51
|
Aggarwal C, Łabuz J, Gabryś H. Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis. PLoS One 2013; 8:e55393. [PMID: 23405144 PMCID: PMC3566141 DOI: 10.1371/journal.pone.0055393] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/24/2012] [Indexed: 01/06/2023] Open
Abstract
Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca2+(c) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca2+(c) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca2+ signaling during movements.
Collapse
Affiliation(s)
- Chhavi Aggarwal
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Łabuz
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Halina Gabryś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
52
|
Tanaka K, Choi J, Stacey G. Aequorin luminescence-based functional calcium assay for heterotrimeric G-proteins in Arabidopsis. Methods Mol Biol 2013; 1043:45-54. [PMID: 23913034 DOI: 10.1007/978-1-62703-532-3_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Heterotrimeric GTP-binding proteins (G-proteins) and G-protein-coupled receptors are important signaling components in eukaryotes. In plants, the G-proteins are involved in diverse physiological processes, some of which are exerted via changes in the level of cytosolic free calcium concentration ([Ca(2+)]cyt). Various techniques have been developed to measure the change of [Ca(2+)]cyt, e.g., calcium-sensitive microelectrodes, chemical fluorescent dyes, and biosensors based on luminescent or fluorescent indicators. In this chapter, we describe a protocol for in vivo [Ca(2+)]cyt measurement in G-protein mutants expressing aequorin, a luminescent-based calcium biosensor, to extend our knowledge about G-protein mediated Ca(2+) signaling. This method is also applicable to other early signaling events that are mediated by changes in [Ca(2+)]cyt levels.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
53
|
Harada A, Takemiya A, Inoue SI, Sakai T, Shimazaki KI. Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1. PLANT & CELL PHYSIOLOGY 2013; 54:36-47. [PMID: 22739508 DOI: 10.1093/pcp/pcs094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We investigated the roles of the blue light receptors phototropins (phot1 and phot2) and ROOT PHOTOTROPISM 2 (RPT2) in leaf positioning and flattening, and plant growth under weak, moderate and strong white light (10, 25 and 70 µmol m(-2 )s(-1)). RPT2 mediated leaf positioning and flattening, and enhanced plant growth in a phot1-dependent manner. Under weak light, phot1 alone controls these responses. Under moderate and strong light, both phot1 and phot2 affect the responses. These results indicate that plants utilize a wide range of light intensities through phot1 and phot2 to optimize plant growth. The rpt2 single mutant generally exhibited phenotypes that resembled those of the phot1 phot2 double mutant. To our surprise, when the PHOT1 gene was disrupted in the rpt2 mutant, the resulting phot1 rpt2 double mutant showed the morphology of the wild-type plant under strong light, and additional disruption of PHOT2 in the double mutant abolished this recovery. This suggested that phot2 may function in the absence of phot1 and bypass RPT2 to transmit the signal to downstream elements. Expression and light-induced autophosphorylation of phot2 were not affected in the rpt2 mutant. We conclude that RPT2 mediates leaf flattening and positioning in a phot1-dependent manner, and that phot1 may inhibit the phot2 signaling pathways. We discuss the functional role of RPT2 in phototropin signaling.
Collapse
Affiliation(s)
- Akiko Harada
- Department of Biology, Faculty of Liberal Arts, Osaka Medical College, 2-7, Daigaku-machi, Takatsuki 569-8686, Osaka, Japan.
| | | | | | | | | |
Collapse
|
54
|
Hohm T, Preuten T, Fankhauser C. Phototropism: translating light into directional growth. AMERICAN JOURNAL OF BOTANY 2013; 100:47-59. [PMID: 23152332 DOI: 10.3732/ajb.1200299] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Phototropism allows plants to align their photosynthetic tissues with incoming light. The direction of incident light is sensed by the phototropin family of blue light photoreceptors (phot1 and phot2 in Arabidopsis), which are light-activated protein kinases. The kinase activity of phototropins and phosphorylation of residues in the activation loop of their kinase domains are essential for the phototropic response. These initial steps trigger the formation of the auxin gradient across the hypocotyl that leads to asymmetric growth. The molecular events between photoreceptor activation and the growth response are only starting to be elucidated. In this review, we discuss the major steps leading from light perception to directional growth concentrating on Arabidopsis. In addition, we highlight links that connect these different steps enabling the phototropic response.
Collapse
Affiliation(s)
- Tim Hohm
- Department of Medical Genetics, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 27, CH-1005 Lausanne, Switzerland
| | | | | |
Collapse
|
55
|
Suetsugu N, Wada M. Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, ZTL/FKF1/LKP2 and Aureochrome. ACTA ACUST UNITED AC 2012; 54:8-23. [DOI: 10.1093/pcp/pcs165] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
56
|
Sakai T, Haga K. Molecular genetic analysis of phototropism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1517-34. [PMID: 22864452 PMCID: PMC3439871 DOI: 10.1093/pcp/pcs111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181 Japan.
| | | |
Collapse
|
57
|
Chen C, Xiao YG, Li X, Ni M. Light-regulated stomatal aperture in Arabidopsis. MOLECULAR PLANT 2012; 5:566-72. [PMID: 22516479 DOI: 10.1093/mp/sss039] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The stomatal pores of plant leaves, situated in the epidermis and surrounded by a pair of guard cells, allow CO2 uptake for photosynthesis and water loss through transpiration. Blue light is one of the dominant environmental signals that control stomatal movements in leaves of plants in a natural environment. This blue light response is mediated by blue/UV A light-absorbing phototropins (phots) and cryptochromes (crys). Red/far-red light-absorbing phytochromes (phys) also play a role in the control of stomatal aperture. The signaling components that link the perception of light signals to the stomatal opening response are largely unknown. This review discusses a few newly discovered nuclear genes, their function with respect to the phot-, cry-, and phy-mediated signal transduction cascades, and possible involvement of circadian clock.
Collapse
Affiliation(s)
- Chen Chen
- Department of Plant Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | | | | | | |
Collapse
|
58
|
Tsuboi H, Wada M. Chloroplasts move towards the nearest anticlinal walls under dark condition. JOURNAL OF PLANT RESEARCH 2012; 125:301-310. [PMID: 21626210 DOI: 10.1007/s10265-011-0433-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 05/01/2011] [Indexed: 05/30/2023]
Abstract
Chloroplasts change their intracellular positions in response to their light environment. Under darkness, chloroplasts assume special positions that are different from those under light conditions. Here, we analyzed chloroplast dark positioning using Adiantum capillus-veneris gametophyte cells. When chloroplasts were transferred into darkness, during the first 1-5 h, they moved towards the anticlinal cell walls bordering the adjacent cells rather rapidly. Then, they slowed down and accumulated at the anticlinal walls gradually over the following 24-36 h. The chloroplast movements could be roughly classified into two different categories: initial rapid straight movement and later, slow staggering movement. When the chloroplast accumulation response was induced in dark-adapted cells by partial cell irradiation with a microbeam targeted to the center of the cells, chloroplasts moved towards the beam spot from the anticlinal walls. However, when the microbeam was switched off, they moved to the nearest anticlinal walls and not to their original positions if they were not the closest, indicating that they know the direction of the nearest anticlinal wall and do not have particular areas that they migrate to during dark positioning.
