51
|
Abdulla A, Wang B, Qian F, Kee T, Blasiak A, Ong YH, Hooi L, Parekh F, Soriano R, Olinger GG, Keppo J, Hardesty CL, Chow EK, Ho D, Ding X. Project IDentif.AI: Harnessing Artificial Intelligence to Rapidly Optimize Combination Therapy Development for Infectious Disease Intervention. ADVANCED THERAPEUTICS 2020; 3:2000034. [PMID: 32838027 PMCID: PMC7235487 DOI: 10.1002/adtp.202000034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Indexed: 12/24/2022]
Abstract
In 2019/2020, the emergence of coronavirus disease 2019 (COVID-19) resulted in rapid increases in infection rates as well as patient mortality. Treatment options addressing COVID-19 included drug repurposing, investigational therapies such as remdesivir, and vaccine development. Combination therapy based on drug repurposing is among the most widely pursued of these efforts. Multi-drug regimens are traditionally designed by selecting drugs based on their mechanism of action. This is followed by dose-finding to achieve drug synergy. This approach is widely-used for drug development and repurposing. Realizing synergistic combinations, however, is a substantially different outcome compared to globally optimizing combination therapy, which realizes the best possible treatment outcome by a set of candidate therapies and doses toward a disease indication. To address this challenge, the results of Project IDentif.AI (Identifying Infectious Disease Combination Therapy with Artificial Intelligence) are reported. An AI-based platform is used to interrogate a massive 12 drug/dose parameter space, rapidly identifying actionable combination therapies that optimally inhibit A549 lung cell infection by vesicular stomatitis virus within three days of project start. Importantly, a sevenfold difference in efficacy is observed between the top-ranked combination being optimally and sub-optimally dosed, demonstrating the critical importance of ideal drug and dose identification. This platform is disease indication and disease mechanism-agnostic, and potentially applicable to the systematic N-of-1 and population-wide design of highly efficacious and tolerable clinical regimens. This work also discusses key factors ranging from healthcare economics to global health policy that may serve to drive the broader deployment of this platform to address COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Aynur Abdulla
- Institute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Boqian Wang
- Institute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Feng Qian
- Ministry of Education Key Laboratory of Contemporary AnthropologyHuman Phenome InstituteSchool of Life SciencesFudan UniversityShanghai200438China
| | - Theodore Kee
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
- The Institute for Digital Medicine (WisDM)Yong Loo Lin School of MedicineNational University of SingaporeSingapore11756Singapore
- Department of Biomedical EngineeringNUS EngineeringNational University of SingaporeSingapore117583Singapore
| | - Agata Blasiak
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
- The Institute for Digital Medicine (WisDM)Yong Loo Lin School of MedicineNational University of SingaporeSingapore11756Singapore
- Department of Biomedical EngineeringNUS EngineeringNational University of SingaporeSingapore117583Singapore
| | - Yoong Hun Ong
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
| | - Lissa Hooi
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore117599Singapore
| | | | | | - Gene G. Olinger
- Global Health Surveillance and Diagnostic DivisionMRIGlobalGaithersburgMD20878USA
- Boston University School of MedicineDivision of Infectious DiseasesBostonMA02118USA
| | - Jussi Keppo
- NUS Business School and Institute of Operations Research and AnalyticsNational University of SingaporeSingapore119245Singapore
| | - Chris L. Hardesty
- KPMG Global Health and Life Sciences Centre of ExcellenceSingapore048581Singapore
| | - Edward K. Chow
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore117599Singapore
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore117600Singapore
| | - Dean Ho
- The N.1 Institute for Health (N.1)National University of SingaporeSingapore117456Singapore
- The Institute for Digital Medicine (WisDM)Yong Loo Lin School of MedicineNational University of SingaporeSingapore11756Singapore
- Department of Biomedical EngineeringNUS EngineeringNational University of SingaporeSingapore117583Singapore
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore117600Singapore
| | - Xianting Ding
- Institute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
52
|
Tse LV, Meganck RM, Graham RL, Baric RS. The Current and Future State of Vaccines, Antivirals and Gene Therapies Against Emerging Coronaviruses. Front Microbiol 2020; 11:658. [PMID: 32390971 PMCID: PMC7193113 DOI: 10.3389/fmicb.2020.00658] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 12/31/2022] Open
Abstract
Emerging coronaviruses (CoV) are constant global public health threats to society. Multiple ongoing clinical trials for vaccines and antivirals against CoVs showcase the availability of medical interventions to both prevent and treat the future emergence of highly pathogenic CoVs in human. However, given the diverse nature of CoVs and our close interactions with wild, domestic and companion animals, the next epidemic zoonotic CoV could resist the existing vaccines and antivirals developed, which are primarily focused on Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS CoV). In late 2019, the novel CoV (SARS-CoV-2) emerged in Wuhan, China, causing global public health concern. In this review, we will summarize the key advancements of current vaccines and antivirals against SARS-CoV and MERS-CoV as well as discuss the challenge and opportunity in the current SARS-CoV-2 crisis. At the end, we advocate the development of a "plug-and-play" platform technologies that could allow quick manufacturing and administration of broad-spectrum countermeasures in an outbreak setting. We will discuss the potential of AAV-based gene therapy technology for in vivo therapeutic antibody delivery to combat SARS-CoV-2 outbreak and the future emergence of severe CoVs.
Collapse
Affiliation(s)
- Longping V. Tse
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rita M. Meganck
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachel L. Graham
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ralph S. Baric
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
53
|
Structure and Characterization of Crimean-Congo Hemorrhagic Fever Virus GP38. J Virol 2020; 94:JVI.02005-19. [PMID: 31996434 PMCID: PMC7108853 DOI: 10.1128/jvi.02005-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen that poses a high risk to public health. Due to the high morbidity and mortality rates associated with CCHFV infection, there is an urgent need to develop medical countermeasures for disease prevention and treatment. CCHFV GP38, a secreted glycoprotein of unknown function unique to the Nairoviridae family, was recently shown to be the target of a protective antibody against CCHFV. Here, we present the crystal structure of GP38, which revealed a novel fold with distant homology to another CCHFV glycoprotein that is suggestive of a gene duplication event. We also demonstrate that antibody 13G8 protects STAT1-knockout mice against heterologous CCHFV challenge using a clinical isolate from regions where CCHFV is endemic. Collectively, these data advance our understanding of GP38 structure and antigenicity and should facilitate future studies investigating its function. Crimean-Congo hemorrhagic fever virus (CCHFV) is the causative agent of the most widespread tick-borne viral infection in humans. CCHFV encodes a secreted glycoprotein (GP38) of unknown function that is the target of a protective antibody. Here, we present the crystal structure of GP38 at a resolution of 2.5 Å, which revealed a novel fold primarily consisting of a 3-helix bundle and a β-sandwich. Sequence alignment and homology modeling showed distant homology between GP38 and the ectodomain of Gn (a structural glycoprotein in CCHFV), suggestive of a gene duplication event. Analysis of convalescent-phase sera showed high titers of GP38 antibodies indicating immunogenicity in humans during natural CCHFV infection. The only protective antibody for CCHFV in an adult mouse model reported to date, 13G8, bound GP38 with subnanomolar affinity and protected against heterologous CCHFV challenge in a STAT1-knockout mouse model. Our data strongly suggest that GP38 should be evaluated as a vaccine antigen and that its structure provides a foundation to investigate functions of this protein in the viral life cycle. IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen that poses a high risk to public health. Due to the high morbidity and mortality rates associated with CCHFV infection, there is an urgent need to develop medical countermeasures for disease prevention and treatment. CCHFV GP38, a secreted glycoprotein of unknown function unique to the Nairoviridae family, was recently shown to be the target of a protective antibody against CCHFV. Here, we present the crystal structure of GP38, which revealed a novel fold with distant homology to another CCHFV glycoprotein that is suggestive of a gene duplication event. We also demonstrate that antibody 13G8 protects STAT1-knockout mice against heterologous CCHFV challenge using a clinical isolate from regions where CCHFV is endemic. Collectively, these data advance our understanding of GP38 structure and antigenicity and should facilitate future studies investigating its function.
Collapse
|
54
|
Catellani M, Lico C, Cerasi M, Massa S, Bromuro C, Torosantucci A, Benvenuto E, Capodicasa C. Optimised production of an anti-fungal antibody in Solanaceae hairy roots to develop new formulations against Candida albicans. BMC Biotechnol 2020; 20:15. [PMID: 32164664 PMCID: PMC7069033 DOI: 10.1186/s12896-020-00607-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Infections caused by fungi are often refractory to conventional therapies and urgently require the development of novel options, such as immunotherapy. To produce therapeutic antibodies, a plant-based expression platform is an attractive biotechnological strategy compared to mammalian cell cultures. In addition to whole plants, hairy roots (HR) cultures can be used, representing an expression system easy to build up, with indefinite growth while handled under containment conditions. RESULTS In this study the production in HR of a recombinant antibody, proved to be a good candidate for human immunotherapy against fungal infections, is reported. Expression and secretion of this antibody, in an engineered single chain (scFvFc) format, by HR from Nicotiana benthamiana and Solanum lycopersicum have been evaluated with the aim of directly using the deriving extract or culture medium against pathogenic fungi. Although both Solanaceae HR showed good expression levels (up to 68 mg/kg), an optimization of rhizosecretion was only obtained for N. benthamiana HR. A preliminary assessment to explain this result highlighted the fact that not only the presence of proteases, but also the chemical characteristics of the growth medium, can influence antibody yield, with implications on recombinant protein production in HR. Finally, the antifungal activity of scFvFc 2G8 antibody produced in N. benthamiana HR was evaluated in Candida albicans growth inhibition assays, evidencing encouraging results. CONCLUSIONS Production of this anti-fungal antibody in HR of N. benthamiana and S. lycopersicum elucidated factors affecting pharming in this system and allowed to obtain promising ready-to-use immunotherapeutics against C. albicans.
Collapse
Affiliation(s)
- Marcello Catellani
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Chiara Lico
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Mauro Cerasi
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Silvia Massa
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Carla Bromuro
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Torosantucci
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eugenio Benvenuto
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Cristina Capodicasa
- Department of Sustainability, Laboratory Biotechnologies, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
55
|
Racine T, Denizot M, Pannetier D, Nguyen L, Pasquier A, Raoul H, Saluzzo JF, Kobinger G, Veas F, Herbreteau CH. In Vitro Characterization and In Vivo Effectiveness of Ebola Virus Specific Equine Polyclonal F(ab')2. J Infect Dis 2020; 220:41-45. [PMID: 30852585 DOI: 10.1093/infdis/jiz068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
There is no vaccine or approved therapy against lethal Ebola virus (EBOV). We investigated a proven technology platform to produce polyclonal IgG fragments, F(ab')2, against EBOV. Horses immunized with nanoparticles harboring surface glycoprotein trimers of EBOV-Zaire/Makona produced anti-Ebola IgG polyclonal antibodies with high neutralization activity. Highly purified equine anti-Ebola F(ab')2 showed strong cross-neutralization of 2 Zaire EBOV strains (Gabon 2001 and Makona) and in vivo 3 or 5 daily F(ab')2 intraperitoneal injections provided 100% protection to BALB/c mice against lethal EBOV challenge. Rapid preparation of purified equine anti-Ebola F(ab')2 offers a potentially efficient therapeutic approach against EBOV disease in humans.
