51
|
Matsuo T, Iida T, Ohmura A, Gururaj M, Kato D, Mutoh R, Ihara K, Ishiura M. The role of ROC75 as a daytime component of the circadian oscillator in Chlamydomonas reinhardtii. PLoS Genet 2020; 16:e1008814. [PMID: 32555650 PMCID: PMC7299327 DOI: 10.1371/journal.pgen.1008814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/29/2020] [Indexed: 01/20/2023] Open
Abstract
The circadian clocks in chlorophyte algae have been studied in two model organisms, Chlamydomonas reinhardtii and Ostreococcus tauri. These studies revealed that the chlorophyte clocks include some genes that are homologous to those of the angiosperm circadian clock. However, the genetic network architectures of the chlorophyte clocks are largely unknown, especially in C. reinhardtii. In this study, using C. reinhardtii as a model, we characterized RHYTHM OF CHLOROPLAST (ROC) 75, a clock gene encoding a putative GARP DNA-binding transcription factor similar to the clock proteins LUX ARRHYTHMO (LUX, also called PHYTOCLOCK 1 [PCL1]) and BROTHER OF LUX ARRHYTHMO (BOA, also called NOX) of the angiosperm Arabidopsis thaliana. We observed that ROC75 is a day/subjective day-phase-expressed nuclear-localized protein that associates with some night-phased clock genes and represses their expression. This repression may be essential for the gating of reaccumulation of the other clock-related GARP protein, ROC15, after its light-dependent degradation. The restoration of ROC75 function in an arrhythmic roc75 mutant under constant darkness leads to the resumption of circadian oscillation from the subjective dawn, suggesting that the ROC75 restoration acts as a morning cue for the C. reinhardtii clock. Our study reveals a part of the genetic network of C. reinhardtii clock that could be considerably different from that of A. thaliana.
Collapse
Affiliation(s)
- Takuya Matsuo
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- * E-mail:
| | - Takahiro Iida
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Ayumi Ohmura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Malavika Gururaj
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Daisaku Kato
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Risa Mutoh
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Masahiro Ishiura
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
52
|
Pickel L, Sung HK. Feeding Rhythms and the Circadian Regulation of Metabolism. Front Nutr 2020; 7:39. [PMID: 32363197 PMCID: PMC7182033 DOI: 10.3389/fnut.2020.00039] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
The molecular circadian clock regulates metabolic processes within the cell, and the alignment of these clocks between tissues is essential for the maintenance of metabolic homeostasis. The possibility of misalignment arises from the differential responsiveness of tissues to the environmental cues that synchronize the clock (zeitgebers). Although light is the dominant environmental cue for the master clock of the suprachiasmatic nucleus, many other tissues are sensitive to feeding and fasting. When rhythms of feeding behavior are altered, for example by shift work or the constant availability of highly palatable foods, strong feedback is sent to the peripheral molecular clocks. Varying degrees of phase shift can cause the systemic misalignment of metabolic processes. Moreover, when there is a misalignment between the endogenous rhythms in physiology and environmental inputs, such as feeding during the inactive phase, the body's ability to maintain homeostasis is impaired. The loss of phase coordination between the organism and environment, as well as internal misalignment between tissues, can produce cardiometabolic disease as a consequence. The aim of this review is to synthesize the work on the mechanisms and metabolic effects of circadian misalignment. The timing of food intake is highlighted as a powerful environmental cue with the potential to destroy or restore the synchrony of circadian rhythms in metabolism.
Collapse
Affiliation(s)
- Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
53
|
Dominoni DM, Kjellberg Jensen J, de Jong M, Visser ME, Spoelstra K. Artificial light at night, in interaction with spring temperature, modulates timing of reproduction in a passerine bird. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02062. [PMID: 31863538 PMCID: PMC7187248 DOI: 10.1002/eap.2062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/18/2019] [Accepted: 11/05/2019] [Indexed: 05/09/2023]
Abstract
The ecological impact of artificial light at night (ALAN) on phenological events such as reproductive timing is increasingly recognized. In birds, previous experiments under controlled conditions showed that ALAN strongly advances gonadal growth, but effects on egg-laying date are less clear. In particular, effects of ALAN on timing of egg laying are found to be year-dependent, suggesting an interaction with climatic conditions such as spring temperature, which is known have strong effects on the phenology of avian breeding. Thus, we hypothesized that ALAN and temperature interact to regulate timing of reproduction in wild birds. Field studies have suggested that sources of ALAN rich in short wavelengths can lead to stronger advances in egg-laying date. We therefore tested this hypothesis in the Great Tit (Parus major), using a replicated experimental set-up where eight previously unlit forest transects were illuminated with either white, green, or red LED light, or left dark as controls. We measured timing of egg laying for 619 breeding events spread over six consecutive years and obtained temperature data for all sites and years. We detected overall significantly earlier egg-laying dates in the white and green light vs. the dark treatment, and similar trends for red light. However, there was a strong interannual variability in mean egg-laying dates in all treatments, which was explained by spring temperature. We did not detect any fitness consequence of the changed timing of egg laying due to ALAN, which suggests that advancing reproduction in response to ALAN might be adaptive.
Collapse
Affiliation(s)
- Davide M. Dominoni
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowG128PG United Kingdom
| | | | - Maaike de Jong
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Plant Ecology and Nature Conservation GroupWageningen UniversityWageningenThe Netherlands
| | - Marcel E. Visser
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Kamiel Spoelstra
- Department of Animal EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Plant Ecology and Nature Conservation GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
54
|
Mah A, Ayoub N, Toporikova N, Jones TC, Moore D. Locomotor activity patterns in three spider species suggest relaxed selection on endogenous circadian period and novel features of chronotype. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:499-515. [PMID: 32219511 DOI: 10.1007/s00359-020-01412-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 01/19/2023]
Abstract
We examined the circadian rhythms of locomotor activity in three spider species in the Family Theridiidae under light-dark cycles and constant darkness. Contrary to previous findings in other organisms, we found exceptionally high variability in endogenous circadian period both within and among species. Many individuals exhibited circadian periods much lower (19-22 h) or much higher (26-30 h) than the archetypal circadian period. These results suggest relaxed selection on circadian period as well as an ability to succeed in nature despite a lack of circadian resonance with the 24-h daily cycle. Although displaying similar entrainment waveforms under light-dark cycles, there were remarkable differences among the three species with respect to levels of apparent masking and dispersion of activity under constant dark conditions. These behavioral differences suggest an aspect of chronotype adapted to the particular ecologies of the different species.
