokinetic and pharmacodynamic evaluation of daclatasvir, asunaprevir plus beclabuvir as a fixed-dose co-formulation for the treatment of hepatitis C. Expert Opin Drug Metab Toxicol 2018; 14:649-657. [PMID: 29855221 DOI: 10.1080/17425255.2018.1483336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Many reports have evaluated the clinical efficacy and safety of the fixed-dose all-oral combination of daclatasvir, asunaprevir, and beclabuvir (DCV-TRIO), which was approved in Japan in December 2016 for the treatment of hepatitis C genotype (GT)-1 infection. Areas covered: This article reviews the pharmacodynamic and pharmacokinetic properties of the DCV-TRIO combination. The topics covered include data regarding the drug's absorption, distribution, metabolism, excretion, and antiviral activity strategies. Its therapeutic efficacy and safety in GT-1 infection from phase 2/3 clinical trials are also discussed. Expert opinion: The ideal regimen for the treatment of Hepatitis C virus infection should be potent, pangenotypic, Ribavirin-free, safe, co-formulated, and affordable. Considering these characteristics, DCV-TRIO is neither pangenotypic nor potent enough against GT-1a, regardless of the presence or absence of cirrhosis. Other potential limitations of this regimen are its dosification (twice-daily), and the fact that since it includes a protease inhibitor, it is contraindicated in decompensated cirrhosis. For these reasons, it has only been approved in Japan, where more than 70% of the patients are infected with GT-1b. However, this co-formulation might still have a place in the treatment of non-cirrhotic patients infected with GT-1b provided that massive access to treatment is facilitated.
Collapse
Affiliation(s)
- Isabella Esposito
- a Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Instituto Universitario del Hospital Italiano , Buenos Aires , Argentina
| | - Sebastián Marciano
- b Hepatology Unit , Hospital Italiano de Buenos Aires , Buenos Aires , Argentina.,c Department of Research , Hospital Italiano de Buenos Aires , Buenos Aires , Argentina
| | - Julieta Trinks
- a Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Instituto Universitario del Hospital Italiano , Buenos Aires , Argentina.,d National Council of Scientific and Technical Research (CONICET) , Buenos Aires , Argentina
| |
Collapse
|
82
|
Baral S, Roy R, Dixit NM. Modeling how reversal of immune exhaustion elicits cure of chronic hepatitis C after the end of treatment with direct-acting antiviral agents. Immunol Cell Biol 2018; 96:969-980. [PMID: 29744934 PMCID: PMC6220890 DOI: 10.1111/imcb.12161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/11/2022]
Abstract
A fraction of chronic hepatitis C patients treated with direct‐acting antivirals (DAAs) achieved sustained virological responses (SVR), or cure, despite having detectable viremia at the end of treatment (EOT). This observation, termed EOT+/SVR, remains puzzling and precludes rational optimization of treatment durations. One hypothesis to explain EOT+/SVR, the immunologic hypothesis, argues that the viral decline induced by DAAs during treatment reverses the exhaustion of cytotoxic T lymphocytes (CTLs), which then clear the infection after treatment. Whether the hypothesis is consistent with data of viral load changes in patients who experienced EOT+/SVR is unknown. Here, we constructed a mathematical model of viral kinetics incorporating the immunologic hypothesis and compared its predictions with patient data. We found the predictions to be in quantitative agreement with patient data. Using the model, we unraveled an underlying bistability that gives rise to EOT+/SVR and presents a new avenue to optimize treatment durations. Infected cells trigger both activation and exhaustion of CTLs. CTLs in turn kill infected cells. Due to these competing interactions, two stable steady states, chronic infection and viral clearance, emerge, separated by an unstable steady state with intermediate viremia. When treatment during chronic infection drives viremia sufficiently below the unstable state, spontaneous viral clearance results post‐treatment, marking EOT+/SVR. The duration to achieve this desired reduction in viremia defines the minimum treatment duration required for ensuring SVR, which our model can quantify. Estimating parameters defining the CTL response of individuals to HCV infection would enable the application of our model to personalize treatment durations.
