51
|
Bąchor R, Randaccio E, Lachowicz JI, Stefanowicz P, Nurchi VM, Szewczuk Z. Synthesis and Mass Spectrometry Analysis of Mimosine-Containing Peptides. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10092-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractNon-proteinogenic amino acids are widely explored group of compounds due to their chemical properties and great potential of application in the combinatorial chemistry, medicinal investigation etc. Therefore the synthetic methods of their incorporation to the peptide chain are required. l-Mimosine, (S)-α-amino-β-(3-hydoxy-4-oxo-1,4-dihydropyridin-1-yl)-propanoic acid), is a plant amino acid, known to induce apoptosis in human pancreatic cancer xenografts. Here we present our investigations on the synthesis of mimosine-containing peptide and their ESI-MS/MS analysis. We successfully applied Fmoc-protected mimosine a with a free hydroxy ketone group for efficient peptide synthesis in the presence of HATU as a coupling reagent without the formation of side products. Additionally the tandem mass spectrometry analysis revealed the characteristic loss of the heterocyclic ring from mimosine residue side chain. The described method allows insertion of mimosine residue at any endo-position within a peptide sequence. The obtained results may be useful in the synthesis and mass spectrometry analysis of various mimosine-containing peptides.
Collapse
|
52
|
Burster T, Gärtner F, Knippschild U, Zhanapiya A. Activity-Based Probes to Utilize the Proteolytic Activity of Cathepsin G in Biological Samples. Front Chem 2021; 9:628295. [PMID: 33732686 PMCID: PMC7959752 DOI: 10.3389/fchem.2021.628295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neutrophils, migrating to the site of infection, are able to release serine proteases after being activated. These serine proteases comprise cathepsin G (CatG), neutrophil elastase protease 3 (PR3), and neutrophil serine protease 4 (NSP4). A disadvantage of the uncontrolled proteolytic activity of proteases is the outcome of various human diseases, including cardiovascular diseases, thrombosis, and autoimmune diseases. Activity-based probes (ABPs) are used to determine the proteolytic activity of proteases, containing a set of three essential elements: Warhead, recognition sequence, and the reporter tag for detection of the covalent enzyme activity–based probe complex. Here, we summarize the latest findings of ABP-mediated detection of proteases in both locations intracellularly and on the cell surface of cells, thereby focusing on CatG. Particularly, application of ABPs in regular flow cytometry, imaging flow cytometry, and mass cytometry by time-of-flight (CyTOF) approaches is advantageous when distinguishing between immune cell subsets. ABPs can be included in a vast panel of markers to detect proteolytic activity and determine whether proteases are properly regulated during medication. The use of ABPs as a detection tool opens the possibility to interfere with uncontrolled proteolytic activity of proteases by employing protease inhibitors.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
53
|
Yang J, Mendowicz RJ, Verhelst SHL. Tagged Benzoxazin-4-Ones as Novel Activity-Based Probes for Serine Proteases. Chembiochem 2021; 22:1578-1581. [PMID: 33438794 DOI: 10.1002/cbic.202000848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Indexed: 12/12/2022]
Abstract
Activity-based probes (ABPs) are valuable chemical tools for profiling enzymes. They have been particularly useful in the study of proteases. ABPs rely on electrophilic scaffolds that covalently modify the target enzymes. Ideally, they can be made in a fast and uncomplicated manner. Here, we explore alkyne-substituted benzoxazin-4-ones as ABPs for serine proteases, because they inhibitserine proteases covalently and their synthesis is very straightforward. We show that alkyne-tagged benzoxazin-4-ones can be used in two-step bioorthogonal tandem labeling procedures or pre-functionalized with a biotin or fluorophore. We demonstrate that these reagents can be used to label and identify various serine proteases. Therefore, we expect that tagged benzoxazin-4-ones will offer easily synthesizable tools for profiling of serine proteases.
Collapse
Affiliation(s)
- Jian Yang
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Rafal J Mendowicz
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Herestraat 49, Box 802, 3000, Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Straße 6b, 44227, Dortmund, Germany
| |
Collapse
|
54
|
Weiss SAI, Rehm SRT, Perera NC, Biniossek ML, Schilling O, Jenne DE. Origin and Expansion of the Serine Protease Repertoire in the Myelomonocyte Lineage. Int J Mol Sci 2021; 22:ijms22041658. [PMID: 33562184 PMCID: PMC7914634 DOI: 10.3390/ijms22041658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.
Collapse
Affiliation(s)
- Stefanie A. I. Weiss
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | - Salome R. T. Rehm
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | | | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
- Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
55
|
Tušar L, Usenik A, Turk B, Turk D. Mechanisms Applied by Protein Inhibitors to Inhibit Cysteine Proteases. Int J Mol Sci 2021; 22:997. [PMID: 33498210 PMCID: PMC7863939 DOI: 10.3390/ijms22030997] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023] Open
Abstract
Protein inhibitors of proteases are an important tool of nature to regulate and control proteolysis in living organisms under physiological and pathological conditions. In this review, we analyzed the mechanisms of inhibition of cysteine proteases on the basis of structural information and compiled kinetic data. The gathered structural data indicate that the protein fold is not a major obstacle for the evolution of a protease inhibitor. It appears that nature can convert almost any starting fold into an inhibitor of a protease. In addition, there appears to be no general rule governing the inhibitory mechanism. The structural data make it clear that the "lock and key" mechanism is a historical concept with limited validity. However, the analysis suggests that the shape of the active site cleft of proteases imposes some restraints. When the S1 binding site is shaped as a pocket buried in the structure of protease, inhibitors can apply substrate-like binding mechanisms. In contrast, when the S1 binding site is in part exposed to solvent, the substrate-like inhibition cannot be employed. It appears that all proteases, with the exception of papain-like proteases, belong to the first group of proteases. Finally, we show a number of examples and provide hints on how to engineer protein inhibitors.
Collapse
Affiliation(s)
- Livija Tušar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Aleksandra Usenik
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Faculty of Chemistry, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Dušan Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; (L.T.); (A.U.); (B.T.)
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
56
|
|
57
|
Guerra M, Halls VS, Schatterny J, Hagner M, Mall MA, Schultz C. Protease FRET Reporters Targeting Neutrophil Extracellular Traps. J Am Chem Soc 2020; 142:20299-20305. [PMID: 33186023 DOI: 10.1021/jacs.0c08130] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutrophil extracellular traps (NETs) consist of DNA released by terminally stimulated neutrophils. They fine-tune inflammation, kill pathogens, activate macrophages, contribute to airway mucus obstruction in cystic fibrosis, and facilitate tumor metastasis after dormancy. Neutrophil proteases such as elastase (NE) and cathepsin G (CG) attach to NETs and contribute to the diverse immune outcome. However, because of the lack of suitable tools, little spatiotemporal information on protease activities on NETs is available in a pathophysiological context to date. Here, we present H-NE and H-CG, two FRET-based reporters armed with a DNA minor groove binder, which monitor DNA-bound NE and CG activity, respectively. The probes revealed that only NE maintains its catalytic ability when localized to DNA. Further, we demonstrated elevated protease activity within the extracellular DNA of sputum from cystic fibrosis patients. Finally, H-NE showed NE activity at single-cell and free DNA resolution within mouse lung slices, a difficult to achieve task with available substrate-based reporters.