Collapse
|
59
|
Zhao X, Qiao XR, Yuan J, Ma XF, Zhang X. Nitric oxide inhibits blue light-induced stomatal opening by regulating the K+ influx in guard cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:29-35. [PMID: 22284707 DOI: 10.1016/j.plantsci.2011.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/08/2011] [Accepted: 12/09/2011] [Indexed: 05/31/2023]
Abstract
Blue light (BL)-induced stomatal opening and nitric oxide (NO)-promoted stomatal closure comprise two main aspects of stomatal regulation. Stomatal movement depends on ion fluxion in guard cells, whereas the physiological roles of BL or NO in regulating ion channel activities remain largely unknown. For gaining further insights into NO function in mediating BL-induced stomatal opening, guard cell protoplasts (GCPs) were patch-clamped in a whole-cell configuration. The results showed that twice BL pulses (100 μmol m⁻² s⁻¹ for 30s) effectively activated inward rectifying K⁺ channels by 67% and 20% in Vicia GCPs, respectively. In contrast, Red light (RL) showed little effect on inward rectifying K⁺ channels. In accord with this, BL also increased inward K⁺ currents by 54% in Arabidopsis thaliana wild type gl1, but not in phot1-5 phot2-1 (BL receptor phototropin deletion mutant). Sodium nitroprusside (SNP, a NO donor), at 100 μM, inhibited BL-dependent K⁺ influx and stomatal opening, which were abolished by c-PTIO (a specific NO scavenger). These results indicated that NO inhibits BL-induced stomatal opening maybe through restricting the K⁺ influx across plasma membrane in guard cells.
Collapse
Affiliation(s)
- Xiang Zhao
- State Key Laboratory of Cotton Biology, Key laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, People's Republic of China
| | | | | | | | | |
Collapse
|
60
|
Banaś AK, Aggarwal C, Łabuz J, Sztatelman O, Gabryś H. Blue light signalling in chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1559-74. [PMID: 22312115 DOI: 10.1093/jxb/err429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chloroplast movements are among the mechanisms allowing plants to cope with changes in their environment. Chloroplasts accumulate at illuminated cell areas under weak light while they avoid areas exposed to strong light. These directional responses may be controlled by blue and/or red light, depending on the plant group. In terrestrial angiosperms only the blue light perceived by phototropins is active. The last decade has seen a rapid development of studies on the mechanism of directional chloroplast movements, which started with an identification of the photoreceptors. A forward genetic approach has been used to identify the components which control chloroplast movements. This review summarizes the current state of research into the signalling pathways which lead to chloroplast responses. First, the molecular properties of phototropins are presented, followed by a characterization both of proteins which are active downstream of phototropins and of secondary messengers. Finally, cross-talk between light signalling involved in chloroplast movements and other signalling pathways is discussed.
Collapse
Affiliation(s)
- Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | |
Collapse
|
61
|
Abstract
Plant phospholipases can be grouped into four major types, phospholipase D, phospholipase C, phospholipase A1 (PLA(1)), and phospholipase A2 (PLA(2)), that hydrolyze glycerophospholipids at different ester bonds. Within each type, there are different families or subfamilies of enzymes that can differ in substrate specificity, cofactor requirement, and/or reaction conditions. These differences provide insights into determining the cellular function of specific phospholipases in plants, and they can be explored for different industrial applications.
Collapse
Affiliation(s)
- Geliang Wang
- Department of Biology, University of Missouri, St. Louis, MO, USA
| | | | | |
Collapse
|
62
|
Takamatsu H, Takagi S. Actin-dependent chloroplast anchoring is regulated by Ca(2+)-calmodulin in spinach mesophyll cells. PLANT & CELL PHYSIOLOGY 2011; 52:1973-1982. [PMID: 21949029 DOI: 10.1093/pcp/pcr130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chloroplasts are actively anchored at the appropriate intracellular regions to maintain advantageous distribution patterns under specific environmental conditions. Redistribution of chloroplasts is accompanied by their de-anchoring and re-anchoring, respectively, from and to the cortical cytoplasm. In spinach mesophyll cells, high-intensity blue light and Ca(2+) treatment induced the disappearance of the meshwork-like array of actin filaments surrounding chloroplasts, which was suppressed by a calmodulin antagonist. Regulatory mechanisms of chloroplast anchoring were investigated using plasma membrane (PM) ghosts, on which the cortical cytoplasm underlying the PM was exposed. Addition of an actin-depolymerizing reagent or > 1 µM Ca(2+) induced detachment of a substantial number of chloroplasts from the PM ghosts concomitant with disordered actin organization. Calmodulin antagonists and anti-calmodulin antibodies negated the effects of Ca(2+). In addition, Ca(2+)-induced detachment of chloroplasts was no longer evident on the calmodulin-depleted PM ghosts. We propose that chloroplasts are anchored onto the cortical cytoplasm through interaction with the actin cytoskeleton, and that Ca(2+)-calmodulin-sensitized de-anchoring of chloroplasts is a critical early step in chloroplast redistribution induced by environmental stimuli.
Collapse
Affiliation(s)
- Hideyasu Takamatsu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | | |
Collapse
|
63
|
Abstract
Calcium signal transduction is a central mechanism by which plants sense and respond to endogenous and environmental stimuli. Cytosolic Ca(2+) elevation is achieved via two cellular pathways, Ca(2+) influx through Ca(2+) channels in the plasma membrane and Ca(2+) release from intracellular Ca(2+) stores. Because of the significance of Ca(2+) channels in cellular signaling, interaction with the environment and developmental processes in plants, a great deal of effort has been invested in recent years with regard to these important membrane proteins. Because of limited space, in this review we focus on recent findings giving insight into both the molecular identity and physiological function of channels that have been suggested to be responsible for the elevation in cytosolic Ca(2+) level, including cyclic nucleotide gated channels, glutamate receptor homologs, two-pore channels and mechanosensitive Ca(2+) -permeable channels. We provide an overview of the regulation of these Ca(2+) channels and their physiological roles and discuss remaining questions.
Collapse
Affiliation(s)
- Fabien Jammes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | | | | | | | |
Collapse
|
64
|
Kong SG, Wada M. New insights into dynamic actin-based chloroplast photorelocation movement. MOLECULAR PLANT 2011; 4:771-81. [PMID: 21772030 DOI: 10.1093/mp/ssr061] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Chloroplast movement is essential for plants to survive under various environmental light conditions. Phototropins-plant-specific blue-light-activated receptor kinases-mediate the response by perceiving light intensity and direction. Recently, novel chloroplast actin (cp-actin) filaments have been identified as playing a pivotal role in the directional chloroplast photorelocation movement. Encouraging progress has recently been made in this field of research through molecular genetics and cell biological analyses. This review describes factors that have been identified as being involved in chloroplast movement and their roles in the regulation of cp-actin filaments, thus providing a basis for reflection on their biochemical activities and functions.
Collapse
Affiliation(s)
- Sam-Geun Kong
- Department of Biology, Graduate School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | |
Collapse
|
65
|
Kodama Y, Suetsugu N, Wada M. Novel protein-protein interaction family proteins involved in chloroplast movement response. PLANT SIGNALING & BEHAVIOR 2011; 6:483-90. [PMID: 21389774 PMCID: PMC3142374 DOI: 10.4161/psb.6.4.14784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To optimize photosynthetic activity, chloroplasts change their intracellular location in response to ambient light conditions; chloroplasts move toward low intensity light to maximize light capture, and away from high intensity light to avoid photodamage. Although several proteins have been reported to be involved in the chloroplast photorelocation movement response, any physical interaction among them was not found so far. We recently found a physical interaction between two plant-specific coiled-coil proteins, WEB1 (Weak Chloroplast Movement under Blue Light 1) and PMI2 (Plastid Movement Impaired 2), that were identified to regulate chloroplast movement velocity. Since the both coiled-coil regions of WEB1 and PMI2 were classified into an uncharacterized protein family having DUF827 (DUF: Domain of Unknown Function) domain, it was the first report that DUF827 proteins could mediate protein-protein interaction. In this mini-review article, we discuss regarding molecular function of WEB1 and PMI2, and also define a novel protein family composed of WEB1, PMI2 and WEB1/PMI2-like proteins for protein-protein interaction in land plants.