Collapse
Affiliation(s)
- Trina Racine
- Special Pathogens Program, National Microbiology Laboratory, Winnipeg, Canada.,Department of Medical Microbiology, Winnipeg, Canada.,Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Canada
| | | | | | | | | | - Hervé Raoul
- INSERM, Jean Mérieux BSL-4 Laboratory, Lyon, France
| | | | - Gary Kobinger
- Department of Medical Microbiology, Winnipeg, Canada.,Department of Immunology, University of Manitoba, Winnipeg, Canada.,Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Canada.,Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia
| | - Francisco Veas
- Institut de Recherche pour le Développement, UMR-Ministère de la Défense, Faculté de Pharmacie, Université de Montpellier, France
| | | |
Collapse
|
56
|
Larsen JS, Karlsson RTG, Tian W, Schulz MA, Matthes A, Clausen H, Petersen BL, Yang Z. Engineering mammalian cells to produce plant-specific N-glycosylation on proteins. Glycobiology 2020; 30:528-538. [DOI: 10.1093/glycob/cwaa009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/30/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Protein N-glycosylation is an essential and highly conserved posttranslational modification found in all eukaryotic cells. Yeast, plants and mammalian cells, however, produce N-glycans with distinct structural features. These species-specific features not only pose challenges in selecting host cells for production of recombinant therapeutics for human medical use but also provide opportunities to explore and utilize species-specific glycosylation in design of vaccines. Here, we used reverse cross-species engineering to stably introduce plant core α3fucose (α3Fuc) and β2xylose (β2Xyl) N-glycosylation epitopes in the mammalian Chinese hamster ovary (CHO) cell line. We used directed knockin of plant core fucosylation and xylosylation genes (AtFucTA/AtFucTB and AtXylT) and targeted knockout of endogenous genes for core fucosylation (fut8) and elongation (B4galt1), for establishing CHO cells with plant N-glycosylation capacities. The engineering was evaluated through coexpression of two human therapeutic N-glycoproteins, erythropoietin (EPO) and an immunoglobulin G (IgG) antibody. Full conversion to the plant-type α3Fuc/β2Xyl bi-antennary agalactosylated N-glycosylation (G0FX) was demonstrated for the IgG1 produced in CHO cells. These results demonstrate that N-glycosylation in mammalian cells is amenable for extensive cross-kingdom engineering and that engineered CHO cells may be used to produce glycoproteins with plant glycosylation.
Collapse
Affiliation(s)
- Joachim Steen Larsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, København, Denmark
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Richard Torbjörn Gustav Karlsson
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Weihua Tian
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Morten Alder Schulz
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Annemarie Matthes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, København, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, København, Denmark
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, Nørregade 10, 1165 København, Denmark
| |
Collapse
|
57
|
Development of an antibody cocktail for treatment of Sudan virus infection. Proc Natl Acad Sci U S A 2020; 117:3768-3778. [PMID: 32015126 DOI: 10.1073/pnas.1914985117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibody-based therapies are a promising treatment option for managing ebolavirus infections. Several Ebola virus (EBOV)-specific and, more recently, pan-ebolavirus antibody cocktails have been described. Here, we report the development and assessment of a Sudan virus (SUDV)-specific antibody cocktail. We produced a panel of SUDV glycoprotein (GP)-specific human chimeric monoclonal antibodies (mAbs) using both plant and mammalian expression systems and completed head-to-head in vitro and in vivo evaluations. Neutralizing activity, competitive binding groups, and epitope specificity of SUDV mAbs were defined before assessing protective efficacy of individual mAbs using a mouse model of SUDV infection. Of the mAbs tested, GP base-binding mAbs were more potent neutralizers and more protective than glycan cap- or mucin-like domain-binding mAbs. No significant difference was observed between plant and mammalian mAbs in any of our in vitro or in vivo evaluations. Based on in vitro and rodent testing, a combination of two SUDV-specific mAbs, one base binding (16F6) and one glycan cap binding (X10H2), was down-selected for assessment in a macaque model of SUDV infection. This cocktail, RIID F6-H2, provided protection from SUDV infection in rhesus macaques when administered at 50 mg/kg on days 4 and 6 postinfection. RIID F6-H2 is an effective postexposure SUDV therapy and provides a potential treatment option for managing human SUDV infection.
Collapse
|
58
|
Park JG, Ye C, Piepenbrink MS, Nogales A, Wang H, Shuen M, Meyers AJ, Martinez-Sobrido L, Kobie JJ. A Broad and Potent H1-Specific Human Monoclonal Antibody Produced in Plants Prevents Influenza Virus Infection and Transmission in Guinea Pigs. Viruses 2020; 12:E167. [PMID: 32024281 PMCID: PMC7077299 DOI: 10.3390/v12020167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Although seasonal influenza vaccines block most predominant influenza types and subtypes, humans still remain vulnerable to waves of seasonal and new potential pandemic influenza viruses for which no immunity may exist because of viral antigenic drift and/or shift. Previously, we described a human monoclonal antibody (hMAb), KPF1, which was produced in human embryonic kidney 293T cells (KPF1-HEK) with broad and potent neutralizing activity against H1N1 influenza A viruses (IAV) in vitro, and prophylactic and therapeutic activities in vivo. In this study, we produced hMAb KPF1 in tobacco plants (KPF1-Antx) and demonstrated how the plant-produced KPF1-Antx hMAb possesses similar biological activity compared with the mammalian-produced KPF1-HEK hMAb. KPF1-Antx hMAb showed broad binding to recombinant HA proteins and H1N1 IAV, including A/California/04/2009 (pH1N1) in vitro, which was comparable to that observed with KPF1-HEK hMAb. Importantly, prophylactic administration of KPF1-Antx hMAb to guinea pigs prevented pH1N1 infection and transmission in both prophylactic and therapeutic experiments, substantiating its clinical potential to prevent and treat H1N1 infections. Collectively, this study demonstrated, for the first time, a plant-produced influenza hMAb with in vitro and in vivo activity against influenza virus. Because of the many advantages of plant-produced hMAbs, such as rapid batch production, low cost, and the absence of mammalian cell products, they represent an alternative strategy for the production of immunotherapeutics for the treatment of influenza viral infections, including emerging seasonal and/or pandemic strains.
Collapse
Affiliation(s)
- Jun-Gyu Park
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; (J.-G.P.); (C.Y.); (A.N.)
| | - Chengjin Ye
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; (J.-G.P.); (C.Y.); (A.N.)
| | - Michael S. Piepenbrink
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham 845 19th Street South, Birmingham, AL 35294, USA;
| | - Aitor Nogales
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; (J.-G.P.); (C.Y.); (A.N.)
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación en Sanidad Animal (INIA-CISA), 28130 Madrid, Spain
| | - Haifeng Wang
- PlantForm Corporation, 1920 Yonge St., Suite 200, Toronto, ON M4S 3E2, Canada; (H.W.); (M.S.)
| | - Michael Shuen
- PlantForm Corporation, 1920 Yonge St., Suite 200, Toronto, ON M4S 3E2, Canada; (H.W.); (M.S.)
| | - Ashley J. Meyers
- AntoXa Corporation, 1920 Yonge St., Suite 200, Toronto, ON M4S 3E2, Canada;
| | - Luis Martinez-Sobrido
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA; (J.-G.P.); (C.Y.); (A.N.)
| | - James J. Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham 845 19th Street South, Birmingham, AL 35294, USA;
| |
Collapse
|
59
|
Diamos AG, Hunter JGL, Pardhe MD, Rosenthal SH, Sun H, Foster BC, DiPalma MP, Chen Q, Mason HS. High Level Production of Monoclonal Antibodies Using an Optimized Plant Expression System. Front Bioeng Biotechnol 2020; 7:472. [PMID: 32010680 PMCID: PMC6978629 DOI: 10.3389/fbioe.2019.00472] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/04/2022] Open
Abstract
Biopharmaceuticals are a large and fast-growing sector of the total pharmaceutical market with antibody-based therapeutics accounting for over 100 billion USD in sales yearly. Mammalian cells are traditionally used for monoclonal antibody production, however plant-based expression systems have significant advantages. In this work, we showcase recent advances made in plant transient expression systems using optimized geminiviral vectors that can efficiently produce heteromultimeric proteins. Two, three, or four fluorescent proteins were coexpressed simultaneously, reaching high yields of 3–5 g/kg leaf fresh weight or ~50% total soluble protein. As a proof-of-concept for this system, various antibodies were produced using the optimized vectors with special focus given to the creation and production of a chimeric broadly neutralizing anti-flavivirus antibody. The variable regions of this murine antibody, 2A10G6, were codon optimized and fused to a human IgG1. Analysis of the chimeric antibody showed that it was efficiently expressed in plants at 1.5 g of antibody/kilogram of leaf tissue, can be purified to near homogeneity by a simple one-step purification process, retains its ability to recognize the Zika virus envelope protein, and potently neutralizes Zika virus. Two other monoclonal antibodies were produced at similar levels (1.2–1.4 g/kg). This technology will be a versatile tool for the production of a wide spectrum of pharmaceutical multi-protein complexes in a fast, powerful, and cost-effective way.
Collapse
Affiliation(s)
- Andrew G Diamos
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Joseph G L Hunter
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Mary D Pardhe
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Sun H Rosenthal
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Haiyan Sun
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Bonnie C Foster
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Michelle P DiPalma
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Qiang Chen
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
60
|
Abstract
Monoclonal based therapeutics have always been looked at as a futuristic natural way we could take care of pathogens and many diseases. However, in order to develop, establish and realize monoclonal based therapy we need to understand how the immune system contains or kill pathogens. Antibody complexes serve the means to decode this black box. We have discussed examples of antibody complexes both at biochemical and structural levels to understand and appreciate how discoveries in the field of antibody complexes have started to decoded mechanism of viral invasion and create potential vaccine targets against many pathogens. Antibody complexes have made advancement in our knowledge about the molecular interaction between antibody and antigen. It has also led to identification of potent protective monoclonal antibodies. Further use of selective combination of monoclonal antibodies have provided improved protection against deadly diseases. The administration of newly designed and improved immunogen has been used as potential vaccine. Therefore, antibody complexes are important tools to develop new vaccine targets and design an improved combination of monoclonal antibodies for passive immunization or protection with very little or no side effects.
