51
|
Pharmacology of the Na v1.1 domain IV voltage sensor reveals coupling between inactivation gating processes. Proc Natl Acad Sci U S A 2017; 114:6836-6841. [PMID: 28607094 DOI: 10.1073/pnas.1621263114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Nav1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Nav) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Nav1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Nav channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Nav1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Nav1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Nav1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Nav1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Nav channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Nav1.1 function.
Collapse
|
52
|
Terragni B, Scalmani P, Franceschetti S, Cestèle S, Mantegazza M. Post-translational dysfunctions in channelopathies of the nervous system. Neuropharmacology 2017; 132:31-42. [PMID: 28571716 DOI: 10.1016/j.neuropharm.2017.05.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Abstract
Channelopathies comprise various diseases caused by defects of ion channels. Modifications of their biophysical properties are common and have been widely studied. However, ion channels are heterogeneous multi-molecular complexes that are extensively modulated and undergo a maturation process comprising numerous steps of structural modifications and intracellular trafficking. Perturbations of these processes can give rise to aberrant channels that cause pathologies. Here we review channelopathies of the nervous system associated with dysfunctions at the post-translational level (folding, trafficking, degradation, subcellular localization, interactions with associated proteins and structural post-translational modifications). We briefly outline the physiology of ion channels' maturation and discuss examples of defective mechanisms, focusing in particular on voltage-gated sodium channels, which are implicated in numerous neurological disorders. We also shortly introduce possible strategies to develop therapeutic approaches that target these processes. This article is part of the Special Issue entitled 'Channelopathies.'
Collapse
Affiliation(s)
- Benedetta Terragni
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Paolo Scalmani
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Silvana Franceschetti
- U.O. Neurophysiology and Diagnostic Epileptology, Foundation IRCCS Neurological Institute C. Besta, 20133 Milan, Italy
| | - Sandrine Cestèle
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
53
|
Wolff M, Johannesen KM, Hedrich UBS, Masnada S, Rubboli G, Gardella E, Lesca G, Ville D, Milh M, Villard L, Afenjar A, Chantot-Bastaraud S, Mignot C, Lardennois C, Nava C, Schwarz N, Gérard M, Perrin L, Doummar D, Auvin S, Miranda MJ, Hempel M, Brilstra E, Knoers N, Verbeek N, van Kempen M, Braun KP, Mancini G, Biskup S, Hörtnagel K, Döcker M, Bast T, Loddenkemper T, Wong-Kisiel L, Baumeister FM, Fazeli W, Striano P, Dilena R, Fontana E, Zara F, Kurlemann G, Klepper J, Thoene JG, Arndt DH, Deconinck N, Schmitt-Mechelke T, Maier O, Muhle H, Wical B, Finetti C, Brückner R, Pietz J, Golla G, Jillella D, Linnet KM, Charles P, Moog U, Õiglane-Shlik E, Mantovani JF, Park K, Deprez M, Lederer D, Mary S, Scalais E, Selim L, Van Coster R, Lagae L, Nikanorova M, Hjalgrim H, Korenke GC, Trivisano M, Specchio N, Ceulemans B, Dorn T, Helbig KL, Hardies K, Stamberger H, de Jonghe P, Weckhuysen S, Lemke JR, Krägeloh-Mann I, Helbig I, Kluger G, Lerche H, Møller RS. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017; 140:1316-1336. [DOI: 10.1093/brain/awx054] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/18/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Markus Wolff
- 1 Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
| | - Katrine M. Johannesen
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 3 Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Ulrike B. S. Hedrich
- 4 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Silvia Masnada
- 5 Department of Brain and Behavior, University of Pavia, Italy
| | - Guido Rubboli
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 6 University of Copenhagen, Copenhagen, Denmark
| | - Elena Gardella
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 3 Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Gaetan Lesca
- 7 Department of Genetics, Lyon University Hospital, Lyon, France
- 8 Claude Bernard Lyon I University, Lyon, France
- 9 Lyon Neuroscience Research Centre, CNRS UMRS5292, INSERM U1028, Lyon, France
| | - Dorothée Ville
- 10 Department of Pediatric Neurology and Reference Center for Rare Children Epilepsy and Tuberous Sclerosis, Hôpital Femme Mere Enfant, Centre Hospitalier Universitaire de Lyon, HCL, France
| | - Mathieu Milh
- 11 APHM Service de neurologie pédiatrique, Marseille, France
- 12 Aix Marseille Univ, Inserm, GMGF, UMR-S 910, Marseille, France
| | - Laurent Villard
- 12 Aix Marseille Univ, Inserm, GMGF, UMR-S 910, Marseille, France
| | - Alexandra Afenjar
- 13 AP-HP, Unité de Gènètique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire de l’Est Parisien, Paris, France
| | - Sandra Chantot-Bastaraud
- 13 AP-HP, Unité de Gènètique Clinique, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire de l’Est Parisien, Paris, France
| | - Cyril Mignot
- 14 AP-HP, Département de Génétique; Centre de Référence Défiences Intellectuelles de Causes Rares; Groupe de Recherche Clinique UPMC “Déficiences Intellectuelles et Autisme” GH Pitié-Salpêtrère, Paris, France
| | - Caroline Lardennois
- 15 Service de Pediatrie neonatale et Réanimation - Neuropediatrie, 76000 Rouen, France
| | - Caroline Nava
- 16 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM, France
- 17 Department of Genetics, Pitié-Salpêtrière Hospital, AP-HP, F-75013 Paris, France
| | - Niklas Schwarz
- 4 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | - Laurence Perrin
- 19 Department of Genetics, Robert Debré Hospital, AP-HP, Paris, France