Collapse
Affiliation(s)
- Matteo Guerra
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Faculty of Biosciences, Collaboration for Joint Ph.D. Degree between EMBL and Heidelberg University, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Victoria S Halls
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Jolanthe Schatterny
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Matthias Hagner
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
| | - Marcus A Mall
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, 10178 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, 13353 Berlin, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit (MMPU), European Molecular Biology Laboratory (EMBL) and University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), 69120 Heidelberg, Germany
- Dept. of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, United States
| |
Collapse
|
58
|
Soleimany AP, Kirkpatrick JD, Su S, Dudani JS, Zhong Q, Bekdemir A, Bhatia SN. Activatable Zymography Probes Enable In Situ Localization of Protease Dysregulation in Cancer. Cancer Res 2020; 81:213-224. [PMID: 33106334 DOI: 10.1158/0008-5472.can-20-2410] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/16/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022]
Abstract
Recent years have seen the emergence of conditionally activated diagnostics and therapeutics that leverage protease-cleavable peptide linkers to enhance their specificity for cancer. However, due to a lack of methods to measure and localize protease activity directly within the tissue microenvironment, the design of protease-activated agents has been necessarily empirical, yielding suboptimal results when translated to patients. To address the need for spatially resolved protease activity profiling in cancer, we developed a new class of in situ probes that can be applied to fresh-frozen tissue sections in a manner analogous to immunofluorescence staining. These activatable zymography probes (AZP) detected dysregulated protease activity in human prostate cancer biopsy samples, enabling disease classification. AZPs were leveraged within a generalizable framework to design conditional cancer diagnostics and therapeutics and showcased in the Hi-Myc mouse model of prostate cancer, which models features of early pathogenesis. Multiplexed screening against barcoded substrates yielded a peptide, S16, that was robustly and specifically cleaved by tumor-associated metalloproteinases in the Hi-Myc model. In situ labeling with an AZP incorporating S16 revealed a potential role of metalloproteinase dysregulation in proliferative, premalignant Hi-Myc prostatic glands. Systemic administration of an in vivo imaging probe incorporating S16 perfectly classified diseased and healthy prostates, supporting the relevance of ex vivo activity assays to in vivo translation. We envision AZPs will enable new insights into the biology of protease dysregulation in cancer and accelerate the development of conditional diagnostics and therapeutics for multiple cancer types. SIGNIFICANCE: Visualization of protease activity within the native tissue context using AZPs provides new biological insights into protease dysregulation in cancer and guides the design of conditional diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ava P Soleimany
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard Graduate Program in Biophysics, Harvard University, Boston, Massachusetts
| | - Jesse D Kirkpatrick
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Susan Su
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jaideep S Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Qian Zhong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ahmet Bekdemir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts. .,Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Howard Hughes Medical Institute, Cambridge, Massachusetts.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts.,Wyss Institute at Harvard, Boston, Massachusetts.,Ludwig Center at the MIT Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
| |
Collapse
|
59
|
Rut W, Groborz K, Zhang L, Sun X, Zmudzinski M, Pawlik B, Wang X, Jochmans D, Neyts J, Młynarski W, Hilgenfeld R, Drag M. SARS-CoV-2 M pro inhibitors and activity-based probes for patient-sample imaging. Nat Chem Biol 2020; 17:222-228. [PMID: 33093684 DOI: 10.1038/s41589-020-00689-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
In December 2019, the first cases of infection with a novel coronavirus, SARS-CoV-2, were diagnosed. Currently, there is no effective antiviral treatment for COVID-19. To address this emerging problem, we focused on the SARS-CoV-2 main protease that constitutes one of the most attractive antiviral drug targets. We have synthesized a combinatorial library of fluorogenic substrates with glutamine in the P1 position. We used it to determine the substrate preferences of the SARS-CoV and SARS-CoV-2 main proteases. On the basis of these findings, we designed and synthesized a potent SARS-CoV-2 inhibitor (Ac-Abu-DTyr-Leu-Gln-VS, half-maximal effective concentration of 3.7 µM) and two activity-based probes, for one of which we determined the crystal structure of its complex with the SARS-CoV-2 Mpro. We visualized active SARS-CoV-2 Mpro in nasopharyngeal epithelial cells of patients suffering from COVID-19 infection. The results of our work provide a structural framework for the design of inhibitors as antiviral agents and/or diagnostic tests.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Linlin Zhang
- Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany.,Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, Lübeck, Germany
| | - Xinyuanyuan Sun
- Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany.,Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, Lübeck, Germany
| | - Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Bartlomiej Pawlik
- Department of Pediatrics, Oncology & Hematology, Medical University of Lodz, Lodz, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Xinyu Wang
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Dirk Jochmans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Johan Neyts
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology & Hematology, Medical University of Lodz, Lodz, Poland
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, Lübeck, Germany.,Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland.
| |
Collapse
|
60
|
Poreba M, Groborz KM, Rut W, Pore M, Snipas SJ, Vizovisek M, Turk B, Kuhn P, Drag M, Salvesen GS. Multiplexed Probing of Proteolytic Enzymes Using Mass Cytometry-Compatible Activity-Based Probes. J Am Chem Soc 2020; 142:16704-16715. [PMID: 32870676 PMCID: PMC7595764 DOI: 10.1021/jacs.0c06762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The subset of the proteome that contains enzymes in their catalytically active form can be interrogated by using probes targeted toward individual specific enzymes. A subset of such enzymes are proteases that are frequently studied with activity-based probes, small inhibitors equipped with a detectable tag, commonly a fluorophore. Due to the spectral overlap of these commonly used fluorophores, multiplex analysis becomes limited. To overcome this, we developed a series of protease-selective lanthanide-labeled probes compatible with mass cytometry giving us the ability to monitor the activity of multiple proteases in parallel. Using these probes, we were able to identify the distribution of four proteases with different active site geometries in three cell lines and peripheral blood mononuclear cells. This provides a framework for the use of mass cytometry for multiplexed enzyme activity detection.
Collapse
Affiliation(s)
- Marcin Poreba
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna M. Groborz
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Wioletta Rut
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Milind Pore
- University of Southern California, USC Michelson Center for Convergent Biosciences, Los Angeles, CA, USA
| | - Scott J. Snipas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - Boris Turk
- Jozef Stefan Institute, Ljubljana, Slovenia
| | - Peter Kuhn
- University of Southern California, USC Michelson Center for Convergent Biosciences, Los Angeles, CA, USA
| | - Marcin Drag
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Guy S. Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
61
|
Kahler JP, Lenders S, van de Plassche MAT, Verhelst SHL. Facile Synthesis of Aminomethyl Phosphinate Esters as Serine Protease Inhibitors with Primed Site Interaction. ACS Med Chem Lett 2020; 11:1739-1744. [PMID: 32944141 DOI: 10.1021/acsmedchemlett.0c00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
Serine proteases comprise about one-third of all proteases, and defective regulation of serine proteases is involved in numerous diseases. Therefore, serine protease inhibitors are promising drug candidates. Aminomethyl diphenyl phosphonates have been regularly used as scaffolds for covalent serine protease inhibition and the design of activity-based probes. However, they cannot make use of a protease's primed site. Therefore, we developed a facile two-step synthesis toward a set of phenyl phosphinates, which is a related scaffold but can interact with the primed site. We tested their inhibitory activity on five different serine proteases and found that a phenyl group directly attached to the phosphorus atom leads to superior activity compared with phosphonates.
Collapse
Affiliation(s)
- Jan Pascal Kahler
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven − University of Leuven, Herestraat 49 Box
802, 3000 Leuven, Belgium
| | - Stijn Lenders
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven − University of Leuven, Herestraat 49 Box
802, 3000 Leuven, Belgium
| | - Merel A. T. van de Plassche
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven − University of Leuven, Herestraat 49 Box
802, 3000 Leuven, Belgium
| | - Steven H. L. Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven − University of Leuven, Herestraat 49 Box
802, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences − ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
62
|
Chan LW, Anahtar MN, Ong TH, Hern KE, Kunz RR, Bhatia SN. Engineering synthetic breath biomarkers for respiratory disease. NATURE NANOTECHNOLOGY 2020; 15:792-800. [PMID: 32690884 PMCID: PMC8173716 DOI: 10.1038/s41565-020-0723-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 05/10/2023]
Abstract
Human breath contains many volatile metabolites. However, few breath tests are currently used in the clinic to monitor disease due to bottlenecks in biomarker identification. Here we engineered breath biomarkers for respiratory disease by local delivery of protease-sensing nanoparticles to the lungs. The nanosensors shed volatile reporters upon cleavage by neutrophil elastase, an inflammation-associated protease with elevated activity in lung diseases such as bacterial infection and alpha-1 antitrypsin deficiency. After intrapulmonary delivery into mouse models with acute lung inflammation, the volatile reporters are released and expelled in breath at levels detectable by mass spectrometry. These breath signals can identify diseased mice with high sensitivity as early as 10 min after nanosensor administration. Using these nanosensors, we performed serial breath tests to monitor dynamic changes in neutrophil elastase activity during lung infection and to assess the efficacy of a protease inhibitor therapy targeting neutrophil elastase for the treatment of alpha-1 antitrypsin deficiency.
Collapse
Affiliation(s)
- Leslie W Chan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Melodi N Anahtar
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ta-Hsuan Ong
- Biological and Chemical Technologies Group, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, USA
| | - Kelsey E Hern
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roderick R Kunz
- Biological and Chemical Technologies Group, Massachusetts Institute of Technology Lincoln Laboratory, Lexington, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
63
|
Chen S, Yim JJ, Bogyo M. Synthetic and biological approaches to map substrate specificities of proteases. Biol Chem 2020; 401:165-182. [PMID: 31639098 DOI: 10.1515/hsz-2019-0332] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Proteases are regulators of diverse biological pathways including protein catabolism, antigen processing and inflammation, as well as various disease conditions, such as malignant metastasis, viral infection and parasite invasion. The identification of substrates of a given protease is essential to understand its function and this information can also aid in the design of specific inhibitors and active site probes. However, the diversity of putative protein and peptide substrates makes connecting a protease to its downstream substrates technically difficult and time-consuming. To address this challenge in protease research, a range of methods have been developed to identify natural protein substrates as well as map the overall substrate specificity patterns of proteases. In this review, we highlight recent examples of both synthetic and biological methods that are being used to define the substrate specificity of protease so that new protease-specific tools and therapeutic agents can be developed.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua J Yim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
64
|
Faucher F, Bennett JM, Bogyo M, Lovell S. Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases. Cell Chem Biol 2020; 27:937-952. [PMID: 32726586 PMCID: PMC7484133 DOI: 10.1016/j.chembiol.2020.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Serine hydrolases comprise a large family of enzymes that have diverse roles in key cellular processes, such as lipid metabolism, cell signaling, and regulation of post-translation modifications of proteins. They are also therapeutic targets for multiple human pathologies, including viral infection, diabetes, hypertension, and Alzheimer disease; however, few have well-defined substrates and biological functions. Activity-based probes (ABPs) have been used as effective tools to both profile activity and screen for selective inhibitors of serine hydrolases. One broad-spectrum ABP containing a fluorophosphonate electrophile has been used extensively to advance our understanding of diverse serine hydrolases. Due to the success of this single reagent, several robust chemistries have been developed to further diversify and tune the selectivity of ABPs used to target serine hydrolases. In this review, we highlight approaches to identify selective serine hydrolase ABPs and suggest new synthetic methodologies that could be applied to further advance probe development.