Collapse
Affiliation(s)
- Subhasish Baral
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
83
|
Abstract
When a virus infects a host cell, it hijacks the biosynthetic capacity of the cell to produce virus progeny, a process that may take less than an hour or more than a week. The overall time required for a virus to reproduce depends collectively on the rates of multiple steps in the infection process, including initial binding of the virus particle to the surface of the cell, virus internalization and release of the viral genome within the cell, decoding of the genome to make viral proteins, replication of the genome, assembly of progeny virus particles, and release of these particles into the extracellular environment. For a large number of virus types, much has been learned about the molecular mechanisms and rates of the various steps. However, in only relatively few cases during the last 50 years has an attempt been made-using mathematical modeling-to account for how the different steps contribute to the overall timing and productivity of the infection cycle in a cell. Here we review the initial case studies, which include studies of the one-step growth behavior of viruses that infect bacteria (Qβ, T7, and M13), human immunodeficiency virus, influenza A virus, poliovirus, vesicular stomatitis virus, baculovirus, hepatitis B and C viruses, and herpes simplex virus. Further, we consider how such models enable one to explore how cellular resources are utilized and how antiviral strategies might be designed to resist escape. Finally, we highlight challenges and opportunities at the frontiers of cell-level modeling of virus infections.
Collapse
Affiliation(s)
- John Yin
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jacob Redovich
- Department of Chemical and Biological Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
84
|
Reinharz V, Dahari H, Barash D. Numerical schemes for solving and optimizing multiscale models with age of hepatitis C virus dynamics. Math Biosci 2018; 300:1-13. [PMID: 29550297 PMCID: PMC5992100 DOI: 10.1016/j.mbs.2018.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/07/2018] [Indexed: 12/16/2022]
Abstract
Age-structured PDE models have been developed to study viral infection and treatment. However, they are notoriously difficult to solve. Here, we investigate the numerical solutions of an age-based multiscale model of hepatitis C virus (HCV) dynamics during antiviral therapy and compare them with an analytical approximation, namely its long-term approximation. First, starting from a simple yet flexible numerical solution that also considers an integral approximated over previous iterations, we show that the long-term approximation is an underestimate of the PDE model solution as expected since some infection events are being ignored. We then argue for the importance of having a numerical solution that takes into account previous iterations for the associated integral, making problematic the use of canned solvers. Second, we demonstrate that the governing differential equations are stiff and the stability of the numerical scheme should be considered. Third, we show that considerable gain in efficiency can be achieved by using adaptive stepsize methods over fixed stepsize methods for simulating realistic scenarios when solving multiscale models numerically. Finally, we compare between several numerical schemes for the solution of the equations and demonstrate the use of a numerical optimization scheme for the parameter estimation performed directly from the equations.
Collapse
Affiliation(s)
- Vladimir Reinharz
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel.
| | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel.
| |
Collapse
|
85
|
Intracellular Hepatitis C Virus Modeling Predicts Infection Dynamics and Viral Protein Mechanisms. J Virol 2018; 92:JVI.02098-17. [PMID: 29563295 DOI: 10.1128/jvi.02098-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a global health problem, with nearly 2 million new infections occurring every year and up to 85% of these infections becoming chronic infections that pose serious long-term health risks. To effectively reduce the prevalence of HCV infection and associated diseases, it is important to understand the intracellular dynamics of the viral life cycle. Here, we present a detailed mathematical model that represents the full hepatitis C virus life cycle. It is the first full HCV model to be fit to acute intracellular infection data and the first to explore the functions of distinct viral proteins, probing multiple hypotheses of cis- and trans-acting mechanisms to provide insights for drug targeting. Model parameters were derived from the literature, experiments, and fitting to experimental intracellular viral RNA, extracellular viral titer, and HCV core and NS3 protein kinetic data from viral inoculation to steady state. Our model predicts higher rates for protein translation and polyprotein cleavage than previous replicon models and demonstrates that the processes of translation and synthesis of viral RNA have the most influence on the levels of the species we tracked in experiments. Overall, our experimental data and the resulting mathematical infection model reveal information about the regulation of core protein during infection, produce specific insights into the roles of the viral core, NS5A, and NS5B proteins, and demonstrate the sensitivities of viral proteins and RNA to distinct reactions within the life cycle.IMPORTANCE We have designed a model for the full life cycle of hepatitis C virus. Past efforts have largely focused on modeling hepatitis C virus replicon systems, in which transfected subgenomic HCV RNA maintains autonomous replication in the absence of virion production or spread. We started with the general structure of these previous replicon models and expanded it to create a model that incorporates the full virus life cycle as well as additional intracellular mechanistic detail. We compared several different hypotheses that have been proposed for different parts of the life cycle and applied the corresponding model variations to infection data to determine which hypotheses are most consistent with the empirical kinetic data. Because the infection data we have collected for this study are a more physiologically relevant representation of a viral life cycle than data obtained from a replicon system, our model can make more accurate predictions about clinical hepatitis C virus infections.