Collapse
Affiliation(s)
- Reetesh Raj Akhouri
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | | | - Gunnar Wilken
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Ulf Skoglund
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
61
|
Sanchez-Lockhart M, Reyes DS, Gonzalez JC, Garcia KY, Villa EC, Pfeffer BP, Trefry JC, Kugelman JR, Pitt ML, Palacios GF. Qualitative Profiling of the Humoral Immune Response Elicited by rVSV-ΔG-EBOV-GP Using a Systems Serology Assay, Domain Programmable Arrays. Cell Rep 2020; 24:1050-1059.e5. [PMID: 30044972 DOI: 10.1016/j.celrep.2018.06.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/20/2018] [Accepted: 06/18/2018] [Indexed: 01/02/2023] Open
Abstract
Development of an effective vaccine became a worldwide priority after the devastating 2013-2016 Ebola disease outbreak. To qualitatively profile the humoral response against advanced filovirus vaccine candidates, we developed Domain Programmable Arrays (DPA), a systems serology platform to identify epitopes targeted after vaccination or filovirus infection. We optimized the assay using a panel of well-characterized monoclonal antibodies. After optimization, we utilized the system to longitudinally characterize the immunoglobulin (Ig) isotype-specific responses in non-human primates vaccinated with rVSV-ΔG-EBOV-glycoprotein (GP). Strikingly, we observed that, although the IgM response was directed against epitopes over the whole GP, the IgG and IgA responses were almost exclusively directed against the mucin-like domain (MLD) of the glycan cap. Further research will be needed to characterize this possible biased IgG and IgA response toward the MLD, but the results corroborate that DPA is a valuable tool to qualitatively measure the humoral response after vaccination.
Collapse
Affiliation(s)
- Mariano Sanchez-Lockhart
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Daniel S Reyes
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeanette C Gonzalez
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Karla Y Garcia
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA; Departments of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Erika C Villa
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley P Pfeffer
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - John C Trefry
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Jeffrey R Kugelman
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Margaret L Pitt
- Virology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA
| | - Gustavo F Palacios
- Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
62
|
Diego-Martin B, González B, Vazquez-Vilar M, Selma S, Mateos-Fernández R, Gianoglio S, Fernández-del-Carmen A, Orzáez D. Pilot Production of SARS-CoV-2 Related Proteins in Plants: A Proof of Concept for Rapid Repurposing of Indoor Farms Into Biomanufacturing Facilities. FRONTIERS IN PLANT SCIENCE 2020; 11:612781. [PMID: 33424908 PMCID: PMC7785703 DOI: 10.3389/fpls.2020.612781] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 05/21/2023]
Abstract
The current CoVid-19 crisis is revealing the strengths and the weaknesses of the world's capacity to respond to a global health crisis. A critical weakness has resulted from the excessive centralization of the current biomanufacturing capacities, a matter of great concern, if not a source of nationalistic tensions. On the positive side, scientific data and information have been shared at an unprecedented speed fuelled by the preprint phenomena, and this has considerably strengthened our ability to develop new technology-based solutions. In this work, we explore how, in a context of rapid exchange of scientific information, plant biofactories can serve as a rapid and easily adaptable solution for local manufacturing of bioreagents, more specifically recombinant antibodies. For this purpose, we tested our ability to produce, in the framework of an academic lab and in a matter of weeks, milligram amounts of six different recombinant monoclonal antibodies against SARS-CoV-2 in Nicotiana benthamiana. For the design of the antibodies, we took advantage, among other data sources, of the DNA sequence information made rapidly available by other groups in preprint publications. mAbs were engineered as single-chain fragments fused to a human gamma Fc and transiently expressed using a viral vector. In parallel, we also produced the recombinant SARS-CoV-2 N protein and the receptor binding domain (RBD) of the Spike protein in planta and used them to test the binding specificity of the recombinant mAbs. Finally, for two of the antibodies, we assayed a simple scale-up production protocol based on the extraction of apoplastic fluid. Our results indicate that gram amounts of anti-SARS-CoV-2 antibodies could be easily produced in little more than 6 weeks in repurposed greenhouses with little infrastructure requirements using N. benthamiana as production platform. Similar procedures could be easily deployed to produce diagnostic reagents and, eventually, could be adapted for rapid therapeutic responses.
Collapse
|
63
|
Shanmugaraj B, Rattanapisit K, Manopwisedjaroen S, Thitithanyanont A, Phoolcharoen W. Monoclonal Antibodies B38 and H4 Produced in Nicotiana benthamiana Neutralize SARS-CoV-2 in vitro. FRONTIERS IN PLANT SCIENCE 2020; 11:589995. [PMID: 33329653 PMCID: PMC7728718 DOI: 10.3389/fpls.2020.589995] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 05/20/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) outbreak caused by novel zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially reported in Wuhan city, Hubei Province of China, in late December 2019. The rapid global spread of the virus calls for the urgent development of vaccines or therapeutics for human applications to combat the coronavirus infection. Monoclonal antibodies (mAbs) have been utilized as effective therapeutics for treating various infectious diseases. In the present study, we evaluated the feasibility of plant expression system for the rapid production of recently identified therapeutically suitable human anti-SARS-CoV-2 mAbs B38 and H4. Transient co-expression of heavy-chain and light-chain sequences of both the antibodies by using plant expression geminiviral vector resulted in rapid accumulation of assembled mAbs in Nicotiana benthamiana leaves within 4 days post-infiltration. Furthermore, both the mAbs were purified from the plant crude extracts with single-step protein A affinity column chromatography. The expression level of mAb B38 and H4 was estimated to be 4 and 35 μg/g leaf fresh weight, respectively. Both plant-produced mAbs demonstrated specific binding to receptor binding domain (RBD) of SARS-CoV-2 and exhibited efficient virus neutralization activity in vitro. To the best of our knowledge, this is the first report of functional anti-SARS-CoV-2 mAbs produced in plants, which demonstrates the ability of using a plant expression system as a suitable platform for the production of effective, safe, and affordable SARS-CoV-2 mAbs to fight against the spread of this highly infectious pathogen.
Collapse
Affiliation(s)
- Balamurugan Shanmugaraj
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kaewta Rattanapisit
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Waranyoo Phoolcharoen,
| |
Collapse
|
64
|
Kaminski KP, Goepfert S, Ivanov NV, Peitsch MC. Production of Valuable Compounds in Tobacco. THE TOBACCO PLANT GENOME 2020. [DOI: 10.1007/978-3-030-29493-9_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
65
|
Junaid A, Tang H, van Reeuwijk A, Abouleila Y, Wuelfroth P, van Duinen V, Stam W, van Zonneveld AJ, Hankemeier T, Mashaghi A. Ebola Hemorrhagic Shock Syndrome-on-a-Chip. iScience 2019; 23:100765. [PMID: 31887664 PMCID: PMC6941864 DOI: 10.1016/j.isci.2019.100765] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 01/12/2023] Open
Abstract
Ebola virus, for which we lack effective countermeasures, causes hemorrhagic fever in humans, with significant case fatality rates. Lack of experimental human models for Ebola hemorrhagic fever is a major obstacle that hinders the development of treatment strategies. Here, we model the Ebola hemorrhagic syndrome in a microvessel-on-a-chip system and demonstrate its applicability to drug studies. Luminal infusion of Ebola virus-like particles leads to albumin leakage from the engineered vessels. The process is mediated by the Rho/ROCK pathway and is associated with cytoskeleton remodeling. Infusion of Ebola glycoprotein (GP1,2) generates a similar phenotype, indicating the key role of GP1,2 in this process. Finally, we measured the potency of a recently developed experimental drug FX06 and a novel drug candidate, melatonin, in phenotypic rescue. Our study confirms the effects of FX06 and identifies melatonin as an effective, safe, inexpensive therapeutic option that is worth investigating in animal models and human trials.
Collapse
Affiliation(s)
- Abidemi Junaid
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden 2333 ZA, Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Huaqi Tang
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Anne van Reeuwijk
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Yasmine Abouleila
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | | | - Vincent van Duinen
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden 2333 ZA, Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Wendy Stam
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden 2333 ZA, Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Anton Jan van Zonneveld
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden 2333 ZA, Netherlands; Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands
| | - Alireza Mashaghi
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2333 CC, Netherlands.
| |
Collapse
|
66
|
Tsekoa TL, Singh AA, Buthelezi SG. Molecular farming for therapies and vaccines in Africa. Curr Opin Biotechnol 2019; 61:89-95. [PMID: 31786432 DOI: 10.1016/j.copbio.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Local manufacturing of protein-based vaccines and therapies in Africa is limited and contributes to a trade deficit, security of supply concerns and poor access to biopharmaceuticals by the poor. Plant molecular farming is a potential technology solution that has received growing adoption by African scientists attracted by the potential for the competitive cost of goods, safety and efficacy. Plant-made pharmaceutical technologies for veterinary and human vaccination and treatment of non-communicable and infectious diseases are available at different stages of development in Africa. There is also growth in the translation of these technologies to commercial operations. Africa is poised to benefit from the real-world impact of molecular farming in the next few years.
Collapse
Affiliation(s)
- Tsepo L Tsekoa
- NextGen Health and Future Production: Chemistry Clusters, Council for Scientific and Industrial Research, Pretoria, South Africa.
| | - Advaita Acarya Singh
- NextGen Health and Future Production: Chemistry Clusters, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Sindisiwe G Buthelezi
- NextGen Health and Future Production: Chemistry Clusters, Council for Scientific and Industrial Research, Pretoria, South Africa
| |
Collapse
|
67
|
Kuzmina NA, Younan P, Gilchuk P, Santos RI, Flyak AI, Ilinykh PA, Huang K, Lubaki NM, Ramanathan P, Crowe JE, Bukreyev A. Antibody-Dependent Enhancement of Ebola Virus Infection by Human Antibodies Isolated from Survivors. Cell Rep 2019; 24:1802-1815.e5. [PMID: 30110637 DOI: 10.1016/j.celrep.2018.07.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 06/12/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022] Open
Abstract
Some monoclonal antibodies (mAbs) recovered from survivors of filovirus infections can protect against infection. It is currently unknown whether natural infection also induces some antibodies with the capacity for antibody-dependent enhancement (ADE). A panel of mAbs obtained from human survivors of filovirus infection caused by Ebola, Bundibugyo, or Marburg viruses was evaluated for their ability to facilitate ADE. ADE was observed readily with all mAbs examined at sub-neutralizing concentrations, and this effect was not restricted to mAbs with a particular epitope specificity, neutralizing capacity, or subclass. Blocking of specific Fcγ receptors reduced but did not abolish ADE that was associated with high-affinity binding antibodies, suggesting that lower-affinity interactions still cause ADE. Mutations of Fc fragments of an mAb that altered its interaction with Fc receptors rendered the antibody partially protective in vivo at a low dose, suggesting that ADE counteracts antibody-mediated protection and facilitates dissemination of filovirus infections.
Collapse
Affiliation(s)
- Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Patrick Younan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rodrigo I Santos
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Kai Huang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Ndongala M Lubaki
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, Galveston, TX 77550, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
68
|
Sizikova TE, Lebedev VN, Borisevich SV. [Virus specific antibody - based remedies for the urgent prevention and treatment of Ebola virus disease]. TERAPEVT ARKH 2019; 91:98-104. [PMID: 32598619 DOI: 10.26442/00403660.2019.11.000164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
The Ebola virus (member of Ebolavirus genus Filoviridae family) is the etiologic agent of extremely hazard human disease with high mortality rates (up to 90%). The most important components of spectrum of therapeutics for special prophylactic and current of disease, caused by Ebola virus, are prepares, based on virus specific antibodies (convalescent's plasma, geterologic immunoglobulins, monoclonal antibodies. The use of different class therapeutics, based on virus specific antibodies, the possible improvements of its composition and strategy of its application for special prophylactic and current of disease, caused by Ebola virus, are considered in this review.
