51
|
Islam MK, Mummadi ST, Liu S, Wei H. Regulation of regeneration in Arabidopsis thaliana. ABIOTECH 2023; 4:332-351. [PMID: 38106435 PMCID: PMC10721781 DOI: 10.1007/s42994-023-00121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 12/19/2023]
Abstract
We employed several algorithms with high efficacy to analyze the public transcriptomic data, aiming to identify key transcription factors (TFs) that regulate regeneration in Arabidopsis thaliana. Initially, we utilized CollaborativeNet, also known as TF-Cluster, to construct a collaborative network of all TFs, which was subsequently decomposed into many subnetworks using the Triple-Link and Compound Spring Embedder (CoSE) algorithms. Functional analysis of these subnetworks led to the identification of nine subnetworks closely associated with regeneration. We further applied principal component analysis and gene ontology (GO) enrichment analysis to reduce the subnetworks from nine to three, namely subnetworks 1, 12, and 17. Searching for TF-binding sites in the promoters of the co-expressed and co-regulated (CCGs) genes of all TFs in these three subnetworks and Triple-Gene Mutual Interaction analysis of TFs in these three subnetworks with the CCGs involved in regeneration enabled us to rank the TFs in each subnetwork. Finally, six potential candidate TFs-WOX9A, LEC2, PGA37, WIP5, PEI1, and AIL1 from subnetwork 1-were identified, and their roles in somatic embryogenesis (GO:0010262) and regeneration (GO:0031099) were discussed, so were the TFs in Subnetwork 12 and 17 associated with regeneration. The TFs identified were also assessed using the CIS-BP database and Expression Atlas. Our analyses suggest some novel TFs that may have regulatory roles in regeneration and embryogenesis and provide valuable data and insights into the regulatory mechanisms related to regeneration. The tools and the procedures used here are instrumental for analyzing high-throughput transcriptomic data and advancing our understanding of the regulation of various biological processes of interest. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00121-9.
Collapse
Affiliation(s)
- Md Khairul Islam
- Computational Science and Engineering Program, Michigan Technological University, Houghton, MI 49931 USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 USA
| | - Sai Teja Mummadi
- Computer Science, Michigan Technological University, Houghton, MI 49931 USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506 USA
| | - Hairong Wei
- Computational Science and Engineering Program, Michigan Technological University, Houghton, MI 49931 USA
- Computer Science, Michigan Technological University, Houghton, MI 49931 USA
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931 USA
| |
Collapse
|
52
|
Wen C, Yuan Z, Zhang X, Chen H, Luo L, Li W, Li T, Ma N, Mao F, Lin D, Lin Z, Lin C, Xu T, Lü P, Lin J, Zhu F. Sea-ATI unravels novel vocabularies of plant active cistrome. Nucleic Acids Res 2023; 51:11568-11583. [PMID: 37850650 PMCID: PMC10681729 DOI: 10.1093/nar/gkad853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/11/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.
Collapse
Affiliation(s)
- Chenjin Wen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhen Yuan
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaotian Zhang
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hao Chen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Lin Luo
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Wanying Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tian Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Nana Ma
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fei Mao
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Dongmei Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zhanxi Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chentao Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Tongda Xu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Juncheng Lin
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Fangjie Zhu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
53
|
Prigge MJ, Morffy N, de Neve A, Szutu W, Abraham-Juárez MJ, Johnson K, Do N, Lavy M, Hake S, Strader L, Estelle M, Richardson AE. Comparative mutant analyses reveal a novel mechanism of ARF regulation in land plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566459. [PMID: 38014308 PMCID: PMC10680667 DOI: 10.1101/2023.11.09.566459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A major challenge in plant biology is to understand how the plant hormone auxin regulates diverse transcriptional responses throughout development, in different environments, and in different species. The answer may lie in the specific complement of auxin signaling components in each cell. The balance between activators (class-A AUXIN RESPONSE FACTORS) and repressors (class-B ARFs) is particularly important. It is unclear how this balance is achieved. Through comparative analysis of novel, dominant mutants in maize and the moss Physcomitrium patens , we have discovered a ∼500-million-year-old mechanism of class-B ARF protein level regulation, important in determining cell fate decisions across land plants. Thus, our results add a key piece to the puzzle of how auxin regulates plant development.
Collapse
|
54
|
Yang W, Liu C, Fu Q, Jia X, Deng L, Feng C, Wang Y, Yang Z, Yang H, Xu X. Knockout of SlbZIP68 reduces late blight resistance in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111861. [PMID: 37689280 DOI: 10.1016/j.plantsci.2023.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the most widely cultivated vegetable crop species in the world. Tomato late blight caused by Phytophthora infestans is a severe disease, which can cause serious losses in tomato production. In this study, tomato SlbZIP68 was identified as a transcription factor that can be induced by P. infestans, salicylic acid (SA) and jasmonic acid (JA). Knockout of SlbZIP68 via clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) technology revealed a significant decrease in tomato resistance to P. infestans. Furthermore, knockout of SlbZIP68 reduced the activity of defense enzymes and increased the accumulation of reactive oxygen species (ROS). Our findings also indicated that SlbZIP68 can activate the expression of the PR genes and enhance resistance to P. infestans. In addition, SlbZIP68 can bind to the PR3 and PR5 promoters and induce gene expression, as revealed by yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays. These findings not only elucidate the mechanisms of response to P. infestans but also enable targeted breeding strategies for tomato resistance to P. infestans.
Collapse
Affiliation(s)
- Wenhui Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chunxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Qingjun Fu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xinyi Jia
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Liping Deng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chunying Feng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhenru Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
55
|
Sun Q, He Z, Wei R, Yin Y, Ye J, Chai L, Xie Z, Guo W, Xu J, Cheng Y, Xu Q, Deng X. Transcription factor CsTT8 promotes fruit coloration by positively regulating the methylerythritol 4-phosphate pathway and carotenoid biosynthesis pathway in citrus ( Citrus spp.). HORTICULTURE RESEARCH 2023; 10:uhad199. [PMID: 38023480 PMCID: PMC10673655 DOI: 10.1093/hr/uhad199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
Carotenoids directly influence citrus fruit color and nutritional value, which is critical to consumer acceptance. Elucidating the potential molecular mechanism underlying carotenoid metabolism is of great importance for improving fruit quality. Despite the well-established carotenoid biosynthetic pathways, the molecular regulatory mechanism underlying carotenoid metabolism remains poorly understood. Our previous studies have reported that the Myc-type basic helix-loop-helix (bHLH) transcription factor (TF) regulates citrus proanthocyanidin biosynthesis. Transgenic analyses further showed that overexpression of CsTT8 could significantly promote carotenoid accumulation in transgenic citrus calli, but its regulatory mechanism is still unclear. In the present study, we found that overexpression of CsTT8 enhances carotenoid content in citrus fruit and calli by increasing the expression of CsDXR, CsHDS, CsHDR, CsPDS, CsLCYE, CsZEP, and CsNCED2, which was accompanied by changes in the contents of abscisic acid and gibberellin. The in vitro and in vivo assays indicated that CsTT8 directly bound to the promoters of CsDXR, CsHDS, and CsHDR, the key metabolic enzymes of the methylerythritol 4-phosphate (MEP) pathway, thus providing precursors for carotenoid biosynthesis and transcriptionally activating the expression of these three genes. In addition, CsTT8 activated the promoters of four key carotenoid biosynthesis pathway genes, CsPDS, CsLCYE, CsZEP, and CsNCED2, directly promoting carotenoid biosynthesis. This study reveals a novel network of carotenoid metabolism regulated by CsTT8. Our findings will contribute to manipulating carotenoid metabolic engineering to improve the quality of citrus fruit and other crops.
Collapse
Affiliation(s)
- Quan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhengchen He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ranran Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingzi Yin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenwu Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory Wuhan, Hubei 430070, China
| |
Collapse
|
56
|
Ling C, Liu Y, Yang Z, Xu J, Ouyang Z, Yang J, Wang S. Genome-Wide Identification of HSF Gene Family in Kiwifruit and the Function of AeHSFA2b in Salt Tolerance. Int J Mol Sci 2023; 24:15638. [PMID: 37958622 PMCID: PMC10649126 DOI: 10.3390/ijms242115638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Heat shock transcription factors (HSFs) play a crucial role in regulating plant growth and response to various abiotic stresses. In this study, we conducted a comprehensive analysis of the AeHSF gene family at genome-wide level in kiwifruit (Actinidia eriantha), focusing on their functions in the response to abiotic stresses. A total of 41 AeHSF genes were identified and categorized into three primary groups, namely, HSFA, HSFB, and HSFC. Further transcriptome analysis revealed that the expression of AeHSFA2b/2c and AeHSFB1c/1d/2c/3b was strongly induced by salt, which was confirmed by qRT-PCR assays. The overexpression of AeHSFA2b in Arabidopsis significantly improved the tolerance to salt stress by increasing AtRS5, AtGolS1 and AtGolS2 expression. Furthermore, yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays demonstrated that AeHSFA2b could bind to the AeRFS4 promoter directly. Therefore, we speculated that AeHSFA2b may activate AeRFS4 expression by directly binding its promoter to enhance the kiwifruit's tolerance to salt stress. These results will provide a new insight into the evolutionary and functional mechanisms of AeHSF genes in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Yang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agriculture University, Hefei 230036, China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agriculture University, Hefei 230036, China
| |
Collapse
|
57
|
Yu Y, Hu H, Voytas DF, Doust AN, Kellogg EA. The YABBY gene SHATTERING1 controls activation rather than patterning of the abscission zone in Setaria viridis. THE NEW PHYTOLOGIST 2023; 240:846-862. [PMID: 37533135 DOI: 10.1111/nph.19157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 08/04/2023]
Abstract
Abscission is predetermined in specialized cell layers called the abscission zone (AZ) and activated by developmental or environmental signals. In the grass family, most identified AZ genes regulate AZ anatomy, which differs among lineages. A YABBY transcription factor, SHATTERING1 (SH1), is a domestication gene regulating abscission in multiple cereals, including rice and Setaria. In rice, SH1 inhibits lignification specifically in the AZ. However, the AZ of Setaria is nonlignified throughout, raising the question of how SH1 functions in species without lignification. Crispr-Cas9 knockout mutants of SH1 were generated in Setaria viridis and characterized with histology, cell wall and auxin immunofluorescence, transmission electron microscopy, hormonal treatment and RNA-Seq analysis. The sh1 mutant lacks shattering, as expected. No differences in cell anatomy or cell wall components including lignin were observed between sh1 and the wild-type (WT) until abscission occurs. Chloroplasts degenerated in the AZ of WT before abscission, but degeneration was suppressed by auxin treatment. Auxin distribution and expression of auxin-related genes differed between WT and sh1, with the signal of an antibody to auxin detected in the sh1 chloroplast. SH1 in Setaria is required for activation of abscission through auxin signaling, which is not reported in other grass species.