Collapse
Affiliation(s)
- Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
65
|
Kahler JP, Vanhoutte R, Verhelst SHL. Activity-Based Protein Profiling of Serine Proteases in Immune Cells. Arch Immunol Ther Exp (Warsz) 2020; 68:23. [DOI: 10.1007/s00005-020-00586-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
|
66
|
Skowron PM, Krefft D, Brodzik R, Kasperkiewicz P, Drag M, Koller KP. An alternative for proteinase K-heat-sensitive protease from fungus Onygena corvina for biotechnology: cloning, engineering, expression, characterization and special application for protein sequencing. Microb Cell Fact 2020; 19:135. [PMID: 32580707 PMCID: PMC7313183 DOI: 10.1186/s12934-020-01392-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/15/2020] [Indexed: 12/19/2022] Open
Abstract
Background A neutral, heat-sensitive serine protease (NHSSP) originating from the feather-degrading fungus Onygena corvina (O. corvina) was described and defined as an alkaline serine protease of the subtilisin type S8 family, exhibiting an enzymatic activity at neutral pH. Generally, broad specificity proteases, such as proteinase K or trypsin, have found numerous applications in research and biotechnology. Results We report the cloning and expression in the yeast PichiaPink™ system, as well as purification, and characterization of the NHSSP. Recombinant, His6-tagged NHSSP was efficiently expressed from an optimized, synthetic gene and purified using a simple protocol based on ammonium sulfate fractionation and hydrophobic interaction chromatography. The enzyme shows atypical C-terminal processing, the coded preproprotein undergoes signal peptide removal and maturation through the clipping of a propeptide section and 10 amino acids (aa) from the C-terminus, including the His6-tag. The deletion variant has been constructed, devoid of the C-terminal ORF segment, thus eliminating the need for C-terminal processing. Both NHSSP variants exhibit very similar enzymatic characteristics. The purified enzymes were characterized to determine the optimal proteolytic conditions. We revealed that the mature NHSSP is reproducibly active over a wide pH range from neutral to mild acidic (pH of 5.0 to 8.5), with an optimum at pH 6.8, and at temperatures of 15 to 50 °C with an optimum at 38–42 °C. Interestingly, we demonstrated that the protease can be fully deactivated by a moderate increase in temperature of about 15 °C from the optimum to over 50 °C. The protease was partially sensitive to serine protease inhibitors, and not inhibited by chelating or reducing agents and detergents. SDS induced autolysis of NHSSP, which points to a high stimulation of its proteolytic activity. Conclusions The NHSSP was produced as a recombinant protein with high efficiency. Compared to proteinase K, the most common serine protease used, NHSSP shows an approx. twofold higher specific activity. Protein sequencing can be a valuable technical application for the protease. The protein coverage is significantly higher in comparison to trypsin and reaches about 84–100% for β-lactoglobulin (BLG), antibody (mAb) light and heavy chains. Furthermore, the option to perform digestions at neutral to slightly acidic pH-values down to pH 5.0 avoids modification of peptides, e.g. due to deamidation.
Collapse
Affiliation(s)
- Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, 80-308, Gdansk, Poland.
| | - Daria Krefft
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63 Street, 80-308, Gdansk, Poland
| | - Robert Brodzik
- BLIRT S.A., Trzy Lipy 3/1.38 Street, 80-172, Gdansk, Poland
| | - Paulina Kasperkiewicz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27 Street, 50-370, Wroclaw, Poland
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27 Street, 50-370, Wroclaw, Poland
| | - Klaus-Peter Koller
- Institute for Molecular Bio Science, University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| |
Collapse
|
67
|
Jia Z, Han HH, Sedgwick AC, Williams GT, Gwynne L, Brewster JT, Bull SD, Jenkins ATA, He XP, Schönherr H, Sessler JL, James TD. Protein Encapsulation: A Nanocarrier Approach to the Fluorescence Imaging of an Enzyme-Based Biomarker. Front Chem 2020; 8:389. [PMID: 32582623 PMCID: PMC7283737 DOI: 10.3389/fchem.2020.00389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Here, we report a new pentafluoropropanamido rhodamine fluorescent probe (ACS-HNE) that allows for the selective detection of neutrophil elastase (NE). ACS-HNE displayed high sensitivity, with a low limit of detection (<5.3 nM), and excellent selectivity toward elastase over other relevant biological analytes and enzymes. The comparatively poor solubility and cell permeability of neat ACS-HNE was improved by creating an ACS-HNE-albumin complex; this approach allowed for improvements in the in situ visualization of elastase activity in RAW 264.7 cells relative to ACS-HNE alone. The present study thus serves to demonstrate a simple universal strategy that may be used to overcome cell impermeability and solubility limitations, and to prepare probes suitable for the cellular imaging of enzymatic activity in vitro.
Collapse
Affiliation(s)
- Zhiyuan Jia
- Department of Chemistry and Biology, Physical Chemistry & Research Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States
| | | | - Lauren Gwynne
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - James T Brewster
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States
| | - Steven D Bull
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - A Toby A Jenkins
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Holger Schönherr
- Department of Chemistry and Biology, Physical Chemistry & Research Center of Micro- and Nanochemistry and Engineering (Cμ), University of Siegen, Siegen, Germany
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX, United States
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
68
|
Rut W, Zmudzinski M, Snipas SJ, Bekes M, Huang TT, Drag M. Engineered unnatural ubiquitin for optimal detection of deubiquitinating enzymes. Chem Sci 2020; 11:6058-6069. [PMID: 32953009 PMCID: PMC7477763 DOI: 10.1039/d0sc01347a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Herein we present a workflow for design and synthesis of novel selective Ub-based tools for DUBs. Selectivity is achieved by incorporation of unnatural amino acids into the Ub C-terminal epitope.
Deubiquitinating enzymes (DUBs) are responsible for removing ubiquitin (Ub) from its protein conjugates. DUBs have been implicated as attractive therapeutic targets in the treatment of viral diseases, neurodegenerative disorders and cancer. The lack of selective chemical tools for the exploration of these enzymes significantly impairs the determination of their roles in both normal and pathological states. Commercially available fluorogenic substrates are based on the C-terminal Ub motif or contain Ub coupled to a fluorophore (Z-LRGG-AMC, Ub-AMC); therefore, these substrates suffer from lack of selectivity. By using a hybrid combinatorial substrate library (HyCoSuL) and a defined P2 library containing a wide variety of nonproteinogenic amino acids, we established a full substrate specificity profile for two DUBs—MERS PLpro and human UCH-L3. Based on these results, we designed and synthesized Ub-based substrates and activity-based probes (ABPs) containing selected unnatural amino acids located in the C-terminal Ub motif. Biochemical analysis and cell lysate experiments confirmed the activity and selectivity of engineered Ub-based substrates and probes. Using this approach, we propose that for any protease that recognizes Ub and Ub-like substrates, a highly active and selective unnatural substrate or probe can be engineered.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland . ;
| | - Mikolaj Zmudzinski
- Department of Chemical Biology and Bioimaging , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland . ;
| | - Scott J Snipas
- Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA
| | - Miklos Bekes
- Department of Biochemistry & Molecular Pharmacology , New York University School of Medicine , New York , NY 10016 , USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology , New York University School of Medicine , New York , NY 10016 , USA
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging , Wroclaw University of Science and Technology , Wyb. Wyspianskiego 27 , 50-370 Wroclaw , Poland . ; .,Sanford Burnham Prebys Medical Discovery Institute , 10901 North Torrey Pines Road , La Jolla , CA 92037 , USA
| |
Collapse
|
69
|
Janiszewski T, Kołt S, Kaiserman D, Snipas SJ, Li S, Kulbacka J, Saczko J, Bovenschen N, Salvesen G, Drąg M, Bird PI, Kasperkiewicz P. Noninvasive optical detection of granzyme B from natural killer cells with enzyme-activated fluorogenic probes. J Biol Chem 2020; 295:9567-9582. [PMID: 32439802 DOI: 10.1074/jbc.ra120.013204] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Indexed: 12/31/2022] Open
Abstract
Natural killer (NK) cells are key innate immunity effectors that combat viral infections and control several cancer types. For their immune function, human NK cells rely largely on five different cytotoxic proteases, called granzymes (A/B/H/K/M). Granzyme B (GrB) initiates at least three distinct cell death pathways, but key aspects of its function remain unexplored because selective probes that detect its activity are currently lacking. In this study, we used a set of unnatural amino acids to fully map the substrate preferences of GrB, demonstrating previously unknown GrB substrate preferences. We then used these preferences to design substrate-based inhibitors and a GrB-activatable activity-based fluorogenic probe. We show that our GrB probes do not significantly react with caspases, making them ideal for in-depth analyses of GrB localization and function in cells. Using our quenched fluorescence substrate, we observed GrB within the cytotoxic granules of human YT cells. When used as cytotoxic effectors, YT cells loaded with GrB attacked MDA-MB-231 target cells, and active GrB influenced its target cell-killing efficiency. In summary, we have developed a set of molecular tools for investigating GrB function in NK cells and demonstrate noninvasive visual detection of GrB with an enzyme-activated fluorescent substrate.