Collapse
Affiliation(s)
- Andrew Mah
- Center for Neural Science, New York University, 4 Washington Pl #809, New York, NY, 10003, USA
| | - Nadia Ayoub
- Department of Biology, Washington and Lee University, Howe Hall, Lexington, VA, 24450, USA
| | - Natalia Toporikova
- Department of Biology, Washington and Lee University, Howe Hall, Lexington, VA, 24450, USA
- Neuroscience Program, Washington and Lee University, 204 W. Washington Street, Lexington, VA, 24450, USA
| | - Thomas C Jones
- Department of Biological Sciences, East Tennessee State University, Box 70703, Johnson City, TN, 37604, USA
| | - Darrell Moore
- Department of Biological Sciences, East Tennessee State University, Box 70703, Johnson City, TN, 37604, USA.
| |
Collapse
|
55
|
Abstract
Circadian rhythms are daily cycles in biological function that are ubiquitous in nature. Understood as a means for organisms to anticipate daily environmental changes, circadian rhythms are also important for orchestrating complex biological processes such as immunity. Nowhere is this more evident than in the respiratory system, where circadian rhythms in inflammatory lung disease have been appreciated since ancient times. In this focused review we examine how emerging research on circadian rhythms is being applied to the study of fundamental lung biology and respiratory disease. We begin with a general introduction to circadian rhythms and the molecular circadian clock that underpins them. We then focus on emerging data tying circadian clock function to immunologic activities within the respiratory system. We conclude by considering outstanding questions about biological timing in the lung and how a better command of chronobiology could inform our understanding of complex lung diseases.
Collapse
Affiliation(s)
- Charles Nosal
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Anna Ehlers
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
56
|
White JM, Piron MJ, Rangaraj VR, Hanlon EC, Cohen RN, Brady MJ. Reference Gene Optimization for Circadian Gene Expression Analysis in Human Adipose Tissue. J Biol Rhythms 2020; 35:84-97. [PMID: 31668115 PMCID: PMC7409766 DOI: 10.1177/0748730419883043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A hallmark of biology is the cyclical nature of organismal physiology driven by networks of biological, including circadian, rhythms. Unsurprisingly, disruptions of the circadian rhythms through sleep curtailment or shift work have been connected through numerous studies to positive associations with obesity, insulin resistance, and diabetes. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) measures oscillation in messenger RNA expression, an essential foundation for the study of the physiological circadian regulatory network. Primarily, measured oscillations have involved the use of reference gene normalization. However, the validation and identification of suitable reference genes is a significant challenge across different biological systems. This study focuses on adipose tissue of premenopausal, otherwise healthy, morbidly obese women voluntarily enrolled after being scheduled for laparoscopic sleeve gastrectomy surgery. Acquisition of tissue was accomplished by aspiratory needle biopsies of subcutaneous adipose tissue 1 to 2 weeks prior to surgery and 12 to 13 weeks following surgery and an in-surgery scalpel-assisted excision of mesenteric adipose tissue. Each biopsy was sterile cultured ex vivo and serially collected every 4 h over approximately 36 h. The candidate reference genes that were tested were 18S rRNA, GAPDH, HPRT1, RPII, RPL13α, and YWHAZ. Three analytic tools were used to test suitability, and the candidate reference genes were used to measure oscillation in expression of a known circadian clock element (Dbp). No gene was deemed suitable as an individual reference gene control, which indicated that the optimal reference gene set was the geometrically averaged 3-gene panel composed of YWHAZ, RPL13α, and GAPDH. These methods can be employed to identify optimal reference genes in other systems.
Collapse
Affiliation(s)
- Jeremy M. White
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, 60637
| | - Matthew J. Piron
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, 60637
| | - Vittobai R. Rangaraj
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, 60637
| | - Erin C. Hanlon
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, 60637
| | - Ronald N. Cohen
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, 60637
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, 60637
| | - Matthew J. Brady
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago IL, 60637
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago IL, 60637
| |
Collapse
|
57
|
Abstract
Biological ageing and its mechanistic underpinnings are of immense biomedical and ecological significance. Ageing involves the decline of diverse biological functions and places a limit on a species’ maximum lifespan. Ageing is associated with epigenetic changes involving DNA methylation. Furthermore, an analysis of mammals showed that the density of CpG sites in gene promoters, which are targets for DNA methylation, is correlated with lifespan. Using 252 whole genomes and databases of animal age and promotor sequences, we show a pattern across vertebrates. We also derive a predictive lifespan clock based on CpG density in a selected set of promoters. The lifespan clock accurately predicts maximum lifespan in vertebrates (R2 = 0.76) from the density of CpG sites within only 42 selected promoters. Our lifespan clock provides a wholly new method for accurately estimating lifespan using genome sequences alone and enables estimation of this challenging parameter for both poorly understood and extinct species.
Collapse
|
58
|
Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 2019; 21:67-84. [PMID: 31768006 DOI: 10.1038/s41580-019-0179-2] [Citation(s) in RCA: 604] [Impact Index Per Article: 120.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.