| | - Diane Doummar
- 20 AP-HP, Service de Neuropédiatrie, Hôpital Trousseau, Paris, France
| | - Stéphane Auvin
- 21 Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
- 22 AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - Maria J. Miranda
- 23 Department of Pediatrics, Herlev University Hospital, Herlev, Denmark
| | - Maja Hempel
- 24 Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Brilstra
- 25 Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nine Knoers
- 25 Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nienke Verbeek
- 25 Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjan van Kempen
- 25 Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kees P. Braun
- 26 Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands
| | - Grazia Mancini
- 27 Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Saskia Biskup
- 28 CeGaT - Center for Genomics and Transcriptomics, Tübingen, Germany
| | | | - Miriam Döcker
- 28 CeGaT - Center for Genomics and Transcriptomics, Tübingen, Germany
| | | | - Tobias Loddenkemper
- 30 Division of Epilepsy and Clinical Neurophysiology, Boston Children’s Hospital, Harvard Medical School, Boston MA, USA
| | - Lily Wong-Kisiel
- 31 Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester MN, USA
| | | | - Walid Fazeli
- 33 Pediatric Neurology, University Hospital Cologne, Germany
| | - Pasquale Striano
- 34 Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Child Health, University of Genoa ‘G. Gaslini’ Institute, Genova, Italy
| | - Robertino Dilena
- 35 Servizio di Epilettologia e Neurofisiopatologia Pediatrica, UO Neurofisiopatologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elena Fontana
- 36 Centro di Diagnosi e Cura delle Epilessie Infantili, Azienda Ospedaliera -Policlinico Gianbattista Rossi, Verona, Italy
| | - Federico Zara
- 37 Laboratory of Neurogenetics and Neuroscience, Department of Neuroscience, “G. Gaslini” Institute, Genova, Italy
| | - Gerhard Kurlemann
- 38 Department of Pediatric Neurology, University Children’s Hospital, Münster, Germany
| | - Joerg Klepper
- 39 Children’s Hospital, Klinikum Aschaffenburg, Germany
| | - Jess G. Thoene
- 40 University of Michigan, Pediatric Genetics, Ann Arbor, MI USA
| | - Daniel H. Arndt
- 41 Division of Pediatric Neurology and Epilepsy – Beaumont Children’s Hospital, William Beaumont Oakland University School of Medicine, Royal Oak, Michigan, USA
| | - Nicolas Deconinck
- 42 Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas Schmitt-Mechelke
- 43 Children’s Hospital Lucerne, Luzerner Kantonsspital, Kinderspital Luzern, CH-6000 Luzern 16, Switzerland
| | - Oliver Maier
- 44 Department of child neurology, Children’s Hospital, St. Gallen, Switzerland
| | - Hiltrud Muhle
- 45 Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
| | - Beverly Wical
- 46 Gillette Children’s Specialty Healthcare, Saint Paul, MN, USA
| | - Claudio Finetti
- 47 Klinik für Kinder- und Jugendmedizin, Elisabeth-Krankenhaus, Essen, Germany
| | | | - Joachim Pietz
- 49 Pediatric Practice University Medical Center for Children and Adolescents, Angelika Lautenschläger Children’s Hospital, Heidelberg, Germany
| | - Günther Golla
- 50 Klinik für Kinder- und Jugendmedizin, Klinikum Lippe GmbH, Detmold, Germany
| | - Dinesh Jillella
- 51 Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Karen M. Linnet
- 52 Department of Pediatrics, Aarhus University hospital, Aarhus, Denmark
| | - Perrine Charles
- 53 Department of Genetics and Cytogenetics, Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière Charles-Foix, Paris, France
| | - Ute Moog
- 54 Institute of Genetics, University Hospital, Heidelberg, Germany
| | - Eve Õiglane-Shlik
- 55 Children’s Clinic, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - John F. Mantovani
- 56 Department of Pediatrics and Mercy Kids Autism Center, Mercy Children’s Hospital, St. Louis, Missouri, USA
| | - Kristen Park
- 57 Department of Pediatrics and Neurology, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Marie Deprez
- 58 Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Damien Lederer
- 58 Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Sandrine Mary
- 58 Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Emmanuel Scalais
- 59 Pediatric Neurology Unit, Pediatric Department, Centre Hospitalier de Luxembourg, Luxembourg
| | - Laila Selim
- 60 Department of Pediatrics, Pediatric Neurology and Neurometabolic Unit, Cairo University Children Hospital, Cairo, Egypt
| | - Rudy Van Coster
- 61 Department of Pediatrics, Division of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Lieven Lagae
- 62 Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| | | | - Helle Hjalgrim
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 3 Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - G. Christoph Korenke
- 63 Zentrum für Kinder- und Jugendmedizin (Elisabeth Kinderkrankenhaus), Klinik für Neuropädiatrie u. Angeborene, Stoffwechselerkrankungen, Oldenburg, Germany
| | - Marina Trivisano
- 64 Neurology Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- 64 Neurology Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Berten Ceulemans
- 65 Paediatric Neurology University Hospital and University of Antwerp, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Thomas Dorn
- 66 Swiss Epilepsy Center, Zurich, Switzerland
| | - Katherine L. Helbig
- 67 Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California, USA
| | - Katia Hardies
- 68 Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- 69 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Hannah Stamberger
- 68 Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- 69 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- 70 Division of Neurology, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Peter de Jonghe
- 68 Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- 69 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- 70 Division of Neurology, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Sarah Weckhuysen