Collapse
Affiliation(s)
- Yunqing Yu
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| | - Hao Hu
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Daniel F Voytas
- College of Biological Sciences, University of Minnesota, St Paul, MN, 55108, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
| |
Collapse
|
58
|
Zhao Y, Liang J, Wang Z, Yan T, Yan X, Wei W, Le M, Sun J. Genome-wide identification and expression analysis of the trihelix transcription factor family in sesame (Sesamum indicum L.) under abiotic stress. Mol Biol Rep 2023; 50:8281-8295. [PMID: 37584845 PMCID: PMC10519867 DOI: 10.1007/s11033-023-08640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND The plant trihelix gene family is among the earliest discovered transcription factor families, and it is vital in modulating light, plant growth, and stress responses. METHODS The identification and characterization of trihelix family members in the sesame genome were analyzed by bioinformatics methods, and the expression patterns of sesame trihelix genes were assessed by quantitative real-time PCR. RESULTS There were 34 trihelix genes discovered in the genome of sesame, which were irregularly distributed among 10 linkage groups. Also, the genome contained 5 duplicate gene pairs. The 34 trihelix genes were divided into six sub-families through a phylogenetic study. A tissue-specific expression revealed that SiTH genes exhibited spatial expression patterns distinct from other trihelix genes in the same subfamily. The cis-element showed that the SiTHs gene promoter contained various elements associated with responses to hormones and multiple abiotic stresses. Additionally, the expression patterns of 8 SiTH genes in leaves under abiotic stresses demonstrated that all selected genes were significantly upregulated or downregulated at least once in the stress period. Furthermore, the SiTH4 gene was significantly induced in response to drought and salt stress, showing that SiTH genes may be engaged in the stress response mechanisms of sesame. CONCLUSION These findings establish a foundation for further investigation of the trihelix gene-mediated response to abiotic stress in sesame.
Collapse
Affiliation(s)
- Yunyan Zhao
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Junchao Liang
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Zhiqi Wang
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Tingxian Yan
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Xiaowen Yan
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Meiwang Le
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| | - Jian Sun
- Jiangxi Province Key Laboratory of Oilcrops Biology / Nanchang Branch of National Center of Oilcrops Improvement, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200 China
| |
Collapse
|
59
|
Zhang J, Chen W, Li X, Shi H, Lv M, He L, Bai W, Cheng S, Chu J, He K, Gou X, Li J. Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling. PLANT PHYSIOLOGY 2023; 193:1561-1579. [PMID: 37467431 PMCID: PMC10517256 DOI: 10.1093/plphys/kiad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023]
Abstract
An apical hook is a special structure formed during skotomorphogenesis in dicotyledonous plant species. It is critical for protecting the shoot apical meristem from mechanical damage during seed germination and hypocotyl elongation in soil. Brassinosteroid (BR) and jasmonate (JA) phytohormones antagonistically regulate apical hook formation. However, the interrelationship between BRs and JAs in this process has not been well elucidated. Here, we reveal that JAs repress BRs to regulate apical hook development in Arabidopsis (Arabidopsis thaliana). Exogenous application of methyl jasmonate (MeJA) repressed the expression of the rate-limiting BR biosynthetic gene DWARF4 (DWF4) in a process relying on 3 key JA-dependent transcription factors, MYC2, MYC3, and MYC4. We demonstrated that MYC2 interacts with the critical BR-activated transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), disrupting the association of BZR1 with its partner transcription factors, such as those of the PHYTOCHROME INTERACTING FACTOR (PIF) family and downregulating the expression of their target genes, such as WAVY ROOT GROWTH 2 (WAG2), encoding a protein kinase essential for apical hook development. Our results indicate that JAs not only repress the expression of BR biosynthetic gene DWF4 but, more importantly, attenuate BR signaling by inhibiting the transcriptional activation of BZR1 by MYC2 during apical hook development.
Collapse
Affiliation(s)
- Jingjie Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaopeng Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongyong Shi
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenhua Bai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shujing Cheng
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
60
|
Gann PJI, Dharwadker D, Cherati SR, Vinzant K, Khodakovskaya M, Srivastava V. Targeted mutagenesis of the vacuolar H + translocating pyrophosphatase gene reduces grain chalkiness in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1261-1276. [PMID: 37256847 DOI: 10.1111/tpj.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Grain chalkiness is a major concern in rice production because it impacts milling yield and cooking quality, eventually reducing market value of the rice. A gene encoding vacuolar H+ translocating pyrophosphatase (V-PPase) is a major quantitative trait locus in indica rice, controlling grain chalkiness. Higher transcriptional activity of this gene is associated with increased chalk content. However, whether the suppression of V-PPase could reduce chalkiness is not clear. Furthermore, natural variation in the chalkiness of japonica rice has not been linked with V-PPase. Here, we describe promoter targeting of the japonica V-PPase allele that led to reduced grain chalkiness and the development of more translucent grains. Disruption of a putative GATA element by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 suppressed V-PPase activity, reduced grain chalkiness and impacted post-germination growth that could be rescued by the exogenous supply of sucrose. The mature grains of the targeted lines showed a much lower percentage of large or medium chalk. Interestingly, the targeted lines developed a significantly lower chalk under heat stress, a major inducer of grain chalk. Metabolomic analysis showed that pathways related to starch and sugar metabolism were affected in the developing grains of the targeted lines that correlated with higher inorganic pyrophosphate and starch contents and upregulation of starch biosynthesis genes. In summary, we show a biotechnology approach of reducing grain chalkiness in rice by downregulating the transcriptional activity of V-PPase that presumably leads to altered metabolic rates, including starch biosynthesis, resulting in more compact packing of starch granules and formation of translucent rice grains.
Collapse
Affiliation(s)
- Peter James Icalia Gann
- Cell and Molecular Biology Program, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Division of Agriculture, 115 Plant Science Building, Fayetteville, AR, 72701, USA
| | - Dominic Dharwadker
- Department of Chemistry and Biochemistry, University of Arkansas, 119 Chemistry Building, Fayetteville, West Maple Street, AR, 72701, USA
| | - Sajedeh Rezaei Cherati
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Kari Vinzant
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Mariya Khodakovskaya
- Department of Biology, University of Arkansas Little Rock, 2801 S University Avenue, Little Rock, AR, 727704, USA
| | - Vibha Srivastava
- Cell and Molecular Biology Program, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Crop, Soil and Environmental Sciences, University of Arkansas Division of Agriculture, 115 Plant Science Building, Fayetteville, AR, 72701, USA
- Department of Horticulture, University of Arkansas Division of Agriculture, 315 Plant Science Building, Fayetteville, AR, 72701, USA
| |
Collapse
|
61
|
Rieger J, Fitz M, Fischer SM, Wallmeroth N, Flores-Romero H, Fischer NM, Brand LH, García-Sáez AJ, Berendzen KW, Mira-Rodado V. Exploring the Binding Affinity of the ARR2 GARP DNA Binding Domain via Comparative Methods. Genes (Basel) 2023; 14:1638. [PMID: 37628689 PMCID: PMC10454580 DOI: 10.3390/genes14081638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Plants have evolved signaling mechanisms such as the multi-step phosphorelay (MSP) to respond to different internal and external stimuli. MSP responses often result in gene transcription regulation that is modulated through transcription factors such as B-type Arabidopsis response regulator (ARR) proteins. Among these proteins, ARR2 is a key component that is expressed ubiquitously and is involved in many aspects of plant development. Although it has been noted that B-type ARRs bind to their cognate genes through a DNA-binding domain termed the GARP domain, little is known about the structure and function of this type of DNA-binding domain; thus, how ARRs bind to DNA at a structural level is still poorly understood. In order to understand how the MSP functions in planta, it is crucial to unravel both the kinetics as well as the structural identity of the components involved in such interactions. For this reason, this work focusses on resolving how the GARP domain of ARR2 (GARP2) binds to the promoter region of ARR5, one of its native target genes in cytokinin signaling. We have established that GARP2 specifically binds to the ARR5 promoter with three different bi-molecular interaction systems-qDPI-ELISA, FCS, and MST-and we also determined the KD of this interaction. In addition, structural modeling of the GARP2 domain confirms that GARP2 entails a HTH motif, and that protein-DNA interaction most likely occurs via the α3-helix and the N-terminal arm of this domain since mutations in this region hinder ARR2's ability to activate transcription.
Collapse
Affiliation(s)
- Janine Rieger
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Michael Fitz
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Stefan Markus Fischer
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Niklas Wallmeroth
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Hector Flores-Romero
- Interfaculty Institute of Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany
- CECAD Research Center, Institute of Genetics, Cologne University, 51069 Cologne, Germany
| | - Nina Monika Fischer
- Institute for Bioinformatics and Medical Informatics, Tübingen University, 72076 Tübingen, Germany
| | - Luise Helene Brand
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| | - Ana J. García-Sáez
- Interfaculty Institute of Biochemistry (IFIB), Tübingen University, 72076 Tübingen, Germany
- CECAD Research Center, Institute of Genetics, Cologne University, 51069 Cologne, Germany
| | | | - Virtudes Mira-Rodado
- Center for Plant Molecular Biology (ZMBP), Tübingen University, 72076 Tübingen, Germany
| |
Collapse
|
62
|
Han F, Wang P, Chen X, Zhao H, Zhu Q, Song Y, Nie Y, Li Y, Guo M, Niu S. An ethylene-induced NAC transcription factor acts as a multiple abiotic stress responsor in conifer. HORTICULTURE RESEARCH 2023; 10:uhad130. [PMID: 37560016 PMCID: PMC10407601 DOI: 10.1093/hr/uhad130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/13/2023] [Indexed: 08/11/2023]
Abstract
The proper response to various abiotic stresses is essential for plants' survival to overcome their sessile nature, especially for perennial trees with very long-life cycles. However, in conifers, the molecular mechanisms that coordinate multiple abiotic stress responses remain elusive. Here, the transcriptome response to various abiotic stresses like salt, cold, drought, heat shock and osmotic were systematically detected in Pinus tabuliformis (P. tabuliformis) seedlings. We found that four transcription factors were commonly induced by all tested stress treatments, while PtNAC3 and PtZFP30 were highly up-regulated and co-expressed. Unexpectedly, the exogenous hormone treatment assays and the content of the endogenous hormone indicates that the upregulation of PtNAC3 and PtZFP30 are mediated by ethylene. Time-course assay showed that the treatment by ethylene immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), activated the expression of PtNAC3 and PtZFP30 within 8 hours. We further confirm that the PtNAC3 can directly bind to the PtZFP30 promoter region and form a cascade. Overexpression of PtNAC3 enhanced unified abiotic stress tolerance without growth penalty in transgenic Arabidopsis and promoted reproductive success under abiotic stress by shortening the lifespan, suggesting it has great potential as a biological tool applied to plant breeding for abiotic stress tolerance. This study provides novel insights into the hub nodes of the abiotic stresses response network as well as the environmental adaptation mechanism in conifers, and provides a potential biofortification tool to enhance plant unified abiotic stress tolerance.