Collapse
Affiliation(s)
- Tomasz Janiszewski
- Wroclaw University of Science and Technology, Department of Chemical Biology and Bioimaging, Wroclaw, Poland
| | - Sonia Kołt
- Wroclaw University of Science and Technology, Department of Chemical Biology and Bioimaging, Wroclaw, Poland
| | - Dion Kaiserman
- Monash University, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Clayton, VIC, Australia
| | - Scott J Snipas
- Sanford-Burnham Prebys Medical Discovery Institute, NCI-designated Cancer Center, La Jolla, California, USA
| | - Shuang Li
- University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | - Julita Kulbacka
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| | - Jolanta Saczko
- Wroclaw Medical University, Department of Molecular and Cellular Biology, Wroclaw, Poland
| | - Niels Bovenschen
- University Medical Center Utrecht, Department of Pathology, Utrecht, The Netherlands
| | - Guy Salvesen
- Sanford-Burnham Prebys Medical Discovery Institute, NCI-designated Cancer Center, La Jolla, California, USA
| | - Marcin Drąg
- Wroclaw University of Science and Technology, Department of Chemical Biology and Bioimaging, Wroclaw, Poland.,Sanford-Burnham Prebys Medical Discovery Institute, NCI-designated Cancer Center, La Jolla, California, USA
| | - Phillip I Bird
- Monash University, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Clayton, VIC, Australia
| | - Paulina Kasperkiewicz
- Wroclaw University of Science and Technology, Department of Chemical Biology and Bioimaging, Wroclaw, Poland
| |
Collapse
|
70
|
Poreba M. Protease-activated prodrugs: strategies, challenges, and future directions. FEBS J 2020; 287:1936-1969. [PMID: 31991521 DOI: 10.1111/febs.15227] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Proteases play critical roles in virtually all biological processes, including proliferation, cell death and survival, protein turnover, and migration. However, when dysregulated, these enzymes contribute to the progression of multiple diseases, with cancer, neurodegenerative disorders, inflammation, and blood disorders being the most prominent examples. For a long time, disease-associated proteases have been used for the activation of various prodrugs due to their well-characterized catalytic activity and ability to selectively cleave only those substrates that strictly correspond with their active site architecture. To date, versatile peptide sequences that are cleaved by proteases in a site-specific manner have been utilized as bioactive linkers for the targeted delivery of multiple types of cargo, including fluorescent dyes, photosensitizers, cytotoxic drugs, antibiotics, and pro-antibodies. This platform is highly adaptive, as multiple protease-labile conjugates have already been developed, some of which are currently in clinical use for cancer treatment. In this review, recent advancements in the development of novel protease-cleavable linkers for selective drug delivery are described. Moreover, the current limitations regarding the selectivity of linkers are discussed, and the future perspectives that rely on the application of unnatural amino acids for the development of highly selective peptide linkers are also presented.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Poland
| |
Collapse
|
71
|
Liu SY, Yan AM, Guo WYZ, Fang YY, Dong QJ, Li RR, Ni SN, Sun Y, Yang WC, Yang GF. Human Neutrophil Elastase Activated Fluorescent Probe for Pulmonary Diseases Based on Fluorescence Resonance Energy Transfer Using CdSe/ZnS Quantum Dots. ACS NANO 2020; 14:4244-4254. [PMID: 32208668 DOI: 10.1021/acsnano.9b09493] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is an increasing demand for effective noninvasive diagnosis against common pulmonary diseases, which are rising sharply due to the serious air pollution. Human neutrophil elastase (HNE), a typical protease highly involved in pulmonary inflammatory diseases and lung cancer, is a potential predictor for disease progression. Currently, few of the HNE-targeting probes are applicable in vivo due to the limitation in sensitivity and biocompatibility. Herein, we reported the achievement of in vitro detection and in vivo imaging of HNE by incorporating the HNE-specific peptide substrate, quantum dots (QDs), and organic dyes into the fluorescence resonance energy transfer (FRET) system. The refined nanoprobe, termed QDP, could specifically measure the HNE with excellent sensitivity of 7.15 pM in aqueous solution and successfully image the endogenous and exogenous HNE in living cells. In addition, this nanoprobe enabled HNE imaging in mouse models of lung cancer and acute lung injury, and the HNE activity at high temporal and spatial resolution was continuously monitored. Most importantly, QDP successfully discriminated the serums of patients with lung diseases from those of the healthy controls based on the HNE activity determination. Overall, this study demonstrates the advantages of a FRET-system-based nanoprobe in imaging performance and provides an applicable tool for in vivo HNE detection and pulmonary disease diagnosis.
Collapse
Affiliation(s)
- Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ai-Min Yan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wu Ying-Zheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yuan-Yuan Fang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Qing-Jian Dong
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, P.R. China
| | - Rong-Rong Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Sheng-Nan Ni
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yao Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, and Chemical Biology Center, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 30071, P.R. China
| |
Collapse
|
72
|
Kriaa A, Jablaoui A, Mkaouar H, Akermi N, Maguin E, Rhimi M. Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation. FASEB J 2020; 34:7270-7282. [PMID: 32307770 DOI: 10.1096/fj.202000031rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Serine proteases have been long recognized to coordinate many physiological processes and play key roles in regulating the inflammatory response. Accordingly, their dysregulation has been regularly associated with several inflammatory disorders and suggested as a central mechanism in the pathophysiology of digestive inflammation. So far, studies addressing the proteolytic homeostasis in the gut have mainly focused on host serine proteases as candidates of interest, while largely ignoring the potential contribution of their bacterial counterparts. The human gut microbiota comprises a complex ecosystem that contributes to host health and disease. Yet, our understanding of microbially produced serine proteases and investigation of whether they are causally linked to IBD is still in its infancy. In this review, we highlight recent advances in the emerging roles of host and bacterial serine proteases in digestive inflammation. We also discuss the application of available tools in the gut to monitor disease-related serine proteases. An exhaustive representation and understanding of such functional potential would help in closing existing gaps in mechanistic knowledge.
Collapse
Affiliation(s)
- Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Héla Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Nizar Akermi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| |
Collapse
|
73
|
Soleimany AP, Bhatia SN. Activity-Based Diagnostics: An Emerging Paradigm for Disease Detection and Monitoring. Trends Mol Med 2020; 26:450-468. [PMID: 32359477 DOI: 10.1016/j.molmed.2020.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/26/2022]
Abstract
Diagnostics to accurately detect disease and monitor therapeutic response are essential for effective clinical management. Bioengineering, chemical biology, molecular biology, and computer science tools are converging to guide the design of diagnostics that leverage enzymatic activity to measure or produce biomarkers of disease. We review recent advances in the development of these 'activity-based diagnostics' (ABDx) and their application in infectious and noncommunicable diseases. We highlight efforts towards both molecular probes that respond to disease-specific catalytic activity to produce a diagnostic readout, as well as diagnostics that use enzymes as an engineered component of their sense-and-respond cascade. These technologies exemplify how integrating techniques from multiple disciplines with preclinical validation has enabled ABDx that may realize the goals of precision medicine.
Collapse
Affiliation(s)
- Ava P Soleimany
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard Graduate Program in Biophysics, Harvard University, Boston, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Wyss Institute at Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
74
|
Kołt S, Janiszewski T, Kaiserman D, Modrzycka S, Snipas SJ, Salvesen G, Dra G M, Bird PI, Kasperkiewicz P. Detection of Active Granzyme A in NK92 Cells with Fluorescent Activity-Based Probe. J Med Chem 2020; 63:3359-3369. [PMID: 32142286 PMCID: PMC7590976 DOI: 10.1021/acs.jmedchem.9b02042] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Cytotoxic
T-lymphocytes (CTLs) and natural killer cells (NKs) kill
compromised cells to defend against tumor and viral infections. Both
effector cell types use multiple strategies to induce target cell
death including Fas/CD95 activation and the release of perforin and
a group of lymphocyte granule serine proteases called granzymes. Granzymes
have relatively broad and overlapping substrate specificities and
may hydrolyze a wide range of peptidic epitopes; it is therefore challenging
to identify their natural and synthetic substrates and to distinguish
their localization and functions. Here, we present a specific and
potent substrate, an inhibitor, and an activity-based probe of Granzyme
A (GrA) that can be used to follow functional GrA in cells.
Collapse
Affiliation(s)
- Sonia Kołt
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland
| | - Tomasz Janiszewski
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland
| | - Dion Kaiserman
- Monash University, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, 23 Innovation Walk, Clayton, VIC 3800, Australia
| | - Sylwia Modrzycka
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland
| | - Scott J Snipas
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Guy Salvesen
- NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Marcin Dra G
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland.,NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Phillip I Bird
- Monash University, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, 23 Innovation Walk, Clayton, VIC 3800, Australia
| | - Paulina Kasperkiewicz
- Wrocław University of Science and Technology, Department of Chemical Biology and Bioimaging, Wyb. Wyspiańskiego 29, 50-370 Wroclaw, Poland
| |
Collapse
|
75
|
The double-edged role of neutrophil extracellular traps in inflammation. Biochem Soc Trans 2020; 47:1921-1930. [PMID: 31754705 DOI: 10.1042/bst20190629] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
While there are numerous studies showing that neutrophil extracellular traps (NETs) contribute to autoimmune inflammation and cause bystander tissue injury, human individuals with genetic impairments in NET formation curiously often suffer from exacerbated autoimmune diseases and/or chronic inflammatory conditions. These findings are confirmed in some mouse models of systemic lupus erythematosus (SLE) and gouty arthritis, where an absence of neutrophils or impairment of NET formation leads to exacerbation of autoimmunity and chronic inflammation. Thus, aside from their role as archetypical pro-inflammatory cells, neutrophils in general, and NETs in particular, can also interrupt the self-amplifying loop of cell activation and cell recruitment that characterizes neutrophilic inflammation. Here, we review the current state-of-the-science regarding anti-inflammatory and immune-regulatory action of NETs. We give an overview about the mechanistic involvement of NET-associated neutrophil serine proteases and suggest how tailored induction of NET formation could be exploited for the treatment of chronic autoinflammatory disorders.