- 68 Neurogenetics Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- 69 Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- 70 Division of Neurology, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Johannes R. Lemke
- 71 Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany
| | - Ingeborg Krägeloh-Mann
- 1 Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, Tübingen, Germany
| | - Ingo Helbig
- 45 Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts University, Kiel, Germany
- 72 Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Gerhard Kluger
- 73 Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen Klinik, Vogtareuth, Germany
- 74 PMU Salzburg, Austria
| | - Holger Lerche
- 4 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Rikke S Møller
- 2 The Danish Epilepsy Centre, Dianalund, Denmark
- 3 Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
54
|
Lamar T, Vanoye CG, Calhoun J, Wong JC, Dutton SBB, Jorge BS, Velinov M, Escayg A, Kearney JA. SCN3A deficiency associated with increased seizure susceptibility. Neurobiol Dis 2017; 102:38-48. [PMID: 28235671 DOI: 10.1016/j.nbd.2017.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/24/2017] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
Mutations in voltage-gated sodium channels expressed highly in the brain (SCN1A, SCN2A, SCN3A, and SCN8A) are responsible for an increasing number of epilepsy syndromes. In particular, mutations in the SCN3A gene, encoding the pore-forming Nav1.3 α subunit, have been identified in patients with focal epilepsy. Biophysical characterization of epilepsy-associated SCN3A variants suggests that both gain- and loss-of-function SCN3A mutations may lead to increased seizure susceptibility. In this report, we identified a novel SCN3A variant (L247P) by whole exome sequencing of a child with focal epilepsy, developmental delay, and autonomic nervous system dysfunction. Voltage clamp analysis showed no detectable sodium current in a heterologous expression system expressing the SCN3A-L247P variant. Furthermore, cell surface biotinylation demonstrated a reduction in the amount of SCN3A-L247P at the cell surface, suggesting the SCN3A-L247P variant is a trafficking-deficient mutant. To further explore the possible clinical consequences of reduced SCN3A activity, we investigated the effect of a hypomorphic Scn3a allele (Scn3aHyp) on seizure susceptibility and behavior using a gene trap mouse line. Heterozygous Scn3a mutant mice (Scn3a+/Hyp) did not exhibit spontaneous seizures nor were they susceptible to hyperthermia-induced seizures. However, they displayed increased susceptibility to electroconvulsive (6Hz) and chemiconvulsive (flurothyl and kainic acid) induced seizures. Scn3a+/Hyp mice also exhibited deficits in locomotor activity and motor learning. Taken together, these results provide evidence that loss-of-function of SCN3A caused by reduced protein expression or deficient trafficking to the plasma membrane may contribute to increased seizure susceptibility.
Collapse
Affiliation(s)
- Tyra Lamar
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey Calhoun
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | - Benjamin S Jorge
- Neuroscience Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Milen Velinov
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, USA.
| | - Jennifer A Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
55
|
Valkova C, Liebmann L, Krämer A, Hübner CA, Kaether C. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels. Sci Rep 2017; 7:41248. [PMID: 28117367 PMCID: PMC5259745 DOI: 10.1038/srep41248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023] Open
Abstract
Rer1 is a sorting receptor in the early secretory pathway that controls the assembly and the cell surface transport of selected multimeric membrane protein complexes. Mice with a Purkinje cell (PC) specific deletion of Rer1 showed normal polarization and differentiation of PCs and normal development of the cerebellum. However, PC-specific loss of Rer1 led to age-dependent motor deficits in beam walk, ladder climbing and gait. Analysis of brain sections revealed a specific degeneration of PCs in the anterior cerebellar lobe in old animals. Electrophysiological recordings demonstrated severe deficits in spontaneous action potential generation. Measurements of resurgent currents indicated decreased surface densities of voltage-gated sodium channels (Nav), but not changes in individual channels. Analysis of mice with a whole brain Rer1-deletion demonstrated a strong down-regulation of Nav1.6 and 1.1 in the absence of Rer1, whereas protein levels of the related Cav2.1 and of Kv3.3 and 7.2 channels were not affected. The data suggest that Rer1 controls the assembly and transport of Nav1.1 and 1.6, the principal sodium channels responsible for recurrent firing, in PCs.
Collapse
Affiliation(s)
- Christina Valkova
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| | - Lutz Liebmann
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Germany
| | - Andreas Krämer
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| | - Christian A Hübner
- Institut für Humangenetik, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Germany
| | - Christoph Kaether
- Leibniz Institut für Alternsforschung-Fritz Lipmann Institut, 07743 Jena, Germany
| |
Collapse
|
56
|
Huang Y, Xiao H, Qin X, Nong Y, Zou D, Wu Y. The genetic relationship between epilepsy and hemiplegic migraine. Neuropsychiatr Dis Treat 2017; 13:1175-1179. [PMID: 28479855 PMCID: PMC5411172 DOI: 10.2147/ndt.s132451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Epilepsy and migraine are common diseases of the nervous system and share genetic and pathophysiological mechanisms. Familial hemiplegic migraine is an autosomal dominant disease. It is often used as a model of migraine. Four genes often contain one or more mutations in both epilepsy and hemiplegic migraine patients (ie, CACNA1A, ATP1A2, SCN1A, and PRRT2). A better understanding of the shared genetics of epilepsy and hemiplegic migraine may reveal new strategic directions for research and treatment of both the disorders.