Collapse
Affiliation(s)
- Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Peiyi Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xi Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huanhuan Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianya Zhu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yitong Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yumeng Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Meina Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
63
|
Rani V, Joshi DC, Joshi P, Singh R, Yadav D. "Millet Models" for harnessing nuclear factor-Y transcription factors to engineer stress tolerance in plants: current knowledge and emerging paradigms. PLANTA 2023; 258:29. [PMID: 37358736 DOI: 10.1007/s00425-023-04186-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION The main purpose of this review is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Agriculture faces significant challenges from climate change, bargaining, population, elevated food prices, and compromises with nutritional value. These factors have globally compelled scientists, breeders, and nutritionists to think of some options that can combat the food security crisis and malnutrition. To address these challenges, mainstreaming the climate-resilient and nutritionally unparalleled alternative crops like millet is a key strategy. The C4 photosynthetic pathway and adaptation to low-input marginal agricultural systems make millets a powerhouse of important gene and transcription factor families imparting tolerance to various kinds of biotic and abiotic stresses. Among these, the nuclear factor-Y (NF-Y) is one of the prominent transcription factor families that regulate diverse genes imparting stress tolerance. The primary purpose of this article is to shed light on the role of millet models in imparting climate resilience and nutritional security and to give a concrete perspective on how NF-Y transcription factors can be harnessed for making cereals more stress tolerant. Future cropping systems could be more resilient to climate change and nutritional quality if these practices were implemented.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, 263601, India
| | - Priyanka Joshi
- Plant and Environmental Sciences, 113 Biosystems Research Complex, Clemson University, Clemson, South Carolina, 29634, USA
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
64
|
Yin Z, Liao W, Li J, Pan J, Yang S, Chen S, Cao S. Genome-Wide Identification of GATA Family Genes in Phoebe bournei and Their Transcriptional Analysis under Abiotic Stresses. Int J Mol Sci 2023; 24:10342. [PMID: 37373489 DOI: 10.3390/ijms241210342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
GATA transcription factors are crucial proteins in regulating transcription and are characterized by a type-IV zinc finger DNA-binding domain. They play a significant role in the growth and development of plants. While the GATA family gene has been identified in several plant species, it has not yet been reported in Phoebe bournei. In this study, 22 GATA family genes were identified from the P. bournei genome, and their physicochemical properties, chromosomal distribution, subcellular localization, phylogenetic tree, conserved motif, gene structure, cis-regulatory elements in promoters, and expression in plant tissues were analyzed. Phylogenetic analysis showed that the PbGATAs were clearly divided into four subfamilies. They are unequally distributed across 11 out of 12 chromosomes, except chromosome 9. Promoter cis-elements are mostly involved in environmental stress and hormonal regulation. Further studies showed that PbGATA11 was localized to chloroplasts and expressed in five tissues, including the root bark, root xylem, stem bark, stem xylem, and leaf, which means that PbGATA11 may have a potential role in the regulation of chlorophyll synthesis. Finally, the expression profiles of four representative genes, PbGATA5, PbGATA12, PbGATA16, and PbGATA22, under drought, salinity, and temperature stress, were detected by qRT-PCR. The results showed that PbGATA5, PbGATA22, and PbGATA16 were significantly expressed under drought stress. PbGATA12 and PbGATA22 were significantly expressed after 8 h of low-temperature stress at 10 °C. This study concludes that the growth and development of the PbGATA family gene in P. bournei in coping with adversity stress are crucial. This study provides new ideas for studying the evolution of GATAs, provides useful information for future functional analysis of PbGATA genes, and helps better understand the abiotic stress response of P. bournei.
Collapse
Affiliation(s)
- Ziyuan Yin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhai Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinxi Pan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
65
|
Turek S, Skarzyńska A, Pląder W, Pawełkowicz M. Understanding Transcription Factors and How They Affect Processes in Cucumber Sex Determination. Metabolites 2023; 13:740. [PMID: 37367898 DOI: 10.3390/metabo13060740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Plant reproduction is a fundamental process on Earth from the perspective of biodiversity, biomass gain, and crop productivity. It is therefore important to understand the sex determination process, and many researchers are investigating the molecular basis of this phenomenon. However, information on the influence of transcription factors (TFs), genes that encode DNA-binding proteins, on this process is limited, although cucumber is a model plant in this regard. In the present study, based on RNA-seq data for differentially expressed genes (DEGs), we aimed to investigate the regulatory TFs that may influence the metabolic processes in the shoot apex containing the forming flower buds. Therefore, the annotation of the genome of the B10 cucumber line was supplemented with the assigned families of transcription factors. By performing ontology analyses of the DEGs, the processes they participate in were identified, and TFs were located among the results. In addition, TFs that have significantly overrepresented targets among DEGs were detected, and sex-specific interactome network maps were generated, indicating the regulatory TFs based on their effects on DEGs and furthermore, on the processes leading to the formation of different-sex flowers. Among the most overrepresented TF families in the sex comparisons were the NAC, bHLH, MYB, and bZIP families. An interaction network analysis indicated the most abundant families among DEGs' regulatory TFs were MYB, AP2/ERF, NAC, and bZIP, and those with the most significant impact on developmental processes were identified, namely the AP/ERF family, followed by DOF, MYB, MADS, and others. Thus, the networks' central nodes and key regulators were identified with respect to male, female, and hermaphrodite forms. Here, we proposed the first model of the regulatory network of TFs that influences the metabolism of sex development in cucumber. These findings may help us to understand the molecular genetics and functional mechanisms underlying sex determination processes.
Collapse
Affiliation(s)
- Szymon Turek
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| |
Collapse
|
66
|
Shao L, Li L, Huang X, Fu Y, Yang D, Li C, Yang J. Identification of C2H2 zinc finger genes through genome-wide association study and functional analyses of LkZFPs in response to stresses in Larix kaempferi. BMC PLANT BIOLOGY 2023; 23:298. [PMID: 37268918 DOI: 10.1186/s12870-023-04298-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND C2H2 zinc finger proteins (C2H2-ZFPs), one of the largest transcription factors, play a variety of roles in plant development and growth as well as stress response. While, the evolutionary history and expression profile of the C2H2-ZFP genes in Larix kaempferi (LkZFPs) have not been reported so far. RESULTS In this study, the whole genome of the LkZFPs was identified and characterized, including physicochemical properties, phylogenetic relationships, conservative motifs, the promoter cis-elements and Gene Ontology (GO) annotation. We identified 47 LkZFPs and divided them into four subfamilies based on phylogenetic analysis and conserved motifs. Subcellular localization prediction showed that most of the LkZFPs were located in the nucleus. Promoter cis-element analysis suggested that the LkZFPs may be involved in the regulation of stress responses. Moreover, Real-time quantitative PCR (RT-qPCR) results showed that Q-type LkZFP genes were involved in the response to abiotic stress, such as salt, drought and hormone stresses. Subcellular localization results showed that LkZFP7 and LkZFP37 were located in the nucleus, LkZFP32 was located in both cytoplasm and nucleus. CONCLUSION The identification and functional analysis of LkZFPs suggested that some LkZFP genes might play important roles in coping with both biological and abiotic stresses. These results could further increase understanding of the function of the LkZFPs, and provide some research direction and theoretical support.
Collapse
Affiliation(s)
- Liying Shao
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Lu Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Xun Huang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Yanrui Fu
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Da Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Chenghao Li
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
| | - Jingli Yang
- State Key Laboratory of Forest Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
67
|
Stitzinger SH, Sohrabi-Jahromi S, Söding J. Cooperativity boosts affinity and specificity of proteins with multiple RNA-binding domains. NAR Genom Bioinform 2023; 5:lqad057. [PMID: 37305168 PMCID: PMC10251633 DOI: 10.1093/nargab/lqad057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Numerous cellular processes rely on the binding of proteins with high affinity to specific sets of RNAs. Yet most RNA-binding domains display low specificity and affinity in comparison to DNA-binding domains. The best binding motif is typically only enriched by less than a factor 10 in high-throughput RNA SELEX or RNA bind-n-seq measurements. Here, we provide insight into how cooperative binding of multiple domains in RNA-binding proteins (RBPs) can boost their effective affinity and specificity orders of magnitude higher than their individual domains. We present a thermodynamic model to calculate the effective binding affinity (avidity) for idealized, sequence-specific RBPs with any number of RBDs given the affinities of their isolated domains. For seven proteins in which affinities for individual domains have been measured, the model predictions are in good agreement with measurements. The model also explains how a two-fold difference in binding site density on RNA can increase protein occupancy 10-fold. It is therefore rationalized that local clusters of binding motifs are the physiological binding targets of multi-domain RBPs.
Collapse
Affiliation(s)
- Simon H Stitzinger
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Salma Sohrabi-Jahromi
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Johannes Söding
- To whom correspondence should be addressed. Tel: +49 551 201 2890;
| |
Collapse
|
68
|
Fang S, Qiu S, Chen K, Lv Z, Chen W. The transcription factors SbMYB45 and SbMYB86.1 regulate flavone biosynthesis in Scutellaria baicalensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107794. [PMID: 37257409 DOI: 10.1016/j.plaphy.2023.107794] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Scutellaria baicalensis Georgi is an important Chinese medicinal plant that is rich in the flavones baicalin, wogonoside, and wogonin, providing it with anti-cancer, anti-inflammatory, and antibacterial properties. However, although the biosynthetic pathways of baicalin and its derivates have been elucidated, the regulation of flavone biosynthesis in S. baicalensis is poorly understood. Here, we found that the contents of baicalin and its derivates increased and that baicalin biosynthetic pathway genes were induced in response to light, and baicalin and baicalein are not exclusively produced in the roots of S. baicalensis. Based on the fact that MYB transcription factors are known to play important roles in flavone biosynthesis, we identified SbMYB45 and SbMYB86.1 in S. baicalensis and determined that they bind to the promoter of the flavone biosynthesis gene SbCHI to enhance its transcription. Moreover, overexpressing SbMYB45 and SbMYB86.1 enhanced the accumulation of baicalin in S. baicalensis leaves. We demonstrate that SbMYB45 and SbMYB86.1 bind to the cis-acting element MBSII in the promoter of CHI to redundantly induce its expression upon light exposure. These findings indicate that SbMYB45 and SbMYB86.1 transcriptionally activate SbCHI in response to light and enhance flavone contents in S. baicalensis.