Collapse
|
59
|
Metzger J, Wicht H, Korf HW, Pfeffer M. Seasonal Variations of Locomotor Activity Rhythms in Melatonin-Proficient and -Deficient Mice under Seminatural Outdoor Conditions. J Biol Rhythms 2019; 35:58-71. [PMID: 31625428 DOI: 10.1177/0748730419881922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Locomotor activity patterns of laboratory mice are widely used to analyze circadian mechanisms, but most investigations have been performed under standardized laboratory conditions. Outdoors, animals are exposed to daily changes in photoperiod and other abiotic cues that might influence their circadian system. To investigate how the locomotor activity patterns under outdoor conditions compare to controlled laboratory conditions, we placed 2 laboratory mouse strains (melatonin-deficient C57Bl and melatonin-proficient C3H) in the garden of the Dr. Senckenbergische Anatomie in Frankfurt am Main. The mice were kept singly in cages equipped with an infrared locomotion detector, a hiding box, nesting material, and with food and water ad libitum. The locomotor activity of each mouse was recorded for 1 year, together with data on ambient temperature, light, and humidity. Chronotype, chronotype stability, total daily activity, duration of the activity period, and daily diurnality indices were determined from the actograms. C3H mice showed clear seasonal differences in the chronotype, its stability, the total daily activity, and the duration of the activity period. These pronounced seasonal differences were not observed in the C57Bl. In both strains, the onset of the main activity period was mainly determined by the evening dusk, whereas the offset was influenced by the ambient temperature. The actograms did not reveal infra-, ultradian, or lunar rhythms or a weekday/weekend pattern. Under outdoor conditions, the 2 strains retained their nocturnal locomotor identity as observed in the laboratory. Our results indicate that the chronotype displays a seasonal plasticity that may depend on the melatoninergic system. Photoperiod and ambient temperature are the most potent abiotic entraining cues. The timing of the evening dusk mainly affects the onset of the activity period; the ambient temperature during this period influences the latter's duration. Humidity, overall light intensities, and human activities do not affect the locomotor behavior.
Collapse
Affiliation(s)
- Joshua Metzger
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Helmut Wicht
- Dr. Senckenbergische Anatomie II, Fachbereich Medizin, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Horst-Werner Korf
- Institut für Anatomie I, Fachbereich Medizin, Heinrich Heine Universität, Düsseldorf, Germany
| | - Martina Pfeffer
- Institut für Anatomie II, Fachbereich Medizin, Heinrich Heine Universität, Düsseldorf, Germany
| |
Collapse
|
60
|
Floessner TSE, Boekelman FE, Druiven SJM, de Jong M, Rigter PMF, Beersma DGM, Hut RA. Lifespan is unaffected by size and direction of daily phase shifts in Nasonia, a hymenopteran insect with strong circadian light resetting. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103896. [PMID: 31194973 DOI: 10.1016/j.jinsphys.2019.103896] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Most organisms have an endogenous circadian clock with a period length of approximately 24 h that enables adaptation, synchronization and anticipation to environmental cycles. The circadian system (circa = about or around, diem = a day) may provide evolutionary benefits when entrained to the 24-h light-dark cycle. The more the internal circadian period (τ) deviates from the external light-dark cycle, the larger the daily phase shifts need to be to synchronize to the environment. In some species, large daily phase shifts reduce survival rate. Here we tested this 'resonance fitness hypothesis' on the diurnal wasp Nasonia vitripennis, which exhibits a large latitudinal cline in free-running period with longer circadian period lengths in the north than in the south. Longevity was measured in northern and southern wasps placed into light-dark cycles (T-cycles) with periods ranging from 20 h to 28 h. Further, locomotor activity was recorded to estimate range and phase angle of entrainment under these various T-cycles. A light pulse induced phase response curve (PRC) was measured in both lines to understand entrainment results. We expected a concave survival curve with highest longevity at T = τ and a reduction in longevity the further τ deviates from T (τ/T<>1). Our results do not support this resonance fitness hypothesis. We did not observe a reduction in longevity when τ deviates from T. Our results may be understood by the strong circadian light resetting mechanism (type 0 PRC) to single light pulses that we measured in Nasonia, resulting in: (1) the broad range of entrainment, (2) the wide natural variation in circadian free-running period, and (3) the lack of reduced survival when τ/T ratio's deviates from 1. Together this indicates that circadian adaption to latitude may lead to changes in circadian period and light response, without negative influences on survival.
Collapse
Affiliation(s)
- Theresa S E Floessner
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Floor E Boekelman
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Stella J M Druiven
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Maartje de Jong
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Pomme M F Rigter
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Domien G M Beersma
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Roelof A Hut
- Chronobiology Unit, Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands.
| |
Collapse
|
61
|
Daut RA, Fonken LK. Circadian regulation of depression: A role for serotonin. Front Neuroendocrinol 2019; 54:100746. [PMID: 31002895 PMCID: PMC9826732 DOI: 10.1016/j.yfrne.2019.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023]
Abstract
Synchronizing circadian (24 h) rhythms in physiology and behavior with the environmental light-dark cycle is critical for maintaining optimal health. Dysregulation of the circadian system increases susceptibility to numerous pathological conditions including major depressive disorder. Stress is a common etiological factor in the development of depression and the circadian system is highly interconnected to stress-sensitive neurotransmitter systems such as the serotonin (5-hydroxytryptamine, 5-HT) system. Thus, here we propose that stress-induced perturbation of the 5-HT system disrupts circadian processes and increases susceptibility to depression. In this review, we first provide an overview of the basic components of the circadian system. Next, we discuss evidence that circadian dysfunction is associated with changes in mood in humans and rodent models. Finally, we provide evidence that 5-HT is a critical factor linking dysregulation of the circadian system and mood. Determining how these two systems interact may provide novel therapeutic targets for depression.
Collapse
Affiliation(s)
- Rachel A Daut
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- University of Texas at Austin, Division of Pharmacology and Toxicology, Austin, TX 78712, USA.
| |
Collapse
|
62
|
Laine VN, Atema E, Vlaming P, Verhagen I, Mateman C, Ramakers JJC, van Oers K, Spoelstra K, Visser ME. The Genomics of Circadian Timing in a Wild Bird, the Great Tit (Parus major). Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
63
|
Westwood ML, O'Donnell AJ, de Bekker C, Lively CM, Zuk M, Reece SE. The evolutionary ecology of circadian rhythms in infection. Nat Ecol Evol 2019; 3:552-560. [PMID: 30886375 PMCID: PMC7614806 DOI: 10.1038/s41559-019-0831-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/30/2019] [Indexed: 01/05/2023]
Abstract
Biological rhythms coordinate organisms' activities with daily rhythms in the environment. For parasites, this includes rhythms in both the external abiotic environment and the within-host biotic environment. Hosts exhibit rhythms in behaviours and physiologies, including immune responses, and parasites exhibit rhythms in traits underpinning virulence and transmission. Yet, the evolutionary and ecological drivers of rhythms in traits underpinning host defence and parasite offence are largely unknown. Here, we explore how hosts use rhythms to defend against infection, why parasites have rhythms and whether parasites can manipulate host clocks to their own ends. Harnessing host rhythms or disrupting parasite rhythms could be exploited for clinical benefit; we propose an interdisciplinary effort to drive this emerging field forward.