Collapse
|
76
|
Rut W, Groborz K, Zhang L, Modrzycka S, Poreba M, Hilgenfeld R, Drag M. Profiling of flaviviral NS2B-NS3 protease specificity provides a structural basis for the development of selective chemical tools that differentiate Dengue from Zika and West Nile viruses. Antiviral Res 2020; 175:104731. [PMID: 32014497 DOI: 10.1016/j.antiviral.2020.104731] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022]
Abstract
West Nile virus (WNV) and Dengue virus (DENV) are mosquito-borne pathogenic flaviviruses. The NS2B-NS3 proteases found in these viruses are responsible for polyprotein processing and are therefore considered promising medical targets. Another ortholog of these proteases is found in Zika virus (ZIKV). In this work, we applied a combinatorial chemistry approach - Hybrid Combinatorial Substrate Library (HyCoSuL), to compare the substrate specificity profile at the P4-P1 positions of the NS2B-NS3 proteases found in all three viruses. The obtained data demonstrate that Zika and West Nile virus NS2B-NS3 proteases display highly overlapping substrate specificity in all binding pockets, while the Dengue ortholog has slightly different preferences toward natural and unnatural amino acids at the P2 and P4 positions. We used this information to extract specific peptide sequences recognized by the Dengue NS2B-NS3 protease. Next, we applied this knowledge to design a selective substrate and activity-based probe for the Dengue NS2B-NS3 protease. Our work provides a structural framework for the design of inhibitors, which could be used as a lead structure for drug development efforts.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Katarzyna Groborz
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Linlin Zhang
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Sylwia Modrzycka
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Poreba
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, University of Lübeck, 23562, Lübeck, Germany
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
77
|
Li CY, Yap K, Swedberg JE, Craik DJ, de Veer SJ. Binding Loop Substitutions in the Cyclic Peptide SFTI-1 Generate Potent and Selective Chymase Inhibitors. J Med Chem 2020; 63:816-826. [PMID: 31855419 DOI: 10.1021/acs.jmedchem.9b01811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chymase is a serine protease that is predominantly expressed by mast cells and has key roles in immune defense and the cardiovascular system. This enzyme has also emerged as a therapeutic target for cardiovascular disease due to its ability to remodel cardiac tissue and generate angiotensin II. Here, we used the nature-derived cyclic peptide sunflower trypsin inhibitor-1 (SFTI-1) as a template for designing novel chymase inhibitors. The key binding contacts of SFTI-1 were optimized by combining a peptide substrate library screen with structure-based design, which yielded several variants with potent activity. The lead variant was further modified by replacing the P1 Tyr residue with para-substituted Phe derivatives, generating new inhibitors with improved potency (Ki = 1.8 nM) and higher selectivity over closely related enzymes. Several variants were shown to block angiotensin I cleavage in vitro, highlighting their potential for further development and future evaluation as pharmaceutical leads.
Collapse
Affiliation(s)
- Choi Yi Li
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Kuok Yap
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - David J Craik
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| | - Simon J de Veer
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia
| |
Collapse
|
78
|
Faecal neutrophil elastase-antiprotease balance reflects colitis severity. Mucosal Immunol 2020; 13:322-333. [PMID: 31772324 PMCID: PMC7039808 DOI: 10.1038/s41385-019-0235-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/04/2023]
Abstract
Given the global burden of diarrheal diseases on healthcare it is surprising how little is known about the drivers of disease severity. Colitis caused by infection and inflammatory bowel disease (IBD) is characterised by neutrophil infiltration into the intestinal mucosa and yet our understanding of neutrophil responses during colitis is incomplete. Using infectious (Citrobacter rodentium) and chemical (dextran sulphate sodium; DSS) murine colitis models, as well as human IBD samples, we find that faecal neutrophil elastase (NE) activity reflects disease severity. During C. rodentium infection intestinal epithelial cells secrete the serine protease inhibitor SerpinA3N to inhibit and mitigate tissue damage caused by extracellular NE. Mice suffering from severe infection produce insufficient SerpinA3N to control excessive NE activity. This activity contributes to colitis severity as infection of these mice with a recombinant C. rodentium strain producing and secreting SerpinA3N reduces tissue damage. Thus, uncontrolled luminal NE activity is involved in severe colitis. Taken together, our findings suggest that NE activity could be a useful faecal biomarker for assessing disease severity as well as therapeutic target for both infectious and chronic inflammatory colitis.
Collapse
|
79
|
Kryza T, Bock N, Lovell S, Rockstroh A, Lehman ML, Lesner A, Panchadsaram J, Silva LM, Srinivasan S, Snell CE, Williams ED, Fazli L, Gleave M, Batra J, Nelson C, Tate EW, Harris J, Hooper JD, Clements JA. The molecular function of kallikrein-related peptidase 14 demonstrates a key modulatory role in advanced prostate cancer. Mol Oncol 2019; 14:105-128. [PMID: 31630475 PMCID: PMC6944120 DOI: 10.1002/1878-0261.12587] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/06/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Kallikrein-related peptidase 14 (KLK14) is one of the several secreted KLK serine proteases involved in prostate cancer (PCa) pathogenesis. While relatively understudied, recent reports have identified KLK14 as overexpressed during PCa development. However, the modulation of KLK14 expression during PCa progression and the molecular and biological functions of this protease in the prostate tumor microenvironment remain unknown. To determine the modulation of KLK14 expression during PCa progression, we analyzed the expression levels of KLK14 in patient samples using publicly available databases and immunohistochemistry. In order to delineate the molecular mechanisms involving KLK14 in PCa progression, we integrated proteomic, transcriptomic, and in vitro assays with the goal to identify substrates, related-signaling pathways, and functional roles of this protease. We showed that KLK14 expression is elevated in advanced PCa, and particularly in metastasis. Additionally, KLK14 levels were found to be decreased in PCa tissues from patients responsive to neoadjuvant therapy compared to untreated patients. Furthermore, we also identified that KLK14 expression reoccurred in patients who developed castrate-resistant PCa. The combination of proteomic and transcriptomic analysis as well as functional assays revealed several new KLK14 substrates (agrin, desmoglein 2, vitronectin, laminins) and KLK14-regulated genes (Interleukin 32, midkine, SRY-Box 9), particularly an involvement of the mitogen-activated protein kinase 1 and interleukin 1 receptor pathways, and an involvement of KLK14 in the regulation of cellular migration, supporting its involvement in aggressive features of PCa progression. In conclusion, our work showed that KLK14 expression is associated with the development of aggressive PCa suggesting that targeting this protease could offer a novel route to limit the progression of prostate tumors. Additional work is necessary to determine the benefits and implications of targeting/cotargeting KLK14 in PCa as well as to determine the potential use of KLK14 expression as a predictor of PCa aggressiveness or response to treatment.
Collapse
Affiliation(s)
- Thomas Kryza
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia.,Mater Research Institute - The University of Queensland, Brisbane, Australia
| | - Nathalie Bock
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Scott Lovell
- Department of Chemistry, Imperial College London, UK
| | - Anja Rockstroh
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Melanie L Lehman
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia.,Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Poland
| | - Janaththani Panchadsaram
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Lakmali Munasinghage Silva
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Srilakshmi Srinivasan
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Cameron E Snell
- Mater Research Institute - The University of Queensland, Brisbane, Australia.,Mater Health Services, South Brisbane, Australia
| | - Elizabeth D Williams
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Canada
| | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Colleen Nelson
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| | - Edward W Tate
- Department of Chemistry, Imperial College London, UK
| | - Jonathan Harris
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia
| | - John D Hooper
- Mater Research Institute - The University of Queensland, Brisbane, Australia.,Mater Health Services, South Brisbane, Australia
| | - Judith A Clements
- Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Institute of Health & Biomedical Innovation, Queensland University of Technology, Woolloongabba, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Woolloongabba, Australia.,Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
80
|
Babin BM, Kasperkiewicz P, Janiszewski T, Yoo E, Drąg M, Bogyo M. Leveraging Peptide Substrate Libraries to Design Inhibitors of Bacterial Lon Protease. ACS Chem Biol 2019; 14:2453-2462. [PMID: 31464417 PMCID: PMC6858493 DOI: 10.1021/acschembio.9b00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lon is a widely conserved housekeeping protease found in all domains of life. Bacterial Lon is involved in recovery from various types of stress, including tolerance to fluoroquinolone antibiotics, and is linked to pathogenesis in a number of organisms. However, detailed functional studies of Lon have been limited by the lack of selective, cell-permeant inhibitors. Here, we describe the use of positional scanning libraries of hybrid peptide substrates to profile the primary sequence specificity of bacterial Lon. In addition to identifying optimal natural amino acid binding preferences, we identified several non-natural residues that were leveraged to develop optimal peptide substrates as well as a potent peptidic boronic acid inhibitor of Lon. Treatment of Escherichia coli with this inhibitor promotes UV-induced filamentation and reduces tolerance to ciprofloxacin, phenocopying established lon-deletion phenotypes. It is also nontoxic to mammalian cells due to its selectivity for Lon over the proteasome. Our results provide new insight into the primary substrate specificity of Lon and identify substrates and an inhibitor that will serve as useful tools for dissecting the diverse cellular functions of Lon.