Collapse
|
69
|
Tian X, Chen D, Wang H, Xu S, Zhu L, Wu X, Wu Z. The induction and characterization of monoclonal antibodies specific to GP of Ebola virus. J Med Virol 2019; 92:996-1006. [PMID: 31663613 DOI: 10.1002/jmv.25615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/24/2019] [Indexed: 01/18/2023]
Abstract
The Ebola virus is highly infectious and characterized by hemorrhagic fever, headache, and so on with a high mortality rate. Currently, there are neither therapeutic drugs or vaccines against the Ebola virus nor fast diagnostic methods for the detection of Ebola virus infection. This study reported the induction and isolation of two monoclonal antibodies that specifically recognized the glycoprotein (GP) and secreted glycoprotein (sGP) of the Ebola virus. Plasmids encoding either GP or sGP were constructed and immunized BALB/c mice, accordingly purified sGP was boosted. The antisera were analyzed for binding activity against sGP protein in enzyme-linked immunosorbent assay (ELISA) and neutralization activity in a pseudotyped virus neutralization assay. A number of reactive clones were isolated and two monoclonal antibodies T231 and T242 were identified to react with both GP and sGP. Western blot and ELISA assays showed that the monoclonal antibodies could react with GP and sGP, respectively. Moreover, they could recognize Ebola pseudovirus by cellular immunochemistry assay. We labeled the monoclonal antibody T231 with biotin and analyzed the competitiveness of the two antibodies by the ELISA test. The results showed that the binding epitopes of the two monoclonal antibodies to sGP were partially overlapped. In summary, two GP-specific mAbs were identified, which will be used to detect the Ebola virus or investigate GP.
Collapse
Affiliation(s)
- Xiaoyan Tian
- Department of General Surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China.,Center for Public Health Research, Nanjing University, Nanjing, China
| | - Deyan Chen
- Center for Public Health Research, Nanjing University, Nanjing, China
| | - Huanru Wang
- Center for Public Health Research, Nanjing University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Nanjing University, Nanjing, China
| | - Linjing Zhu
- Y-Clone Medical Science Co Ltd, Nanjing, China
| | - Xilin Wu
- Center for Public Health Research, Nanjing University, Nanjing, China.,Y-Clone Medical Science Co Ltd, Nanjing, China
| | - Zhiwei Wu
- Center for Public Health Research, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
70
|
Gilchuk P, Mire CE, Geisbert JB, Agans KN, Deer DJ, Cross RW, Slaughter JC, Flyak AI, Mani J, Pauly MH, Velasco J, Whaley KJ, Zeitlin L, Geisbert TW, Crowe JE. Efficacy of Human Monoclonal Antibody Monotherapy Against Bundibugyo Virus Infection in Nonhuman Primates. J Infect Dis 2019; 218:S565-S573. [PMID: 29982718 DOI: 10.1093/infdis/jiy295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background The 2013-2016 Ebola virus disease (EVD) epidemics in West Africa highlighted a need for effective therapeutics for treatment of the disease caused by filoviruses. Monoclonal antibodies (mAbs) are promising therapeutic candidates for prophylaxis or treatment of virus infections. Data about efficacy of human mAb monotherapy against filovirus infections in preclinical nonhuman primate models are limited. Methods Previously, we described a large panel of human mAbs derived from the circulating memory B cells from Bundibugyo virus (BDBV) infection survivors that bind to the surface glycoprotein (GP) of the virus. We tested one of these neutralizing mAbs that recognized the glycan cap of the GP, designated mAb BDBV289, as monotherapy in rhesus macaques. Results We found that recombinant mAb BDBV289-N could confer up to 100% protection to BDBV-infected rhesus macaques when treatment was initiated as late as 8 days after virus challenge. Protection was associated with survival and decreased viremia levels in the blood of treated animals. Conclusions These findings define the efficacy of monotherapy of lethal BDBV infection with a glycan cap-specific mAb and identify a candidate mAb therapeutic molecule that could be included in antibody cocktails for prevention or treatment of ebolavirus infections.
Collapse
Affiliation(s)
- Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Joan B Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Krystle N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Daniel J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - Robert W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - James C Slaughter
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy Mani
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
71
|
Pascal KE, Dudgeon D, Trefry JC, Anantpadma M, Sakurai Y, Murin CD, Turner HL, Fairhurst J, Torres M, Rafique A, Yan Y, Badithe A, Yu K, Potocky T, Bixler SL, Chance TB, Pratt WD, Rossi FD, Shamblin JD, Wollen SE, Zelko JM, Carrion R, Worwa G, Staples HM, Burakov D, Babb R, Chen G, Martin J, Huang TT, Erlandson K, Willis MS, Armstrong K, Dreier TM, Ward AB, Davey RA, Pitt MLM, Lipsich L, Mason P, Olson W, Stahl N, Kyratsous CA. Development of Clinical-Stage Human Monoclonal Antibodies That Treat Advanced Ebola Virus Disease in Nonhuman Primates. J Infect Dis 2019; 218:S612-S626. [PMID: 29860496 PMCID: PMC6249601 DOI: 10.1093/infdis/jiy285] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background For most classes of drugs, rapid development of therapeutics to treat emerging infections is challenged by the timelines needed to identify compounds with the desired efficacy, safety, and pharmacokinetic profiles. Fully human monoclonal antibodies (mAbs) provide an attractive method to overcome many of these hurdles to rapidly produce therapeutics for emerging diseases. Methods In this study, we deployed a platform to generate, test, and develop fully human antibodies to Zaire ebolavirus. We obtained specific anti-Ebola virus (EBOV) antibodies by immunizing VelocImmune mice that use human immunoglobulin variable regions in their humoral responses. Results Of the antibody clones isolated, 3 were selected as best at neutralizing EBOV and triggering FcγRIIIa. Binding studies and negative-stain electron microscopy revealed that the 3 selected antibodies bind to non-overlapping epitopes, including a potentially new protective epitope not targeted by other antibody-based treatments. When combined, a single dose of a cocktail of the 3 antibodies protected nonhuman primates (NHPs) from EBOV disease even after disease symptoms were apparent. Conclusions This antibody cocktail provides complementary mechanisms of actions, incorporates novel specificities, and demonstrates high-level postexposure protection from lethal EBOV disease in NHPs. It is now undergoing testing in normal healthy volunteers in preparation for potential use in future Ebola epidemics.
Collapse
Affiliation(s)
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - John C Trefry
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Yasuteru Sakurai
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Charles D Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | | - Ying Yan
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ashok Badithe
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Kevin Yu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Terra Potocky
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Sandra L Bixler
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Taylor B Chance
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - William D Pratt
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Franco D Rossi
- Center for Aerobiological Sciences, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Joshua D Shamblin
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Suzanne E Wollen
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Justine M Zelko
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Ricardo Carrion
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Gabriella Worwa
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Hilary M Staples
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Darya Burakov
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Robert Babb
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Gang Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Joel Martin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Tammy T Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Karl Erlandson
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Melissa S Willis
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Kimberly Armstrong
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Thomas M Dreier
- Biomedical Advanced Research and Development Authority, Office of the Assistant Secretary for Preparedness and Response, US Department of Health and Human Services, Washington, DC
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio
| | - Margaret L M Pitt
- Office of the Commander, US Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland
| | - Leah Lipsich
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Peter Mason
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - William Olson
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Neil Stahl
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | |
Collapse
|
72
|
Rosenke K, Bounds CE, Hanley PW, Saturday G, Sullivan E, Wu H, Jiao JA, Feldmann H, Schmaljohn C, Safronetz D. Human Polyclonal Antibodies Produced by Transchromosomal Cattle Provide Partial Protection Against Lethal Zaire Ebolavirus Challenge in Rhesus Macaques. J Infect Dis 2019; 218:S658-S661. [PMID: 30053153 DOI: 10.1093/infdis/jiy430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibody therapy has been used to treat a variety of diseases and the success of ZMapp and other monoclonal antibody-based therapies during the 2014-2016 West African Ebola outbreak has shown this countermeasure can be a successful therapy for Ebola hemorrhagic fever. This study utilized transchromosomal bovines (TcB) vaccinated with a DNA plasmid encoding Ebola virus glycoprotein sequence to produce human polyclonal antibodies directed against Ebola virus glycoprotein. When administered 1 day postinfection, these TcB polyclonal antibodies provided partial protection and resulted in a 50% survival rate following a lethal challenge of Ebola virus Makona in rhesus macaques.
Collapse
Affiliation(s)
- Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Callie E Bounds
- Joint Program Executive Office Chemical-Biological Defense, Medical Countermeasures Systems' Joint Vaccine Acquisition Program, Fort Detrick, Maryland
| | - Patrick W Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | | | - Hua Wu
- SAB Biotherapeutics, Sioux Falls, South Dakota
| | - Jin-An Jiao
- SAB Biotherapeutics, Sioux Falls, South Dakota
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Connie Schmaljohn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland
| | - David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana.,Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
73
|
Cagigi A, Misasi J, Ploquin A, Stanley DA, Ambrozak D, Tsybovsky Y, Mason RD, Roederer M, Sullivan NJ. Vaccine Generation of Protective Ebola Antibodies and Identification of Conserved B-Cell Signatures. J Infect Dis 2019; 218:S528-S536. [PMID: 30010811 DOI: 10.1093/infdis/jiy333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We recently identified a single potently neutralizing monoclonal antibody (mAb), mAb114, isolated from a human survivor of natural Zaire ebolavirus (EBOV) infection, which fully protects nonhuman primates (NHPs) against lethal EBOV challenge. To evaluate the ability of vaccination to generate mAbs such as mAb114, we cloned antibodies from NHPs vaccinated with vectors encoding the EBOV glycoprotein (GP). We identified 14 unique mAbs with potent binding to GP, 4 of which were neutralized and had the functional characteristics of mAb114. These vaccine-induced macaque mAbs share many sequence similarities with mAb114 and use the same mAb114 VH gene (ie, IGHV3-13) when classified using the macaque IMGT database. The antigen-specific VH-gene repertoire present after each immunization indicated that IGHV3-13 mAbs populate an EBOV-specific B-cell repertoire that appears to become more prominent with subsequent boosting. These findings will support structure-based vaccine design aimed at enhanced induction of antibodies such as mAb114.
Collapse
Affiliation(s)
- Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland.,Division of Infectious Diseases, Boston Children's Hospital, Massachusetts
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daphne A Stanley
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - David Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Maryland
| | - Rosemarie D Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
74
|
Chan M, Holtsberg FW, Vu H, Howell KA, Leung A, Van der Hart E, Walz PH, Aman MJ, Kodihalli S, Kobasa D. Efficacy of Ebola Glycoprotein-Specific Equine Polyclonal Antibody Product Against Lethal Ebola Virus Infection in Guinea Pigs. J Infect Dis 2019; 218:S603-S611. [PMID: 29955852 DOI: 10.1093/infdis/jiy329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Indexed: 02/06/2023] Open
Abstract
Background Filoviruses including Ebola, Sudan, and other species are emerging zoonotic pathogens representing a significant public health concern with high outbreak potential, and they remain a potential bioterrorism-related threat. We have developed a despeciated equine Ebola polyclonal antibody (E-EIG) postexposure treatment against Ebola virus (EBOV) and evaluated its efficacy in the guinea pig model of EBOV infection. Methods Guinea pigs were infected with guinea pig-adapted EBOV (Mayinga strain) and treated with various dose levels of E-EIG (20-100 mg/kg) twice daily for 6 days starting at 24 h postinfection. The E-EIG was also assessed for neutralization activity against related filoviruses including EBOV strains Mayinga, Kikwit, and Makona and the Bundibugyo and Taï Forest ebolavirus species. Results Treatment with E-EIG conferred 83% to 100% protection in guinea pigs. The results demonstrated a comparable neutralization activity (range, 1:512-1:896) of E-EIG against all tested strains, suggesting the potential for cross-protection with the polyclonal antibody therapeutic. Conclusions This study showed that equine-derived polyclonal antibodies are efficacious against lethal EBOV disease in a relevant animal model. Furthermore, the studies support the utility of the equine antibody platform for the rapid production of a therapeutic product in the event of an outbreak by a filovirus or other zoonotic pathogen.