Collapse
Affiliation(s)
- Yutaka Kodama
- Plant Functional Genomics Research Group; RIKEN Plant Science; Yokohama
| | - Noriyuki Suetsugu
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| | - Masamitsu Wada
- Department of Biology; Faculty of Sciences; Kyushu University; Fukuoka, Japan
| |
Collapse
|
66
|
Lehmann P, Nöthen J, von Braun SS, Bohnsack MT, Mirus O, Schleiff E. Transitions of gene expression induced by short-term blue light. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:349-61. [PMID: 21309982 DOI: 10.1111/j.1438-8677.2010.00377.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Blue light modulates many processes in plants and plant cells. It influences global and long-term responses, such as seedling development and phototropism, and induces short-term adaptations like stomatal opening and chloroplast movement. Three genes were identified as important for the latter process, namely PHOT1, PHOT2 and CHUP1. The former two phototropin blue light receptors act in perception of the blue light signal. The protein CHUP1 is localised to the outer envelope membrane of chloroplasts and is involved in chloroplast movement. To explore whether short-term reactions required for chloroplast movement are under transcriptional control, we analysed the transcriptome in wild-type Arabidopsis thaliana, phot1, phot2 and chup1 with different blue light treatments for 5 or 30 min. Blue light-induced changes in transcription depended on illumination time and intensity. Illumination with 100 μmol·m(-2) · s(-1) blue light induced down-regulation of several genes and might point to cascades that could be important for sensing low levels of blue light. Analysis of the transcriptome of the mutants in response to the different light regimes suggests that the transcriptional response to blue light in the wild-type can be attributed to phot1 rather than phot2, suggesting that blue light-induced alteration of expression is a function of phot1. In contrast, the blue light response at the transcriptional level of chup1 plants was unique, and confirmed the higher light sensitivity of this mutant.
Collapse
Affiliation(s)
- P Lehmann
- JWGU Frankfurt am Main, CEF Macromolecular Complexes, Centre of Membrane Proteomics, Department of Biosciences, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
67
|
Tsuboi H, Wada M. Chloroplasts can move in any direction to avoid strong light. JOURNAL OF PLANT RESEARCH 2011; 124:201-210. [PMID: 20589409 DOI: 10.1007/s10265-010-0364-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 05/13/2010] [Indexed: 05/29/2023]
Abstract
Chloroplasts migrate in response to different light intensities. Under weak light, chloroplasts gather at an illuminated area to maximize light absorption and photosynthesis rates (the accumulation response). In contrast, chloroplasts escape from strong light to avoid photodamage (the avoidance response). Photoreceptors involved in these phenomena have been identified in Arabidopsis thaliana and Adiantum capillus-veneris. Chloroplast behavior has been studied in detail during the accumulation response, but not for the avoidance response. Hence, we analyzed the chloroplast avoidance response in detail using dark-adapted Adiantum capillus-veneris gametophyte cells and partial cell irradiation with a microbeam of blue light. Chloroplasts escaped from an irradiated spot. Both duration of this response and the distance of the migrated chloroplasts were proportional to the total fluence irradiated. The speed of movement during the avoidance response was dependent on the fluence rate, but the speed of the accumulation response towards the microbeam from cell periphery was constant irrespective of fluence rate. When a chloroplast was only partially irradiated with a strong microbeam, it moved away towards the non-irradiated region within a few minutes. During this avoidance response two additional microbeam irradiations were applied to different locus of the same chloroplast. Under these conditions the chloroplast changed the moving direction after a lag time of a few minutes without rolling. Taken together, these findings indicate that chloroplasts can move in any direction and never have an intrinsic polarity. Similar phenomenon was observed in chloroplasts of Arabidopsis thaliana palisade cells.
Collapse
Affiliation(s)
- Hidenori Tsuboi
- Tokyo Metropolitan University, 1-1 Minami-Osawa, Tokyo 192-0397, Japan
| | | |
Collapse
|
68
|
Salinas-Mondragon RE, Kajla JD, Perera IY, Brown CS, Sederoff HW. Role of inositol 1,4,5-triphosphate signalling in gravitropic and phototropic gene expression. PLANT, CELL & ENVIRONMENT 2010; 33:2041-55. [PMID: 20584147 DOI: 10.1111/j.1365-3040.2010.02204.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants sense light and gravity to orient their direction of growth. One common component in the early events of both phototropic and gravitropic signal transduction is activation of phospholipase C (PLC), which leads to an increase in inositol 1,4,5-triphosphate (InsP(3)) levels. The InsP(3) signal is terminated by hydrolysis of InsP(3) through inositolpolyphosphate-5-phosphatases (InsP 5-ptases). Arabidopsis plants expressing a heterologous InsP 5-ptase have low basal InsP(3) levels and exhibit reduced gravitropic and phototropic bending. Downstream effects of InsP(3)-mediated signalling are not understood. We used comparative transcript profiling to characterize gene expression changes in gravity- or light-stimulated Arabidopsis root apices that were manipulated in their InsP(3) metabolism either through inhibition of PLC activity or expression of InsP 5-ptase. We identified InsP(3)-dependent and InsP(3)-independent co-regulated gene sets in response to gravity or light stimulation. Inhibition of PLC activity in wild-type plants caused similar changes in transcript abundance in response to gravitropic and phototropic stimulation as in the transgenic lines. Therefore, we conclude that changes in gene expression in response to gravitropic and phototropic stimulation are mediated by two signal transduction pathways that vary in their dependence on changes in InsP(3).
Collapse
|
69
|
Moehninsi, Miura K, Nakajyo H, Yamada K, Hasegawa K, Shigemori H. Comparative transcriptional profiling-based identification of raphanusanin-inducible genes. BMC PLANT BIOLOGY 2010; 10:111. [PMID: 20553608 PMCID: PMC3095276 DOI: 10.1186/1471-2229-10-111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/16/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND Raphanusanin (Ra) is a light-induced growth inhibitor involved in the inhibition of hypocotyl growth in response to unilateral blue-light illumination in radish seedlings. Knowledge of the roles of Ra still remains elusive. To understand the roles of Ra and its functional coupling to light signalling, we constructed the Ra-induced gene library using the Suppression Subtractive Hybridisation (SSH) technique and present a comparative investigation of gene regulation in radish seedlings in response to short-term Ra and blue-light exposure. RESULTS The predicted gene ontology (GO) term revealed that 55% of the clones in the Ra-induced gene library were associated with genes involved in common defence mechanisms, including thirty four genes homologous to Arabidopsis genes implicated in R-gene-triggered resistance in the programmed cell death (PCD) pathway. Overall, the library was enriched with transporters, hydrolases, protein kinases, and signal transducers. The transcriptome analysis revealed that, among the fifty genes from various functional categories selected from 88 independent genes of the Ra-induced library, 44 genes were up-regulated and 4 were down-regulated. The comparative analysis showed that, among the transcriptional profiles of 33 highly Ra-inducible genes, 25 ESTs were commonly regulated by different intensities and duration of blue-light irradiation. The transcriptional profiles, coupled with the transcriptional regulation of early blue light, have provided the functional roles of many genes expected to be involved in the light-mediated defence mechanism. CONCLUSIONS This study is the first comprehensive survey of transcriptional regulation in response to Ra. The results described herein suggest a link between Ra and cellular defence and light signalling, and thereby contribute to further our understanding of how Ra is involved in light-mediated mechanisms of plant defence.