Collapse
Affiliation(s)
- Yiqing Huang
- Department of Neurology, Guigang City People's Hospital and the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Hai Xiao
- Department of Neurology, Guigang City People's Hospital and the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Xingyue Qin
- Department of Neurology, Guigang City People's Hospital and the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Yuan Nong
- Department of Neurology, Guigang City People's Hospital and the Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University and the First People's Hospital of Nanning, Nanning, People's Republic of China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
57
|
Sun Y, Paşca SP, Portmann T, Goold C, Worringer KA, Guan W, Chan KC, Gai H, Vogt D, Chen YJJ, Mao R, Chan K, Rubenstein JL, Madison DV, Hallmayer J, Froehlich-Santino WM, Bernstein JA, Dolmetsch RE. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. eLife 2016; 5. [PMID: 27458797 PMCID: PMC4961470 DOI: 10.7554/elife.13073] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/30/2016] [Indexed: 12/12/2022] Open
Abstract
Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing, which were rescued by a Nav1.1 transgene, whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons. DOI:http://dx.doi.org/10.7554/eLife.13073.001
Collapse
Affiliation(s)
- Yishan Sun
- Novartis Institutes for BioMedical Research, Cambridge, United States.,Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Sergiu P Paşca
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Thomas Portmann
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Carleton Goold
- Novartis Institutes for BioMedical Research, Cambridge, United States.,Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | | | - Wendy Guan
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Karen C Chan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Hui Gai
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Daniel Vogt
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States
| | - Ying-Jiun J Chen
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States
| | - Rong Mao
- Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| | - Karrie Chan
- Novartis Institutes for BioMedical Research, Cambridge, United States
| | - John Lr Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States
| | - Daniel V Madison
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Wendy M Froehlich-Santino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, United States
| | - Jonathan A Bernstein
- Department of Pediatrics, Division of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Ricardo E Dolmetsch
- Novartis Institutes for BioMedical Research, Cambridge, United States.,Department of Neurobiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
58
|
Terragni B, Scalmani P, Colombo E, Franceschetti S, Mantegazza M. Ranolazine vs phenytoin: greater effect of ranolazine on the transient Na(+) current than on the persistent Na(+) current in central neurons. Neuropharmacology 2016; 110:223-236. [PMID: 27450092 DOI: 10.1016/j.neuropharm.2016.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/08/2016] [Accepted: 06/26/2016] [Indexed: 12/13/2022]
Abstract
Voltage-gated Na(+) channels (NaV) are involved in pathologies and are important targets of drugs (NaV-blockers), e.g. some anti-epileptic drugs (AEDs). Besides the fast inactivating transient Na(+) current (INaT), they generate a slowly inactivating "persistent" current (INaP). Ranolazine, a NaV-blocker approved for treatment of angina pectoris, is considered a preferential inhibitor of INaP and has been proposed as a novel AED. Although it is thought that classic NaV-blockers used as AEDs target mainly INaT, they can also reduce INaP. It is important to disclose specific features of novel NaV-blockers, which could be necessary for their effect as AEDs in drug resistant patients. We have compared the action of ranolazine and of the classic AED phenytoin in transfected cells expressing the neuronal NaV1.1 Na(+) channel and in neurons of neocortical slices. Our results show that the relative block of INaT versus INaP of ranolazine and phenytoin is variable and depends on Na(+) current activation conditions. Strikingly, ranolazine blocks with less efficacy INaP and more efficacy INaT than phenytoin in conditions mimicking pathological states (i.e. high frequency firing and long lasting depolarizations). The effects are consistent with binding of ranolazine to both open/pre-open and inactivated states; larger INaT block at high stimulation frequencies is caused by the induction of a slow inactivated state. Thus, contrary than expected, ranolazine is not a better INaP blocker than phenytoin in central neurons, and phenytoin is not a better INaT blocker than ranolazine. Nevertheless, they show a complementary action and could differentially target specific pathological dysfunctions.
Collapse
Affiliation(s)
- Benedetta Terragni
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Paolo Scalmani
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Elisa Colombo
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Silvana Franceschetti
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University of the Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France; Inserm, 06560, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
59
|
Fan C, Wolking S, Lehmann-Horn F, Hedrich UB, Freilinger T, Lerche H, Borck G, Kubisch C, Jurkat-Rott K. Early-onset familial hemiplegic migraine due to a novel SCN1A mutation. Cephalalgia 2016; 36:1238-1247. [PMID: 26763045 PMCID: PMC5105328 DOI: 10.1177/0333102415608360] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction Familial hemiplegic migraine (FHM) is a rare autosomal dominant subtype of migraine with aura. The FHM3 subtype is caused by mutations in SCN1A, which is also the most frequent epilepsy gene encoding the voltage-gated Na+ channel NaV1.1. The aim of this study was to explore the clinical, genetic and pathogenetic features of a pure FHM3 family. Methods A three-generation family was enrolled in this study for genetic testing and assessment of clinical features. Whole cell patch-clamp was performed to determine the functions of identified mutant NaV1.1 channels, which were transiently expressed in human tsA201 cells together with β1 and β2 subunits. Results and conclusions We identified a novel SCN1A (p.Leu1624Pro) mutation in a pure FHM family with notably early-onset attacks at mean age of 7. L1624P locates in S3 of domain IV, the same domain as two of four known pure FHM3 mutations. Compared to WT channels, L1624P displayed an increased threshold-near persistent current in addition to other gain-of-function features such as: a slowing of fast inactivation, a positive shift in steady-state inactivation, a faster recovery and higher channel availability during repetitive stimulation. Similar to the known FHM3 mutations, this novel mutation predicts hyperexcitability of GABAergic inhibitory neurons.
Collapse
Affiliation(s)
- Chunxiang Fan
- 1 Division of Neurophysiology, Ulm University, Germany
| | - Stefan Wolking
- 2 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | | | - Ulrike Bs Hedrich
- 2 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Tobias Freilinger
- 2 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Holger Lerche
- 2 Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Guntram Borck
- 3 Institute of Human Genetics, Ulm University, Germany
| | - Christian Kubisch
- 4 Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Germany
| | | |
Collapse
|
60
|
Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 2016; 534:494-9. [PMID: 27281198 PMCID: PMC4919188 DOI: 10.1038/nature17976] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/06/2016] [Indexed: 01/19/2023]
Abstract
Voltage-gated sodium (Nav) channels initiate action potentials in most neurons, including primary afferent nerve fibres of the pain pathway. Local anaesthetics block pain through non-specific actions at all Nav channels, but the discovery of selective modulators would facilitate the analysis of individual subtypes of these channels and their contributions to chemical, mechanical, or thermal pain. Here we identify and characterize spider (Heteroscodra maculata) toxins that selectively activate the Nav1.1 subtype, the role of which in nociception and pain has not been elucidated. We use these probes to show that Nav1.1-expressing fibres are modality-specific nociceptors: their activation elicits robust pain behaviours without neurogenic inflammation and produces profound hypersensitivity to mechanical, but not thermal, stimuli. In the gut, high-threshold mechanosensitive fibres also express Nav1.1 and show enhanced toxin sensitivity in a mouse model of irritable bowel syndrome. Together, these findings establish an unexpected role for Nav1.1 channels in regulating the excitability of sensory nerve fibres that mediate mechanical pain.