Collapse
|
86
|
Abdel-Moneim A, Aboud A, Abdel-Gabaar M, Zanaty MI, Ramadan M. Efficacy and safety of sofosbuvir plus daclatasvir with or without ribavirin: large real-life results of patients with chronic hepatitis C genotype 4. Hepatol Int 2018; 12:348-355. [PMID: 29754329 DOI: 10.1007/s12072-018-9868-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Clinical studies evaluating the efficacy of daclatasvir (DCV) for treatment of chronic hepatitis C virus (HCV) genotype 4 (GT4) infection are scarce. This study aims to evaluate the efficacy and safety of DCV plus sofosbuvir (SOF) with or without ribavirin (RBV) for treatment of Egyptian patients infected with HCV GT4. METHODS Between April 2016 and March of 2017, a large cohort of 946 patients with chronic HCV GT4 was enrolled for completing the treatment. Patients were classified into two groups: group 1 (easy to treat) was treated with a dual therapy of SOF/DCV daily for 12 weeks and group 2 (difficult to treat) was treated with a triple therapy of SOF/DCV/RBV daily for 12 weeks. Efficacy and safety of the treatments were estimated, and baseline characters associated with sustained virological response at 12 weeks post-treatment (SVR12) were investigated. RESULTS Among the patient's cohort, SVR12 was achieved by 94% (891/946) in the overall patients, by 95% (718/758) in the easy-to-treat group, and by 92% (173/188) in the difficult-to-treat group. The most common adverse events recorded were fatigue, headache, nausea, asthenia, and gastrointestinal troubles. No patient discontinued treatment due to severe adverse events. CONCLUSION The findings from the present study suggested that SOF/DCV (with or without RBV) regimen exhibited high effectiveness, was well tolerated in the treatment of chronic HCV GT 4, and revealed itself as a better option for patients with advanced liver disease, making the eradication of HCV a more realistic target to achieve.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Salah Salim St., Beni Suef, 62511, Egypt.
| | - Alaa Aboud
- Tropical Medicine Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Mohamed Abdel-Gabaar
- Biochemistry Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Mohamed I Zanaty
- Biotechnology Department, Faculty of Postgraduate Studies for Advanced Science, Beni-Suef University, Beni Suef, Egypt
| | - Mohamed Ramadan
- Biochemistry Division, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
87
|
Kitagawa K, Nakaoka S, Asai Y, Watashi K, Iwami S. A PDE multiscale model of hepatitis C virus infection can be transformed to a system of ODEs. J Theor Biol 2018; 448:80-85. [PMID: 29634960 DOI: 10.1016/j.jtbi.2018.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
Abstract
Direct-acting antivirals (DAAs) treat hepatitis C virus (HCV) by targeting its intracellular viral replication. DAAs are effective and deliver high clinical performance against HCV infection, but optimization of the DAA treatment regimen is ongoing. Different classes of DAAs are currently under development, and HCV treatments that combine two or three DAAs with different action mechanisms are being improved. To accurately quantify the antiviral effect of these DAA treatments and optimize multi-drug combinations, we must describe the intracellular viral replication processes corresponding to the action mechanisms by multiscale mathematical models. Previous multiscale models of HCV treatment have been formulated by partial differential equations (PDEs). However, estimating the parameters from clinical datasets requires comprehensive numerical PDE computations that are time consuming and often converge poorly. Here, we propose a user-friendly approach that transforms a standard PDE multiscale model of HCV infection (Guedj J et al., Proc. Natl. Acad. Sci. USA 2013; 110(10):3991-6) to mathematically identical ordinary differential equations (ODEs) without any assumptions. We also confirm consistency between the numerical solutions of our transformed ODE model and the original PDE model. This relationship between a detailed structured model and a simple model is called ``model aggregation problem'' and a fundamental important in theoretical biology. In particular, as the parameters of ODEs can be estimated by already established methods, our transformed ODE model and its modified version avoid the time-consuming computations and are broadly available for further data analysis.