Collapse
Affiliation(s)
- Moehninsi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Haruyuki Nakajyo
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Kosumi Yamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Koji Hasegawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
- KNC Laboratories Co, Ltd, Hyogo 651-2271, Japan
| | - Hideyuki Shigemori
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
70
|
Iwabuchi K, Minamino R, Takagi S. Actin reorganization underlies phototropin-dependent positioning of nuclei in Arabidopsis leaf cells. PLANT PHYSIOLOGY 2010; 152:1309-19. [PMID: 20107027 PMCID: PMC2832274 DOI: 10.1104/pp.109.149526] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/22/2010] [Indexed: 05/18/2023]
Abstract
In epidermal and mesophyll cells of Arabidopsis (Arabidopsis thaliana) leaves, nuclei become relocated in response to strong blue light. We previously reported that nuclear positions both in darkness and in strong blue light are regulated by the blue light receptor phototropin2 in mesophyll cells. Here, we investigate the involvement of phototropin and the actin cytoskeleton in nuclear positioning in epidermal cells. Analysis of geometrical parameters revealed that, in darkness, nuclei were distributed near the center of the cell, adjacent to the inner periclinal wall, independent of cell shape. Dividing the anticlinal wall into concave, convex, and intermediate regions indicated that, in strong blue light, nuclei became relocated preferably to a concave region of the anticlinal wall, nearest the center of the cell. Mutant analyses verified that light-dependent nuclear positioning was regulated by phototropin2, while dark positioning of nuclei was independent of phototropin. Nuclear movement was inhibited by an actin-depolymerizing reagent, latrunculin B, but not by a microtubule-disrupting reagent, propyzamide. Imaging actin organization by immunofluorescence microscopy revealed that thick actin bundles, periclinally arranged parallel to the longest axis of the epidermal cell, were associated with the nucleus in darkness, whereas under strong blue light, the actin bundles, especially in the vicinity of the nucleus, became arranged close to the anticlinal walls. Light-dependent changes in the actin organization were clear in phot1 mutant but not in phot2 and phot1phot2 mutants. We propose that, in Arabidopsis, blue-light-dependent nuclear positioning is regulated by phototropin2-dependent reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Kosei Iwabuchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
71
|
Tominaga M, Harada A, Kinoshita T, Shimazaki KI. Biochemical Characterization of Calcineurin B-Like-Interacting Protein Kinase in Vicia Guard Cells. ACTA ACUST UNITED AC 2010; 51:408-21. [DOI: 10.1093/pcp/pcq006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
72
|
Pedmale UV, Celaya RB, Liscum E. Phototropism: mechanism and outcomes. THE ARABIDOPSIS BOOK 2010; 8:e0125. [PMID: 22303252 PMCID: PMC3244944 DOI: 10.1199/tab.0125] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants have evolved a wide variety of responses that allow them to adapt to the variable environmental conditions in which they find themselves growing. One such response is the phototropic response - the bending of a plant organ toward (stems and leaves) or away from (roots) a directional blue light source. Phototropism is one of several photoresponses of plants that afford mechanisms to alter their growth and development to changes in light intensity, quality and direction. Over recent decades much has been learned about the genetic, molecular and cell biological components involved in sensing and responding to phototropic stimuli. Many of these advances have been made through the utilization of Arabidopsis as a model for phototropic studies. Here we discuss such advances, as well as studies in other plant species where appropriate to the discussion of work in Arabidopsis.
Collapse
Affiliation(s)
- Ullas V. Pedmale
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
| | - R. Brandon Celaya
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Department of Molecular, Cellular and Developmental Biology, University of California — Los Angeles, 3206 Life Science Bldg, 621 Charles E Young Dr, Los Angeles, CA 90095
| | - Emmanuel Liscum
- Division of Biological Sciences and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Address correspondence to
| |
Collapse
|
73
|
Kim TH, Böhmer M, Hu H, Nishimura N, Schroeder JI. Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2010; 61:561-91. [PMID: 20192751 PMCID: PMC3056615 DOI: 10.1146/annurev-arplant-042809-112226] [Citation(s) in RCA: 811] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO(2) influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO(2) activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO(2) and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO(2)-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Honghong Hu
- University of California, San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, California 92093-0116
| | - Noriyuki Nishimura
- University of California, San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, California 92093-0116
| | - Julian I. Schroeder
- University of California, San Diego, Division of Biological Sciences, Section of Cell and Developmental Biology, La Jolla, California 92093-0116
| |
Collapse
|
74
|
Abstract
Ca(2+) signals are a core regulator of plant cell physiology and cellular responses to the environment. The channels, pumps, and carriers that underlie Ca(2+) homeostasis provide the mechanistic basis for generation of Ca(2+) signals by regulating movement of Ca(2+) ions between subcellular compartments and between the cell and its extracellular environment. The information encoded within the Ca(2+) transients is decoded and transmitted by a toolkit of Ca(2+)-binding proteins that regulate transcription via Ca(2+)-responsive promoter elements and that regulate protein phosphorylation. Ca(2+)-signaling networks have architectural structures comparable to scale-free networks and bow tie networks in computing, and these similarities help explain such properties of Ca(2+)-signaling networks as robustness, evolvability, and the ability to process multiple signals simultaneously.
Collapse
Affiliation(s)
- Antony N Dodd
- Department of Biology, University of York, York, United Kingdom.
| | | | | |
Collapse
|
75
|
Zhang Y, McCormick S. AGCVIII kinases: at the crossroads of cellular signaling. TRENDS IN PLANT SCIENCE 2009; 14:689-695. [PMID: 19818674 DOI: 10.1016/j.tplants.2009.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/10/2009] [Accepted: 09/14/2009] [Indexed: 05/28/2023]
Abstract
AGCVIII kinases regulate diverse developmental and cellular processes in plants. As putative mediators of secondary messengers, AGCVIII kinases potentially integrate developmental and environmental cues into specific cellular responses through substrate phosphorylation. Here we discuss the functionality and regulation of AGCVIII kinases. Specifically, we question the view that activities of AGCVIII kinases, like their animal counterparts, are regulated by a common regulator, 3-phosphoinositide-dependent protein kinase-1 (PDK1). Instead, increasing evidence suggests that Ca(2+) and phospholipids regulate AGCVIII kinases, by altering their activities or by affecting their subcellular localization. As AGCVIII kinases are at the crossroads of plant cellular signaling, they and the signaling networks in which they participate are keys to a better understanding of plant development and of interactions with their environment.
Collapse
Affiliation(s)
- Yan Zhang
- Plant Gene Expression Center, United States Department of Agriculture/Agricultural Research Service, and Department of Plant and Microbial Biology, University of California at Berkeley, 800 Buchanan St., Albany, CA 94710, USA
| | | |
Collapse
|
76
|
Takagi S, Takamatsu H, Sakurai-Ozato N. Chloroplast anchoring: its implications for the regulation of intracellular chloroplast distribution. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3301-3310. [PMID: 19546116 DOI: 10.1093/jxb/erp193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The intracellular distribution of organelles plays a pivotal role in the maintenance and adaptation of a wide spectrum of cellular activities in plants. Chloroplasts are a special type of organelle able to photosynthesize, capturing light energy to fix atmospheric CO2. Consequently, the intracellular positioning of chloroplasts is crucial for plant growth and development. Knowledge of the photoreceptors and cellular apparatus responsible for chloroplast movement has gradually accumulated over time, yet recent advances have allowed improved understanding. In this article, several aspects of research progress into the mechanisms for maintaining the specific intracellular distribution patterns of chloroplasts, namely, chloroplast anchoring, are summarized, together with a brief consideration of the future prospects of this subject. Our discussion covers developmental, physiological, ecophysiological, and recent cell biological research areas.