Collapse
Affiliation(s)
- Brett M. Babin
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Tomasz Janiszewski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Euna Yoo
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
| | - Marcin Drąg
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Matthew Bogyo
- Department of Pathology Stanford University School of Medicine, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
81
|
Oppy CC, Jebeli L, Kuba M, Oates CV, Strugnell R, Edgington-Mitchell LE, Valvano MA, Hartland EL, Newton HJ, Scott NE. Loss of O-Linked Protein Glycosylation in Burkholderia cenocepacia Impairs Biofilm Formation and Siderophore Activity and Alters Transcriptional Regulators. mSphere 2019; 4:e00660-19. [PMID: 31722994 PMCID: PMC6854043 DOI: 10.1128/msphere.00660-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
O-linked protein glycosylation is a conserved feature of the Burkholderia genus. The addition of the trisaccharide β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc to membrane exported proteins in Burkholderia cenocepacia is required for bacterial fitness and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. Using proteomics, luciferase reporter assays, and DNA cross-linking, we demonstrate the loss of glycosylation leads to changes in transcriptional regulation of multiple proteins, including the repression of the master quorum CepR/I. These proteomic and transcriptional alterations lead to the abolition of biofilm formation and defects in siderophore activity. Surprisingly, the abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants, except for BCAL1086 and BCAL2974, which were found in reduced amounts, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, biofilm formation, or siderophore activity. Together, our results show that loss of glycosylation in B. cenocepacia results in a global cell reprogramming via alteration of the transcriptional regulatory systems, which cannot be explained by the abundance changes in known B. cenocepacia glycoproteins.IMPORTANCE Protein glycosylation is increasingly recognized as a common posttranslational protein modification in bacterial species. Despite this commonality, our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen Burkholderia cenocepacia using a combination of proteomic, molecular, and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of Campylobacter jejuni, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that loss of glycosylation in B. cenocepacia strains leads to global proteome and transcriptional changes, including the repression of the quorum-sensing regulator cepR (BCAM1868) gene. These alterations lead to dramatic phenotypic changes in glycosylation-null strains, which are paralleled by both global proteomic and transcriptional alterations, which do not appear to directly result from the loss of glycosylation per se. This research unravels the pleiotropic effects of O-linked glycosylation in B. cenocepacia, demonstrating that its loss does not simply affect the stability of the glycoproteome, but also interferes with transcription and the broader proteome.
Collapse
Affiliation(s)
- Cameron C Oppy
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Clare V Oates
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Richard Strugnell
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Laura E Edgington-Mitchell
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, USA
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
82
|
Maluch I, Czarna J, Drag M. Applications of Unnatural Amino Acids in Protease Probes. Chem Asian J 2019; 14:4103-4113. [PMID: 31593336 DOI: 10.1002/asia.201901152] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Since proteases are involved in a wide range of physiological and disease states, the development of novel tools for imaging proteolytic enzyme activity is attracting increasing interest from scientists. Peptide substrates containing proteinogenic amino acids are often the first line of defining enzyme specificity. This Minireview outlines examples of major recent advances in probing proteases using unnatural amino acid residues, which greatly expands the possibilities for designing substrate probes and inhibitory activity-based probes. This approach already yielded innovative probes that selectively target only one active protease within the group of enzymes exhibiting similar specificity both in cellular assays and in bioimaging research.
Collapse
Affiliation(s)
- Izabela Maluch
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Justyna Czarna
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw, University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
83
|
Anderson BM, Poole DP, Aurelio L, Ng GZ, Fleischmann M, Kasperkiewicz P, Morissette C, Drag M, van Driel IR, Schmidt BL, Vanner SJ, Bunnett NW, Edgington-Mitchell LE. Application of a chemical probe to detect neutrophil elastase activation during inflammatory bowel disease. Sci Rep 2019; 9:13295. [PMID: 31527638 PMCID: PMC6746801 DOI: 10.1038/s41598-019-49840-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/31/2019] [Indexed: 12/14/2022] Open
Abstract
Neutrophil elastase is a serine protease that has been implicated in the pathogenesis of inflammatory bowel disease. Due to post-translational control of its activation and high expression of its inhibitors in the gut, measurements of total expression poorly reflect the pool of active, functional neutrophil elastase. Fluorogenic substrate probes have been used to measure neutrophil elastase activity, though these tools lack specificity and traceability. PK105 is a recently described fluorescent activity-based probe, which binds to neutrophil elastase in an activity-dependent manner. The irreversible nature of this probe allows for accurate identification of its targets in complex protein mixtures. We describe the reactivity profile of PK105b, a new analogue of PK105, against recombinant serine proteases and in tissue extracts from healthy mice and from models of inflammation induced by oral cancer and Legionella pneumophila infection. We apply PK105b to measure neutrophil elastase activation in an acute model of experimental colitis. Neutrophil elastase activity is detected in inflamed, but not healthy, colons. We corroborate this finding in mucosal biopsies from patients with ulcerative colitis. Thus, PK105b facilitates detection of neutrophil elastase activity in tissue lysates, and we have applied it to demonstrate that this protease is unequivocally activated during colitis.
Collapse
Affiliation(s)
- Bethany M Anderson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Daniel P Poole
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Luigi Aurelio
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Garrett Z Ng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Markus Fleischmann
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.,Department of Cellular Immunology, Institute of Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Celine Morissette
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Marcin Drag
- Department of Bioorganic Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Ian R van Driel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Brian L Schmidt
- Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, USA
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, ON, Canada
| | - Nigel W Bunnett
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Departments of Surgery and Pharmacology, Columbia University, New York, New York, USA.,Department of Pharmacology and Experimental Therapeutics, The University of Melbourne, Parkville, VIC, Australia
| | - Laura E Edgington-Mitchell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia. .,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia. .,Department of Oral and Maxillofacial Surgery, New York University College of Dentistry, Bluestone Center for Clinical Research, New York, New York, USA.
| |
Collapse
|
84
|
Birch GP, Campbell T, Bradley M, Dhaliwal K. Optical Molecular Imaging of Inflammatory Cells in Interventional Medicine-An Emerging Strategy. Front Oncol 2019; 9:882. [PMID: 31572676 PMCID: PMC6751259 DOI: 10.3389/fonc.2019.00882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
The optical molecular imaging of inflammation is an emerging strategy for interventional medicine and diagnostics. The host's inflammatory response and adaptation to acute and chronic diseases provides unique signatures that have the potential to guide interventions. Thus, there are emerging a suite of molecular imaging and sensing approaches for a variety of targets in this area. This review will focus on two key cellular orchestrators that dominate this area, neutrophils and macrophages, with recent developments in molecular probes and approaches discussed.
Collapse
Affiliation(s)
- Gavin P Birch
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Thane Campbell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Bradley
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
85
|
Rut W, Nielsen NV, Czarna J, Poreba M, Kanse SM, Drag M. Fluorescent activity-based probe for the selective detection of Factor VII activating protease (FSAP) in human plasma. Thromb Res 2019; 182:124-132. [PMID: 31479940 DOI: 10.1016/j.thromres.2019.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/28/2019] [Accepted: 08/17/2019] [Indexed: 12/21/2022]
Abstract
The zymogen form of circulating Factor VII activating protease (FSAP) is activated by histones that are released as a consequence of tissue damage or excessive inflammation. This is likely to have consequences in a number of disease conditions such as stroke, atherosclerosis, liver fibrosis, thrombosis and cancer. To investigate the existence, as well as the concentration of active FSAP (FSAPa) in complex biological systems an active site probe is needed. We used Hybrid Combinatorial Substrate Library (HyCoSuL) to screen for natural and unnatural amino acids that specifically bind to P4-P2 pockets of FSAPa. This information was used to designing a fluorogenic substrate (Ac-Pro-DTyr-Lys-Arg-ACC) as well as an irreversible, fluorogenic activity-based probe Cy5-6-Ahx-Pro-DTyr-Lys-ArgP(OPh)2. In normal human plasma the probe showed very low non-specific reactivity with some plasma proteins but upon activation of pro-FSAP with histones, strong labelling of FSAPa was observed. This labelling could be inhibited by aprotinin and was not found in the plasma of a subject that was homozygous for a polymorphism, which leads to loss of activity, or in plasma that was depleted of FSAP by antibodies. This 2nd generation substrate exhibited 6-fold higher catalytic efficiency than the 1st generation substrate and a much higher selectivity for FSAPa over other plasma proteases. This substrate and probe can be useful to detect and localize FSAPa in normal and pathological tissue and plasma to gain more insight into its functions.
Collapse
Affiliation(s)
- Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | | | - Justyna Czarna
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland; NCI-designated Cancer Center, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Sandip M Kanse
- Oslo University Hospital and University of Oslo, Norway.
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
86
|
Tian S, Swedberg JE, Li CY, Craik DJ, de Veer SJ. Iterative Optimization of the Cyclic Peptide SFTI-1 Yields Potent Inhibitors of Neutrophil Proteinase 3. ACS Med Chem Lett 2019; 10:1234-1239. [PMID: 31413811 DOI: 10.1021/acsmedchemlett.9b00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Neutrophils produce at least four serine proteases that are packaged within azurophilic granules. These enzymes contribute to antimicrobial defense and inflammation but can be destructive if their activities are not properly regulated. Accordingly, they represent therapeutic targets for several diseases, including chronic obstructive pulmonary disease, cystic fibrosis, and rheumatoid arthritis. In this study, we focused on proteinase 3 (PR3), a neutrophil protease with elastase-like specificity, and engineered potent PR3 inhibitors based on the cyclic peptide sunflower trypsin inhibitor-1 (SFTI-1). We used an iterative optimization approach to screen targeted substitutions at the P1, P2, P2', and P4 positions of SFTI-1, and generated several new inhibitors with K i values in the low nanomolar range. These SFTI-variants show high stability in human serum and are attractive leads for further optimization.