Collapse
Affiliation(s)
- Kosaku Kitagawa
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | - Shinji Nakaoka
- PRESTO, JST, Saitama 332-0012, Japan; Institute of Industrial Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-0041, Japan
| | - Yusuke Asai
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido 060-8638, Japan; CREST, JST, Saitama 332-0012, Japan.
| | - Koichi Watashi
- CREST, JST, Saitama 332-0012, Japan; Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| | - Shingo Iwami
- Mathematical Biology Laboratory, Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 812-8581, Japan; PRESTO, JST, Saitama 332-0012, Japan; CREST, JST, Saitama 332-0012, Japan.
| |
Collapse
|
88
|
Quintela BDM, Conway JM, Hyman JM, Guedj J, Dos Santos RW, Lobosco M, Perelson AS. A New Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy With Direct-Acting Antiviral Agents. Front Microbiol 2018; 9:601. [PMID: 29670586 PMCID: PMC5893852 DOI: 10.3389/fmicb.2018.00601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022] Open
Abstract
The dynamics of hepatitis C virus (HCV) RNA during translation and replication within infected cells were added to a previous age-structured multiscale mathematical model of HCV infection and treatment. The model allows the study of the dynamics of HCV RNA inside infected cells as well as the release of virus from infected cells and the dynamics of subsequent new cell infections. The model was used to fit in vitro data and estimate parameters characterizing HCV replication. This is the first model to our knowledge to consider both positive and negative strands of HCV RNA with an age-structured multiscale modeling approach. Using this model we also studied the effects of direct-acting antiviral agents (DAAs) in blocking HCV RNA intracellular replication and the release of new virions and fit the model to in vivo data obtained from HCV-infected subjects under therapy.
Collapse
Affiliation(s)
- Barbara de M Quintela
- FISIOCOMP Laboratory, PPGMC, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, The Pennsylvania State University, State College, PA, United States
| | - James M Hyman
- Mathematics Department, Tulane University, New Orleans, LA, United States
| | - Jeremie Guedj
- IAME, UMR 1137, Institut National de la Santé et de la Recherche Médicale, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Rodrigo W Dos Santos
- FISIOCOMP Laboratory, PPGMC, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Marcelo Lobosco
- FISIOCOMP Laboratory, PPGMC, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
89
|
Fourati S, Guedj J, Chevaliez S, Nguyen THT, Roudot-Thoraval F, Ruiz I, Soulier A, Scoazec G, Varaut A, Poiteau L, Francois M, Mallat A, Hézode C, Pawlotsky JM. Viral kinetics analysis and virological characterization of treatment failures in patients with chronic hepatitis C treated with sofosbuvir and an NS5A inhibitor. Aliment Pharmacol Ther 2018; 47:665-673. [PMID: 29271114 DOI: 10.1111/apt.14478] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/02/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The combination of sofosbuvir (SOF) plus an NS5A inhibitor for 12 weeks is highly efficacious in patients with chronic hepatitis C. As the costs of generic production of sofosbuvir and NS5A inhibitor are rapidly decreasing, the combination of these DAAs will be the standard treatment in most low- to middle-income countries in the future. AIM To identify key predictors of response that can be used to tailor treatment decisions. METHODS A cohort of 216 consecutive patients infected with HCV genotype 1 (1a: n = 57; 1b: n = 77), 2 (n = 4), 3 (n = 33) or 4 (n = 44) were treated with sofosbuvir (SOF) + daclatasvir (n = 176) or SOF + ledipasvir (n = 40) for 12 weeks. The viral kinetics was analysed using the biphasic model and the cure boundary was used to predict time to clear HCV. RESULTS The overall SVR rate was high (94.4%; n = 204), regardless of the time to viral suppression or low-level viraemia at the end of treatment. The model-based predicted HCV RNA levels at the end of treatment could not differentiate patients who did from those who did not achieve SVR. The presence of NS5A resistance-associated substitutions [position 28 (OR = 70.3, P<.001) and/or 31 (OR = 61.6, P = .002)] at baseline was predictive of virological failure in cirrhotic patients but was not associated with on-treatment viral kinetics. CONCLUSION This real-world study confirms the excellent results of clinical trials with therapies based on a combination of SOF plus an NS5A inhibitor. It suggests that a personalized approach including baseline NS5A inhibitor resistance testing may inform treatment decisions in cirrhotic patients.