Collapse
Affiliation(s)
- Shingo Takagi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
77
|
Transduction mechanisms of photoreceptor signals in plant cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2009. [DOI: 10.1016/j.jphotochemrev.2009.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
78
|
Anielska-Mazur A, Bernaś T, Gabryś H. In vivo reorganization of the actin cytoskeleton in leaves of Nicotiana tabacum L. transformed with plastin-GFP. Correlation with light-activated chloroplast responses. BMC PLANT BIOLOGY 2009; 9:64. [PMID: 19480655 PMCID: PMC2702303 DOI: 10.1186/1471-2229-9-64] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/29/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND The actin cytoskeleton is involved in the responses of plants to environmental signals. Actin bundles play the role of tracks in chloroplast movements activated by light. Chloroplasts redistribute in response to blue light in the mesophyll cells of Nicotiana tabacum. The aim of this work was to study the relationship between chloroplast responses and the organization of actin cytoskeleton in living tobacco cells. Chloroplast movements were measured photometrically as changes in light transmission through the leaves. The actin cytoskeleton, labeled with plastin-GFP, was visualised by confocal microscopy. RESULTS The actin cytoskeleton was affected by strong blue and red light. No blue light specific actin reorganization was detected. EGTA and trifluoperazine strongly inhibited chloroplast responses and disrupted the integrity of the cytoskeleton. This disruption was reversible by Ca(2+) or Mg(2+). Additionally, the effect of trifluoperazine was reversible by light. Wortmannin, an inhibitor of phosphoinositide kinases, potently inhibited chloroplast responses but did not influence the actin cytoskeleton at the same concentration. Also this inhibition was reversed by Ca(2+) and Mg(2+). Magnesium ions were equally or more effective than Ca(2+) in restoring chloroplast motility after treatment with EGTA, trifluoperazine or wortmannin. CONCLUSION The architecture of the actin cytoskeleton in the mesophyll of tobacco is significantly modulated by strong light. This modulation does not affect the direction of chloroplast redistribution in the cell. Calcium ions have multiple functions in the mechanism of the movements. Our results suggest also that Mg(2+) is a regulatory molecule cooperating with Ca(2+) in the signaling pathway of blue light-induced tobacco chloroplast movements.
Collapse
Affiliation(s)
- Anna Anielska-Mazur
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Tytus Bernaś
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, Silesian University, Jagiellońska 26/28, 40-032 Katowice, Poland
| | - Halina Gabryś
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
79
|
Harada A, Shimazaki KI. Measurement of changes in cytosolic Ca2+ in Arabidopsis guard cells and mesophyll cells in response to blue light. PLANT & CELL PHYSIOLOGY 2009; 50:360-73. [PMID: 19106118 DOI: 10.1093/pcp/pcn203] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phototropins (phot1 and phot2) are blue light (BL) receptors that mediate responses including phototropism, chloroplast movement and stomatal opening, and increased cytosolic Ca(2+). BL absorbed by phototropins activates plasma membrane H(+)-ATPase in guard cells, resulting in membrane hyperpolarization, and drives K(+) uptake and stomatal opening. However, it is unclear whether the phototropin-mediated Ca(2+) increase activates the H(+)-ATPase. Here, we determined cytosolic Ca(2+) concentrations in guard cell protoplasts (GCPs) from Arabidopsis transformed with aequorin. Cytosolic Ca(2+) increased rapidly in response to BL in GCPs from both the wild type and phot1 phot2 double mutants, but was mostly suppressed by an inhibitor of photosynthetic electron flow (DCMU). With depleted external K(+), we observed another slower Ca(2+) increase, which was phototropin- dependent. Fusicoccin, a H(+)-ATPase activator, mimicked the effect of BL. The slow Ca(2+) increase thus appears to result from membrane hyperpolarization. The slow Ca(2+) increase was suppressed by external K(+) and was restored by blockers of inward-rectifying K(+) channels, CsCl and tetraethylammonium, suggesting the preferential uptake of K(+) over Ca(2+). Such efficient K(+) uptake in response to BL was not found in mesophyll cells. Both the fast and the slow Ca(2+) increases were inhibited by Ca(2+) channel blockers (CoCl(2) and LaCl(3)) and a chelating agent (EGTA). These results indicate that the phototropin-mediated Ca(2+) increase was not observed prior to H(+)-ATPase activation in guard cells and that Ca(2+) entered guard cells via Ca(2+) channels through photosynthesis and phototropin-mediated membrane hyperpolarization.
Collapse
Affiliation(s)
- Akiko Harada
- Department of Biology, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
80
|
|
81
|
Kwak JM, Mäser P, Schroeder JI. The Clickable Guard Cell, Version II: Interactive Model of Guard Cell Signal Transduction Mechanisms and Pathways. THE ARABIDOPSIS BOOK 2008; 6:e0114. [PMID: 22303239 PMCID: PMC3243356 DOI: 10.1199/tab.0114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Guard cells are located in the leaf epidermis and pairs of guard cells surround and form stomatal pores, which regulate CO(2) influx from the atmosphere into leaves for photosynthetic carbon fixation. Stomatal guard cells also regulate water loss of plants via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate a multitude of different stimuli to modulate stomatal apertures. Stomata open in response to light. Stomata close in response to drought stress, elevated CO(2), ozone and low humidity. In response to drought, plants synthesize the hormone abscisic acid (ABA) that triggers closing of stomatal pores. Guard cells have become a highly developed model system for dissecting signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. Many new findings have been made in the last few years. This chapter is an update of an electronic interactive chapter in the previous edition of The Arabidopsis Book (Mäser et al. 2003). Here we focus on mechanisms for which genes and mutations have been characterized, including signaling components for which there is substantial signaling, biochemical and genetic evidence. Ion channels have been shown to represent targets of early signal transduction mechanisms and provide functional signaling and quantitative analysis points to determine where and how mutations affect branches within the guard cell signaling network. Although a substantial number of genes and proteins that function in guard cell signaling have been identified in recent years, there are many more left to be identified and the protein-protein interactions within this network will be an important subject of future research. A fully interactive clickable electronic version of this publication can be accessed at the following web site: http://www-biology.ucsd.edu/labs/schroeder/clickablegc2/. The interactive clickable version includes the following features: Figure 1. Model for the roles of ion channels in ABA signaling.Figure 2. Blue light signaling pathways in guard cells.Figure 3. ABA signaling pathways in guard cells.Figure 1 is linked to explanations that appear upon mouse-over. Figure 2 and Figure 3 are clickable and linked to info boxes, which in turn are linked to TAIR, to relevant abstracts in PubMed, and to updated background explanations from Schroeder et al (2001), used with permission of Annual Reviews of Plant Biology.
Collapse
Affiliation(s)
- June M. Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Pascal Mäser
- Institute of Cell Biology, University of Berne, CH-3012 Bern, Switzerland
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0116
| |
Collapse
|
82
|
Aihara Y, Tabata R, Suzuki T, Shimazaki KI, Nagatani A. Molecular basis of the functional specificities of phototropin 1 and 2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:364-75. [PMID: 18643969 DOI: 10.1111/j.1365-313x.2008.03605.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A blue-light photoreceptor in plants, phototropin, mediates phototropism, chloroplast relocation, stomatal opening, and leaf-flattening responses. Phototropin is divided into two functional moieties, the N-terminal photosensory and the C-terminal signaling moieties. Phototropin perceives light stimuli by the light, oxygen or voltage (LOV) domain in the N-terminus; the signal is then transduced intramolecularly to the C-terminal kinase domain. Two phototropins, phot1 and phot2, which have overlapping and distinct functions, exist in Arabidopsis thaliana. Phot1 mediates responses with higher sensitivity than phot2. Phot2 mediates specific responses, such as the chloroplast avoidance response and chloroplast dark positioning. To elucidate the molecular basis for the functional specificities of phot1 and phot2, we exchanged the N- and C-terminal moieties of phot1 and phot2, fused them to GFP and expressed them under the PHOT2 promoter in the phot1 phot2 mutant background. With respect to phototropism and other responses, the chimeric phototropin consisting of phot1 N-terminal and phot2 C-terminal moieties (P1n/2cG) was almost as sensitive as phot1; whereas the reverse combination (P2n/1cG) functioned with lower sensitivity. Hence, the N-terminal moiety mainly determined the sensitivity of the phototropins. Unexpectedly, both P1n/2cG and P2n/1cG mediated the chloroplast avoidance response, which is specific to phot2. Hence, chloroplast avoidance activity appeared to be suppressed specifically in the combination of N- and C-terminal moieties of phot1. Unlike the chloroplast avoidance response, chloroplast dark positioning was observed for P2G and P2n/1cG but not for P1G or P1n/2cG, suggesting that a specific structure in the N-terminal moiety of phot2 is required for this activity.