Collapse
Affiliation(s)
- Shiyuan Fang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kaixian Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zongyou Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wansheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
69
|
Viswanath KK, Kuo SY, Tu CW, Hsu YH, Huang YW, Hu CC. The Role of Plant Transcription Factors in the Fight against Plant Viruses. Int J Mol Sci 2023; 24:ijms24098433. [PMID: 37176135 PMCID: PMC10179606 DOI: 10.3390/ijms24098433] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Plants are vulnerable to the challenges of unstable environments and pathogen infections due to their immobility. Among various stress conditions, viral infection is a major threat that causes significant crop loss. In response to viral infection, plants undergo complex molecular and physiological changes, which trigger defense and morphogenic pathways. Transcription factors (TFs), and their interactions with cofactors and cis-regulatory genomic elements, are essential for plant defense mechanisms. The transcriptional regulation by TFs is crucial in establishing plant defense and associated activities during viral infections. Therefore, identifying and characterizing the critical genes involved in the responses of plants against virus stress is essential for the development of transgenic plants that exhibit enhanced tolerance or resistance. This article reviews the current understanding of the transcriptional control of plant defenses, with a special focus on NAC, MYB, WRKY, bZIP, and AP2/ERF TFs. The review provides an update on the latest advances in understanding how plant TFs regulate defense genes expression during viral infection.
Collapse
Affiliation(s)
- Kotapati Kasi Viswanath
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Song-Yi Kuo
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Tu
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Centre, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
70
|
Susila H, Nasim Z, Gawarecka K, Jung JY, Jin S, Youn G, Ahn JH. Chloroplasts prevent precocious flowering through a GOLDEN2-LIKE-B-BOX DOMAIN PROTEIN module. PLANT COMMUNICATIONS 2023; 4:100515. [PMID: 36597356 DOI: 10.1016/j.xplc.2023.100515] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 05/11/2023]
Abstract
The timing of flowering is tightly controlled by signals that integrate environmental and endogenous cues. Sugars produced by carbon fixation in the chloroplast are a crucial endogenous cue for floral initiation. Chloroplasts also convey information directly to the nucleus through retrograde signaling to control plant growth and development. Here, we show that mutants defective in chlorophyll biosynthesis and chloroplast development flowered early, especially under long-day conditions, although low sugar accumulation was seen in some mutants. Plants treated with the bleaching herbicide norflurazon also flowered early, suggesting that chloroplasts have a role in floral repression. Among retrograde signaling mutants, the golden2-like 1 (glk1) glk2 double mutants showed early flowering under long-day conditions. This early flowering was completely suppressed by constans (co) and flowering locus t (ft) mutations. Leaf vascular-specific knockdown of both GLK1 and GLK2 phenocopied the glk1 glk2 mutants. GLK1 and GLK2 repress flowering by directly activating the expression of B-BOX DOMAIN PROTEIN 14 (BBX14), BBX15, and BBX16 via CCAATC cis-elements in the BBX genes. BBX14/15/16 physically interact with CO in the nucleus, and expression of BBXs hampered CO-mediated FT transcription. Simultaneous knockdown of BBX14/15/16 by artificial miRNA (35S::amiR-BBX14/15/16) caused early flowering with increased FT transcript levels, whereas BBX overexpression caused late flowering. Flowering of glk1/2 and 35S::amiR-BBX14/15/16 plants was insensitive to norflurazon treatment. Taking these observations together, we propose that the GLK1/2-BBX14/15/16 module provides a novel mechanism explaining how the chloroplast represses flowering to balance plant growth and reproductive development.
Collapse
Affiliation(s)
- Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Katarzyna Gawarecka
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji-Yul Jung
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
71
|
Li M, Yao T, Lin W, Hinckley WE, Galli M, Muchero W, Gallavotti A, Chen JG, Huang SSC. Double DAP-seq uncovered synergistic DNA binding of interacting bZIP transcription factors. Nat Commun 2023; 14:2600. [PMID: 37147307 PMCID: PMC10163045 DOI: 10.1038/s41467-023-38096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
Many eukaryotic transcription factors (TF) form homodimer or heterodimer complexes to regulate gene expression. Dimerization of BASIC LEUCINE ZIPPER (bZIP) TFs are critical for their functions, but the molecular mechanism underlying the DNA binding and functional specificity of homo- versus heterodimers remains elusive. To address this gap, we present the double DNA Affinity Purification-sequencing (dDAP-seq) technique that maps heterodimer binding sites on endogenous genomic DNA. Using dDAP-seq we profile twenty pairs of C/S1 bZIP heterodimers and S1 homodimers in Arabidopsis and show that heterodimerization significantly expands the DNA binding preferences of these TFs. Analysis of dDAP-seq binding sites reveals the function of bZIP9 in abscisic acid response and the role of bZIP53 heterodimer-specific binding in seed maturation. The C/S1 heterodimers show distinct preferences for the ACGT elements recognized by plant bZIPs and motifs resembling the yeast GCN4 cis-elements. This study demonstrates the potential of dDAP-seq in deciphering the DNA binding specificities of interacting TFs that are key for combinatorial gene regulation.
Collapse
Affiliation(s)
- Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wanru Lin
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Will E Hinckley
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Shao-Shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
72
|
Li P, Tan X, Liu R, Rahman FU, Jiang J, Sun L, Fan X, Liu J, Liu C, Zhang Y. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape ( Vitis vinifera L. × Vitis davidii Foex.) crossing. HORTICULTURE RESEARCH 2023; 10:uhad063. [PMID: 37249950 PMCID: PMC10208900 DOI: 10.1093/hr/uhad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/10/2023] [Indexed: 05/31/2023]
Abstract
Grape white rot, a devastating disease of grapevines caused by Coniella diplodiella (Speg.) Sacc., leads to significant yield losses in grape. Breeding grape cultivars resistant to white rot is essential to reduce the regular use of chemical treatments. In recent years, Chinese grape species have gained more attention for grape breeding due to their high tolerance to various biotic and abiotic factors along with changing climatic conditions. In this study, we employed whole-genome resequencing (WGR) to genotype the parents of 'Manicure Finger' (Vitis vinifera, female) and '0940' (Vitis davidii, male), along with 101 F1 mapping population individuals, thereby constructing a linkage genetic map. The linkage map contained 9337 single-nucleotide polymorphism (SNP) markers with an average marker distance of 0.3 cM. After 3 years of phenotypic evaluation of the progeny for white rot resistance, we confirmed one stable quantitative trait locus (QTL) for white rot resistance on chromosome 3, explaining up to 17.9% of the phenotypic variation. For this locus, we used RNA-seq to detect candidate gene expression and identified PR1 as a candidate gene involved in white rot resistance. Finally, we demonstrated that recombinant PR1 protein could inhibit the growth of C. diplodiella and that overexpression of PR1 in susceptible V. vinifera increased grape resistance to the pathogen.
Collapse
Affiliation(s)
- Peng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Xibei Tan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Faiz Ur Rahman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | | | | | | |
Collapse
|
73
|
Kayani SI, Ma Y, Fu X, Qian S, Li Y, Rahman SU, Peng B, Liu H, Tang K. JA-regulated AaGSW1-AaYABBY5/AaWRKY9 complex regulates artemisinin biosynthesis in Artemisia annua. PLANT & CELL PHYSIOLOGY 2023:pcad035. [PMID: 37098222 DOI: 10.1093/pcp/pcad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 06/19/2023]
Abstract
Artemisinin, a sesquiterpene lactone from A. annua, is an essential therapeutic against malaria. YABBY family transcription factor; AaYABBY5 is an activator of AaCYP71AV1 (cytochrome P450-dependent hydroxylase) and AaDBR2 (double bond reductase 2); however, the protein-protein interactions of AaYABBY5, as well as the mechanism of its regulation, are not elucidated before. AaWRKY9 protein is a positive regulator of artemisinin biosynthesis that activates AaGSW1 (Glandular trichome specific WRKY1) and AaDBR2 (double bond reductase 2), respectively. In this study, YABBY-WRKY interactions are revealed to indirectly regulate artemisinin production. AaYABBY5 significantly increased the activity of the luciferase (LUC) gene fused to the promoter of AaGSW1. Towards the molecular basis of this regulation, AaYABBY5 interaction with AaWRKY9 protein was found. The combined effectors AaYABBY5 + AaWRKY9 showed synergistic effects toward the activities of AaGSW1, and AaDBR2 promoters, respectively. In AaYABBY5 over-expression plants, the expression of GSW1 was found significantly increase when compared to that of AaYABBY5 antisense or control plants. Secondly, AaGSW1 was seen as an upstream activator of AaYABBY5. Thirdly, it was found that AaJAZ8, a transcriptional repressor of jasmonates signaling, interacted with AaYABBY5 and attenuated its activity. Co-expression of AaYABBY5 and antiAaJAZ8 in A. annua increased the activity of AaYABBY5 towards artemisinin biosynthesis. For the first time, the current study provided the molecular basis of regulation of artemisinin biosynthesis through YABBY-WRKY interactions and its regulation through AaJAZ8. This knowledge provides AaYABBY5 overexpression plants as a powerful genetic resource for artemisinin biosynthesis.