Collapse
Affiliation(s)
- Mable Chan
- Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Hong Vu
- Integrated BioTherapeutics, Rockville, Maryland
| | | | - Anders Leung
- Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba
| | | | - Paul H Walz
- Department of Pathobiology, Auburn University, Alabama
| | | | - Shantha Kodihalli
- Research and Development, Emergent BioSolutions Canada, Winnipeg, Manitoba
| | - Darwyn Kobasa
- Special Pathogens, Public Health Agency of Canada, Winnipeg, Manitoba.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
75
|
Mirza MU, Vanmeert M, Ali A, Iman K, Froeyen M, Idrees M. Perspectives towards antiviral drug discovery against Ebola virus. J Med Virol 2019; 91:2029-2048. [PMID: 30431654 PMCID: PMC7166701 DOI: 10.1002/jmv.25357] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Ebola virus disease (EVD), caused by Ebola viruses, resulted in more than 11 500 deaths according to a recent 2018 WHO report. With mortality rates up to 90%, it is nowadays one of the most deadly infectious diseases. However, no Food and Drug Administration‐approved Ebola drugs or vaccines are available yet with the mainstay of therapy being supportive care. The high fatality rate and absence of effective treatment or vaccination make Ebola virus a category‐A biothreat pathogen. Fortunately, a series of investigational countermeasures have been developed to control and prevent this global threat. This review summarizes the recent therapeutic advances and ongoing research progress from research and development to clinical trials in the development of small‐molecule antiviral drugs, small‐interference RNA molecules, phosphorodiamidate morpholino oligomers, full‐length monoclonal antibodies, and vaccines. Moreover, difficulties are highlighted in the search for effective countermeasures against EVD with additional focus on the interplay between available in silico prediction methods and their evidenced potential in antiviral drug discovery.
Collapse
Affiliation(s)
- Muhammad Usman Mirza
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Amjad Ali
- Department of Genetics, Hazara University, Mansehra, Pakistan.,Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory (BIRL), Department of Biology, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, KU Leuven, Leuven, Belgium
| | - Muhammad Idrees
- Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan.,Hazara University Mansehra, Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
76
|
Differential requirements for FcγR engagement by protective antibodies against Ebola virus. Proc Natl Acad Sci U S A 2019; 116:20054-20062. [PMID: 31484758 DOI: 10.1073/pnas.1911842116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ebola virus (EBOV) continues to pose significant threats to global public health, requiring ongoing development of multiple strategies for disease control. To date, numerous monoclonal antibodies (mAbs) that target the EBOV glycoprotein (GP) have demonstrated potent protective activity in animal disease models and are thus promising candidates for the control of EBOV. However, recent work in a variety of virus diseases has highlighted the importance of coupling Fab neutralization with Fc effector activity for effective antibody-mediated protection. To determine the contribution of Fc effector activity to the protective function of mAbs to EBOV GP, we selected anti-GP mAbs targeting representative, protective epitopes and characterized their Fc receptor (FcγR) dependence in vivo in FcγR humanized mouse challenge models of EBOV disease. In contrast to previous studies, we find that anti-GP mAbs exhibited differential requirements for FcγR engagement in mediating their protective activity independent of their distance from the viral membrane. Anti-GP mAbs targeting membrane proximal epitopes or the GP mucin domain do not rely on Fc-FcγR interactions to confer activity, whereas antibodies against the GP chalice bowl and the fusion loop require FcγR engagement for optimal in vivo antiviral activity. This complexity of antibody-mediated protection from EBOV disease highlights the structural constraints of FcγR binding for specific viral epitopes and has important implications for the development of mAb-based immunotherapeutics with optimal potency and efficacy.
Collapse
|
77
|
Therapeutic strategies to target the Ebola virus life cycle. Nat Rev Microbiol 2019; 17:593-606. [DOI: 10.1038/s41579-019-0233-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
|
78
|
van Lieshout LP, Soule G, Sorensen D, Frost KL, He S, Tierney K, Safronetz D, Booth SA, Kobinger GP, Qiu X, Wootton SK. Intramuscular Adeno-Associated Virus-Mediated Expression of Monoclonal Antibodies Provides 100% Protection Against Ebola Virus Infection in Mice. J Infect Dis 2019; 217:916-925. [PMID: 29365142 DOI: 10.1093/infdis/jix644] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/30/2017] [Indexed: 01/14/2023] Open
Abstract
The 2013-2016 West Africa outbreak demonstrated the epidemic potential of Ebola virus and highlighted the need for counter strategies. Monoclonal antibody (mAb)-based therapies hold promise as treatment options for Ebola virus infections. However, production of clinical-grade mAbs is labor intensive, and immunity is short lived. Conversely, adeno-associated virus (AAV)-mediated mAb gene transfer provides the host with a genetic blueprint to manufacture mAbs in vivo, leading to steady release of antibody over many months. Here we demonstrate that AAV-mediated expression of nonneutralizing mAb 5D2 or 7C9 confers 100% protection against mouse-adapted Ebola virus infection, while neutralizing mAb 2G4 was 83% protective. A 2-component cocktail, AAV-2G4/AAV-5D2, provided complete protection when administered 7 days prior to challenge and was partially protective with a 3-day lead time. Finally, AAV-mAb therapies provided sustained protection from challenge 5 months following AAV administration. AAV-mAb may be a viable alternative strategy for vaccination against emerging infectious diseases.
Collapse
Affiliation(s)
| | - Geoff Soule
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - Debra Sorensen
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Kathy L Frost
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Shihua He
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - Kevin Tierney
- Zoonotic Diseases and Special Pathogens Program, Canada
| | - David Safronetz
- Zoonotic Diseases and Special Pathogens Program, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Stephanie A Booth
- Molecular Pathobiology, National Microbiology Laboratory, Public Health Agency of Canada, Canada
| | - Gary P Kobinger
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, Laval University, Québec City, Canada
| | - Xiangguo Qiu
- Zoonotic Diseases and Special Pathogens Program, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|
79
|
Jin N, Lee JW, Heo W, Ryu MY, So MK, Ko BJ, Kim HY, Yoon SM, Lee J, Kim JY, Kim WT. Low binding affinity and reduced complement-dependent cell death efficacy of ofatumumab produced using a plant system (Nicotiana benthamiana L.). Protein Expr Purif 2019; 159:34-41. [PMID: 30880170 DOI: 10.1016/j.pep.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 01/16/2023]
Abstract
The plant protein production system is a platform that can not only reduce production costs but also produce monoclonal antibodies that do not have the risk of residual proteins from the host. However, due to the difference between post-translational processes in plants and animals, there may be a modification in the Fab region of the monoclonal antibody produced in the plant; thus, it is necessary to compare the antigen affinity of this antibody with that of the prototype. In this study, ofatumumab, a fully human anti-CD20 IgG1κ monoclonal antibody used for its non-cross resistance to rituximab, was expressed in Nicotiana benthamiana, and its affinities and efficacies were compared with those of native ofatumumab produced from CHO cells. Two forms of plant ofatumumab (with or without HDEL-tag) were generated and their production yields were compared. The HDEL-tagged ofatumumab was more expressed in plants than the form without HDEL-tag. The specificity of the target recognition of plant-derived ofatumumab was confirmed by mCherry-CD20-expressing HEK cells via immuno-staining, and the capping of CD20 after ofatumumab binding was also confirmed using Ramos B cells. In the functional equivalence tests, the binding affinities and complement-dependent cell cytotoxicity efficacy of plant-ofatumumab-HDEL and plant-ofatumumab without HDEL were significantly reduced compared to those of CHO-derived ofatumumab. Therefore, we suggest that although ofatumumab is not a good candidate as a template for plant-derived monoclonal antibodies because of its decreased affinity when produced in plants, it is an interesting target to study the differences between post-translational modifications in mammals and plants.
Collapse
Affiliation(s)
- Narae Jin
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Jin Won Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Woon Heo
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Moon Young Ryu
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Min Kyung So
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea.
| | - Byoung Joon Ko
- New Drug Development Center, Osong Medical Innovation Foundation, 123, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, Republic of Korea.
| | - Hye-Yeon Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Sei Mee Yoon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea; Department of Integrated OMICS for Biomedical Sciences, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Jinu Lee
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, 21983, Republic of Korea.
| | - Joo Young Kim
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
80
|
Ploquin A, Zhou Y, Sullivan NJ. Ebola Immunity: Gaining a Winning Position in Lightning Chess. THE JOURNAL OF IMMUNOLOGY 2019; 201:833-842. [PMID: 30038036 DOI: 10.4049/jimmunol.1700827] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 05/05/2018] [Indexed: 12/13/2022]
Abstract
Zaire ebolavirus (EBOV), one of five species in the genus Ebolavirus, is the causative agent of the hemorrhagic fever disease epidemic that claimed more than 11,000 lives from 2014 to 2016 in West Africa. The combination of EBOV's ability to disseminate broadly and rapidly within the host and its high pathogenicity pose unique challenges to the human immune system postinfection. Potential transmission from apparently healthy EBOV survivors reported in the recent epidemic raises questions about EBOV persistence and immune surveillance mechanisms. Clinical, virological, and immunological data collected since the West Africa epidemic have greatly enhanced our knowledge of host-virus interactions. However, critical knowledge gaps remain in our understanding of what is necessary for an effective host immune response for protection against, or for clearance of, EBOV infection. This review provides an overview of immune responses against EBOV and discusses those associated with the success or failure to control EBOV infection.
Collapse
Affiliation(s)
- Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Yan Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
81
|
Ersching J, Victora GD. Ebola from Bedside to Bench. Cell 2019; 177:1370-1372. [PMID: 31150616 DOI: 10.1016/j.cell.2019.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A longitudinal study by Davis et al. followed the evolution of antibody responses in four survivors of the 2014 Ebola outbreak treated in the United States and provides insight into the emergence of neutralizing antibodies long after convalescence.