Collapse
Affiliation(s)
- Yusuke Aihara
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
83
|
Nomura H, Komori T, Kobori M, Nakahira Y, Shiina T. Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:988-98. [PMID: 18088326 DOI: 10.1111/j.1365-313x.2007.03390.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of guard cell chloroplasts in stomatal function is controversial. It is usually assumed that stomatal closure is preceded by a transient increase in cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in the guard cells. Here, we provide the evidence that chloroplasts play a critical role in the generation of extracellular Ca(2+) ([Ca(2+)](ext))-induced [Ca(2+)](cyt) transients and stomatal closure in Arabidopsis. CAS (Ca(2+) sensing receptor) is a plant-specific putative Ca(2+)-binding protein that was originally proposed to be a plasma membrane-localized external Ca(2+) sensor. In the present study, we characterized the intracellular localization of CAS in Arabidopsis with a combination of techniques, including (i) in vivo localization of green fluorescent protein (GFP) fused gene expression, (ii) subcellular fractionation and fractional analysis of CAS with Western blots, and (iii) database analysis of thylakoid membrane proteomes. Each technique produced consistent results. CAS was localized mainly to chloroplasts. It is an integral thylakoid membrane protein, and the N-terminus acidic Ca(2+)-binding region is likely exposed to the stromal side of the membrane. The phenotype of T-DNA insertion CAS knockout mutants and cDNA mutant-complemented plants revealed that CAS is essential for stomatal closure induced by external Ca(2+). In contrast, overexpression of CAS promoted stomatal closure in the absence of externally applied Ca(2+). Furthermore, using the transgenic aequorin system, we showed that [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients were significantly reduced in CAS knockout mutants. Our results suggest that thylakoid membrane-localized CAS is essential for [Ca(2+)](ext)-induced [Ca(2+)](cyt) transients and stomatal closure.
Collapse
Affiliation(s)
- Hironari Nomura
- Graduate School of Human and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | | | | | | | | |
Collapse
|
84
|
Chen X, Lin WH, Wang Y, Luan S, Xue HW. An inositol polyphosphate 5-phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+. THE PLANT CELL 2008; 20:353-66. [PMID: 18252844 PMCID: PMC2276452 DOI: 10.1105/tpc.107.052670] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 11/22/2007] [Accepted: 01/21/2008] [Indexed: 05/18/2023]
Abstract
Inositol polyphosphate 5-phosphatase (5PTase) is a key enzyme in the phosphatidylinositol metabolic pathway, which plays critical roles in a number of cellular processes in plants. Our previous work implicated the role of 5PTase13, which encodes a WD40-containing type II 5PTase, in hormone-mediated cotyledon vein development. Here, we show that 5PTase13 is also involved in blue light responses in Arabidopsis thaliana. Compared with that in darkness, the expression of 5PTase13 was suppressed by blue light irradiation, and disruption of the gene resulted in shortened hypocotyls and expanded cotyledons. Genetic analysis showed that 5PTase13 acted independently from CRYPTOCHROME1 and CONSTITUTIVE PHOTOMORPHOGENIC1 but interacted functionally with PHOTOTROPIN1 (PHOT1). The expression level of 5PTase13 was significantly enhanced in phot1 single or phot1 phot2 double mutants under blue light, and suppression of 5PTase13 expression rescued the elongated hypocotyls in the phot1 or phot1 phot2 mutants. Further analysis showed that the blue light-induced elevation of cytosolic Ca2+ was inhibited in the phot1 mutant but enhanced in the 5pt13 mutant, suggesting that 5PTase13 antagonizes PHOT1-mediated effects on calcium signaling under blue light.
Collapse
Affiliation(s)
- Xu Chen
- Shanghai Institutes for Biological Science-University of California Berkeley Center of Molecular Life Sciences, Chinese Academy of Sciences, 20032 Shanghai, China
| | | | | | | | | |
Collapse
|
85
|
Königer M, Delamaide JA, Marlow ED, Harris GC. Arabidopsis thaliana leaves with altered chloroplast numbers and chloroplast movement exhibit impaired adjustments to both low and high light. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2285-97. [PMID: 18468985 PMCID: PMC2423661 DOI: 10.1093/jxb/ern099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 03/07/2008] [Accepted: 03/10/2008] [Indexed: 05/18/2023]
Abstract
The effects of chloroplast number and size on the capacity for blue light-dependent chloroplast movement, the ability to increase light absorption under low light, and the susceptibility to photoinhibition were investigated in Arabidopsis thaliana. Leaves of wild-type and chloroplast number mutants with mean chloroplast numbers ranging from 120 to two per mesophyll cell were analysed. Chloroplast movement was monitored as changes in light transmission through the leaves. Light transmission was used as an indicator of the ability of leaves to optimize light absorption. The ability of leaves to deal with 3 h of high light stress at 10 degrees C and their capacity to recover in low light was determined by measuring photochemical efficiencies of PSII using chlorophyll a fluorescence. Chloroplast movement was comparable in leaves ranging in chloroplast numbers from 120 to 30 per mesophyll cell: the final light transmission levels after exposure to 0.1 (accumulation response) and 100 micromol photons m(-2) s(-1) (avoidance response) were indistinguishable, the chloroplasts responded quickly to small increases in light intensity and the kinetics of movement were similar. However, when chloroplast numbers per mesophyll cell decreased to 18 or below, the accumulation response was significantly reduced. The avoidance response was only impaired in mutants with nine or fewer chloroplasts, both in terms of final transmission levels and the speed of movement. Only mutants lacking both blue light receptors (phot1/phot2) or those with drastically reduced chloroplast numbers and severely impacted avoidance responses showed a reduced ability to recover from high light stress.
Collapse
Affiliation(s)
- Martina Königer
- Department of Biological Sciences, Wellesley College, Wellesley, MA 02481, USA.
| | | | | | | |
Collapse
|
86
|
|
87
|
Furuichi T, Kawano T, Tatsumi H, Sokabe M. Roles of Ion Channels in the Environmental Responses of Plants. SENSING WITH ION CHANNELS 2008. [DOI: 10.1007/978-3-540-72739-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
88
|
Wan YL, Eisinger W, Ehrhardt D, Kubitscheck U, Baluska F, Briggs W. The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. MOLECULAR PLANT 2008; 1:103-117. [PMID: 20031918 DOI: 10.1093/mp/ssm011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phototropin 1 (phot1) is a photoreceptor for phototropism, chloroplast movement, stomatal opening, leaf expansion, and solar tracking in response to blue light. Following earlier work with PHOT1::GFP (Sakamoto and Briggs, 2002), we investigated the pattern of cellular and subcellular localization of phot1 in 3- 4-d-old etiolated seedlings of Arabidopsis thalinana. As expressed from native upstream sequences, the PHOT1::GFP fusion protein is expressed strongly in the abaxial tissues of the cotyledons and in the elongating regions of the hypocotyl. It is moderately expressed in the shoot/root transition zone and in cells near the root apex. A fluorescence signal is undetectable in the root epidermis, root cap, and root apical meristem itself. The plasma membranes of mesophyll cells near the cotyledon margin appear labeled uniformly but cross-walls created by recent cell divisions are more strongly labeled. The pattern of labeling of individual cell types varies with cell type and developmental stage. Blue-light treatment causes PHOT1::GFP, initially relatively evenly distributed at the plasma membrane, to become reorganized into a distinct mosaic with strongly labeled punctate areas and other areas completely devoid of fluorescence--a phenomenon best observed in cortical cells in the hypocotyl elongation region. Concomitant with or following this reorganization, PHOT1::GFP moves into the cytoplasm in all cell types investigated except for guard cells. It disappears from the cytoplasm by an unidentified mechanism after several hours in darkness. Neither its appearance in the cytoplasm nor its eventual disappearance in darkness is prevented by the translation inhibitor cycloheximide, although the latter process is retarded. We hypothesize that blue-light-induced phot1 re-localization modulates blue-light-activated signal transduction.