Collapse
|
61
|
Patel RR, Barbosa C, Brustovetsky T, Brustovetsky N, Cummins TR. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain 2016; 139:2164-81. [PMID: 27267376 DOI: 10.1093/brain/aww129] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 04/15/2016] [Indexed: 11/12/2022] Open
Abstract
Mutations in brain isoforms of voltage-gated sodium channels have been identified in patients with distinct epileptic phenotypes. Clinically, these patients often do not respond well to classic anti-epileptics and many remain refractory to treatment. Exogenous as well as endogenous cannabinoids have been shown to target voltage-gated sodium channels and cannabidiol has recently received attention for its potential efficacy in the treatment of childhood epilepsies. In this study, we further investigated the ability of cannabinoids to modulate sodium currents from wild-type and epilepsy-associated mutant voltage-gated sodium channels. We first determined the biophysical consequences of epilepsy-associated missense mutations in both Nav1.1 (arginine 1648 to histidine and asparagine 1788 to lysine) and Nav1.6 (asparagine 1768 to aspartic acid and leucine 1331 to valine) by obtaining whole-cell patch clamp recordings in human embryonic kidney 293T cells with 200 μM Navβ4 peptide in the pipette solution to induce resurgent sodium currents. Resurgent sodium current is an atypical near threshold current predicted to increase neuronal excitability and has been implicated in multiple disorders of excitability. We found that both mutations in Nav1.6 dramatically increased resurgent currents while mutations in Nav1.1 did not. We then examined the effects of anandamide and cannabidiol on peak transient and resurgent currents from wild-type and mutant channels. Interestingly, we found that cannabidiol can preferentially target resurgent sodium currents over peak transient currents generated by wild-type Nav1.6 as well as the aberrant resurgent and persistent current generated by Nav1.6 mutant channels. To further validate our findings, we examined the effects of cannabidiol on endogenous sodium currents from striatal neurons, and similarly we found an inhibition of resurgent and persistent current by cannabidiol. Moreover, current clamp recordings show that cannabidiol reduces overall action potential firing of striatal neurons. These findings suggest that cannabidiol could be exerting its anticonvulsant effects, at least in part, through its actions on voltage-gated sodium channels, and resurgent current may be a promising therapeutic target for the treatment of epilepsy syndromes.
Collapse
Affiliation(s)
- Reesha R Patel
- 1 Program in Medical Neuroscience, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202, USA 2 Paul and Carole Stark Neurosciences Research Institute, 320 West 15th St, Indianapolis, IN, 46202, USA
| | - Cindy Barbosa
- 3 Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Tatiana Brustovetsky
- 3 Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Nickolay Brustovetsky
- 1 Program in Medical Neuroscience, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202, USA 2 Paul and Carole Stark Neurosciences Research Institute, 320 West 15th St, Indianapolis, IN, 46202, USA 3 Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| | - Theodore R Cummins
- 1 Program in Medical Neuroscience, Neuroscience Research Building, 320 West 15th St, Indianapolis, IN, 46202, USA 2 Paul and Carole Stark Neurosciences Research Institute, 320 West 15th St, Indianapolis, IN, 46202, USA 3 Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, 46202, USA
| |
Collapse
|
62
|
Imbrici P, Liantonio A, Camerino GM, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy JF, Conte D. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front Pharmacol 2016; 7:121. [PMID: 27242528 PMCID: PMC4861771 DOI: 10.3389/fphar.2016.00121] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Giulia M Camerino
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Michela De Bellis
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Claudia Camerino
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro" Bari, Italy
| | - Antonietta Mele
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Arcangela Giustino
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Sabata Pierno
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Domenico Tricarico
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro" Bari, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy
| |
Collapse
|
63
|
Chen SP, Tolner EA, Eikermann-Haerter K. Animal models of monogenic migraine. Cephalalgia 2016; 36:704-21. [PMID: 27154999 DOI: 10.1177/0333102416645933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/01/2016] [Indexed: 01/18/2023]
Abstract
Migraine is a highly prevalent and disabling neurological disorder with a strong genetic component. Rare monogenic forms of migraine, or syndromes in which migraine frequently occurs, help scientists to unravel pathogenetic mechanisms of migraine and its comorbidities. Transgenic mouse models for rare monogenic mutations causing familial hemiplegic migraine (FHM), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and familial advanced sleep-phase syndrome (FASPS), have been created. Here, we review the current state of research using these mutant mice. We also discuss how currently available experimental approaches, including epigenetic studies, biomolecular analysis and optogenetic technologies, can be used for characterization of migraine genes to further unravel the functional and molecular pathways involved in migraine.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan Faculty of Medicine, National Yang-Ming University School of Medicine, Taiwan Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Else A Tolner
- Departments of Human Genetics and Neurology, Leiden University Medical Centre, the Netherlands
| | - Katharina Eikermann-Haerter
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
64
|
Abstract
Migraine is a common multifactorial episodic brain disorder with strong genetic basis. Monogenic subtypes include rare familial hemiplegic migraine, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, familial advanced sleep-phase syndrome (FASPS), and retinal vasculopathy with cerebral leukodystrophy. Functional studies of disease-causing mutations in cellular and/or transgenic models revealed enhanced (glutamatergic) neurotransmission and abnormal vascular function as key migraine mechanisms. Common forms of migraine (both with and without an aura), instead, are thought to have a polygenic makeup. Genome-wide association studies have already identified over a dozen genes involved in neuronal and vascular mechanisms. Here, we review the current state of molecular genetic research in migraine, also with respect to functional and pathway analyses. We will also discuss how novel experimental approaches for the identification and functional characterization of migraine genes, such as next-generation sequencing, induced pluripotent stem cell, and optogenetic technologies will further our understanding of the molecular pathways involved in migraine pathogenesis.