Collapse
Affiliation(s)
- Jonatan Ersching
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
82
|
Muñoz-Fontela C, McElroy AK. Ebola Virus Disease in Humans: Pathophysiology and Immunity. Curr Top Microbiol Immunol 2019; 411:141-169. [PMID: 28653186 PMCID: PMC7122202 DOI: 10.1007/82_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viruses of the Ebolavirus genus cause sporadic epidemics of severe and systemic febrile disease that are fueled by human-to-human transmission. Despite the notoriety of ebolaviruses, particularly Ebola virus (EBOV), as prominent viral hemorrhagic fever agents, and the international concern regarding Ebola virus disease (EVD) outbreaks, very little is known about the pathophysiology of EVD in humans and, in particular, about the human immune correlates of survival and immune memory. This lack of basic knowledge about physiological characteristics of EVD is probably attributable to the dearth of clinical and laboratory data gathered from past outbreaks. The unprecedented magnitude of the EVD epidemic that occurred in West Africa from 2013 to 2016 has allowed, for the first time, evaluation of clinical, epidemiological, and immunological parameters in a significant number of patients using state-of-the-art laboratory equipment. This review will summarize the data from the literature regarding human pathophysiologic and immunologic responses to filoviral infection.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Laboratory of Emerging Viruses, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251, Hamburg, Germany.
| | - Anita K McElroy
- Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
83
|
Komarova TV, Sheshukova EV, Dorokhov YL. Plant-Made Antibodies: Properties and Therapeutic Applications. Curr Med Chem 2019; 26:381-395. [PMID: 29231134 DOI: 10.2174/0929867325666171212093257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 05/18/2017] [Accepted: 10/06/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND A cost-effective plant platform for therapeutic monoclonal antibody production is both flexible and scalable. Plant cells have mechanisms for protein synthesis and posttranslational modification, including glycosylation, similar to those in animal cells. However, plants produce less complex and diverse Asn-attached glycans compared to animal cells and contain plant-specific residues. Nevertheless, plant-made antibodies (PMAbs) could be advantageous compared to those produced in animal cells due to the absence of a risk of contamination from nucleic acids or proteins of animal origin. OBJECTIVE In this review, the various platforms of PMAbs production are described, and the widely used transient expression system based on Agrobacterium-mediated delivery of genetic material into plant cells is discussed in detail. RESULTS We examined the features of and approaches to humanizing the Asn-linked glycan of PMAbs. The prospects for PMAbs in the prevention and treatment of human infectious diseases have been illustrated by promising results with PMAbs against human immunodeficiency virus, rotavirus infection, human respiratory syncytial virus, rabies, anthrax and Ebola virus. The pre-clinical and clinical trials of PMAbs against different types of cancer, including lymphoma and breast cancer, are addressed. CONCLUSION PMAb biosafety assessments in patients suggest that it has no side effects, although this does not completely remove concerns about the potential immunogenicity of some plant glycans in humans. Several PMAbs at various developmental stages have been proposed. Promise for the clinical use of PMAbs is aimed at the treatment of viral and bacterial infections as well as in anti-cancer treatment.
Collapse
Affiliation(s)
- Tatiana V Komarova
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Ekaterina V Sheshukova
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation
| | - Yuri L Dorokhov
- Vavilov Institute of General Genetics Russian Academy of Sciences 119991, Moscow, Russian Federation.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| |
Collapse
|
84
|
Davis CW, Jackson KJL, McElroy AK, Halfmann P, Huang J, Chennareddy C, Piper AE, Leung Y, Albariño CG, Crozier I, Ellebedy AH, Sidney J, Sette A, Yu T, Nielsen SCA, Goff AJ, Spiropoulou CF, Saphire EO, Cavet G, Kawaoka Y, Mehta AK, Glass PJ, Boyd SD, Ahmed R. Longitudinal Analysis of the Human B Cell Response to Ebola Virus Infection. Cell 2019; 177:1566-1582.e17. [PMID: 31104840 PMCID: PMC6908968 DOI: 10.1016/j.cell.2019.04.036] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/11/2019] [Accepted: 04/16/2019] [Indexed: 01/12/2023]
Abstract
Ebola virus (EBOV) remains a public health threat. We performed a longitudinal study of B cell responses to EBOV in four survivors of the 2014 West African outbreak. Infection induced lasting EBOV-specific immunoglobulin G (IgG) antibodies, but their subclass composition changed over time, with IgG1 persisting, IgG3 rapidly declining, and IgG4 appearing late. Striking changes occurred in the immunoglobulin repertoire, with massive recruitment of naive B cells that subsequently underwent hypermutation. We characterized a large panel of EBOV glycoprotein-specific monoclonal antibodies (mAbs). Only a small subset of mAbs that bound glycoprotein by ELISA recognized cell-surface glycoprotein. However, this subset contained all neutralizing mAbs. Several mAbs protected against EBOV disease in animals, including one mAb that targeted an epitope under evolutionary selection during the 2014 outbreak. Convergent antibody evolution was seen across multiple donors, particularly among VH3-13 neutralizing antibodies specific for the GP1 core. Our study provides a benchmark for assessing EBOV vaccine-induced immunity. Ebola virus infection causes massive recruitment of naive B cells Virus-specific antibodies continue to class-switch and mutate for months after acute infection Protective antibodies can be neutralizing or non-neutralizing and can appear early Convergent, protective antibody rearrangements are seen in multiple donors
Collapse
Affiliation(s)
- Carl W Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Katherine J L Jackson
- Department of Pathology, Stanford University, Stanford, CA, USA; Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Anita K McElroy
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA; Division of Pediatric Infectious Disease, Emory University, Atlanta, GA, USA; Division of Pediatric Infectious Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
| | - Jessica Huang
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Chakravarthy Chennareddy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | | | - César G Albariño
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ian Crozier
- Integrated Research Facility at Fort Detrick, Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institutes, Frederick, MD, USA
| | - Ali H Ellebedy
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA; Division of Immunobiology, Department of Pathology and Immunology Washington University School of Medicine, St. Louis, MO, USA
| | - John Sidney
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Arthur J Goff
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Erica Ollman Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA; La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA; Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Aneesh K Mehta
- Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
85
|
Kumagai T, Palacios A, Casadevall A, García MJ, Toro C, Tiemeyer M, Prados-Rosales R. Serum IgM Glycosylation Associated with Tuberculosis Infection in Mice. mSphere 2019; 4:e00684-18. [PMID: 30918063 PMCID: PMC6437276 DOI: 10.1128/msphere.00684-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/07/2019] [Indexed: 01/14/2023] Open
Abstract
Changes in serum glycans discriminate between disease statuses in cancer. A similar connection has not been established in the context of infectious diseases such as tuberculosis (TB). The inflammation arising from infection by Mycobacterium tuberculosis may affect host protein glycosylation, thereby providing information about disease status in TB. A mouse model of infection was used to study glycoprotein N-glycosylation in serum. Following digestion of serum glycoproteins with peptide-N-glycosidase F (PNGase F), released glycans were permethylated and analyzed by multidimensional mass spectrometry (MS). Conditions included naive or Mycobacterium bovis BCG-vaccinated animals, which were either uninfected or infected with M. tuberculosis MS results were validated by lectin blotting. We found that both glycoprotein fucosylation and sialylation were particularly sensitive to M. tuberculosis infection. We observed that M. tuberculosis infection elevates serum IgM levels and induces changes in glycosylation that could inform about the disease.IMPORTANCE We demonstrate that M. tuberculosis infection influenced host protein glycosylation in a mouse model. The mechanism by which infection modifies glycans in serum proteins is not understood. Investigation of the regulation of such modifications by M. tuberculosis opens a new field that could lead to the discovery of novel biomarkers. Validation of such findings in human samples will reveal the clinical relevance of these findings.
Collapse
Affiliation(s)
- Tadahiro Kumagai
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | | | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - M Jesús García
- Department of Preventive Medicine, Public Health and Microbiology, Autonomous University of Madrid, Madrid, Spain
| | - Carlos Toro
- Service of Microbiology, Hospital Universitario La Paz, IdiPaz, Madrid, Spain
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Rafael Prados-Rosales
- CIC bioGUNE, Derio, Bizkaia, Spain
- Department of Preventive Medicine, Public Health and Microbiology, Autonomous University of Madrid, Madrid, Spain
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
86
|
Kopertekh L, Schiemann J. Transient Production of Recombinant Pharmaceutical Proteins in Plants: Evolution and Perspectives. Curr Med Chem 2019; 26:365-380. [DOI: 10.2174/0929867324666170718114724] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 11/22/2022]
Abstract
During the last two decades, the production of pharmaceutical proteins in plants
evolved from proof of concept to established technology adopted by several biotechnological
companies. This progress is particularly based on intensive research starting stable genetic
transformation and moving to transient expression. Due to its advantages in yield and
speed of protein production transient expression platforms became the leading plant-based
manufacturing technology. Current transient expression methods rely on Agrobacteriummediated
delivery of expression vectors into plant cells. In recent years, great advances have
been made in the improvement of expression vectors, host cell engineering as well as in the
development of commercial manufacturing processes. Several GMP-certified large-scale
production facilities exist around the world to utilize agroinfiltration method. A number of
pharmaceutical proteins produced by transient expression are currently in clinical development.
The great potential of transient expression platform in respect to rapid response to
emerging pandemics was demonstrated by the production of experimental ZMapp antibodies
against Ebola virus as well as influenza vaccines. This review is focused on current design,
status and future perspectives of plant transient expression system for the production
of biopharmaceutical proteins.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| | - Joachim Schiemann
- Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur- Str. 27, D-06484, Quedlinburg, Germany
| |
Collapse
|
87
|
A Two-Antibody Pan-Ebolavirus Cocktail Confers Broad Therapeutic Protection in Ferrets and Nonhuman Primates. Cell Host Microbe 2019; 25:49-58.e5. [PMID: 30629918 DOI: 10.1016/j.chom.2018.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
Recent and ongoing outbreaks of Ebola virus disease (EVD) underscore the unpredictable nature of ebolavirus reemergence and the urgent need for antiviral treatments. Unfortunately, available experimental vaccines and immunotherapeutics are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against other ebolaviruses associated with EVD, including Sudan virus (SUDV) and Bundibugyo virus (BDBV). Here we show that MBP134AF, a pan-ebolavirus therapeutic comprising two broadly neutralizing human antibodies (bNAbs), affords unprecedented effectiveness and potency as a therapeutic countermeasure to antigenically diverse ebolaviruses. MBP134AF could fully protect ferrets against lethal EBOV, SUDV, and BDBV infection, and a single 25-mg/kg dose was sufficient to protect NHPs against all three viruses. The development of MBP134AF provides a successful model for the rapid discovery and translational advancement of immunotherapeutics targeting emerging infectious diseases.
Collapse
|
88
|
Banadyga L, Schiffman Z, He S, Qiu X. Virus inoculation and treatment regimens for evaluating anti-filovirus monoclonal antibody efficacy in vivo. BIOSAFETY AND HEALTH 2019; 1:6-13. [PMID: 32835206 PMCID: PMC7347303 DOI: 10.1016/j.bsheal.2019.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/07/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023] Open
Abstract
The development of monoclonal antibodies to treat disease caused by filoviruses, particularly Ebola virus, has risen steeply in recent years thanks to several key studies demonstrating their remarkable therapeutic potential. The increased drive to develop new and better monoclonal antibodies has necessarily seen an increase in animal model efficacy testing, which is critical to the pre-clinical development of any novel countermeasure. Primary and secondary efficacy testing against filoviruses typically makes use of one or more rodent models (mice, guinea pigs, and occasionally hamsters) or the more recently described ferret model, although the exact choice of model depends on the specific filovirus being evaluated. Indeed, no single small animal model exists for all filoviruses, and the use of any given model must consider the nature of that model as well as the nature of the therapeutic and the experimental objectives. Confirmatory evaluation, on the other hand, is performed in nonhuman primates (rhesus or cynomolgus macaques) regardless of the filovirus. In light of the number of different animal models that are currently used in monoclonal antibody efficacy testing, we sought to better understand how these efficacy tests are being performed by numerous different laboratories around the world. To this end, we review the animal models that are being used for antibody efficacy testing against filoviruses, and we highlight the challenge doses and routes of infection that are used. We also describe the various antibody treatment regimens, including antibody dose, route, and schedule of administration, that are used in these model systems. We do not identify any single best model or treatment regimen, and we do not advocate for field-wide protocol standardization. Instead, we hope to provide a comprehensive resource that will facilitate and enhance the continued pre-clinical development of novel monoclonal antibody therapeutics.