Collapse
Affiliation(s)
- Ying-Lang Wan
- Dept Plant Cell Biology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Suetsugu N, Wada M. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem 2007; 388:927-35. [PMID: 17696776 DOI: 10.1515/bc.2007.118] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chloroplasts gather in areas irradiated with weak light to maximize photosynthesis (the accumulation response). They move away from areas irradiated with strong light to minimize damage of the photosynthetic apparatus (the avoidance response). The processes underlying these chloroplast movements can be divided into three parts: photoperception, signal transduction, and chloroplast movement. Photoreceptors for chloroplast movement have been identified recently in various plant species. A blue light receptor phototropin (phot) mediates chloroplast photorelocation movement in the seed plant Arabidopsis thaliana, the fern Adiantum capillus-veneris, the moss Physcomitrella patens and possibly the green alga Mougeotia scalaris. A chimeric photoreceptor between phytochrome and phototropin, neochrome (neo), was found in some advanced ferns and in the green alga M. scalaris. While the mechanism of chloroplast movement is not well understood, it is known that actin filaments play an important role in this process. To understand the molecular mechanisms associated with chloroplast movement, several mutants were isolated in A. thaliana (jac1 and chup1) and the corresponding genes were cloned. In this review, recent progress in photoreceptor research into chloroplast movement in various plant species and the possible factors functioning in signal transduction or the regulation of actin filaments identified in A. thaliana is discussed.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Division of Photobiology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
90
|
López-Juez E, Bowyer JR, Sakai T. Distinct leaf developmental and gene expression responses to light quantity depend on blue-photoreceptor or plastid-derived signals, and can occur in the absence of phototropins. PLANTA 2007; 227:113-23. [PMID: 17701203 DOI: 10.1007/s00425-007-0599-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 07/20/2007] [Indexed: 05/16/2023]
Abstract
Leaf palisade cell development and the composition of chloroplasts respond to the fluence rate of light to maximise photosynthetic light capture while minimising photodamage. The underlying light sensory mechanisms are probably multiple and remain only partially understood. Phototropins (PHOT1 and PHOT2) are blue light receptors regulating responses which are light quantity-dependent and which include the control of leaf expansion. Here we show that genes for proteins in the reaction centres show long-term responses in wild type plants, and single blue photoreceptor mutants, to light fluence rate consistent with regulation by photosynthetic redox signals. Using contrasting intensities of white or broad-band red or blue light, we observe that increased fluence rate results in thicker leaves and greater number of palisade cells, but the anticlinal elongation of those cells is specifically responsive to the fluence rate of blue light. This palisade cell elongation response is still quantitatively normal in fully light-exposed regions of phot1 phot2 double mutants under increased fluence rate of white light. Plants grown at high light display elevated expression of RBCS (for the Rubisco small subunit) which, together with expected down-regulation of LHCB1 (for the photosynthetic antenna primarily of photosystem II), is also observed in phot double mutants. We conclude that an unknown blue light photoreceptor, or combination thereof, controls the development of a typical palisade cell morphology, but phototropins are not essential for either this response or acclimation-related gene expression changes. Together with previous evidence, our data further demonstrate that photosynthetic (chloroplast-derived) signals play a central role in the majority of acclimation responses.
Collapse
Affiliation(s)
- Enrique López-Juez
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK.
| | | | | |
Collapse
|
91
|
Xu X, Hotta CT, Dodd AN, Love J, Sharrock R, Lee YW, Xie Q, Johnson CH, Webb AAR. Distinct light and clock modulation of cytosolic free Ca2+ oscillations and rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 promoter activity in Arabidopsis. THE PLANT CELL 2007; 19:3474-90. [PMID: 17982000 PMCID: PMC2174886 DOI: 10.1105/tpc.106.046011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/30/2007] [Accepted: 10/15/2007] [Indexed: 05/17/2023]
Abstract
Plants have circadian oscillations in the concentration of cytosolic free calcium ([Ca(2+)](cyt)). To dissect the circadian Ca(2+)-signaling network, we monitored circadian [Ca(2+)](cyt) oscillations under various light/dark conditions (including different spectra) in Arabidopsis thaliana wild type and photoreceptor and circadian clock mutants. Both red and blue light regulate circadian oscillations of [Ca(2+)](cyt). Red light signaling is mediated by PHYTOCHROME B (PHYB). Blue light signaling occurs through the redundant action of CRYPTOCHROME1 (CRY1) and CRY2. Blue light also increases the basal level of [Ca(2+)](cyt), and this response requires PHYB, CRY1, and CRY2. Light input into the oscillator controlling [Ca(2+)](cyt) rhythms is gated by EARLY FLOWERING3. Signals generated in the dark also regulate the circadian behavior of [Ca(2+)](cyt). Oscillations of [Ca(2+)](cyt) and CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter activity are dependent on the rhythmic expression of LATE ELONGATED HYPOCOTYL and CIRCADIAN CLOCK-ASSOCIATED1, but [Ca(2+)](cyt) and CAB2 promoter activity are uncoupled in the timing of cab1 (toc1-1) mutant but not in toc1-2. We suggest that the circadian oscillations of [Ca(2+)](cyt) and CAB2 promoter activity are regulated by distinct oscillators with similar components that are used in a different manner and that these oscillators may be located in different cell types in Arabidopsis.
Collapse
Affiliation(s)
- Xiaodong Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, Tenessee 37235, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Iwabuchi K, Sakai T, Takagi S. Blue light-dependent nuclear positioning in Arabidopsis thaliana leaf cells. PLANT & CELL PHYSIOLOGY 2007; 48:1291-8. [PMID: 17652112 DOI: 10.1093/pcp/pcm095] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The plant nucleus changes its intracellular position not only upon cell division and cell growth but also in response to environmental stimuli such as light. We found that the nucleus takes different intracellular positions depending on blue light in Arabidopsis thaliana leaf cells. Under dark conditions, nuclei in mesophyll cells were positioned at the center of the bottom of cells (dark position). Under blue light at 100 mumol m(-2) s(-1), in contrast, nuclei were located along the anticlinal walls (light position). The nuclear positioning from the dark position to the light position was fully induced within a few hours of blue light illumination, and it was a reversible response. The response was also observed in epidermal cells, which have no chloroplasts, suggesting that the nucleus has the potential actively to change its position without chloroplasts. Light-dependent nuclear positioning was induced specifically by blue light at >50 mumol m(-2) s(-1). Furthermore, the response to blue light was induced in phot1 but not in phot2 and phot1phot2 mutants. Unexpectedly, we also found that nuclei as well as chloroplasts in phot2 and phot1phot2 mutants took unusual intracellular positions under both dark and light conditions. The lack of the response and the unusual positioning of nuclei and chloroplasts in the phot2 mutant were recovered by externally introducing the PHOT2 gene into the mutant. These results indicate that phot2 mediates the blue light-dependent nuclear positioning and the proper positioning of nuclei and chloroplasts. This is the first characterization of light-dependent nuclear positioning in spermatophytes.