Collapse
Affiliation(s)
- S Fourati
- Department of Virology, Henri Mondor Hospital, National Reference Center for Viral Hepatitis B, C and D, University of Paris-Est, Créteil, France.,INSERM U955, Créteil, France
| | - J Guedj
- INSERM U1137, IAME, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - S Chevaliez
- Department of Virology, Henri Mondor Hospital, National Reference Center for Viral Hepatitis B, C and D, University of Paris-Est, Créteil, France.,INSERM U955, Créteil, France
| | | | - F Roudot-Thoraval
- Department of Public Health, Henri Mondor Hospital, University of Paris-Est, Créteil, France
| | - I Ruiz
- INSERM U955, Créteil, France.,Department of Hepatology, Henri Mondor Hospital, University of Paris-Est, Créteil, France
| | - A Soulier
- Department of Virology, Henri Mondor Hospital, National Reference Center for Viral Hepatitis B, C and D, University of Paris-Est, Créteil, France.,INSERM U955, Créteil, France
| | - G Scoazec
- Department of Hepatology, Henri Mondor Hospital, University of Paris-Est, Créteil, France
| | - A Varaut
- Department of Hepatology, Henri Mondor Hospital, University of Paris-Est, Créteil, France
| | - L Poiteau
- Department of Virology, Henri Mondor Hospital, National Reference Center for Viral Hepatitis B, C and D, University of Paris-Est, Créteil, France.,INSERM U955, Créteil, France
| | - M Francois
- Department of Hepatology, Henri Mondor Hospital, University of Paris-Est, Créteil, France
| | - A Mallat
- Department of Hepatology, Henri Mondor Hospital, University of Paris-Est, Créteil, France
| | - C Hézode
- Department of Hepatology, Henri Mondor Hospital, University of Paris-Est, Créteil, France
| | - J-M Pawlotsky
- Department of Virology, Henri Mondor Hospital, National Reference Center for Viral Hepatitis B, C and D, University of Paris-Est, Créteil, France.,INSERM U955, Créteil, France
| |
Collapse
|
90
|
Jardim ACG, Shimizu JF, Rahal P, Harris M. Plant-derived antivirals against hepatitis c virus infection. Virol J 2018; 15:34. [PMID: 29439720 PMCID: PMC5812025 DOI: 10.1186/s12985-018-0945-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a worldwide public health burden and it is estimated that 185 million people are or have previously been infected worldwide. There is no effective vaccine for prevention of HCV infection; however, a number of drugs are available for the treatment of infection. The availability of direct-acting antivirals (DAAs) has dramatically improved therapeutic options for HCV genotype 1. However, the high costs and potential for development of resistance presented by existing treatment demonstrate the need for the development of more efficient new antivirals, or combination of therapies that target different stages of the viral lifecycle. Over the past decades, there has been substantial study of compounds extracted from plants that have activity against a range of microorganisms that cause human diseases. An extensive variety of natural compounds has demonstrated antiviral action worldwide, including anti-HCV activity. In this context, plant-derived compounds can provide an alternative approach to new antivirals. In this review, we aim to summarize the most promising plant-derived compounds described to have antiviral activity against HCV.