Collapse
|
65
|
Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Manocchio L, Medoro A, Taglialatela M. Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels. Front Cell Neurosci 2015; 9:259. [PMID: 26236192 PMCID: PMC4502356 DOI: 10.3389/fncel.2015.00259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.
Collapse
Affiliation(s)
- Francesco Miceli
- Department of Neuroscience, University of Naples Federico II Naples, Italy
| | | | - Paolo Ambrosino
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Michela De Maria
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Laura Manocchio
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples Federico II Naples, Italy ; Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| |
Collapse
|
66
|
de Lera Ruiz M, Kraus RL. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J Med Chem 2015; 58:7093-118. [PMID: 25927480 DOI: 10.1021/jm501981g] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tremendous therapeutic potential of voltage-gated sodium channels (Na(v)s) has been the subject of many studies in the past and is of intense interest today. Na(v)1.7 channels in particular have received much attention recently because of strong genetic validation of their involvement in nociception. Here we summarize the current status of research in the Na(v) field and present the most relevant recent developments with respect to the molecular structure, general physiology, and pharmacology of distinct Na(v) channel subtypes. We discuss Na(v) channel ligands such as small molecules, toxins isolated from animal venoms, and the recently identified Na(v)1.7-selective antibody. Furthermore, we review eight characterized ligand binding sites on the Na(v) channel α subunit. Finally, we examine possible therapeutic applications of Na(v) ligands and provide an update on current clinical studies.
Collapse
Affiliation(s)
- Manuel de Lera Ruiz
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| | - Richard L Kraus
- Merck Research Laboratories , 770 Sumneytown Pike, West Point, Pennsylvania 19486, United States
| |
Collapse
|
67
|
Blanchard MG, Willemsen MH, Walker JB, Dib-Hajj SD, Waxman SG, Jongmans MCJ, Kleefstra T, van de Warrenburg BP, Praamstra P, Nicolai J, Yntema HG, Bindels RJM, Meisler MH, Kamsteeg EJ. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J Med Genet 2015; 52:330-7. [PMID: 25725044 PMCID: PMC4413743 DOI: 10.1136/jmedgenet-2014-102813] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 02/05/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Mutations of SCN8A encoding the neuronal voltage-gated sodium channel NaV1.6 are associated with early-infantile epileptic encephalopathy type 13 (EIEE13) and intellectual disability. Using clinical exome sequencing, we have detected three novel de novo SCN8A mutations in patients with intellectual disabilities, and variable clinical features including seizures in two patients. To determine the causality of these SCN8A mutations in the disease of those three patients, we aimed to study the (dys)function of the mutant sodium channels. METHODS The functional consequences of the three SCN8A mutations were assessed using electrophysiological analyses in transfected cells. Genotype-phenotype correlations of these and other cases were related to the functional analyses. RESULTS The first mutant displayed a 10 mV hyperpolarising shift in voltage dependence of activation (gain of function), the second did not form functional channels (loss of function), while the third mutation was functionally indistinguishable from the wildtype channel. CONCLUSIONS Comparison of the clinical features of these patients with those in the literature suggests that gain-of-function mutations are associated with severe EIEE, while heterozygous loss-of-function mutations cause intellectual disability with or without seizures. These data demonstrate that functional analysis of missense mutations detected by clinical exome sequencing, both inherited and de novo, is valuable for clinical interpretation in the age of massive parallel sequencing.
Collapse
Affiliation(s)
- Maxime G Blanchard
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jaclyn B Walker
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sulayman D Dib-Hajj
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, Connecticut, USA The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Stephen G Waxman
- The Center for Neuroscience & Regeneration Research, Yale School of Medicine, New Haven, Connecticut, USA The Rehabilitation Research Center, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Marjolijn C J Jongmans
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Praamstra
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Nicolai
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands Epilepsy Center Kempenhaeghe, Heeze, The Netherlands
| | - Helger G Yntema
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
68
|
Bechi G, Rusconi R, Cestèle S, Striano P, Franceschetti S, Mantegazza M. Rescuable folding defective NaV1.1 (SCN1A) mutants in epilepsy: properties, occurrence, and novel rescuing strategy with peptides targeted to the endoplasmic reticulum. Neurobiol Dis 2015; 75:100-14. [PMID: 25576396 DOI: 10.1016/j.nbd.2014.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 12/17/2022] Open
Abstract
Mutations of the voltage gated Na(+) channel Na(V)1.1 (SCN1A) are important causes of different genetic epilepsies and can also cause familial hemiplegic migraine (FHM-III). In previous studies, some rescuable epileptogenic folding defective mutants located in domain IV of Na(V)1.1 have been identified, showing partial loss of function also with maximal rescue. Variable rescue may be one of the causes of phenotypic variability, and rescue might be exploited for therapeutic approaches. Recently, we have identified a folding defective FHM-III Na(V)1.1 mutant that showed overall gain of function when rescued, consistent with a differential pathomechanism. Here, we have evaluated functional properties and cell surface expression of six Na(V)1.1 epileptogenic missense mutations in different rescuing conditions, including a novel one that we have developed expressing a selective sodium channel toxin (CsEI) targeted to the endoplasmic reticulum (ER). All the mutants showed loss of function and reduced cell surface expression, consistently with possibility of rescue. Four of them were rescuable by incubation at low temperature and interactions with different co-expressed proteins or a pharmacological chaperone (phenytoin). Notably, CsEI was able to rescue four mutants. Thus, Na(V)1.1 folding defective mutants can be relatively common and mutations inducing rescuable folding defects are spread in all Na(V)1.1 domains. Importantly, epileptogenic mutants showed overall loss of function even upon rescue, differently than FHM-III ones. The effectiveness of CsEI demonstrates that interactions in the ER are sufficient for inducing rescue, and provides a proof of concept for developing possible therapeutic approaches that may overcome some limitations of pharmacological chaperones.