Collapse
Affiliation(s)
- Kosei Iwabuchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | | | |
Collapse
|
93
|
Higuchi A, Watanabe T, Noguchi Y, Chang Y, Chen WY, Matsuoka Y. Visible light regulates neurite outgrowth of nerve cells. Cytotechnology 2007; 54:181-8. [PMID: 19003010 DOI: 10.1007/s10616-007-9087-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 07/30/2007] [Indexed: 11/28/2022] Open
Abstract
The neurite outgrowth of PC12 cells on collagen-coated glass plates under light emitting diode (LED) irradiation at several wavelengths (i.e., 455, 470, 525, 600, 630, 880 and 945 nm) was investigated. No neurite outgrowth was observed during cultivation under irradiation from the lamp of an inverted light microscope through filters (yielding mixed light at ca. 525 nm and more than 800 nm), whereas neurite outgrowth was observed during cultivation in the dark. When these cells were irradiated with monochromatic LED light, neurite outgrowth was slightly, but not completely, suppressed at 455, 525, 600, 630, 880 and 945 nm, as was observed in the case of mixed light. Long connected neuronal outgrowths (e.g., 3 mm length) were observed with LED light at 470 nm and 1.8 mW/cm(2) intensity. No such outgrowths were observed at other LED light wavelengths (i.e., 455, 525, 600, 630, 880 and 945 nm). Irradiation at 470 nm may have caused specific responses to transductional signals in these cells that led to the connection of neuronal outgrowths between cells. Not only suppressed neurite outgrowth but also long connected neurite outgrowths were observed when PC12 cells were cultured under several different wavelengths of light.
Collapse
Affiliation(s)
- Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, No. 300, Jhongda Rd., Jhongli, Taoyuan, 32001, Taiwan,
| | | | | | | | | | | |
Collapse
|
94
|
Harada A, Shimazaki KI. Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol 2007; 83:102-11. [PMID: 16906793 DOI: 10.1562/2006-03-08-ir-837] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plants have several kinds of photoreceptors, which regulate growth and development. Recent investigations using Arabidopsis thaliana revealed that the newly found blue light receptor phototropins mediate phototropism, chloroplast relocation, stomatal opening, rapid inhibition of hypocotyl elongation and leaf expansion. Several physiological studies suggest that one of the intermediates in phototropin signaling is cytosolic Ca2+. Studies using phototropin mutants have demonstrated that phototropins induce an increase in cytosolic Ca2+ concentration. However, the function of Ca2+ in the phototropin-mediated signaling process remains largely unknown. This review presents findings about phototropin-mediated calcium mobilization and the involvement of calcium in blue light-dependent plant responses.
Collapse
Affiliation(s)
- Akiko Harada
- Department of Biology, Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka, Japan.
| | | |
Collapse
|
95
|
Suetsugu N, Wada M. Phytochrome-dependent photomovement responses mediated by phototropin family proteins in cryptogam plants. Photochem Photobiol 2007; 83:87-93. [PMID: 16542113 DOI: 10.1562/2006-02-27-ir-817] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this review, we describe the regulation of photomovement responses by phototropin and phytochrome photoreceptors. The blue light receptor phototropin mediates various photomovement responses such as phototropism, chloroplast movement and stomatal opening. In cryptogamic plants including ferns, mosses and green alga, red as well as blue light mediates phototropism and chloroplast movement. The red/far-red light reversibility suggests the involvement of phytochrome in these responses. Thereby, plant growth is presumably promoted by coordinating these photomovements to capture efficiently light for photosynthesis.
Collapse
Affiliation(s)
- Noriyuki Suetsugu
- Division of Photobiology, National Institute for Basic Biology, Okazaki, Japan
| | | |
Collapse
|
96
|
Moran N. Osmoregulation of leaf motor cells. FEBS Lett 2007; 581:2337-47. [PMID: 17434488 DOI: 10.1016/j.febslet.2007.04.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 03/31/2007] [Accepted: 04/02/2007] [Indexed: 11/18/2022]
Abstract
"Osmotic Motors"--the best-documented explanation for plant leaf movements--frequently reside in specialized motor leaf organs, pulvini. The movements result from dissimilar volume and turgor changes in two oppositely positioned parts of the pulvinus. This Osmotic Motor is powered by a plasma membrane proton ATPase, which drives KCl fluxes and, consequently, water, across the pulvinus into swelling cells and out of shrinking cells. Light signals and signals from the endogenous biological clock converge on the channels through which these fluxes occur. These channels and their regulatory pathways in the pulvinus are the topic of this review.
Collapse
Affiliation(s)
- Nava Moran
- The R.H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
97
|
Marten H, Hedrich R, Roelfsema MRG. Blue light inhibits guard cell plasma membrane anion channels in a phototropin-dependent manner. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:29-39. [PMID: 17319842 DOI: 10.1111/j.1365-313x.2006.03026.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Guard cells respond to light through two independent signalling pathways. The first pathway is initiated by photosynthetically active radiation and has been associated with changes in the intercellular CO(2) concentration, leading to inhibition of plasma membrane anion channels. The second response is blue-light-specific and so far has been restricted to the activation of plasma membrane H(+)-ATPases. In a search for interactions of both signalling pathways, guard cells of Vicia faba and Arabidopsis thaliana were studied in intact plants. Vicia faba guard cells recorded in CO(2)-free air responded to blue light with a transient outward plasma membrane current that had an average peak value of 17 pA. In line with previous reports, changes in the current-voltage relation of the plasma membrane indicate that this outward current is based on the activation of H(+)-ATPases. However, when V. faba guard cells were blue-light-stimulated in air with 700 microl l(-1) CO(2), the outward current increased to 56 pA. The increase in current was linked to inhibition of S-type anion channels. Blue light also inhibited plasma membrane anion channels in A. thaliana guard cells, but not in the phot1 phot2 double mutant. These results show that blue light inhibits plasma membrane anion channels through a pathway involving phototropins, in addition to the stimulation of guard cell plasma membrane H(+)-ATPases.
Collapse
Affiliation(s)
- Holger Marten
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Würzburg University, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | |
Collapse
|
98
|
Shimazaki KI, Doi M, Assmann SM, Kinoshita T. Light regulation of stomatal movement. ANNUAL REVIEW OF PLANT BIOLOGY 2007; 58:219-47. [PMID: 17209798 DOI: 10.1146/annurev.arplant.57.032905.105434] [Citation(s) in RCA: 462] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stomatal pores, each surrounded by a pair of guard cells, regulate CO2 uptake and water loss from leaves. Stomatal opening is driven by the accumulation of K+ salts and sugars in guard cells, which is mediated by electrogenic proton pumps in the plasma membrane and/or metabolic activity. Opening responses are achieved by coordination of light signaling, light-energy conversion, membrane ion transport, and metabolic activity in guard cells. In this review, we focus on recent progress in blue- and red-light-dependent stomatal opening. Because the blue-light response of stomata appears to be strongly affected by red light, we discuss underlying mechanisms in the interaction between blue-light signaling and guard cell chloroplasts.
Collapse
Affiliation(s)
- Ken-ichiro Shimazaki
- Department of Biology, Faculty of Science, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan.
| | | | | | | |
Collapse
|
99
|
Chloroplast Movements in Response to Environmental Signals. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2007. [DOI: 10.1007/978-1-4020-4061-0_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
100
|
Abstract
Phototropins are blue-light receptors controlling a range of responses that serve to optimize the photosynthetic efficiency of plants. These include phototropism, light-induced stomatal opening, and chloroplast movements in response to changes in light intensity. Since the isolation of the Arabidopsis PHOT1 gene in 1997, phototropins have been identified in ferns and mosses where their physiological functions appear to be conserved. Arabidopsis contains two phototropins, phot1 and phot2, that exhibit overlapping functions in addition to having unique physiological roles. Phototropins are light-activated serine/threonine protein kinases. Light sensing by the phototropins is mediated by a repeated motif at the N-terminal region of the protein known as the LOV domain. Photoexcitation of the LOV domain results in receptor autophosphorylation and an initiation of phototropin signaling. Here we summarize the photochemical and biochemical events underlying phototropin activation in addition to the current knowledge of the molecular mechanisms associated with photoreceptor signaling.
Collapse
Affiliation(s)
- John M Christie
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|