Collapse
Affiliation(s)
- Ana Carolina Gomes Jardim
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Avenida Amazonas, Bloco 4C – sala 216. Umuarama, Uberlândia, MG CEP: 38405-302 Brazil
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Jacqueline Farinha Shimizu
- Laboratory of Virology, Institute of Biomedical Science, ICBIM, Federal University of Uberlândia, Avenida Amazonas, Bloco 4C – sala 216. Umuarama, Uberlândia, MG CEP: 38405-302 Brazil
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Paula Rahal
- Genomics Study Laboratory, São Paulo State University, São José do Rio Preto, SP Brazil
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| |
Collapse
|
91
|
Integrated pharmacokinetic/viral dynamic model for daclatasvir/asunaprevir in treatment of patients with genotype 1 chronic hepatitis C. Acta Pharmacol Sin 2018; 39:140-153. [PMID: 28880015 DOI: 10.1038/aps.2017.84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
In order to develop an integrated pharmacokinetic/viral dynamic (PK/VD) model to predict long-term virological response rates to daclatasvir (DCV) and asunaprevir (ASV) combination therapy in patients infected with genotype 1 (GT1) chronic hepatitis C virus (HCV), a systematic publication search was conducted for DCV and ASV administered alone and/or in combination in healthy subjects or patients with GT1 HCV infection. On the basis of a constructed meta-database, an integrated PK/VD model was developed, which adequately described both DCV and ASV PK profiles and viral load time curves. The IC50 values of DCV and ASV were estimated to be 0.041 and 2.45 μg/L, respectively, in GT1A patients. A sigmoid Emax function was applied to describe the antiviral effects of DCV and ASV, depending on the drug concentrations in the effect compartment. An empirical exponential function revealed that IC50 changing over time described drug resistance in HCV GT1A patients during DCV or ASV monotherapy. Finally, the PK/VD model was evaluated externally by comparing the expected and observed virological response rates during and post-treatment with DCV and ASV combination therapy in HCV GT1B patients. Both the rates were in general agreement. Our PK/VD model provides a useful platform for the characterization of pharmacokinetic/pharmacodynamic relationships and the prediction of long-term virological response rates to aid future development of direct acting antiviral drugs.
Collapse
|
92
|
Garira W. A complete categorization of multiscale models of infectious disease systems. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:378-435. [PMID: 28849734 DOI: 10.1080/17513758.2017.1367849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.
Collapse
Affiliation(s)
- Winston Garira
- a Modelling Health and Environmental Linkages Research Group (MHELRG), Department of Mathematics and Applied Mathematics , University of Venda , Thohoyandou, South Africa
| |
Collapse
|
93
|
Reinharz V, Churkin A, Dahari H, Barash D. A Robust and Efficient Numerical Method for RNA-Mediated Viral Dynamics. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2017; 3:20. [PMID: 30854378 PMCID: PMC6404971 DOI: 10.3389/fams.2017.00020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The multiscale model of hepatitis C virus (HCV) dynamics, which includes intracellular viral RNA (vRNA) replication, has been formulated in recent years in order to provide a new conceptual framework for understanding the mechanism of action of a variety of agents for the treatment of HCV. We present a robust and efficient numerical method that belongs to the family of adaptive stepsize methods and is implicit, a Rosenbrock type method that is highly suited to solve this problem. We provide a Graphical User Interface that applies this method and is useful for simulating viral dynamics during treatment with anti-HCV agents that act against HCV on the molecular level.