Collapse
Affiliation(s)
- Sadaf-Ilyas Kayani
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Food and Biological Engineering, Jiangsu University
| | - Yanan Ma
- Memorial Sloan Kettering Cancer Center, New York City, United States
| | - Xueqing Fu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shen Qian
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongpeng Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saeed-Ur Rahman
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bowen Peng
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hang Liu
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
74
|
Zhu W, Miao X, Qian J, Chen S, Jin Q, Li M, Han L, Zhong W, Xie D, Shang X, Li L. A translatome-transcriptome multi-omics gene regulatory network reveals the complicated functional landscape of maize. Genome Biol 2023; 24:60. [PMID: 36991439 PMCID: PMC10053466 DOI: 10.1186/s13059-023-02890-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/04/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Maize (Zea mays L.) is one of the most important crops worldwide. Although sophisticated maize gene regulatory networks (GRNs) have been constructed for functional genomics and phenotypic dissection, a multi-omics GRN connecting the translatome and transcriptome is lacking, hampering our understanding and exploration of the maize regulatome. RESULTS We collect spatio-temporal translatome and transcriptome data and systematically explore the landscape of gene transcription and translation across 33 tissues or developmental stages of maize. Using this comprehensive transcriptome and translatome atlas, we construct a multi-omics GRN integrating mRNAs and translated mRNAs, demonstrating that translatome-related GRNs outperform GRNs solely using transcriptomic data and inter-omics GRNs outperform intra-omics GRNs in most cases. With the aid of the multi-omics GRN, we reconcile some known regulatory networks. We identify a novel transcription factor, ZmGRF6, which is associated with growth. Furthermore, we characterize a function related to drought response for the classic transcription factor ZmMYB31. CONCLUSIONS Our findings provide insights into spatio-temporal changes across maize development at both the transcriptome and translatome levels. Multi-omics GRNs represent a useful resource for dissection of the regulatory mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Wanchao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xinxin Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Jia Qian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Sijia Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qixiao Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Mingzhu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Linqian Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Dan Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Xiaoyang Shang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- HuBei HongShan Laboratory, Wuhan, 430070, China
| | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- HuBei HongShan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
75
|
Feng X, Yu Q, Zeng J, He X, Ma W, Ge L, Liu W. Comprehensive Analysis of the INDETERMINATE DOMAIN (IDD) Gene Family and Their Response to Abiotic Stress in Zea mays. Int J Mol Sci 2023; 24:ijms24076185. [PMID: 37047154 PMCID: PMC10094743 DOI: 10.3390/ijms24076185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Transcription factors (TFs) are important regulators of numerous gene expressions due to their ability to recognize and combine cis-elements in the promoters of target genes. The INDETERMINATE DOMAIN (IDD) gene family belongs to a subfamily of C2H2 zinc finger proteins and has been identified only in terrestrial plants. Nevertheless, little study has been reported concerning the genome-wide analysis of the IDD gene family in maize. In total, 22 ZmIDD genes were identified, which can be distributed on 8 chromosomes in maize. On the basis of evolutionary relationships and conserved motif analysis, ZmIDDs were categorized into three clades (1, 2, and 3), each owning 4, 6, and 12 genes, respectively. We analyzed the characteristics of gene structure and found that 3 of the 22 ZmIDD genes do not contain an intron. Cis-element analysis of the ZmIDD promoter showed that most ZmIDD genes possessed at least one ABRE or MBS cis-element, and some ZmIDD genes owned the AuxRR-core, TCA-element, TC-rich repeats, and LTR cis-element. The Ka:Ks ratio of eight segmentally duplicated gene pairs demonstrated that the ZmIDD gene families had undergone a purifying selection. Then, the transcription levels of ZmIDDs were analyzed, and they showed great differences in diverse tissues as well as abiotic stresses. Furthermore, regulatory networks were constructed through the prediction of ZmIDD-targeted genes and miRNAs, which can inhibit the transcription of ZmIDDs. In total, 6 ZmIDDs and 22 miRNAs were discovered, which can target 180 genes and depress the expression of 9 ZmIDDs, respectively. Taken together, the results give us valuable information for studying the function of ZmIDDs involved in plant development and climate resilience in maize.
Collapse
|
76
|
Salih H, Bai W, Zhao M, Liang Y, Yang R, Zhang D, Li X. Genome-Wide Characterization and Expression Analysis of Transcription Factor Families in Desert Moss Syntrichia caninervis under Abiotic Stresses. Int J Mol Sci 2023; 24:ijms24076137. [PMID: 37047111 PMCID: PMC10094499 DOI: 10.3390/ijms24076137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Transcription factor (TF) families play important roles in plant stress responses. S. caninervis is a new model moss for plant desiccation tolerance studies. Here, we report a high-confidence identification and characterization of 591 TFs representing 52 families that covered all chromosomes in S. caninervis. GO term and KEGG pathway analysis showed that TFs were involved in the regulation of transcription, DNA-templated, gene expression, binding activities, plant hormone signal transduction, and circadian rhythm. A number of TF promoter regions have a mixture of various hormones-related cis-regulatory elements. AP2/ERF, bHLH, MYB, and C2H2-zinc finger TFs were the overrepresented TF families in S. caninervis, and the detailed classification of each family is performed based on structural features. Transcriptome analysis revealed the transcript abundances of some ScAP2/ERF, bHLH, MYB, and C2H2 genes were accumulated in the treated S. caninervis under cold, dehydration, and rehydration stresses. The RT-qPCR results strongly agreed with RNA-seq analysis, indicating these TFs might play a key role in S. caninervis response to abiotic stress. Our comparative TF characterization and classification provide the foundations for functional investigations of the dominant TF genes involved in S. caninervis stress response, as well as excellent stress tolerance gene resources for plant stress resistance breeding.
Collapse
|
77
|
Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. Int J Mol Sci 2023; 24:ijms24065416. [PMID: 36982510 PMCID: PMC10049130 DOI: 10.3390/ijms24065416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Apetala2/ethylene response factor (AP2/ERF) is one of the largest families of transcription factors, regulating growth, development, and stress response in plants. Several studies have been conducted to clarify their roles in Arabidopsis and rice. However, less research has been carried out on maize. In this review, we systematically identified the AP2/ERFs in the maize genome and summarized the research progress related to AP2/ERF genes. The potential roles were predicted from rice homologs based on phylogenetic and collinear analysis. The putative regulatory interactions mediated by maize AP2/ERFs were discovered according to integrated data sources, implying that they involved complex networks in biological activities. This will facilitate the functional assignment of AP2/ERFs and their applications in breeding strategy.
Collapse
|
78
|
Huang Y, Kamal R, Shanmugaraj N, Rutten T, Thirulogachandar V, Zhao S, Hoffie I, Hensel G, Rajaraman J, Moya YAT, Hajirezaei MR, Himmelbach A, Poursarebani N, Lundqvist U, Kumlehn J, Stein N, von Wirén N, Mascher M, Melzer M, Schnurbusch T. A molecular framework for grain number determination in barley. SCIENCE ADVANCES 2023; 9:eadd0324. [PMID: 36867700 PMCID: PMC9984178 DOI: 10.1126/sciadv.add0324] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Flowering plants with indeterminate inflorescences often produce more floral structures than they require. We found that floral primordia initiations in barley (Hordeum vulgare L.) are molecularly decoupled from their maturation into grains. While initiation is dominated by flowering-time genes, floral growth is specified by light signaling, chloroplast, and vascular developmental programs orchestrated by barley CCT MOTIF FAMILY 4 (HvCMF4), which is expressed in the inflorescence vasculature. Consequently, mutations in HvCMF4 increase primordia death and pollination failure, mainly through reducing rachis greening and limiting plastidial energy supply to developing heterotrophic floral tissues. We propose that HvCMF4 is a sensory factor for light that acts in connection with the vascular-localized circadian clock to coordinate floral initiation and survival. Notably, stacking beneficial alleles for both primordia number and survival provides positive implications on grain production. Our findings provide insights into the molecular underpinnings of grain number determination in cereal crops.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Shuangshuang Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Mohammad-Reza Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, 06120 Halle, Germany
| |
Collapse
|
79
|
Li C, Binaghi M, Pichon V, Cannarozzi G, Brandão de Freitas L, Hanemian M, Kuhlemeier C. Tight genetic linkage of genes causing hybrid necrosis and pollinator isolation between young species. NATURE PLANTS 2023; 9:420-432. [PMID: 36805038 PMCID: PMC10027609 DOI: 10.1038/s41477-023-01354-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/19/2023] [Indexed: 05/18/2023]
Abstract
The mechanisms of reproductive isolation that cause phenotypic diversification and eventually speciation are a major topic of evolutionary research. Hybrid necrosis is a post-zygotic isolation mechanism in which cell death develops in the absence of pathogens. It is often due to the incompatibility between proteins from two parents. Here we describe a unique case of hybrid necrosis due to an incompatibility between loci on chromosomes 2 and 7 between two pollinator-isolated Petunia species. Typical immune responses as well as endoplasmic reticulum stress responses are induced in the necrotic line. The locus on chromosome 2 encodes ChiA1, a bifunctional GH18 chitinase/lysozyme. The enzymatic activity of ChiA1 is dispensable for the development of necrosis. We propose that the extremely high expression of ChiA1 involves a positive feedback loop between the loci on chromosomes 2 and 7. ChiA1 is tightly linked to major genes involved in the adaptation to different pollinators, a form of pre-zygotic isolation. This linkage of pre- and post-zygotic barriers strengthens reproductive isolation and probably contributes to rapid diversification and speciation.
Collapse
Affiliation(s)
- Chaobin Li
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marta Binaghi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Vivien Pichon
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gina Cannarozzi
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Chemistry/Biology/Pharmacy Information Center, ETH Zürich, Zürich, Switzerland
| | - Loreta Brandão de Freitas
- Department of Genetics, Laboratory of Molecular Evolution, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathieu Hanemian
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- Laboratoire des Interactions Plantes-Microbes-Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
80
|
Santos M, Egea-Cortines M, Gonçalves B, Matos M. Molecular mechanisms involved in fruit cracking: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1130857. [PMID: 36937999 PMCID: PMC10016354 DOI: 10.3389/fpls.2023.1130857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Several fleshy fruits are highly affected by cracking, a severe physiological disorder that compromises their quality and causes high economical losses to the producers. Cracking can occur due to physiological, genetic or environmental factors and may happen during fruit growth, development and ripening. Moreover, in fleshy fruits, exocarp plays an important role, acting as a mechanical protective barrier, defending against biotic or abiotic factors. Thus, when biochemical properties of the cuticle + epidermis + hypodermis are affected, cracks appear in the fruit skin. The identification of genes involved in development such as cell wall modifications, biosynthesis and transport of cuticular waxes, cuticular membrane deposition and associated transcription factors provides new insights to better understand how fruit cracking is affected by genetic factors. Amongst the major environmental stresses causing cracking are excessive water during fruit development, leading to imbalances in cations such as Ca. This review focus on expression of key genes in these pathways, in their influence in affected fruits and the potential for molecular breeding programs, aiming to develop cultivars more resistant to cracking under adverse environmental conditions.