Collapse
Affiliation(s)
- Mary L Westwood
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Aidan J O'Donnell
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Curtis M Lively
- Department of Biology, Indiana University, Bloomington, IL, USA
| | - Marlene Zuk
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Sarah E Reece
- Institute of Evolutionary Biology and Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
64
|
Cope EC, Opendak M, LaMarca EA, Murthy S, Park CY, Olson LB, Martinez S, Leung JM, Graham AL, Gould E. The effects of living in an outdoor enclosure on hippocampal plasticity and anxiety-like behavior in response to nematode infection. Hippocampus 2018; 29:366-377. [PMID: 30252982 DOI: 10.1002/hipo.23033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/23/2018] [Accepted: 09/20/2018] [Indexed: 12/17/2022]
Abstract
The hippocampus of rodents undergoes structural remodeling throughout adulthood, including the addition of new neurons. Adult neurogenesis is sensitive to environmental enrichment and stress. Microglia, the brain's resident immune cells, are involved in adult neurogenesis by engulfing dying new neurons. While previous studies using laboratory environmental enrichment have investigated alterations in brain structure and function, they do not provide an adequate reflection of living in the wild, in which stress and environmental instability are common. Here, we compared mice living in standard laboratory settings to mice living in outdoor enclosures to assess the complex interactions among environment, gut infection, and hippocampal plasticity. We infected mice with parasitic worms and studied their effects on adult neurogenesis, microglia, and functions associated with the hippocampus, including cognition and anxiety regulation. We found an increase in immature neuron numbers of mice living in outdoor enclosures regardless of infection. While outdoor living prevented increases in microglial reactivity induced by infection in both the dorsal and ventral hippocampus, outdoor mice with infection had fewer microglia and microglial processes in the ventral hippocampus. We observed no differences in cognitive performance on the hippocampus-dependent object location task between infected and uninfected mice living in either setting. However, we found that infection caused an increase in anxiety-like behavior in the open field test but only in outdoor mice. These findings suggest that living conditions, as well as gut infection, interact to produce complex effects on brain structure and function.
Collapse
Affiliation(s)
- Elise C Cope
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Maya Opendak
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Elizabeth A LaMarca
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Sahana Murthy
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Christin Y Park
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Lyra B Olson
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Susana Martinez
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| | - Jacqueline M Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Elizabeth Gould
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, New Jersey
| |
Collapse
|
65
|
Wong DCS, O’Neill JS. Non-transcriptional processes in circadian rhythm generation. CURRENT OPINION IN PHYSIOLOGY 2018; 5:117-132. [PMID: 30596188 PMCID: PMC6302373 DOI: 10.1016/j.cophys.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
'Biological clocks' orchestrate mammalian biology to a daily rhythm. Whilst 'clock gene' transcriptional circuits impart rhythmic regulation to myriad cellular systems, our picture of the biochemical mechanisms that determine their circadian (∼24 hour) period is incomplete. Here we consider the evidence supporting different models for circadian rhythm generation in mammalian cells in light of evolutionary factors. We find it plausible that the circadian timekeeping mechanism in mammalian cells is primarily protein-based, signalling biological timing information to the nucleus by the post-translational regulation of transcription factor activity, with transcriptional feedback imparting robustness to the oscillation via hysteresis. We conclude by suggesting experiments that might distinguish this model from competing paradigms.
Collapse
|
66
|
Soengas P, Cartea ME, Velasco P, Francisco M. Brassica glucosinolate rhythmicity in response to light-dark entrainment cycles is cultivar-dependent. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 275:28-35. [PMID: 30107879 DOI: 10.1016/j.plantsci.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Coordination of plant circadian rhythms with the external environment provides growth and reproductive advantages to plants as well as enhanced resistance to insects and pathogens. Since glucosinolates (GLSs) play a major role as plant defensive compounds and could affect the palatability and health value of edible crops, the aim of this study was to investigate the species-specific patterns in circadian rhythmicity of these plant phytochemicals. Five different GLS-containing cultivars, from three Brassica crop species were studied. Plants were entrained to light-dark cycles (LD) for five weeks prior to release them into continuous light (LL). GLSs levels were monitored during five consecutive days (two days at LD conditions and three days at LL). The remaining plants were re-entrained to LD cycles (Re-LD plants) and GLS levels were studied as stated before during two consecutive days. Results showed that the period and amplitude of GLSs circadian outputs were cultivar-dependent. In addition, we assessed that the plant endogenous clock can be re-entrained for GLSs accumulation after a period of free-running conditions. Together, these data suggests that Brassica cultivars keep track the time of the day to coordinate their defenses. The demonstration of the cultivar-specific circadian effect on the GLSs levels in plants of different Brassica cultivars have the potential to identify new targets for improving cultivar phytochemicals using temporally informed approaches. In addition, provides an exceptional model to study the complexity of signal integration in plants.