Collapse
Affiliation(s)
- Vladimir Reinharz
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Churkin
- Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
| | - Harel Dahari
- Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, United States
| | - Danny Barash
- Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
94
|
3D Spatially Resolved Models of the Intracellular Dynamics of the Hepatitis C Genome Replication Cycle. Viruses 2017; 9:v9100282. [PMID: 28973992 PMCID: PMC5691296 DOI: 10.3390/v9100282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023] Open
Abstract
Mathematical models of virus dynamics have not previously acknowledged spatial resolution at the intracellular level despite substantial arguments that favor the consideration of intracellular spatial dependence. The replication of the hepatitis C virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural virus-encoded proteins (NSPs) and host cellular factors. The NSPs are responsible for the replication of the vRNA and their movement is restricted to the ER surface. Therefore, in this study we developed fully spatio-temporal resolved models of the vRNA replication cycle of HCV. Our simulations are performed upon realistic reconstructed cell structures-namely the ER surface and the membranous webs-based on data derived from immunostained cells replicating HCV vRNA. We visualized 3D simulations that reproduced dynamics resulting from interplay of the different components of our models (vRNA, NSPs, and a host factor), and we present an evaluation of the concentrations for the components within different regions of the cell. Thus far, our model is restricted to an internal portion of a hepatocyte and is qualitative more than quantitative. For a quantitative adaption to complete cells, various additional parameters will have to be determined through further in vitro cell biology experiments, which can be stimulated by the results deccribed in the present study.
Collapse
|
95
|
Mishchenko EL, Petrovskaya OV, Mishchenko AM, Petrovskiy ED, Ivanisenko NV, Ivanisenko VA. Integrated mathematical models for describing complex biological processes. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917050141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
96
|
Gao M, O'Boyle DR, Roberts S. HCV NS5A replication complex inhibitors. Curr Opin Pharmacol 2017; 30:151-157. [PMID: 27643675 DOI: 10.1016/j.coph.2016.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/21/2016] [Accepted: 07/25/2016] [Indexed: 01/29/2023]
Abstract
The development of anti-HCV drugs is one of the most successful stories of antiviral therapy. In fact, for the first time in human history we have the potential to eradicate a chronic viral infection using only orally administered direct antiviral agents (DAAs). HCV NS5A replication complex inhibitors, exemplified by Daclatasvir (DCV, BMS-790052, Daklinza®), are a new class of DAA. The astonishing in vitro potency of DCV (pM to low nM range) translated to remarkable efficacy in clinical trials, and 2nd generation NS5A inhibitors have become essential components of HCV combination therapies. The current cure rate of effective combination therapies exceeds 90% in most clinical trials. The extraordinary potency of NS5A inhibitors promoted significant efforts to understand their mechanism(s) of inhibition.
Collapse
Affiliation(s)
- Min Gao
- Bristol-Myers Squibb Company, Wallingford, CT 06492, USA.
| | | | - Susan Roberts
- Bristol-Myers Squibb Company, Wallingford, CT 06492, USA
| |
Collapse
|
97
|
Abstract
Multiple direct-acting antiviral (DAA)-based regimens are currently approved that provide one or more interferon-free treatment options for hepatitis C virus (HCV) genotypes (G) 1-6. The choice of a DAA regimen, duration of therapy, and use of ribavirin depends on multiple viral and host factors, including HCV genotype, the detection of resistance-associated amino acid (aa) substitutions (RASs), prior treatment experience, and presence of cirrhosis. In regard to viral factors that may guide the treatment choice, the most important is the infecting genotype because a number of DAAs are genotype-designed. The potency and the genetic barrier may also impact the choice of treatment. One important and debated possible virologic factor that may negatively influence the response to DAAs is the presence of baseline RASs. Baseline resistance testing is currently not routinely considered or recommended for initiating HCV treatment, due to the overall high response rates (sustained virological response >90%) obtained. Exceptions are patients infected by HCV G1a when initiating treatment with simeprevir and elbasvir/grazoprevir or in those with cirrhosis prior to daclatasvir/sofosbuvir treatment because of natural polymorphisms demonstrated in sites of resistance. On the basis of these observations, first-line strategies should be optimized to overcome treatment failure due to HCV resistance.