Collapse
Affiliation(s)
- Marlene Santos
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Marcos Egea-Cortines
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Biology and Environment (DeBA), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Manuela Matos
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
81
|
Zeng D, Si C, Teixeira da Silva JA, Dai G, Duan J, He C. Characterization of YABBY genes in Dendrobium officinale reveals their potential roles in flower development. PROTOPLASMA 2023; 260:483-495. [PMID: 35792983 DOI: 10.1007/s00709-022-01790-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
These YABBY genes are transcription factors (TFs) that play crucial roles in various developmental processes in plants. There is no comprehensive characterization of YABBY genes in a valuable Chinese orchid herb, Dendrobium officinale. In this study, a total of nine YABBY genes were identified in the D. officinale genome. These YABBY genes were divided into four subfamilies: CRC/DL, FIL, INO, and YAB2. Expression pattern analyses showed that eight of the YABBY genes were strongly expressed in reproductive organs (flower buds) but weakly expressed in vegetative organs (roots, leaves, and stems). DoYAB1, DoYAB5, DoDL1, and DoDL3 were abundant in the small flower bud stage, while DoDL2 showed no changes throughout flower development. In addition, DoDL1-3 genes were strongly expressed in the column, tenfold more than in sepals, petals, and the lip. DoYAB1 from the FIL subfamily, DoYAB2 from the YAB2 subfamily, DoYAB3 from the INO subfamily, and DoDL2 and DoDL3 from the CRC/DL subfamily were selected for further analyses. Subcellular localization analysis showed that DoYAB1-3, DoDL2, and DoDL3 were localized in the nucleus. DoYAB2 and DoYAB3 interacted strongly with DoWOX2 and DoWOX4, while DoYAB1 showed a weak interaction with DoWOX4. These results reveal a regulatory network involving YABBY and WOX proteins in D. officinale. Our data provide clues to understanding the role of YABBY genes in the regulation of flower development in this orchid and shed additional light on the function of YABBY genes in plants.
Collapse
Affiliation(s)
- Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | | - Guangyi Dai
- Opening Public Laboratory, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Juan Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
82
|
Li Y, Han S, Qi Y. Advances in structure and function of auxin response factor in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:617-632. [PMID: 36263892 DOI: 10.1111/jipb.13392] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Auxin is a crucial phytohormone that has various effects on the regulators of plant growth and development. Auxin signal transduction is mainly controlled by two gene families: auxin response factor (ARF) and auxin/indole-3-acetic acid (Aux/IAA). ARFs are plant-specific transcription factors that bind directly to auxin response elements in the promoters of auxin-responsive genes. ARF proteins contain three conserved regions: a conserved N-terminal B3 DNA-binding domain, a variable intermediate middle region domain that functions in activation or repression, and a C-terminal domain including the Phox and Bem1p region for dimerization, similar to the III and IV elements of Aux/IAA, which facilitate protein-protein interaction through homodimerization of ARF proteins or heterodimerization of ARF and Aux/IAA proteins. In the two decades following the identification of the first ARF, 23 ARF members have been identified and characterized in Arabidopsis. Using whole-genome sequencing, 22, 25, 23, 25, and 36 ARF genes have been identified in tomato, rice, wheat, sorghum, and maize, respectively, in addition to which the related biofunctions of some ARFs have been reported. ARFs play crucial roles in regulating the growth and development of roots, leaves, flowers, fruits, seeds, responses to biotic and abiotic stresses, and phytohormone signal crosstalk. In this review, we summarize the research progress on the structures and functions of ARFs in Arabidopsis, tomato, and cereal crops, to provide clues for future basic research on phytohormone signaling and the molecular design breeding of crops.
Collapse
Affiliation(s)
- Yonghui Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Shaqila Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
83
|
Li Y, Lei W, Zhou Z, Li Y, Zhang D, Lin H. Transcription factor GLK1 promotes anthocyanin biosynthesis via an MBW complex-dependent pathway in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36856341 DOI: 10.1111/jipb.13471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Anthocyanins are important natural plant pigments and play diverse roles in plant growth and adaptation. Anthocyanins function as screens to protect photosynthetic tissues from photoinhibition. However, the regulatory mechanisms underlying the biosynthesis and spatial accumulation pattern of anthocyanins remain some unresolved issues. Here, we demonstrate that the GARP-type transcription factor GOLDEN2-LIKE 1 (GLK1) functions as a positive factor in anthocyanin accumulation. GLK1 enhances the transcriptional activation activities of MYB75, MYB90, and MYB113 via direct protein-protein interactions to increase the expression of anthocyanin-specific biosynthetic genes. Anthocyanins accumulate in an acropetal manner in Arabidopsis. We also found that the expression pattern of GLK1 overall mimicked the accumulation pattern of anthocyanin from the base of the main stem to the shoot apex. Based on these findings, we established a working model for the role of GLK1 in anthocyanin accumulation and propose that GLK1 mediates the spatial distribution pattern of anthocyanins by affecting the transcriptional activation activities of MYB75, MYB90, and MYB113.
Collapse
Affiliation(s)
- Yan Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Wei Lei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Zuxu Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Yanlin Li
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
84
|
Luo Z, Zhang Y, Tian C, Wang L, Zhao X, Liu Z, Wang L, Wang L, Zhao J, Wang J, Liu M. Genome-wide screening of the RNase T2 gene family and functional analyses in jujube (Ziziphus jujuba Mill.). BMC Genomics 2023; 24:80. [PMID: 36803656 PMCID: PMC9940439 DOI: 10.1186/s12864-023-09165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Ribonuclease (RNase T2) plays crucial roles in plant evolution and breeding. However, there have been few studies on the RNase T2 gene family in Ziziphus jujuba Mill., one of important dried fruit tree species. Recently, the released sequences of the reference genome of jujube provide a good chance to perform genome-wide identification and characterization of ZjRNase gene family in the jujube. RESULTS In this study, we identified four members of RNase T2 in jujube distributed on three chromosomes and unassembled chromosomes. They all contained two conserved sites (CASI and CASII). Analysis of the phylogenetic relationships revealed that the RNase T2 genes in jujube could be divided into two groups: ZjRNase1 and ZjRNase2 belonged to class I, while ZjRNase3 and ZjRNase4 belonged to class II. Only ZjRNase1 and ZjRNase2 expression were shown by the jujube fruit transcriptome analysis. So ZjRNase1 and ZjRNase2 were selected functional verification by overexpression transformation of Arabidopsis. The overexpression of these two genes led to an approximately 50% reduction in seed number, which deserve further attention. Moreover, the leaves of the ZjRNase1 overexpression transgenic lines were curled and twisted. Overexpression of ZjRNase2 resulted in shortened and crisp siliques and the production of trichomes, and no seeds were produced. CONCLUSION In summary, these findings will provide new insights into the molecular mechanisms of low number of hybrid seeds in jujube and a reference for the future molecular breeding of jujube.
Collapse
Affiliation(s)
- Zhi Luo
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Yu Zhang
- grid.274504.00000 0001 2291 4530College of Forestry, Hebei Agricultural University, Baoding, 071001 China
| | - Chunjiao Tian
- grid.274504.00000 0001 2291 4530College of Forestry, Hebei Agricultural University, Baoding, 071001 China
| | - Lihu Wang
- grid.412028.d0000 0004 1757 5708School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056038 China
| | - Xuan Zhao
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Zhiguo Liu
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Lili Wang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Lixin Wang
- grid.274504.00000 0001 2291 4530College of Horticulture, Hebei Agricultural University, Baoding, 071001 China ,grid.274504.00000 0001 2291 4530Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001 China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071001, China.
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071001, China.
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, 071001, China. .,Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
85
|
Tseng C, Han Y, Lv Z, Song Q, Wang K, Shen H, Chen Z. Glucose-stimulated PGC-1α couples with CBP and Runx2 to mediate intervertebral disc degeneration through transactivation of ADAMTS4/5 in diet-induced obesity mice. Bone 2023; 167:116617. [PMID: 36403758 DOI: 10.1016/j.bone.2022.116617] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Emerging evidence suggests that type 2 diabetes mellitus (T2DM) is associated with the pathogenesis of intervertebral disc degeneration (IDD). However, it is still unclear how T2DM contributes to IDD. Herein, we observed the accumulation of blood glucose and degenerative lumbar discs in mice fed a high-fat diet. Detection of differentially expressed genes in degenerative lumbar discs revealed that ADAMTS4 (A Disintegrin and Metalloproteinase with Thrombospondin motifs) and ADAMTS5 genes were significantly increased. In vitro analyses demonstrated that Runt-Related Transcription Factor 2 (Runx2) recruited both PPARgamma Coactivator 1alpha (PGC-1α) and CREB-Binding Protein (CBP) to transactivate the expression of ADAMTS4/5. Glucose stimulation could dose-dependently induce the accumulation of PGC-1α and promoted the binding of the CBP-PGC-1α-Runx2 complex to the promoters of ADAMTS4/5. Depletion of CBP-PGC-1α-Runx2 complex members and treatment with either PGC-1α inhibitor SR-18292 or CBP inhibitor EML425 in vitro could dramatically inhibit the glucose-induced expression of ADAMTS4/5. Administration of SR-18292 and EML425 in diabetic mice could prevent the degeneration of lumbar discs. Collectively, our results revealed a molecular mechanism by which the hyperglycemia-dependent CBP-PGC-1α-Runx2 complex was required for the transactivation of ADAMTS4/5. The blockage of this complex in diabetic mice may help prevent IDD.
Collapse
Affiliation(s)
- Changchun Tseng
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingchao Han
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhendong Lv
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingxin Song
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongxing Shen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi Chen
- Department of Spine Surgery, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
86
|
Bernal-Gallardo JJ, Zuñiga-Mayo VM, Marsch-Martinez N, de Folter S. Novel Roles of SPATULA in the Control of Stomata and Trichome Number, and Anthocyanin Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:596. [PMID: 36771679 PMCID: PMC9919660 DOI: 10.3390/plants12030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The bHLH transcription factor SPATULA (SPT) has been identified as a regulator during different stages of Arabidopsis development, including the control of leaf size. However, the mechanism via which it performs this function has not been elucidated. To better understand the role of SPT during leaf development, we used a transcriptomic approach to identify putative target genes. We found putative SPT target genes related to leaf development, and to stomata and trichome formation. Furthermore, genes related to anthocyanin biosynthesis. In this work, we demonstrate that SPT is a negative regulator of stomata number and a positive regulator of trichome number. In addition, SPT is required for sucrose-mediated anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Mexico
| | - Victor M. Zuñiga-Mayo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Mexico
- CONACYT, Instituto de Fitosanidad, Colegio de Postgraduados, Campus Montecillo, Texcoco 56230, Mexico
| | - Nayelli Marsch-Martinez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Mexico
| |
Collapse
|
87
|
Manosalva Pérez N, Vandepoele K. Prediction of Transcription Factor Regulators and Gene Regulatory Networks in Tomato Using Binding Site Information. Methods Mol Biol 2023; 2698:323-349. [PMID: 37682483 DOI: 10.1007/978-1-0716-3354-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Gene regulatory networks (GRNs) represent the regulatory links between transcription factors (TF) and their target genes. In plants, they are essential to understand transcriptional programs that control important agricultural traits such as yield or (a)biotic stress response. Although several high- and low-throughput experimental methods have been developed to map GRNs in plants, these are sometimes expensive, come with laborious protocols, and are not always optimized for tomato, one of the most important horticultural crops worldwide. In this chapter, we present a computational method that covers two protocols: one protocol to map gene identifiers between two different tomato genome assemblies, and another protocol to predict putative regulators and delineate GRNs given a set of functionally related or coregulated genes by exploiting publicly available TF-binding information. As an example, we applied the motif enrichment protocol on tomato using upregulated genes in response to jasmonate, as well as upregulated and downregulated genes in plants with genotypes OENAM1 and nam1, respectively. We found that our protocol accurately infers the expected TFs as top enriched regulators and identifies GRNs functionally enriched in biological processes related with the experimental context under study.