Collapse
Affiliation(s)
- Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, MisiónBiológica de Galicia, Spanish Council for Scientific Research (CSIC), Pontevedra, Spain
| | - M Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, MisiónBiológica de Galicia, Spanish Council for Scientific Research (CSIC), Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, MisiónBiológica de Galicia, Spanish Council for Scientific Research (CSIC), Pontevedra, Spain
| | - Marta Francisco
- Group of Genetics, Breeding and Biochemistry of Brassicas, MisiónBiológica de Galicia, Spanish Council for Scientific Research (CSIC), Pontevedra, Spain.
| |
Collapse
|
67
|
Cascallares G, Riva S, Franco DL, Risau-Gusman S, Gleiser PM. Role of the circadian clock in the statistics of locomotor activity in Drosophila. PLoS One 2018; 13:e0202505. [PMID: 30138403 PMCID: PMC6107170 DOI: 10.1371/journal.pone.0202505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
In many animals the circadian rhythm of locomotor activity is controlled by an endogenous circadian clock. Using custom made housing and video tracking software in order to obtain high spatial and temporal resolution, we studied the statistical properties of the locomotor activity of wild type and two clock mutants of Drosophila melanogaster. We show here that the distributions of activity and quiescence bouts for the clock mutants in light-dark conditions (LD) are very different from the distributions obtained when there are no external cues from the environment (DD). In the wild type these distributions are very similar, showing that the clock controls this aspect of behavior in both regimes (LD and DD). Furthermore, the distributions are very similar to those reported for Wistar rats. For the timing of events we also observe important differences, quantified by how the event rate distributions scale for increasing time windows. We find that for the wild type these distributions can be rescaled by the same function in DD as in LD. Interestingly, the same function has been shown to rescale the rate distributions in Wistar rats. On the other hand, for the clock mutants it is not possible to rescale the rate distributions, which might indicate that the extent of circadian control depends on the statistical properties of activity and quiescence.
Collapse
Affiliation(s)
- Guadalupe Cascallares
- Statistical and Interdisciplinary Physics Group, Centro Atómico Bariloche, Bariloche, Río Negro, Argentina
| | - Sabrina Riva
- Medical Physics Department, CONICET and Centro Atómico Bariloche, Av. E. Bustillo 9500, (8400) San Carlos de Bariloche, Río Negro, Argentina
| | - D. Lorena Franco
- Medical Physics Department, CONICET and Centro Atómico Bariloche, Av. E. Bustillo 9500, (8400) San Carlos de Bariloche, Río Negro, Argentina
| | - Sebastian Risau-Gusman
- Statistical and Interdisciplinary Physics Group, Centro Atómico Bariloche, Bariloche, Río Negro, Argentina
- Medical Physics Department, CONICET and Centro Atómico Bariloche, Av. E. Bustillo 9500, (8400) San Carlos de Bariloche, Río Negro, Argentina
| | - Pablo M. Gleiser
- Statistical and Interdisciplinary Physics Group, Centro Atómico Bariloche, Bariloche, Río Negro, Argentina
- Medical Physics Department, CONICET and Centro Atómico Bariloche, Av. E. Bustillo 9500, (8400) San Carlos de Bariloche, Río Negro, Argentina
- * E-mail:
| |
Collapse
|
68
|
Chew J, Leypunskiy E, Lin J, Murugan A, Rust MJ. High protein copy number is required to suppress stochasticity in the cyanobacterial circadian clock. Nat Commun 2018; 9:3004. [PMID: 30068980 PMCID: PMC6070526 DOI: 10.1038/s41467-018-05109-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/12/2018] [Indexed: 11/09/2022] Open
Abstract
Circadian clocks generate reliable ~24-h rhythms despite being based on stochastic biochemical reactions. The circadian clock in Synechococcus elongatus uses a post-translational oscillator that cycles deterministically in a test tube. Because the volume of a single bacterial cell is much smaller than a macroscopic reaction, we asked how clocks in single cells function reliably. Here, we show that S. elongatus cells must express many thousands of copies of Kai proteins to effectively suppress timing errors. Stochastic modeling shows that this requirement stems from noise amplification in the post-translational feedback loop that sustains oscillations. The much smaller cyanobacterium Prochlorococcus expresses only hundreds of Kai protein copies and has a simpler, hourglass-like Kai system. We show that this timer strategy can outperform a free-running clock if internal noise is significant. This conclusion has implications for clock evolution and synthetic oscillator design, and it suggests hourglass-like behavior may be widespread in microbes. Circadian clocks must maintain their fidelity despite stochasticity arising from finite protein copy numbers. Here, the authors show that a small cyanobacterium relies on an environmentally driven timer likely because its low protein copy numbers cannot support an accurate free-running clock.
Collapse
Affiliation(s)
- Justin Chew
- Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Eugene Leypunskiy
- Graduate Program in Biophysical Sciences, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Jenny Lin
- Department of Biochemistry and Molecular Biology, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Arvind Murugan
- Department of Physics, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA
| | - Michael J Rust
- Department of Physics, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA. .,Department of Molecular Genetics and Cell Biology, University of Chicago, 900 E 57th St, Chicago, IL, 60637, USA.
| |
Collapse
|
69
|
Emmer KM, Russart KL, Walker WH, Nelson RJ, DeVries AC. Effects of light at night on laboratory animals and research outcomes. Behav Neurosci 2018; 132:302-314. [PMID: 29952608 PMCID: PMC6062441 DOI: 10.1037/bne0000252] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Light has substantial influences on the physiology and behavior of most laboratory animals. As such, lighting conditions within animal rooms are potentially significant and often underappreciated variables within experiments. Disruption of the light/dark cycle, primarily by exposing animals to light at night (LAN), disturbs biological rhythms and has widespread physiological consequences because of mechanisms such as melatonin suppression, sympathetic stimulation, and altered circadian clock gene expression. Thus, attention to the lighting environment of laboratory animals and maintaining consistency of a light/dark cycle is imperative for study reproducibility. Light intensity, as well as wavelength, photoperiod, and timing, are all important variables. Although modern rodent facilities are designed to facilitate appropriate light cycling, there are simple ways to modify rooms to prevent extraneous light exposure during the dark period. Attention to lighting conditions of laboratory animals by both researchers and research care staff ensures best practices for maintaining animal welfare, as well as reproducibility of research results. (PsycINFO Database Record
Collapse
Affiliation(s)
- Kathryn M. Emmer
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
- Department of Veterinary Preventative Medicine, The Ohio State University, Columbus, Ohio, 43210 USA
| | - Kathryn L.G. Russart
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - William H. Walker
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, Ohio, 43210 USA
| | - Randy J. Nelson
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, West Virginia, 26505 USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
| | - A. Courtney DeVries
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, 26505 USA
- Department of Medicine, West Virginia University, Morgantown, West Virginia, 26505 USA
| |
Collapse
|
70
|
Abstract
Circadian rhythms are a ubiquitous feature of virtually all living organisms, regulating a wide diversity of physiological systems. It has long been established that the circadian clockwork plays a key role in innate immune responses, and recent studies reveal that several aspects of adaptive immunity are also under circadian control. We discuss the latest insights into the genetic and biochemical mechanisms linking immunity to the core circadian clock of the cell and hypothesize as to why the immune system is so tightly controlled by circadian oscillations. Finally, we consider implications for human health, including vaccination strategies and the emerging field of chrono-immunotherapy.