Collapse
Affiliation(s)
- Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
89
|
Rattanapisit K, Srifa S, Kaewpungsup P, Pavasant P, Phoolcharoen W. Plant-produced recombinant Osteopontin-Fc fusion protein enhanced osteogenesis. ACTA ACUST UNITED AC 2019; 21:e00312. [PMID: 30847284 PMCID: PMC6389792 DOI: 10.1016/j.btre.2019.e00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/27/2023]
Abstract
Osteopontin (OPN) plays an important role in the bone regeneration process. The plant-produced OPN-Fc increases the protein expression level and facilitates the purification of the recombinant protein. The plant-produced OPN-Fc can stimulate the expression of osteogenic related genes and the calcium deposition in hPDL cells. The plant-produced OPN-Fc has potential application in tissue engineering in the future.
Osteopontin (OPN) plays an important role in the bone regeneration process. Previous investigation showed that recombinant human OPN was able to express in Nicotiana benthamiana leaves and induced the osteogenic related genes. Nevertheless, the purification of OPN from plant proteins with Ni affinity chromatography was still not effective enough. To improve the quality of protein expression and purification in plants, we constructed an Fc-based form of OPN. The complete OPN protein was fused to the human IgG1 Fc domain. Here, we showed that the plant-produced OPN-Fc increases the protein expression level and facilitates the purification of the recombinant protein. Our result showed that the plant-produced OPN-Fc can stimulate the expression of osteogenic related genes such as DMP1, OSX, and Wnt3a and also the calcium deposition in hPDL cells. These findings suggest that the plant-produced OPN-Fc has potential application in tissue engineering in the future.
Collapse
Affiliation(s)
- Kaewta Rattanapisit
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Suchada Srifa
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Pornjira Kaewpungsup
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prasit Pavasant
- Research Unit of Mineralized Tissue, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.,Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand.,Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
90
|
Gunn BM, Yu WH, Karim MM, Brannan JM, Herbert AS, Wec AZ, Halfmann PJ, Fusco ML, Schendel SL, Gangavarapu K, Krause T, Qiu X, He S, Das J, Suscovich TJ, Lai J, Chandran K, Zeitlin L, Crowe JE, Lauffenburger D, Kawaoka Y, Kobinger GP, Andersen KG, Dye JM, Saphire EO, Alter G. A Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola Virus. Cell Host Microbe 2019; 24:221-233.e5. [PMID: 30092199 DOI: 10.1016/j.chom.2018.07.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022]
Abstract
The recent Ebola virus (EBOV) epidemic highlighted the need for effective vaccines and therapeutics to limit and prevent outbreaks. Host antibodies against EBOV are critical for controlling disease, and recombinant monoclonal antibodies (mAbs) can protect from infection. However, antibodies mediate an array of antiviral functions including neutralization as well as engagement of Fc-domain receptors on immune cells, resulting in phagocytosis or NK cell-mediated killing of infected cells. Thus, to understand the antibody features mediating EBOV protection, we examined specific Fc features associated with protection using a library of EBOV-specific mAbs. Neutralization was strongly associated with therapeutic protection against EBOV. However, several neutralizing mAbs failed to protect, while several non-neutralizing or weakly neutralizing mAbs could protect. Antibody-mediated effector functions, including phagocytosis and NK cell activation, were associated with protection, particularly for antibodies with moderate neutralizing activity. This framework identifies functional correlates that can inform therapeutic and vaccine design strategies against EBOV and other pathogens.
Collapse
Affiliation(s)
- Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Wen-Han Yu
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcus M Karim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jennifer M Brannan
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Andrew S Herbert
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Peter J Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | - Marnie L Fusco
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | - Karthik Gangavarapu
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA
| | - Tyler Krause
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiangguo Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Shinhua He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Jishnu Das
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Todd J Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jonathan Lai
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Larry Zeitlin
- Mapp Biopharmaceutical, Inc., San Diego, CA 92121, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, Influenza Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | - Gary P Kobinger
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Université Laval Quebec, Québec, QC G1V 0A6, Canada
| | - Kristian G Andersen
- Department of Immunology and Microbial Science, Scripps Translational Science Institute, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John M Dye
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, The Skaggs Institute for Chemical Biology, La Jolla, CA 92037, USA.
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
91
|
Jansing J, Sack M, Augustine SM, Fischer R, Bortesi L. CRISPR/Cas9-mediated knockout of six glycosyltransferase genes in Nicotiana benthamiana for the production of recombinant proteins lacking β-1,2-xylose and core α-1,3-fucose. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:350-361. [PMID: 29969180 PMCID: PMC6335070 DOI: 10.1111/pbi.12981] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 05/19/2023]
Abstract
Plants offer fast, flexible and easily scalable alternative platforms for the production of pharmaceutical proteins, but differences between plant and mammalian N-linked glycans, including the presence of β-1,2-xylose and core α-1,3-fucose residues in plants, can affect the activity, potency and immunogenicity of plant-derived proteins. Nicotiana benthamiana is widely used for the transient expression of recombinant proteins so it is desirable to modify the endogenous N-glycosylation machinery to allow the synthesis of complex N-glycans lacking β-1,2-xylose and core α-1,3-fucose. Here, we used multiplex CRISPR/Cas9 genome editing to generate N. benthamiana production lines deficient in plant-specific α-1,3-fucosyltransferase and β-1,2-xylosyltransferase activity, reflecting the mutation of six different genes. We confirmed the functional gene knockouts by Sanger sequencing and mass spectrometry-based N-glycan analysis of endogenous proteins and the recombinant monoclonal antibody 2G12. Furthermore, we compared the CD64-binding affinity of 2G12 glycovariants produced in wild-type N. benthamiana, the newly generated FX-KO line, and Chinese hamster ovary (CHO) cells, confirming that the glyco-engineered antibody performed as well as its CHO-produced counterpart.
Collapse
Affiliation(s)
- Julia Jansing
- Department for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Markus Sack
- Department for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | | | - Rainer Fischer
- Department for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
- Present address:
Indiana Biosciences Research InstituteIndianapolisINUSA
- Present address:
Aachen‐Maastricht Institute for Biobased MaterialsMaastricht UniversityGeleenThe Netherlands
| | - Luisa Bortesi
- Department for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
- Present address:
Aachen‐Maastricht Institute for Biobased MaterialsMaastricht UniversityGeleenThe Netherlands
| |
Collapse
|
92
|
Sizikova TE, Borisevich GV, Shcheblyakov DV, Burmistrova DA, Lebedev VN. [The use of monoclonal antibodies for the treatment of Ebola virus disease.]. Vopr Virusol 2019; 63:245-249. [PMID: 30641019 DOI: 10.18821/0507-4088-2018-63-6-245-249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 11/17/2022]
Abstract
Some drugs candidates for treatment of Ebola virus disease (EVD), have been studied, monoclonal antibody (mAb) cocktails have shown great potential as EVD therapeutics. The advantages of mAb therapy include low toxicity, high specifcity and versatility, with the range of biological effects being dependent upon the Fc region. Functions of mAbs include pathogen opsonisation, complement activation, antibody-dependent cell cytotoxicity and virus neutralization characteristics. The most known mAb cocktail, used as therapeutic, is ZMapр, manufactured by «Leaf Biopharmaceutical» from 2004. The elaborated mAb cocktails, structures and properties s of mAbs, the protective characteristics of mAbs and development of new pan-ebolavirus mAbs are reviewed in this article.
Collapse
Affiliation(s)
- T E Sizikova
- 48 Central Scientifc Research Institute, Sergiev Posad, 141306, Russian Federation
| | - G V Borisevich
- 48 Central Scientifc Research Institute, Sergiev Posad, 141306, Russian Federation
| | - D V Shcheblyakov
- National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - D A Burmistrova
- National Research Centre of Epidemiology and Microbiology named after honorary academician N.F. Gamaleya, Moscow, 123098, Russian Federation
| | - V N Lebedev
- 48 Central Scientifc Research Institute, Sergiev Posad, 141306, Russian Federation
| |
Collapse
|
93
|
Wec AZ, Bornholdt ZA, He S, Herbert AS, Goodwin E, Wirchnianski AS, Gunn BM, Zhang Z, Zhu W, Liu G, Abelson DM, Moyer CL, Jangra RK, James RM, Bakken RR, Bohorova N, Bohorov O, Kim DH, Pauly MH, Velasco J, Bortz RH, Whaley KJ, Goldstein T, Anthony SJ, Alter G, Walker LM, Dye JM, Zeitlin L, Qiu X, Chandran K. Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-Ebolavirus Protection. Cell Host Microbe 2019; 25:39-48.e5. [PMID: 30629917 PMCID: PMC6396299 DOI: 10.1016/j.chom.2018.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/28/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
Passive administration of monoclonal antibodies (mAbs) is a promising therapeutic approach for Ebola virus disease (EVD). However, all mAbs and mAb cocktails that have entered clinical development are specific for a single member of the Ebolavirus genus, Ebola virus (EBOV), and ineffective against outbreak-causing Bundibugyo virus (BDBV) and Sudan virus (SUDV). Here, we advance MBP134, a cocktail of two broadly neutralizing human mAbs, ADI-15878 from an EVD survivor and ADI-23774 from the same survivor but specificity-matured for SUDV GP binding affinity, as a candidate pan-ebolavirus therapeutic. MBP134 potently neutralized all ebolaviruses and demonstrated greater protective efficacy than ADI-15878 alone in EBOV-challenged guinea pigs. A second-generation cocktail, MBP134AF, engineered to effectively harness natural killer (NK) cells afforded additional improvement relative to its precursor in protective efficacy against EBOV and SUDV in guinea pigs. MBP134AF is an optimized mAb cocktail suitable for evaluation as a pan-ebolavirus therapeutic in nonhuman primates.