Collapse
Affiliation(s)
- Sixin Tian
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joakim E. Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Choi Yi Li
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Simon J. de Veer
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
87
|
de Vries LE, Sanchez MI, Groborz K, Kuppens L, Poreba M, Lehmann C, Nevins N, Withers-Martinez C, Hirst DJ, Yuan F, Arastu-Kapur S, Horn M, Mares M, Bogyo M, Drag M, Deu E. Characterization of P. falciparum dipeptidyl aminopeptidase 3 specificity identifies differences in amino acid preferences between peptide-based substrates and covalent inhibitors. FEBS J 2019; 286:3998-4023. [PMID: 31177613 PMCID: PMC6851853 DOI: 10.1111/febs.14953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
Abstract
Malarial dipeptidyl aminopeptidases (DPAPs) are cysteine proteases important for parasite development thus making them attractive drug targets. In order to develop inhibitors specific to the parasite enzymes, it is necessary to map the determinants of substrate specificity of the parasite enzymes and its mammalian homologue cathepsin C (CatC). Here, we screened peptide-based libraries of substrates and covalent inhibitors to characterize the differences in specificity between parasite DPAPs and CatC, and used this information to develop highly selective DPAP1 and DPAP3 inhibitors. Interestingly, while the primary amino acid specificity of a protease is often used to develop potent inhibitors, we show that equally potent and highly specific inhibitors can be developed based on the sequences of nonoptimal peptide substrates. Finally, our homology modelling and docking studies provide potential structural explanations of the differences in specificity between DPAP1, DPAP3, and CatC, and between substrates and inhibitors in the case of DPAP3. Overall, this study illustrates that focusing the development of protease inhibitors solely on substrate specificity might overlook important structural features that can be exploited to develop highly potent and selective compounds.
Collapse
Affiliation(s)
- Laura E de Vries
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mateo I Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Katarzyna Groborz
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Laurie Kuppens
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| | - Marcin Poreba
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Christine Lehmann
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| | - Neysa Nevins
- Computational Sciences, GlaxoSmithKline, Collegeville, PA, USA
| | | | - David J Hirst
- Crick-GSK Biomedical LinkLabs, GlaxoSmithKline, Stevenage, UK
| | - Fang Yuan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shirin Arastu-Kapur
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Michael Mares
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcin Drag
- Division of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wroclaw, Poland
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
88
|
Neutrophil Elastase Activity Imaging: Recent Approaches in the Design and Applications of Activity-Based Probes and Substrate-Based Probes. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:7417192. [PMID: 31281234 PMCID: PMC6594253 DOI: 10.1155/2019/7417192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
The last few decades of protease research has confirmed that a number of important biological processes are strictly dependent on proteolysis. Neutrophil elastase (NE) is a critical protease in immune response and host defense mechanisms in both physiological and disease-associated conditions. Particularly, NE has been identified as a promising biomarker for early diagnosis of lung inflammation. Recent studies have shown an increasing interest in developing methods for NE activity imaging both in vitro and in vivo. Unlike anatomical imaging modalities, functional molecular imaging, including enzymatic activities, enables disease detection at a very early stage and thus constitutes a much more accurate approach. When combined with advanced imaging technologies, opportunities arise for measuring imbalanced proteolytic activities with unprecedented details. Such technologies consist in building the highest resolved and sensitive instruments as well as the most specific probes based either on peptide substrates or on covalent inhibitors. This review outlines strengths and weaknesses of these technologies and discuss their applications to investigate NE activity as biomarker of pulmonary inflammatory diseases by imaging.
Collapse
|
89
|
Recent Developments in Peptidyl Diaryl Phoshonates as Inhibitors and Activity-Based Probes for Serine Proteases. Pharmaceuticals (Basel) 2019; 12:ph12020086. [PMID: 31185654 PMCID: PMC6631691 DOI: 10.3390/ph12020086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/06/2019] [Accepted: 06/08/2019] [Indexed: 12/12/2022] Open
Abstract
This review presents current achievements in peptidyl diaryl phosphonates as covalent, specific mechanism-based inhibitors of serine proteases. Along three decades diaryl phosphonates have emerged as invaluable tools in fundamental and applicative studies involving these hydrolases. Such an impact has been promoted by advantageous features that characterize the phosphonate compounds and their use. First, the synthesis is versatile and allows comprehensive structural modification and diversification. Accordingly, reactivity and specificity of these bioactive molecules can be easily controlled by appropriate adjustments of the side chains and the leaving groups. Secondly, the phosphonates target exclusively serine proteases and leave other oxygen and sulfur nucleophiles intact. Synthetic accessibility, lack of toxicity, and promising pharmacokinetic properties make them good drug candidates. In consequence, the utility of peptidyl diaryl phosphonates continuously increases and involves novel enzymatic targets and innovative aspects of application. For example, conjugation of the structures of specific inhibitors with reporter groups has become a convenient approach to construct activity-based molecular probes capable of monitoring location and distribution of serine proteases.
Collapse
|
90
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
91
|
Abstract
Successful viral infection, as well as any resultant antiviral response, relies on numerous sequential interactions between host and viral factors. These interactions can take the form of affinity-based interactions between viral and host macromolecules or active, enzyme-based interactions, consisting both of direct enzyme activity performed by viral enzymes and indirect modulation of the activity of the host cell's enzymes via viral interference. This activity has the potential to transform the local microenvironment to the benefit or detriment of both the virus and the host, favouring either the continuation of the viral life cycle or the host's antiviral response. Comprehensive characterisation of enzymatic activity during viral infection is therefore necessary for the understanding of virally induced diseases. Activity-based protein profiling techniques have been established as effective and practicable tools with which to interrogate the regulation of enzymes' catalytic activity and the roles played by these enzymes in various cell processes. This paper will review the contributions of these techniques in characterising the roles of both host and viral enzymes during viral infection in humans.
Collapse
Affiliation(s)
- Benjamin F. Cravatt
- grid.214007.00000000122199231Department of Chemistry, The Scripps Research Institute, La Jolla, CA USA
| | - Ku-Lung Hsu
- grid.27755.320000 0000 9136 933XDepartment of Chemistry, University of Virginia, Charlottesville, VA USA
| | - Eranthie Weerapana
- grid.208226.c0000 0004 0444 7053Department of Chemistry, Boston College, Chestnut Hill, MA USA
| |
Collapse
|
92
|
Yoo E, Stokes BH, de Jong H, Vanaerschot M, Kumar TRS, Lawrence N, Njoroge M, Garcia A, Van der Westhuyzen R, Momper JD, Ng CL, Fidock DA, Bogyo M. Defining the Determinants of Specificity of Plasmodium Proteasome Inhibitors. J Am Chem Soc 2018; 140:11424-11437. [PMID: 30107725 PMCID: PMC6407133 DOI: 10.1021/jacs.8b06656] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Plasmodium proteasome is an emerging antimalarial target due to its essential role in all the major life cycle stages of the parasite and its contribution to the establishment of resistance to artemisinin (ART)-based therapies. However, because of a similarly essential role for the host proteasome, the key property of any antiproteasome therapeutic is selectivity. Several parasite-specific proteasome inhibitors have recently been reported, however, their selectivity must be improved to enable clinical development. Here we describe screening of diverse libraries of non-natural synthetic fluorogenic substrates to identify determinants at multiple positions on the substrate that produce enhanced selectivity. We find that selection of an optimal electrophilic "warhead" is essential to enable high selectivity that is driven by the peptide binding elements on the inhibitor. We also find that host cell toxicity is dictated by the extent of coinhibition of the human β2 and β5 subunits. Using this information, we identify compounds with over 3 orders of magnitude selectivity for the parasite enzyme. Optimization of the pharmacological properties resulted in molecules that retained high potency and selectivity, were soluble, sufficiently metabolically stable and orally bioavailable. These molecules are highly synergistic with ART and can clear parasites in a mouse model of infection, making them promising leads as antimalarial drugs.
Collapse
Affiliation(s)
- Euna Yoo
- Department of Pathology and Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Barbara H. Stokes
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
| | - Hanna de Jong
- Department of Pathology and Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Manu Vanaerschot
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
| | - TRS Kumar
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D),
University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D),
University of Cape Town, Rondebosch 7701, South Africa
| | - Arnold Garcia
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California, San Diego, La Jolla, California 92093, United States
| | | | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California, San Diego, La Jolla, California 92093, United States
| | - Caroline L. Ng
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
- Department of Pathology and Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - David A. Fidock
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
- Division of Infectious Diseases, Department of
Medicine, Columbia University Medical Center, New York 10032, United States
| | - Matthew Bogyo
- Department of Pathology and Stanford University
School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford
University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
93
|
Super-silent FRET Sensor Enables Live Cell Imaging and Flow Cytometric Stratification of Intracellular Serine Protease Activity in Neutrophils. Sci Rep 2018; 8:13490. [PMID: 30201982 PMCID: PMC6131393 DOI: 10.1038/s41598-018-31391-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Serine proteases are released by neutrophils to act primarily as antimicrobial proteins but excessive and unbalanced serine protease activity results in serious host tissue damage. Here the synthesis of a novel chemical sensor based on a multi-branched fluorescence quencher is reported. It is super-silent, exhibiting no fluorescence until de-quenched by the exemplar serine protease human neutrophil elastase, rapidly enters human neutrophils, and is inhibited by serine protease inhibitors. This sensor allows live imaging of intracellular serine protease activity within human neutrophils and demonstrates that the unique combination of a multivalent scaffold combined with a FRET peptide represents a novel and efficient strategy to generate super-silent sensors that permit the visualisation of intracellular proteases and may enable point of care whole blood profiling of neutrophils.