Collapse
Affiliation(s)
- Giulia Bechi
- Department of Neurophysiopathology, Epilepsy Center, C. Besta Foundation Neurological Institute, 20133 Milano, Italy
| | - Raffaella Rusconi
- Institute of Molecular and Cellular Pharmacology (IPMC), LabEx ICST, CNRS UMR7275 and University of Nice-Sophia Antipolis, 06560 Valbonne, France
| | - Sandrine Cestèle
- Institute of Molecular and Cellular Pharmacology (IPMC), LabEx ICST, CNRS UMR7275 and University of Nice-Sophia Antipolis, 06560 Valbonne, France
| | - Pasquale Striano
- Pediatric Neurology and Neuromuscular Diseases Unit, Department of Neurosciences, Institute G. Gaslini, University of Genova, Genova, Italy
| | - Silvana Franceschetti
- Department of Neurophysiopathology, Epilepsy Center, C. Besta Foundation Neurological Institute, 20133 Milano, Italy
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), LabEx ICST, CNRS UMR7275 and University of Nice-Sophia Antipolis, 06560 Valbonne, France.
| |
Collapse
|
69
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
70
|
Schlebach JP, Sanders CR. Influence of Pathogenic Mutations on the Energetics of Translocon-Mediated Bilayer Integration of Transmembrane Helices. J Membr Biol 2014; 248:371-81. [PMID: 25192979 DOI: 10.1007/s00232-014-9726-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/26/2014] [Indexed: 11/27/2022]
Abstract
Aberrant protein folding and assembly contribute to a number of diseases, and efforts to rationalize how pathogenic mutations cause this phenomenon represent an important imperative in biochemical research. However, for α-helical membrane proteins, this task is complicated by the fact that membrane proteins require intricate machinery to achieve structural and functional maturity under cellular conditions. In this work, we utilized the ΔG predictor algorithm ( www.dgpred.cbr.su.se ) to survey 470 known pathogenic mutations occurring in five misfolding-prone α-helical membrane proteins for their predicted effects on the translocon-mediated membrane integration of transmembrane helices, a critical step in biosynthesis and folding of nascent membrane proteins. The results suggest that about 10 % of these mutations are likely to have adverse effects on the topogenesis of nascent membrane proteins. These results suggest that the misfolding of a modest but nonetheless significant subset of pathogenic variants may begin at the translocon. Potential implications for therapeutic design and personalized medicine are discussed.
Collapse
Affiliation(s)
- Jonathan P Schlebach
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | | |
Collapse
|
71
|
de Kovel CGF, Meisler MH, Brilstra EH, van Berkestijn FMC, van 't Slot R, van Lieshout S, Nijman IJ, O'Brien JE, Hammer MF, Estacion M, Waxman SG, Dib-Hajj SD, Koeleman BPC. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res 2014; 108:1511-8. [PMID: 25239001 DOI: 10.1016/j.eplepsyres.2014.08.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/19/2014] [Accepted: 08/26/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Recently, de novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathies (EIEE13). Functional studies on the first described case demonstrated gain-of-function effects of the mutation. We describe a novel de novo mutation of SCN8A in a patient with epileptic encephalopathy, and functional characterization of the mutant protein. DESIGN Whole exome sequencing was used to discover the variant. We generated a mutant cDNA, transfected HEK293 cells, and performed Western blotting to assess protein stability. To study channel functional properties, patch-clamp experiments were carried out in transfected neuronal ND7/23 cells. RESULTS The proband exhibited seizure onset at 6 months of age, diffuse brain atrophy, and more profound developmental impairment than the original case. The mutation p.Arg233Gly in the voltage sensing transmembrane segment D1S4 was present in the proband and absent in both parents. This mutation results in a temperature-sensitive reduction in protein expression as well as reduced sodium current amplitude and density and a relative increased response to a slow ramp stimulus, though this did not result in an absolute increased current at physiological temperatures. CONCLUSION The new de novo SCN8A mutation is clearly deleterious, resulting in an unstable protein with reduced channel activity. This differs from the gain-of-function attributes of the first SCN8A mutation in epileptic encephalopathy, pointing to heterogeneity of mechanisms. Since Nav1.6 is expressed in both excitatory and inhibitory neurons, a differential effect of a loss-of-function of Nav1.6 Arg223Gly on inhibitory interneurons may underlie the epilepsy phenotype in this patient.
Collapse
Affiliation(s)
- Carolien G F de Kovel
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Eva H Brilstra
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ruben van 't Slot
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stef van Lieshout
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isaac J Nijman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Janelle E O'Brien
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USA
| | - Michael F Hammer
- Arizona Research Laboratories, Division of Biotechnology, University of Arizona, Tucson, AZ 85721, USA
| | - Mark Estacion
- Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT 06510, USA; Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Bobby P C Koeleman
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
72
|
Huang X, Hernandez CC, Hu N, Macdonald RL. Three epilepsy-associated GABRG2 missense mutations at the γ+/β- interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis 2014; 68:167-79. [PMID: 24798517 PMCID: PMC4169075 DOI: 10.1016/j.nbd.2014.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 11/23/2022] Open
Abstract
We compared the effects of three missense mutations in the GABAA receptor γ2 subunit on GABAA receptor assembly, trafficking and function in HEK293T cells cotransfected with α1, β2, and wildtype or mutant γ2 subunits. The mutations R82Q and P83S were identified in families with genetic epilepsy with febrile seizures plus (GEFS+), and N79S was found in a single patient with generalized tonic-clonic seizures (GTCS). Although all three mutations were located in an N-terminal loop that contributes to the γ+/β- subunit-subunit interface, we found that each mutation impaired GABAA receptor assembly to a different extent. The γ2(R82Q) and γ2(P83S) subunits had reduced α1β2γ2 receptor surface expression due to impaired assembly into pentamers, endoplasmic reticulum (ER) retention and degradation. In contrast, γ2(N79S) subunits were efficiently assembled into GABAA receptors with only minimally altered receptor trafficking, suggesting that N79S was a rare or susceptibility variant rather than an epilepsy mutation. Increased structural variability at assembly motifs was predicted by R82Q and P83S, but not N79S, substitution, suggesting that R82Q and P83S substitutions were less tolerated. Membrane proteins with missense mutations that impair folding and assembly often can be "rescued" by decreased temperatures. We coexpressed wildtype or mutant γ2 subunits with α1 and β2 subunits and found increased surface and total levels of both wildtype and mutant γ2 subunits after decreasing the incubation temperature to 30°C for 24h, suggesting that lower temperatures increased GABAA receptor stability. Thus epilepsy-associated mutations N79S, R82Q and P83S disrupted GABAA receptor assembly to different extents, an effect that could be potentially rescued by facilitating protein folding and assembly.