Collapse
Affiliation(s)
- Christoph Scheiermann
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| | - Julie Gibbs
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Louise Ince
- Walter Brendel Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Biomedical Centre, Planegg, Martinsried, Germany
| | - Andrew Loudon
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
71
|
Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. Proc Natl Acad Sci U S A 2018; 115:7147-7152. [PMID: 29915068 DOI: 10.1073/pnas.1805524115] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although circadian oscillators in diverse eukaryotes all depend on interlinked transcriptional feedback loops, specific components are not conserved across higher taxa. Moreover, the circadian network in the model plant Arabidopsis thaliana is notably more complex than those found in animals and fungi. Here, we combine mathematical modeling and experimental approaches to investigate the functions of two classes of Myb-like transcription factors that antagonistically regulate common target genes. Both CCA1/LHY- and RVE8-clade factors bind directly to the same cis-element, but the former proteins act primarily as repressors, while the latter act primarily as activators of gene expression. We find that simulation of either type of loss-of-function mutant recapitulates clock phenotypes previously reported in mutant plants, while simulated simultaneous loss of both type of factors largely rescues circadian phase at the expense of rhythmic amplitude. In accord with this prediction, we find that plants mutant for both activator- and repressor-type Mybs have near-normal circadian phase and period but reduced rhythmic amplitude. Although these mutants exhibit robust rhythms when grown at mild temperatures, they are largely arrhythmic at physiologically relevant but nonoptimal temperatures. LHY- and RVE8-type Mybs are found in separate clades across the land plant lineage and even in some unicellular green algae, suggesting that they both may have functioned in even the earliest arising plant circadian oscillators. Our data suggest that the complexity of the plant circadian network may have arisen to provide rhythmic robustness across the range of environmental extremes to which plants, as sessile organisms, are regularly subjected.
Collapse
|
72
|
Zhou L, Yu Y, Sun S, Zhang T, Wang M. Cry 1 Regulates the Clock Gene Network and Promotes Proliferation and Migration Via the Akt/P53/P21 Pathway in Human Osteosarcoma Cells. J Cancer 2018; 9:2480-2491. [PMID: 30026846 PMCID: PMC6036881 DOI: 10.7150/jca.25213] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
The many circadian clock genes buildup a network structure that controls physiological processes such as sleep cycle, metabolism and hormone secretion. A close relationship exists between circadian rhythm and cancers because cell cycle is affected by clock controlled genes (CCGs), including Cyclin D1, Cyclin A, Cyclin E and P21. The abnormal expression of the core circadian clock gene Cryptochrome 1 (Cry1) was found in many types of cancers. However, it is still unclear the exact mechanism of Cry1 dysregulation influences carcinogenesis and progression of cancers. In this study, we investigated the role of Cry1 in regulating proliferation and migration of Hos and U2os human osteosarcoma cells by silencing Cry1 using short hairpin RNA interference. Our data from in vitro and in vivo experiments confirmed that Cry1 knockdown enhanced proliferation and migration of osteosarcoma cells. Then, Cry2, Per1, Per2, Per3, Bmal1 and Clock were found up regulated, while Dec1, Dec2, CK1ε and Npas2 were downregulated at mRNA level. Besides, Akt/P53/P21 signaling was activated after Cry1 silencing and Akt was negatively phosphorylated along with Cry1 expression, while enhanced progression of osteosarcoma cells by Cry1 knockdown was reversed when Akt inhibitor treated. Furthermore, the rescue experiment verified the Akt/P53/P21 was downstream genes of Cry1 to control osteosarcoma progression. Taken together, these findings provide a new insight into how Cry1 regulates clock gene network and promotes proliferation and migration in a Akt dependent manner in human osteosarcoma cells.