Collapse
Affiliation(s)
- Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
88
|
Gouesbet G. Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis. Methods Mol Biol 2023; 2642:257-294. [PMID: 36944884 DOI: 10.1007/978-1-0716-3044-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Plant functioning and responses to abiotic stresses largely involve regulations at the transcriptomic level via complex interactions of signal molecules, signaling cascades, and regulators. Nevertheless, all the signaling networks involved in responses to abiotic stresses have not yet been fully established. The in-depth analysis of transcriptomes in stressed plants has become a relevant state-of-the-art methodology to study these regulations and signaling pathways that allow plants to cope with or attempt to survive abiotic stresses. The plant science and molecular biology community has developed databases about genes, proteins, protein-protein interactions, protein-DNA interactions and ontologies, which are valuable sources of knowledge for deciphering such regulatory and signaling networks. The use of these data and the development of bioinformatics tools help to make sense of transcriptomic data in specific contexts, such as that of abiotic stress signaling, using functional biological approaches. The aim of this chapter is to present and assess some of the essential online tools and resources that will allow novices in bioinformatics to decipher transcriptomic data in order to characterize the cellular processes and functions involved in abiotic stress responses and signaling. The analysis of case studies further describes how these tools can be used to conceive signaling networks on the basis of transcriptomic data. In these case studies, particular attention was paid to the characterization of abiotic stress responses and signaling related to chemical and xenobiotic stressors.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, Evolution)] - UMR 6553, Rennes, France.
| |
Collapse
|
89
|
Dai X, Zhai R, Lin J, Wang Z, Meng D, Li M, Mao Y, Gao B, Ma H, Zhang B, Sun Y, Li S, Zhou C, Lin YCJ, Wang JP, Chiang VL, Li W. Cell-type-specific PtrWOX4a and PtrVCS2 form a regulatory nexus with a histone modification system for stem cambium development in Populus trichocarpa. NATURE PLANTS 2023; 9:96-111. [PMID: 36624255 PMCID: PMC9873556 DOI: 10.1038/s41477-022-01315-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/17/2022] [Indexed: 05/20/2023]
Abstract
Stem vascular cambium cells in forest trees produce wood for materials and energy. WOX4 affects the proliferation of such cells in Populus. Here we show that PtrWOX4a is the most highly expressed stem vascular-cambium-specific (VCS) gene in P. trichocarpa, and its expression is controlled by the product of the second most highly expressed VCS gene, PtrVCS2, encoding a zinc finger protein. PtrVCS2 binds to the PtrWOX4a promoter as part of a PtrWOX13a-PtrVCS2-PtrGCN5-1-PtrADA2b-3 protein tetramer. PtrVCS2 prevented the interaction between PtrGCN5-1 and PtrADA2b-3, resulting in H3K9, H3K14 and H3K27 hypoacetylation at the PtrWOX4a promoter, which led to fewer cambium cell layers. These effects on cambium cell proliferation were consistent across more than 20 sets of transgenic lines overexpressing individual genes, gene-edited mutants and RNA interference lines in P. trichocarpa. We propose that the tetramer-PtrWOX4a system may coordinate genetic and epigenetic regulation to maintain normal vascular cambium development for wood formation.
Collapse
Affiliation(s)
- Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Rui Zhai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jiaojiao Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhifeng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dekai Meng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yuli Mao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Boyuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hongyan Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Baofeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
90
|
Gautam H, Sharma A, Trivedi PK. Plant microProteins and miPEPs: Small molecules with much bigger roles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111519. [PMID: 36330966 DOI: 10.1016/j.plantsci.2022.111519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The plant science community has identified various regulatory components involved in gene expression. With the advancement of approaches and technologies, new layers of gene regulation have been identified, which play essential roles in fine-tuning biological processes. In this area, recently, small peptides emerged as key regulators in gene regulation to control developmental and physiological processes in plants. Various small peptides have also been identified and characterized to elucidate their roles. A class of small peptides, microProteins (miPs), have been shown to contain at least a protein-protein interaction domain with the potential to regulate multi-domain proteins by becoming a part of protein complexes. Recent studies suggest that some pri-miRNAs encode peptides (miPEPs), which are essential components in plant growth and development. This review provides updates about these small peptides, in general, summarizing their potential role in gene regulation and possible mechanism(s) in plants. We also propose that in-depth research on newly identified plant peptides in crops help to provide solutions enabling sustainable agriculture and food production.
Collapse
Affiliation(s)
- Himanshi Gautam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish Sharma
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.
| |
Collapse
|
91
|
Sarkar M, Saha S. Modeling of SARS-CoV-2 Virus Proteins: Implications on Its Proteome. Methods Mol Biol 2023; 2627:265-299. [PMID: 36959453 DOI: 10.1007/978-1-0716-2974-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
COronaVIrus Disease 19 (COVID-19) is a severe acute respiratory syndrome (SARS) caused by a group of beta coronaviruses, SARS-CoV-2. The SARS-CoV-2 virus is similar to previous SARS- and MERS-causing strains and has infected nearly six hundred and fifty million people all over the globe, while the death toll has crossed the six million mark (as of December, 2022). In this chapter, we look at how computational modeling approaches of the viral proteins could help us understand the various processes in the viral life cycle inside the host, an understanding of which might provide key insights in mitigating this and future threats. This understanding helps us identify key targets for the purpose of drug discovery and vaccine development.
Collapse
Affiliation(s)
- Manish Sarkar
- Hochschule für Technik und Wirtschaft (HTW) Berlin, Berlin, Germany
- MedInsights SAS, Paris, France
| | - Soham Saha
- MedInsights, Veuilly la Poterie, France.
- MedInsights SAS, Paris, France.
| |
Collapse
|
92
|
Zhang Y, Xu YP, Nie JK, Chen H, Qin G, Wang B, Su XD. DNA-TCP complex structures reveal a unique recognition mechanism for TCP transcription factor families. Nucleic Acids Res 2022; 51:434-448. [PMID: 36546761 PMCID: PMC9841405 DOI: 10.1093/nar/gkac1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Plant-specific TCP transcription factors are key regulators of diverse plant functions. TCP transcription factors have long been annotated as basic helix-loop-helix (bHLH) transcription factors according to remote sequence homology without experimental validation, and their consensus DNA-binding sequences and protein-DNA recognition mechanisms have remained elusive. Here, we report the crystal structures of the class I TCP domain from AtTCP15 and the class II TCP domain from AtTCP10 in complex with different double-stranded DNA (dsDNA). The complex structures reveal that the TCP domain is a distinct DNA-binding motif and the homodimeric TCP domains adopt a unique three-site recognition mode, binding to dsDNA mainly through a central pair of β-strands formed by the dimer interface and two basic flexible loops from each monomer. The consensus DNA-binding sequence for class I TCPs is a perfectly palindromic 11 bp (GTGGGNCCCAC), whereas that for class II TCPs is a near-palindromic 11 bp (GTGGTCCCCAC). The unique DNA binding mode allows the TCP domains to display broad specificity for a range of DNA sequences even shorter than 11 bp, adding further complexity to the regulatory network of plant TCP transcription factors.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Yong-ping Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Ju-kui Nie
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Hong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Bo Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | | |
Collapse
|
93
|
Teh OK, Singh P, Ren J, Huang LT, Ariyarathne M, Salamon BP, Wang Y, Kotake T, Fujita T. Surface-localized glycoproteins act through class C ARFs to fine-tune gametophore initiation in Physcomitrium patens. Development 2022; 149:282110. [PMID: 36520083 DOI: 10.1242/dev.200370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
Abstract
Arabinogalactan proteins are functionally diverse cell wall structural glycoproteins that have been implicated in cell wall remodeling, although the mechanistic actions remain elusive. Here, we identify and characterize two AGP glycoproteins, SLEEPING BEAUTY (SB) and SB-like (SBL), that negatively regulate the gametophore bud initiation in Physcomitrium patens by dampening cell wall loosening/softening. Disruption of SB and SBL led to accelerated gametophore formation and altered cell wall compositions. The function of SB is glycosylation dependent and genetically connected with the class C auxin response factor (ARF) transcription factors PpARFC1B and PpARFC2. Transcriptomics profiling showed that SB upregulates PpARFC2, which in turn suppresses a range of cell wall-modifying genes that are required for cell wall loosening/softening. We further show that PpARFC2 binds directly to multiple AuxRE motifs on the cis-regulatory sequences of PECTIN METHYLESTERASE to suppress its expression. Hence, our results demonstrate a mechanism by which the SB modulates the strength of intracellular auxin signaling output, which is necessary to fine-tune the timing of gametophore initials formation.
Collapse
Affiliation(s)
- Ooi Kock Teh
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan.,Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Prerna Singh
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Junling Ren
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Lin Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Menaka Ariyarathne
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Benjamin Prethiviraj Salamon
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Yu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec.2, Academia Rd., Nankang, Taipei 11529, Taiwan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
94
|
Genome and Transcriptome-Wide Analysis of OsWRKY and OsNAC Gene Families in Oryza sativa and Their Response to White-Backed Planthopper Infestation. Int J Mol Sci 2022; 23:ijms232315396. [PMID: 36499722 PMCID: PMC9739594 DOI: 10.3390/ijms232315396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Plants are threatened by a wide variety of herbivorous insect assaults, and display a variety of inherent and induced defenses that shield them against herbivore attacks. Looking at the massive damage caused by the white-backed planthopper (WBPH), Sogatella furcifera, we undertook a study to identify and functionally annotate OsWRKY and OsNAC transcription factors (TFs) in rice, especially their involvement in WBPH stress. OsWRKY and OsNAC TFs are involved in various developmental processes and responses to biotic and abiotic stresses. However, no comprehensive reports are available on the specific phycological functions of most of the OsWRKY and OsNAC genes in rice during WBPH infestation. The current study aimed to comprehensively explore the OsWRKY and OsNAC genes by analyzing their phylogenetic relationships, subcellular localizations, exon-intron arrangements, conserved motif identities, chromosomal allocations, interaction networks and differential gene expressions during stress conditions. Comparative phylogenetic trees of 101 OsWRKY with 72 AtWRKY genes, and 121 OsNAC with 110 AtNAC genes were constructed to study relationships among these TFs across species. Phylogenetic relationships classified OsWRKY and OsNAC into eight and nine clades, respectively. Most TFs in the same clade had similar genomic features that represented similar functions, and had a high degree of co-expression. Some OsWRKYs (Os09g0417800 (OsWRKY62), Os11g0117600 (OsWRKY50), Os11g0117400 (OsWRKY104) and OsNACs (Os05g0442700, Os12g0630800, Os01g0862800 and Os12g0156100)) showed significantly higher expressions under WBPH infestation, based on transcriptome datasets. This study provides valuable information and clues about predicting the potential roles of OsWRKYs and OsNACs in rice, by combining their genome-wide characterization, expression profiling, protein-protein interactions and gene expressions under WBPH stress. These findings may require additional investigation to understand their metabolic and expression processes, and to develop rice cultivars that are resistant to WBPH.