Collapse
Affiliation(s)
- Xuan Huang
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ciria C Hernandez
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ningning Hu
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Robert L Macdonald
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| |
Collapse
|
73
|
Carlessi L, Poli EF, Bechi G, Mantegazza M, Pascucci B, Narciso L, Dogliotti E, Sala C, Verpelli C, Lecis D, Delia D. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. Cell Death Dis 2014; 5:e1342. [PMID: 25032865 PMCID: PMC4123100 DOI: 10.1038/cddis.2014.310] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/30/2014] [Accepted: 06/16/2014] [Indexed: 11/21/2022]
Abstract
Loss of ataxia telangiectasia mutated (ATM) kinase, a key factor of the DNA damage response (DDR) pathway, causes the cancer predisposing and neurodegenerative syndrome ataxia-telangiectasia (A-T). To investigate the mechanisms of neurodegeneration, we have reprogrammed fibroblasts from ATM-null A-T patients and normal controls to pluripotency (human-induced pluripotent stem cells), and derived from these neural precursor cells able to terminally differentiate into post-mitotic neurons positive to >90% for β-tubulin III+/microtubule-associated protein 2+. We show that A-T neurons display similar voltage-gated potassium and sodium currents and discharges of action potentials as control neurons, but defective expression of the maturation and synaptic markers SCG10, SYP and PSD95 (postsynaptic density protein 95). A-T neurons exhibited defective repair of DNA double-strand breaks (DSBs) and repressed phosphorylation of ATM substrates (e.g., γH2AX, Smc1-S966, Kap1-S824, Chk2-T68, p53-S15), but normal repair of single-strand breaks, and normal short- and long-patch base excision repair activities. Moreover, A-T neurons were resistant to apoptosis induced by the genotoxic agents camptothecin and trabectedin, but as sensitive as controls to the oxidative agents. Most notably, A-T neurons exhibited abnormal accumulation of topoisomerase 1-DNA covalent complexes (Top1-ccs). These findings reveal that ATM deficiency impairs neuronal maturation, suppresses the response and repair of DNA DSBs, and enhances Top1-cc accumulation. Top1-cc could be a risk factor for neurodegeneration as they may interfere with transcription elongation and promote transcriptional decline.
Collapse
Affiliation(s)
- L Carlessi
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - E Fusar Poli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - G Bechi
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133 Milano, Italy
| | - M Mantegazza
- Department of Neurophysiopathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Amadeo 42, 20133 Milano, Italy
- Institute of Molecular and Cellular Pharmacology (IPMC) CNRS UMR7275 and University of Nice-Sophia Antipolis, 660 Route des Lucioles, 06560 Valbonne, France
| | - B Pascucci
- CNR Institute of Crystallography, Via Salaria, Km. 29.300, 00016 Monterotondo Scalo, Roma, Italy
| | - L Narciso
- Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - E Dogliotti
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Roma, Italy
| | - C Sala
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - C Verpelli
- CNR Institute of Neuroscience and Department of Biotechnology and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - D Lecis
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| | - D Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milano, Italy
| |
Collapse
|
74
|
|
75
|
De novo mutations in HCN1 cause early infantile epileptic encephalopathy. Nat Genet 2014; 46:640-5. [PMID: 24747641 DOI: 10.1038/ng.2952] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/17/2014] [Indexed: 12/13/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.
Collapse
|
76
|
Guerrini R, Marini C, Mantegazza M. Genetic epilepsy syndromes without structural brain abnormalities: clinical features and experimental models. Neurotherapeutics 2014; 11:269-85. [PMID: 24664660 PMCID: PMC3996114 DOI: 10.1007/s13311-014-0267-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Research in genetics of epilepsy represents an area of great interest both for clinical purposes and for understanding the basic mechanisms of epilepsy. Most mutations in epilepsies without structural brain abnormalities have been identified in ion channel genes, but an increasing number of genes involved in a diversity of functional and developmental processes are being recognized through whole exome or genome sequencing. Targeted molecular diagnosis is now available for different forms of epilepsy. The identification of epileptogenic mutations in patients before epilepsy onset and the possibility of developing therapeutic strategies tested in experimental models may facilitate experimental approaches that prevent epilepsy or decrease its severity. Functional analysis is essential for better understanding pathogenic mechanisms and gene interactions. In vitro experimental systems are either cells that usually do not express the protein of interest or neurons in primary cultures. In vivo/ex vivo systems are organisms or preparations obtained from them (e.g., brain slices), which should better model the complexity of brain circuits and actual pathophysiological conditions. Neurons differentiated from induced pluripotent stem cells generated from the skin fibroblasts of patients have recently allowed the study of mutations in human neurons having the genetic background of a given patient. However, there is remarkable complexity underlying epileptogenesis in the clinical dimension, as reflected by the fact that experimental models have not provided yet results having clinical translation and that, with a few exceptions concerning rare conditions, no new curative treatment has emerged from any genetic finding in epilepsy.
Collapse
Affiliation(s)
- Renzo Guerrini
- Pediatric Neurology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Viale Pieraccini 24, 50139, Florence, Italy,
| | | | | |
Collapse
|