Collapse
Affiliation(s)
- Lei Zhou
- The Fifth People's Hospital of Shanghai, Fudan University
| | - Yueming Yu
- The Fifth People's Hospital of Shanghai, Fudan University
| | - Shiwei Sun
- The Fifth People's Hospital of Shanghai, Fudan University
| | - Tieqi Zhang
- The Fifth People's Hospital of Shanghai, Fudan University
| | - Minghai Wang
- The Fifth People's Hospital of Shanghai, Fudan University
| |
Collapse
|
73
|
Dominoni DM, Åkesson S, Klaassen R, Spoelstra K, Bulla M. Methods in field chronobiology. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0247. [PMID: 28993491 DOI: 10.1098/rstb.2016.0247] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2017] [Indexed: 11/12/2022] Open
Abstract
Chronobiological research has seen a continuous development of novel approaches and techniques to measure rhythmicity at different levels of biological organization from locomotor activity (e.g. migratory restlessness) to physiology (e.g. temperature and hormone rhythms, and relatively recently also in genes, proteins and metabolites). However, the methodological advancements in this field have been mostly and sometimes exclusively used only in indoor laboratory settings. In parallel, there has been an unprecedented and rapid improvement in our ability to track animals and their behaviour in the wild. However, while the spatial analysis of tracking data is widespread, its temporal aspect is largely unexplored. Here, we review the tools that are available or have potential to record rhythms in the wild animals with emphasis on currently overlooked approaches and monitoring systems. We then demonstrate, in three question-driven case studies, how the integration of traditional and newer approaches can help answer novel chronobiological questions in free-living animals. Finally, we highlight unresolved issues in field chronobiology that may benefit from technological development in the future. As most of the studies in the field are descriptive, the future challenge lies in applying the diverse technologies to experimental set-ups in the wild.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Davide M Dominoni
- Department of Animal Ecology, Netherlands Institute of Ecology, PO Box 50, 6700 AB, Wageningen, The Netherlands .,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G128QQ, UK
| | - Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, Lund 22362, Sweden
| | - Raymond Klaassen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology, PO Box 50, 6700 AB, Wageningen, The Netherlands
| | - Martin Bulla
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen 82319, Germany.,NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands.,Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 16521, Czech Republic
| |
Collapse
|
74
|
Bulla M, Oudman T, Bijleveld AI, Piersma T, Kyriacou CP. Marine biorhythms: bridging chronobiology and ecology. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0253. [PMID: 28993497 PMCID: PMC5647280 DOI: 10.1098/rstb.2016.0253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2017] [Indexed: 11/12/2022] Open
Abstract
Marine organisms adapt to complex temporal environments that include daily, tidal, semi-lunar, lunar and seasonal cycles. However, our understanding of marine biological rhythms and their underlying molecular basis is mainly confined to a few model organisms in rather simplistic laboratory settings. Here, we use new empirical data and recent examples of marine biorhythms to highlight how field ecologists and laboratory chronobiologists can complement each other's efforts. First, with continuous tracking of intertidal shorebirds in the field, we reveal individual differences in tidal and circadian foraging rhythms. Second, we demonstrate that shorebird species that spend 8–10 months in tidal environments rarely maintain such tidal or circadian rhythms during breeding, likely because of other, more pertinent, temporally structured, local ecological pressures such as predation or social environment. Finally, we use examples of initial findings from invertebrates (arthropods and polychaete worms) that are being developed as model species to study the molecular bases of lunar-related rhythms. These examples indicate that canonical circadian clock genes (i.e. the homologous clock genes identified in many higher organisms) may not be involved in lunar/tidal phenotypes. Together, our results and the examples we describe emphasize that linking field and laboratory studies is likely to generate a better ecological appreciation of lunar-related rhythms in the wild. This article is part of the themed issue ‘Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals’.
Collapse
Affiliation(s)
- Martin Bulla
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands.,Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic.,Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard Gwinner Str., 82319 Seewiesen, Germany
| | - Thomas Oudman
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Allert I Bijleveld
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands.,Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
| | | |
Collapse
|
75
|
Kronfeld-Schor N, Visser ME, Salis L, van Gils JA. Chronobiology of interspecific interactions in a changing world. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0248. [PMID: 28993492 DOI: 10.1098/rstb.2016.0248] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2017] [Indexed: 01/10/2023] Open
Abstract
Animals should time activities, such as foraging, migration and reproduction, as well as seasonal physiological adaptation, in a way that maximizes fitness. The fitness outcome of such activities depends largely on their interspecific interactions; the temporal overlap with other species determines when they should be active in order to maximize their encounters with food and to minimize their encounters with predators, competitors and parasites. To cope with the constantly changing, but predictable structure of the environment, organisms have evolved internal biological clocks, which are synchronized mainly by light, the most predictable and reliable environmental cue (but which can be masked by other variables), which enable them to anticipate and prepare for predicted changes in the timing of the species they interact with, on top of responding to them directly. Here, we review examples where the internal timing system is used to predict interspecific interactions, and how these interactions affect the internal timing system and activity patterns. We then ask how plastic these mechanisms are, how this plasticity differs between and within species and how this variability in plasticity affects interspecific interactions in a changing world, in which light, the major synchronizer of the biological clock, is no longer a reliable cue owing to the rapidly changing climate, the use of artificial light and urbanization.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, Wageningen 6700 AB, The Netherlands
| | - Lucia Salis
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, Wageningen 6700 AB, The Netherlands
| | - Jan A van Gils
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, PO Box 59, Den Burg 1790 AB, The Netherlands
| |
Collapse
|
76
|
Hut RA, Gerkema MP, Beersma DGM, Tinbergen JM. Serge Daan. J Biol Rhythms 2018; 33:111-116. [PMID: 29671708 DOI: 10.1177/0748730418768594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
77
|
Perrin L, Loizides-Mangold U, Chanon S, Gobet C, Hulo N, Isenegger L, Weger BD, Migliavacca E, Charpagne A, Betts JA, Walhin JP, Templeman I, Stokes K, Thompson D, Tsintzas K, Robert M, Howald C, Riezman H, Feige JN, Karagounis LG, Johnston JD, Dermitzakis ET, Gachon F, Lefai E, Dibner C. Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle. eLife 2018; 7:34114. [PMID: 29658882 PMCID: PMC5902165 DOI: 10.7554/elife.34114] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/04/2018] [Indexed: 02/06/2023] Open
Abstract
Circadian regulation of transcriptional processes has a broad impact on cell metabolism. Here, we compared the diurnal transcriptome of human skeletal muscle conducted on serial muscle biopsies in vivo with profiles of human skeletal myotubes synchronized in vitro. More extensive rhythmic transcription was observed in human skeletal muscle compared to in vitro cell culture as a large part of the in vivo mRNA rhythmicity was lost in vitro. siRNA-mediated clock disruption in primary myotubes significantly affected the expression of ~8% of all genes, with impact on glucose homeostasis and lipid metabolism. Genes involved in GLUT4 expression, translocation and recycling were negatively affected, whereas lipid metabolic genes were altered to promote activation of lipid utilization. Moreover, basal and insulin-stimulated glucose uptake were significantly reduced upon CLOCK depletion. Our findings suggest an essential role for the circadian coordination of skeletal muscle glucose homeostasis and lipid metabolism in humans.