Collapse
|
95
|
Comparative phylogenomic analysis of 5’is-regulatory elements (CREs) of miR160 gene family in diploid and allopolyploid cotton (Gossypium) species. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
96
|
Hua YP, Wu PJ, Zhang TY, Song HL, Zhang YF, Chen JF, Yue CP, Huang JY, Sun T, Zhou T. Genome-Scale Investigation of GARP Family Genes Reveals Their Pivotal Roles in Nutrient Stress Resistance in Allotetraploid Rapeseed. Int J Mol Sci 2022; 23:ijms232214484. [PMID: 36430962 PMCID: PMC9698747 DOI: 10.3390/ijms232214484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The GARP genes are plant-specific transcription factors (TFs) and play key roles in regulating plant development and abiotic stress resistance. However, few systematic analyses of GARPs have been reported in allotetraploid rapeseed (Brassica napus L.) yet. In the present study, a total of 146 BnaGARP members were identified from the rapeseed genome based on the sequence signature. The BnaGARP TFs were divided into five subfamilies: ARR, GLK, NIGT1/HRS1/HHO, KAN, and PHL subfamilies, and the members within the same subfamilies shared similar exon-intron structures and conserved motif configuration. Analyses of the Ka/Ks ratios indicated that the GARP family principally underwent purifying selection. Several cis-acting regulatory elements, essential for plant growth and diverse biotic and abiotic stresses, were identified in the promoter regions of BnaGARPs. Further, 29 putative miRNAs were identified to be targeting BnaGARPs. Differential expression of BnaGARPs under low nitrate, ammonium toxicity, limited phosphate, deficient boron, salt stress, and cadmium toxicity conditions indicated their potential involvement in diverse nutrient stress responses. Notably, BnaA9.HHO1 and BnaA1.HHO5 were simultaneously transcriptionally responsive to these nutrient stresses in both hoots and roots, which indicated that BnaA9.HHO1 and BnaA1.HHO5 might play a core role in regulating rapeseed resistance to nutrient stresses. Therefore, this study would enrich our understanding of molecular characteristics of the rapeseed GARPs and will provide valuable candidate genes for further in-depth study of the GARP-mediated nutrient stress resistance in rapeseed.
Collapse
Affiliation(s)
- Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tian-Yu Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Fan Chen
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Yong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tao Sun
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.S.); (T.Z.); Tel.: +86-187-0271-0749 (T.Z.)
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (T.S.); (T.Z.); Tel.: +86-187-0271-0749 (T.Z.)
| |
Collapse
|
97
|
Venkatesh B, Vennapusa AR, Kumar NJ, Jayamma N, Reddy BM, Johnson AMA, Madhusudan KV, Pandurangaiah M, Kiranmai K, Sudhakar C. Co-expression of stress-responsive regulatory genes, MuNAC4, MuWRKY3 and MuMYB96 associated with resistant-traits improves drought adaptation in transgenic groundnut ( Arachis hypogaea l.) plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1055851. [PMID: 36466254 PMCID: PMC9709484 DOI: 10.3389/fpls.2022.1055851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 05/24/2023]
Abstract
Groundnut, cultivated under rain-fed conditions is prone to yield losses due to intermittent drought stress. Drought tolerance is a complex phenomenon and multiple gene expression required to maintain the cellular tolerance. Transcription factors (TFs) regulate many functional genes involved in tolerance mechanisms. In this study, three stress-responsive regulatory TFs cloned from horse gram, (Macrotyloma uniflorum (Lam) Verdc.), MuMYB96, involved in cuticular wax biosynthesis; MuWRKY3, associated with anti-oxidant defense mechanism and MuNAC4, tangled with lateral root development were simultaneously expressed to enhance drought stress resistance in groundnut (Arachis hypogaea L.). The multigene transgenic groundnut lines showed reduced ROS production, membrane damage, and increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) enzyme activity, evidencing improved antioxidative defense mechanisms under drought stress. Multigene transgenic plants showed lower proline content, increased soluble sugars, epicuticular wax content and higher relative water content suggesting higher maintenance of tissue water status compared to wildype and mock plants. The scanning electron microscopy (SEM) analysis showed a substantial increase in deposition of cuticular waxes and variation in stomatal number in multigene transgenic lines compared to wild type and mock plants. The multigene transgenic plants showed increased growth of lateral roots, chlorophyll content, and stay-green nature in drought stress compared to wild type and mock plants. Expression analysis of transgenes, MuMYB96, MuWRKY3, and MuNAC4 and their downstream target genes, KCS6, KCR1, APX3, CSD1, LBD16 and DBP using qRT-PCR showed a two- to four-fold increase in transcript levels in multigene transgenic groundnut plants over wild type and mock plants under drought stress. Our study demonstrate that introducing multiple genes with simultaneous expression of genes is a viable option to improve stress tolerance and productivity under drought stress.
Collapse
Affiliation(s)
- Boya Venkatesh
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - Amaranatha R. Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE, United States
| | - Nulu Jagadeesh Kumar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - N. Jayamma
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - B. Manohara Reddy
- Department of Botany, Government College (Autonomous), Anantapuram, India
| | | | - K. V. Madhusudan
- Department of Botany, Government College, Cluster University, Kurnool, India
| | - Merum Pandurangaiah
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - K. Kiranmai
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapuram, India
| |
Collapse
|
98
|
Guo L, Wang S, Nie Y, Shen Y, Ye X, Wu W. Convergent evolution of AP2/ERF III and IX subfamilies through recurrent polyploidization and tandem duplication during eudicot adaptation to paleoenvironmental changes. PLANT COMMUNICATIONS 2022; 3:100420. [PMID: 35949168 PMCID: PMC9700204 DOI: 10.1016/j.xplc.2022.100420] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 05/10/2023]
Abstract
Whole-genome duplication (WGD or polyploidization) has been suggested as a genetic contributor to angiosperm adaptation to environmental changes. However, many eudicot lineages did not undergo recent WGD (R-WGD) around and/or after the Cretaceous-Paleogene (K-Pg) boundary, times of severe environmental changes; how those plants survived has been largely ignored. Here, we collected 22 plants from major branches of the eudicot phylogeny and classified them into two groups according to the occurrence or absence of R-WGD: 12 R-WGD-containing plants (R-WGD-Y) and 10 R-WGD-lacking plants (R-WGD-N). Subsequently, we identified 496 gene-rich families in R-WGD-Y and revealed that members of the AP2/ERF transcription factor family were convergently over-retained after R-WGDs and showed exceptional cold stimulation. The evolutionary trajectories of the AP2/ERF family were then compared between R-WGD-Y and R-WGD-N to reveal convergent expansions of the AP2/ERF III and IX subfamilies through recurrent independent WGDs and tandem duplications (TDs) after the radiation of the plants. The expansions showed coincident enrichments in- times around and/or after the K-Pg boundary, when global cooling was a major environmental stressor. Consequently, convergent expansions and co-retentions of AP2/ERF III C-repeat binding factor (CBF) duplicates and their regulons in different eudicot lineages contributed to the rewiring of cold-specific regulatory networks. Moreover, promoter analysis of cold-responsive AP2/ERF genes revealed an underlying cis-regulatory code (G-box: CACGTG). We propose a seesaw model of WGDs and TDs in the convergent expansion of AP2/ERF III and IX genes that has contributed to eudicot adaptation during paleoenvironmental changes, and we suggest that TD may be a reciprocal/alternative mechanism for genetic innovation in plants that lack WGD.
Collapse
Affiliation(s)
- Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China
| | - Xiaoxue Ye
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, China.
| |
Collapse
|
99
|
Li Z, Li D, Li Y, Guo X, Yang R. Deciphering the regulatory code of histone modifications in plants. J Genet Genomics 2022; 49:1064-1067. [PMID: 35850435 DOI: 10.1016/j.jgg.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Zhaohong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Dongwei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Ye Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Xiaoping Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China
| | - Ruolin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
100
|
Cui Y, Zhai Y, He J, Song M, Flaishman MA, Ma H. AP2/ERF genes associated with superfast fig ( Ficus carica L.) fruit ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:1040796. [PMID: 36388580 PMCID: PMC9659990 DOI: 10.3389/fpls.2022.1040796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Fig fruits have significant health value and are culturally important. Under suitable climatic conditions, fig fruits undergo a superfast ripening process, nearly doubling in size, weight, and sugar content over three days in parallel with a sharp decrease in firmness. In this study, 119 FcAP2/ERF genes were identified in the fig genome, namely 95 ERFs, 20 AP2s, three RAVs, and one soloist. Most of the ERF subfamily members (76) contained no introns, whereas the majority of the AP2 subfamily members had at least two introns each. Three previously published transcriptome datasets were mined to discover expression patterns, encompassing the fruit peel and flesh of the 'Purple Peel' cultivar at six developmental stages; the fruit receptacle and flesh of the 'Brown Turkey' cultivar after ethephon treatment; and the receptacle and flesh of parthenocarpic and pollinated fruits of the 'Brown Turkey' cultivar. Eighty-three FcAP2/ERFs (68 ERFs, 13 AP2s, one RAV, and one soloist) were expressed in the combined transcriptome dataset. Most FcAP2/ERFs were significantly downregulated (|log2(fold change) | ≥ 1 and p-adjust < 0.05) during both normal fruit development and ethephon-induced accelerated ripening, suggesting a repressive role of these genes in fruit ripening. Five significantly downregulated ERFs also had repression domains in the C-terminal. Seven FcAP2/ERFs were identified as differentially expressed during ripening in all three transcriptome datasets. These genes were strong candidates for future functional genetic studies to elucidate the major FcAP2/ERF regulators of the superfast fig fruit ripening process.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
- Peking University Institute of Advanced Agricultural Science, Shandong Laboratory for Advanced Agricultural Sciences, Weifang, China
| | - Yanlei Zhai
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Jiajun He
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Miaoyu Song
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| | - Moshe A. Flaishman
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel
| | - Huiqin Ma
- Department of Fruit Tree Sciences, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|