Collapse
|
98
|
Saint-Laurent Thibault C, Moorjaney D, Ganz ML, Sill B, Hede S, Yuan Y, Gorsh B. Cost-effectiveness of combination daclatasvir-sofosbuvir for treatment of genotype 3 chronic hepatitis C infection in the United States. J Med Econ 2017; 20:692-702. [PMID: 28294645 DOI: 10.1080/13696998.2017.1307204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND A phase III trial evaluated the efficacy and safety of Daklinza (daclatasvir or DCV) in combination with sofosbuvir (SOF) for treatment of genotype (GT) 3 hepatitis C virus (HCV) patients. AIM This study evaluated the cost-effectiveness of DCV + SOF vs SOF in combination with ribavirin (RBV) over a 20-year time horizon from the perspective of a United States (US) payer. METHODS A published Markov model was adapted to reflect US demographic characteristics, treatment patterns, costs of drug acquisition, monitoring, disease and adverse event management, and mortality risks. Clinical inputs came from the ALLY-3 and VALENCE trials. The primary outcome was the incremental cost-utility ratio. Life-years, incidence of complications, number of patients achieving sustained virological response (SVR), and the total cost per SVR were secondary outcomes. Costs (2014 USD) and quality-adjusted life years (QALYs) were discounted at 3% per year. Deterministic, probabilistic, and scenario sensitivity analyses were conducted. RESULTS DCV + SOF was associated with lower costs and better effectiveness than SOF + RBV in the base case and in almost all scenarios (i.e. treatment-experienced, non-cirrhotic, time horizons of 5, 10, and 80 years). DCV + SOF was less costly, but also slightly less effective than SOF + RBV in the cirrhotic and treatment-naïve population scenarios. Results were sensitive to variations in the probability of achieving SVR for both treatment arms. DCV + SOF costs less than $50,000 per QALY gained in 79% of all probabilistic iterations compared with SOF + RBV. CONCLUSION DCV + SOF is a dominant option compared with SOF + RBV in the US for the overall GT 3 HCV patient population.
Collapse
Affiliation(s)
| | | | | | - Bruce Sill
- d Bristol-Myers Squibb , Hartford , CT , USA
| | | | - Yong Yuan
- e Bristol-Myers Squibb , Plainsboro , NJ , USA
| | - Boris Gorsh
- f GlaxoSmithKline , Upper Providence , PA , USA
| |
Collapse
|
99
|
Short article: Viral dynamics among hepatitis C virus chronic infected patients during direct-acting antiviral agents therapy: impact for monitoring and optimizing treatment duration. Eur J Gastroenterol Hepatol 2017; 29:781-785. [PMID: 28410351 DOI: 10.1097/meg.0000000000000882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Direct-acting antiviral agents (DAAs) have provided an ultimate treatment duration of 12 weeks for most hepatitis C virus (HCV)-infected patients. The opportunity to reduce treatment duration to 6 or 8 weeks is being evaluated. Here, the HCV viral dynamics at short times during HCV therapies and its implications for monitoring and optimizing treatment duration have been assessed. PATIENTS AND METHODS HCV chronic infected patients who began HCV therapy (March 2014 to June 2015) at a reference hospital of the Northwest of Spain were selected. HCV-RNA was quantified at different short time points during HCV therapy using Abbott RealTime HCV assay. Epidemiological, clinical, and virological data were recorded. RESULTS Eleven HCV-infected patients were included; 90.9% had cirrhosis (>12.5 kPa) and 72.7% were treatment-experienced. HCV genotype 1b was the most prevalent (72.7%). All of the combinations were pegylated interferon-free and all included ribavirin. The median HCV-RNA (log IU/ml) at baseline was 5.8 (5.4-6.1); the decline between baseline and day 3, weeks 4, 8, and 12 was 3.2, 4.8, 5.1, and 5.6, respectively. Fewer than 50% of patients achieved undetectable viral load at weeks 4 and 8; however, all patients achieved a sustained virologic response at 12 weeks. CONCLUSION Rapid and high HCV-RNA decline was observed among HCV-infected patients under DAA-based regimens, especially for those without cirrhosis. Despite low rates of patients with undetectable HCV-RNA at weeks 4 and 8, all achieved a sustained virologic response at 12 weeks. These findings suggest that the time points to monitor HCV-RNA during DAA therapies and the treatment duration need to be optimized.
Collapse
|
100
|
KAHN JEFFREY, SAITO TAKESHI. Reply. Gastroenterology 2017; 153:328-329. [PMID: 28579275 PMCID: PMC8635450 DOI: 10.1053/j.gastro.2017.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|