Collapse
MESH Headings
- Animal Welfare
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/isolation & purification
- Antibodies, Neutralizing/therapeutic use
- Antibodies, Viral/administration & dosage
- Antibodies, Viral/immunology
- Antibodies, Viral/therapeutic use
- Antiviral Agents
- Disease Models, Animal
- Ebolavirus/immunology
- Ebolavirus/pathogenicity
- Epitopes/immunology
- Female
- Filoviridae/immunology
- Guinea Pigs
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Hemorrhagic Fever, Ebola/virology
- Humans
- Immunotherapy
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Recombinant Proteins/immunology
- Treatment Outcome
Collapse
Affiliation(s)
- Anna Z Wec
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Andrew S Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Ariel S Wirchnianski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bronwyn M Gunn
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Zirui Zhang
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Wenjun Zhu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Guodong Liu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | | | | | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rebekah M James
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Russell R Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | | | - Do H Kim
- Mapp Biopharmaceutical, San Diego, CA 92121, USA
| | | | | | - Robert H Bortz
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tracey Goldstein
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Simon J Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - John M Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
94
|
Islam MA, Pillay TS. Pharmacoinformatics-based identification of chemically active molecules against Ebola virus. J Biomol Struct Dyn 2018; 37:4104-4119. [PMID: 30449258 DOI: 10.1080/07391102.2018.1544509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ebola is a dangerous virus transmitted by animals and humans and to date there is no curable agent for such a deadly infectious disease. In this study, pharmacoinformatics-based methods were adopted to find effective novel chemical entities against Ebola virus. A well predictive and statistical robust pharmacophore model was developed from known Ebola virus inhibitors collected from the literature. The model explained the significance of each of hydrogen bond acceptor and donor, and two hydrophobic regions for activity. The National Cancer Institute and Asinex (Antiviral library) databases were screened using the final validated pharmacophore model. Initial hits were further screened with a set of criteria and finally eight molecules from both databases were proposed as promising anti Ebola agents. Further molecular docking and molecular dynamics studies were carried out and it was found that the proposed molecules possessed capability to interact with amino residues of Ebola protein as well as retaining equilibrium of protein-ligand systems. Finally, the binding energies were calculated using molecular mechanics Poisson-Boltzmann surface area approach and all proposed molecules showed strong binding affinity towards the Ebola protein receptor. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Ataul Islam
- a Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria , South Africa.,b School of Health Sciences, University of Kwazulu-Natal, Westville Campus , Durban , South Africa
| | - Tahir S Pillay
- a Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria , South Africa.,c Division of Chemical Pathology, University of Cape Town , Cape Town , South Africa
| |
Collapse
|
95
|
Role of the Ebola membrane in the protection conferred by the three-mAb cocktail MIL77. Sci Rep 2018; 8:17628. [PMID: 30514891 PMCID: PMC6279787 DOI: 10.1038/s41598-018-35964-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022] Open
Abstract
MIL77, which has a higher manufacturing capacity than ZMapp, comprises MIL77-1, MIL77-2, and MIL77-3. The mechanisms by which these antibodies inhibit glycoprotein are unclear. Infection by viruses with lipid-bilayer envelopes occurs via the fusion of the viral membrane with the membrane of the target cell. Therefore, the interaction between the antibodies and the EBOV membrane is crucial. We examined the interactions between MIL77 and the viral membrane using SPR. MIL77-1 selectively binds to viral membranes, while MIL77-2 and MIL77-3 do not. MIL77-1’s ability to screen the more rigid domains of the membranes results in a locally increased concentration of the drug at the fusion site. Although MIL77-2 recognizes an epitope of GP, it is not necessary in the MIL77 cocktail. These results highlight the importance of EBOV membrane interactions in improving the efficiency of a neutralizing antibody. Furthermore, the viral membrane may be an important target of antibodies against EBOV.
Collapse
|
96
|
Cui Q, Cheng H, Xiong R, Zhang G, Du R, Anantpadma M, Davey RA, Rong L. Identification of Diaryl-Quinoline Compounds as Entry Inhibitors of Ebola Virus. Viruses 2018; 10:v10120678. [PMID: 30513600 PMCID: PMC6315506 DOI: 10.3390/v10120678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Ebola virus is the causative agent of Ebola virus disease in humans. The lethality of Ebola virus infection is about 50%, supporting the urgent need to develop anti-Ebola drugs. Glycoprotein (GP) is the only surface protein of the Ebola virus, which is functionally critical for the virus to attach and enter the host cells, and is a promising target for anti-Ebola virus drug development. In this study, using the recombinant HIV-1/Ebola pseudovirus platform we previously established, we evaluated a small molecule library containing various quinoline compounds for anti-Ebola virus entry inhibitors. Some of the quinoline compounds specifically inhibited the entry of the Ebola virus. Among them, compound SYL1712 was the most potent Ebola virus entry inhibitor with an IC50 of ~1 μM. The binding of SYL1712 to the vial glycoprotein was computationally modeled and was predicted to interact with specific residues of GP. We used the time of the addition assay to show that compound SYL1712 blocks Ebola GP-mediated entry. Finally, consistent with being an Ebola virus entry inhibitor, compound SYL1712 inhibited infectious Ebola virus replication in tissue culture under biosafety level 4 containment, with an IC50 of 2 μM. In conclusion, we identified several related molecules with a diaryl-quinoline scaffold as potential anti-EBOV entry inhibitors, which can be further optimized for anti-Ebola drug development.
Collapse
Affiliation(s)
- Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Rui Xiong
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, and UICentre, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Gang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Manu Anantpadma
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
- Department of Microbiology, Boston University, National Emerging Infectious Diseases Laboratories, 401P, 620 Albany Street, Boston, MA 02118, USA.
| | - Robert A Davey
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
- Department of Microbiology, Boston University, National Emerging Infectious Diseases Laboratories, 401P, 620 Albany Street, Boston, MA 02118, USA.
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
97
|
Cagigi A, Ploquin A, Niezold T, Zhou Y, Tsybovsky Y, Misasi J, Sullivan NJ. Vaccine-Mediated Induction of an Ebolavirus Cross-Species Antibody Binding to Conserved Epitopes on the Glycoprotein Heptad Repeat 2/Membrane-Proximal External Junction. J Infect Dis 2018; 218:S537-S544. [PMID: 30137549 PMCID: PMC6249595 DOI: 10.1093/infdis/jiy450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The membrane-proximal external regions (MPER) of the human immunodeficiency virus envelope glycoprotein (GP) generate broadly reactive antibody responses and are the focus of vaccine development efforts. The conservation of amino acids within filovirus GP heptad repeat region (HR)2/MPER suggests that it may also represent a target for a pan-filovirus vaccine. We immunized a cynomolgus macaque against Ebola virus (EBOV) using a deoxyribonucleic acid/adenovirus 5 prime/boost strategy, sequenced memory B-cell receptors, and tested the antibodies for functional activity against EBOV GP. Antibody ma-C10 bound to GP with an affinity of 48 nM and was capable of inducing antibody-dependent cellular cytotoxicity. Three-dimensional reconstruction of single-particle, negative-stained, electron microscopy showed that ma-C10 bound to the HR2/MPER, and enzyme-linked immunosorbent assay reveals it binds to residues 621-631. More importantly, ma-C10 was found to bind to the GP of the 3 most clinically relevant Ebolavirus species, suggesting that a cross-species immunogen strategy targeting the residues in this region may be a feasible approach for producing a pan-filovirus vaccine.
Collapse
Affiliation(s)
- Alberto Cagigi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Thomas Niezold
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yan Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Maryland
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Division of Infectious Diseases, Boston Children’s HospitalMassachusetts
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
98
|
Vaughan K, Xu X, Peters B, Sette A. Investigation of Outbreak-Specific Nonsynonymous Mutations on Ebolavirus GP in the Context of Known Immune Reactivity. J Immunol Res 2018; 2018:1846207. [PMID: 30581874 PMCID: PMC6276448 DOI: 10.1155/2018/1846207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/01/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022] Open
Abstract
The global response to the most recent EBOV outbreak has led to increased generation and availability of data, which can be globally analyzed to increase our understanding of immune responses to EBOV. We analyzed the published antibody epitope data to identify regions immunogenic for humans on the main GP antigenic target and determine sequence variance/nonsynonymous mutations between historical isolates and variants from the 2013-2016 outbreak. Approximately half of the GP sequence has been reported as targeted by antibody responses. Our results show an enrichment of nonsynonymous mutations (NSMs) within epitopic regions on GP (70%, p = 0.0133). Mapping NSMs to human epitope reactivity may be useful for future therapeutic and prophylaxis development as well as for our general understanding of immunity against EBOV.
Collapse
Affiliation(s)
- Kerrie Vaughan
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Xiaojun Xu
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
- University of California San Diego, Department of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
99
|
Fukuzawa N, Masuta C, Matsumura T. Rapid transient protein production by the coat protein-deficient cucumber mosaic virus vector: non-packaged CMV system, NoPaCS. PLANT CELL REPORTS 2018; 37:1513-1522. [PMID: 30039464 DOI: 10.1007/s00299-018-2322-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE We developed a non-packaged CMV system (NoPaCS) for CMV-agroinfection with a virus-inescapable transgenic plant platform, enabling rapid, high production of a large-sequence target protein. For rapidly producing high levels of a desirable protein, many plant virus vectors have been developed. However, there is always a concern that such recombinant viruses may escape into the environment. Especially for insect-transmissible viruses, certain measures must be taken. We here developed a new cucumber mosaic virus (CMV) RNA 3-based vector that is not transmitted by aphids because we deleted the coat protein (CP) gene responsible for aphid transmission and replaced it with a foreign gene. Transgenic Nicotiana benthamiana plants expressing CMV RNA 1 (CR1Tg) were found to be the most suitable platform for producing a recombinant protein using the CMV vector. By agroinfiltrating CR1Tg plants with the RNA 2 construct and the CMV vector harboring the green fluorescence protein (GFP) gene instead of the CP gene, we achieved a high yield of GFP (e.g., ~ 750 mg/kg FW) throughout the bacteria-infiltrated tissues at 2-3 days after infiltration. Furthermore, with this CMV-agroinfection system, a large gene such as the β-glucuronidase (GUS) gene can be expressed because the viral RNAs are not necessarily encapsidated for replication. The system is designated "non-packaged CMV system (NoPaCS)".
Collapse
Affiliation(s)
- Noriho Fukuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.
| |
Collapse
|
100
|
Saphire EO, Schendel SL, Gunn BM, Milligan JC, Alter G. Antibody-mediated protection against Ebola virus. Nat Immunol 2018; 19:1169-1178. [PMID: 30333617 DOI: 10.1038/s41590-018-0233-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/04/2018] [Indexed: 01/30/2023]
Abstract
Recent Ebola virus disease epidemics have highlighted the need for effective vaccines and therapeutics to prevent future outbreaks. Antibodies are clearly critical for control of this deadly disease; however, the specific mechanisms of action of protective antibodies have yet to be defined. In this Perspective we discuss the antibody features that correlate with in vivo protection during infection with Ebola virus, based on the results of a systematic and comprehensive study of antibodies directed against this virus. Although neutralization activity mediated by the Fab domains of the antibody is strongly correlated with protection, recruitment of immune effector functions by the Fc domain has also emerged as a complementary, and sometimes alternative, route to protection. For a subset of antibodies, Fc-mediated clearance and killing of infected cells seems to be the main driver of protection after exposure and mirrors observations in vaccination studies. Continued analysis of antibodies that achieve protection partially or wholly through Fc-mediated functions, the precise functions required, the intersection with specificity and the importance of these functions in different animal models is needed to identify and begin to capitalize on Fc-mediated protection in vaccines and therapeutics alike.
Collapse
Affiliation(s)
- Erica Ollmann Saphire
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA. .,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Sharon L Schendel
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Bronwyn M Gunn
- The Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Jacob C Milligan
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Galit Alter
- The Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|