Collapse
|
94
|
Reshetnikov V, Hahn J, Maueröder C, Czegley C, Munoz LE, Herrmann M, Hoffmann MH, Mokhir A. Chemical Tools for Targeted Amplification of Reactive Oxygen Species in Neutrophils. Front Immunol 2018; 9:1827. [PMID: 30150984 PMCID: PMC6099268 DOI: 10.3389/fimmu.2018.01827] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
A number of chemical compounds are known, which amplify the availability of reactive oxygen species (ROS) in neutrophils both in vitro and in vivo. They can be roughly classified into NADPH oxidase 2 (NOX2)-dependent and NOX2-independent reagents. NOX2 activation is triggered by protein kinase C agonists (e.g., phorbol esters, transition metal ions), redox mediators (e.g., paraquat) or formyl peptide receptor (FPR) agonists (e.g., aromatic hydrazine derivatives). NOX2-independent mechanisms are realized by reagents affecting glutathione homeostasis (e.g., l-buthionine sulfoximine), modulators of the mitochondrial respiratory chain (e.g., ionophores, inositol mimics, and agonists of peroxisome proliferator-activated receptor γ) and chemical ROS amplifiers [e.g., aminoferrocene-based prodrugs (ABPs)]. Since a number of inflammatory and autoimmune diseases, as well as cancer and bacterial infections, are triggered or enhanced by aberrant ROS production in neutrophils, it is tempting to use ROS amplifiers as drugs for the treatment of these diseases. However, since the known reagents are not cell specific, their application for treatment likely causes systemic enhancement of oxidative stress, leading to severe side effects. Cell-targeted ROS enhancement can be achieved either by using conjugates of ROS amplifiers with ligands binding to receptors expressed on neutrophils (e.g., the GPI-anchored myeloid differentiation marker Ly6G or FPR) or by designing reagents activated by neutrophil function [e.g., phagocytic activity or enzymatic activity of neutrophil elastase (NE)]. Since binding of an artificial ligand to a receptor may trigger or inhibit priming of neutrophils the latter approach has a smaller potential for severe side effects and is probably better suitable for therapy. Here, we review current approaches for the use of ROS amplifiers and discuss their applicability for treatment. As an example, we suggest a possible design of neutrophil-specific ROS amplifiers, which are based on NE-activated ABPs.
Collapse
Affiliation(s)
- Viktor Reshetnikov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Maueröder
- Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium
| | - Christine Czegley
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luis Enrique Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
95
|
Vizovišek M, Vidmar R, Drag M, Fonović M, Salvesen GS, Turk B. Protease Specificity: Towards In Vivo Imaging Applications and Biomarker Discovery. Trends Biochem Sci 2018; 43:829-844. [PMID: 30097385 DOI: 10.1016/j.tibs.2018.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/05/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
Proteases are considered of major importance in biomedical research because of their crucial roles in health and disease. Their ability to hydrolyze their protein and peptide substrates at single or multiple sites, depending on their specificity, makes them unique among the enzymes. Understanding protease specificity is therefore crucial to understand their biology as well as to develop tools and drugs. Recent advancements in the fields of proteomics and chemical biology have improved our understanding of protease biology through extensive specificity profiling and identification of physiological protease substrates. There are growing efforts to transfer this knowledge into clinical modalities, but their success is often limited because of overlapping protease features, protease redundancy, and chemical tools lacking specificity. Herein, we discuss the current trends and challenges in protease research and how to exploit the growing information on protease specificities for understanding protease biology, as well as for development of selective substrates, cleavable linkers, and activity-based probes and for biomarker discovery.
Collapse
Affiliation(s)
- Matej Vizovišek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia; These authors contributed equally to this work
| | - Robert Vidmar
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia; These authors contributed equally to this work
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marko Fonović
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Guy S Salvesen
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
96
|
Folco EJ, Mawson TL, Vromman A, Bernardes-Souza B, Franck G, Persson O, Nakamura M, Newton G, Luscinskas FW, Libby P. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler Thromb Vasc Biol 2018; 38:1901-1912. [PMID: 29976772 PMCID: PMC6202190 DOI: 10.1161/atvbaha.118.311150] [Citation(s) in RCA: 225] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Objective- Coronary artery thrombosis can occur in the absence of plaque rupture because of superficial erosion. Erosion-prone atheromata associate with more neutrophil extracellular traps (NETs) than lesions with stable or rupture-prone characteristics. The effects of NETs on endothelial cell (EC) inflammatory and thrombogenic properties remain unknown. We hypothesized that NETs alter EC functions related to erosion-associated thrombosis. Approach and Results- Exposure of human ECs to NETs increased VCAM-1 (vascular cell adhesion molecule 1) and ICAM-1 (intercellular adhesion molecule 1) mRNA and protein expression in a time- and concentration-dependent manner. THP-1 monocytoid cells and primary human monocytes bound more avidly to NET-treated human umbilical vein ECs than to unstimulated cells under flow. Treatment of human ECs with NETs augmented the expression of TF (tissue factor) mRNA, increased EC TF activity, and hastened clotting of recalcified plasma. Anti-TF-neutralizing antibody blocked NET-induced acceleration of clotting by ECs. NETs alone did not exhibit TF activity or acceleration of clotting in cell-free assays. Pretreatment of NETs with anti-interleukin (IL)-1α-neutralizing antibody or IL-1Ra (IL-1 receptor antagonist)-but not with anti-IL-1β-neutralizing antibody or control IgG-blocked NET-induced VCAM-1, ICAM-1, and TF expression. Inhibition of cathepsin G, a serine protease abundant in NETs, also limited the effect of NETs on EC activation. Cathepsin G potentiated the effect of IL-1α on ECs by cleaving the pro-IL-1α precursor and releasing the more potent mature IL-1α form. Conclusions- NETs promote EC activation and increased thrombogenicity through concerted action of IL-1α and cathepsin G. Thus, NETs may amplify and propagate EC dysfunction related to thrombosis because of superficial erosion.
Collapse
Affiliation(s)
- Eduardo J Folco
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Thomas L Mawson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Amélie Vromman
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Breno Bernardes-Souza
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Grégory Franck
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Oscar Persson
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Momotaro Nakamura
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| | - Gail Newton
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francis W Luscinskas
- the Department of Pathology (G.N., F.W.L.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Peter Libby
- From the Division of Cardiovascular Medicine (E.J.F., T.L.M., A.V., G.F., B.B.-S., O.P., M.N., P.L.)
| |
Collapse
|
97
|
Rut W, Poręba M, Kasperkiewicz P, Snipas SJ, Drąg M. Selective Substrates and Activity-Based Probes for Imaging of the Human Constitutive 20S Proteasome in Cells and Blood Samples. J Med Chem 2018; 61:5222-5234. [DOI: 10.1021/acs.jmedchem.8b00026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Poręba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Scott J. Snipas
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Marcin Drąg
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
98
|
Joachimiak Ł, Błażewska KM. Phosphorus-Based Probes as Molecular Tools for Proteome Studies: Recent Advances in Probe Development and Applications. J Med Chem 2018; 61:8536-8562. [DOI: 10.1021/acs.jmedchem.8b00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Łukasz Joachimiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| | - Katarzyna M. Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
99
|
Schulz-Fincke AC, Blaut M, Braune A, Gütschow M. A BODIPY-Tagged Phosphono Peptide as Activity-Based Probe for Human Leukocyte Elastase. ACS Med Chem Lett 2018; 9:345-350. [PMID: 29670698 DOI: 10.1021/acsmedchemlett.7b00533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/04/2018] [Indexed: 02/08/2023] Open
Abstract
Human leukocyte elastase plays a crucial role in a variety of inflammatory disorders and represents an important subject of biomedical studies. The chemotype of peptidic phosphonates was employed for the design of a new activity-based probe for human leukocyte elastase. Its structure combines the phosphonate warhead with an adequate peptide portion and a BODIPY fluorophore with a clickable ethinylphenyl moiety at meso position. The probe 6 was assembled by copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition. It was characterized as an active site-directed elastase inhibitor exhibiting a second-order rate constant of inactivation of 88400 M-1s-1. The suitability of 6 as a fluorescent probe for human leukocyte elastase was demonstrated by in-gel fluorescence analysis. Labeling experiments and inhibition data toward a panel of related proteases underlined the selectivity of the probe for the targeted leukocyte elastase.
Collapse
Affiliation(s)
- Anna-Christina Schulz-Fincke
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| |
Collapse
|
100
|
Dudani JS, Warren AD, Bhatia SN. Harnessing Protease Activity to Improve Cancer Care. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050549] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jaideep S. Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrew D. Warren
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Harvard–MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|