Collapse
Affiliation(s)
- Laurent Perrin
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Ursula Loizides-Mangold
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | | | - Cédric Gobet
- Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Laura Isenegger
- Service for Biomathematical and Biostatistical Analyses, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | | | | | | | - James A Betts
- Department for Health, University of Bath, Bath, United Kingdom
| | | | - Iain Templeman
- Department for Health, University of Bath, Bath, United Kingdom
| | - Keith Stokes
- Department for Health, University of Bath, Bath, United Kingdom
| | - Dylan Thompson
- Department for Health, University of Bath, Bath, United Kingdom
| | - Kostas Tsintzas
- MRC/ARUK Centre for Musculoskeletal Ageing, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Maud Robert
- Department of Digestive and Bariatric Surgery, Edouard Herriot University Hospital, Lyon, France
| | - Cedric Howald
- Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Howard Riezman
- Department of Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Leonidas G Karagounis
- Experimental Myology and Integrative Biology Research Cluster, Faculty of Sport and Health Sciences, University of St Mark and St John, Plymouth, United Kingdom.,Institute of Nutritional Science, Nestlé Research Centre, Lausanne, Switzerland
| | - Jonathan D Johnston
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Emmanouil T Dermitzakis
- Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.,Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédéric Gachon
- Nestlé Institute of Health Sciences, Lausanne, Switzerland.,School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Charna Dibner
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
78
|
Salmela MJ, McMinn RL, Guadagno CR, Ewers BE, Weinig C. Circadian Rhythms and Reproductive Phenology Covary in a Natural Plant Population. J Biol Rhythms 2018; 33:245-254. [DOI: 10.1177/0748730418764525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Robby L. McMinn
- Department of Botany, University of Wyoming, Laramie, Wyoming
- Program in Ecology, University of Wyoming, Laramie, Wyoming
| | | | - Brent E. Ewers
- Department of Botany, University of Wyoming, Laramie, Wyoming
- Program in Ecology, University of Wyoming, Laramie, Wyoming
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, Wyoming
- Program in Ecology, University of Wyoming, Laramie, Wyoming
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
79
|
Yeom M, Lee H, Shin S, Park D, Jung E. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP. Molecules 2018; 23:molecules23040745. [PMID: 29570674 PMCID: PMC6017963 DOI: 10.3390/molecules23040745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.
Collapse
Affiliation(s)
- Miji Yeom
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - HansongI Lee
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - Seoungwoo Shin
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - Deokhoon Park
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| | - Eunsun Jung
- Biospectrum Life Science Institute, A-1805, U-TOWER, 767, Sinsu-ro, Suji-gu 16827, Yongin-si, Gyeonggi-do, Korea.
| |
Collapse
|
80
|
Fabio-Braga AP, Klein W. Temperature and circadian effects on metabolic rate of South American echimyid rodents, Trinomys setosus and Clyomys bishopi (Rodentia: Echimyidae). ZOOLOGIA 2018. [DOI: 10.3897/zoologia.35.e24572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Basal metabolic rate (BMR) represents the lowest level of metabolic activity capable to sustain homeostasis in an endotherm and is an important tool to compare metabolic rates of different species. Echimyidae is the most specious family within caviomorph rodents, however, little is known about the biology of its species, such as Trinomys setosus (Desmarest, 1817) and Clyomys bishopi (Ávila-Pires & Wutke, 1981), a ground and an underground dwelling echimyid, respectively. The ambient temperature and circadian effects on metabolic rate were evaluated through closed-system respirometry for these two species, as well as the circadian effects on CO2 production and respiratory exchange ratio (RER). Trinomys setosus and C. bishopi showed the lowest metabolic rates (0.56 ± 0.02 mLO2.h-1.g-1 and 0.53 ± 0.03 mLO2.h-1.g-1, respectively) at 32 °C and during the light phase. Under laboratory conditions, T. setosus showed metabolic rate variation compatible with nocturnal activity, whereas C. bishopi activity cycle remains unclear. Both species showed BMR lower than expected by allometric regressions for rodents.
Collapse
|
81
|
Leung JM, Budischak SA, Chung The H, Hansen C, Bowcutt R, Neill R, Shellman M, Loke P, Graham AL. Rapid environmental effects on gut nematode susceptibility in rewilded mice. PLoS Biol 2018. [PMID: 29518091 PMCID: PMC5843147 DOI: 10.1371/journal.pbio.2004108] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic and environmental factors shape host susceptibility to infection, but how and how rapidly environmental variation might alter the susceptibility of mammalian genotypes remains unknown. Here, we investigate the impacts of seminatural environments upon the nematode susceptibility profiles of inbred C57BL/6 mice. We hypothesized that natural exposure to microbes might directly (e.g., via trophic interactions) or indirectly (e.g., via microbe-induced immune responses) alter the hatching, growth, and survival of nematodes in mice housed outdoors. We found that while C57BL/6 mice are resistant to high doses of nematode (Trichuris muris) eggs under clean laboratory conditions, exposure to outdoor environments significantly increased their susceptibility to infection, as evidenced by increased worm burdens and worm biomass. Indeed, mice kept outdoors harbored as many worms as signal transducer and activator of transcription 6 (STAT6) knockout mice, which are genetically deficient in the type 2 immune response essential for clearing nematodes. Using 16S ribosomal RNA sequencing of fecal samples, we discovered enhanced microbial diversity and specific bacterial taxa predictive of nematode burden in outdoor mice. We also observed decreased type 2 and increased type 1 immune responses in lamina propria and mesenteric lymph node (MLN) cells from infected mice residing outdoors. Importantly, in our experimental design, different groups of mice received nematode eggs either before or after moving outdoors. This contrasting timing of rewilding revealed that enhanced hatching of worms was not sufficient to explain the increased worm burdens; instead, microbial enhancement and type 1 immune facilitation of worm growth and survival, as hypothesized, were also necessary to explain our results. These findings demonstrate that environment can rapidly and significantly shape gut microbial communities and mucosal responses to nematode infections, leading to variation in parasite expulsion rates among genetically similar hosts. The environment in which an individual resides is likely to change how she or he responds to infection. However, most of our understanding about host responses to infection arises from experimental studies conducted under uniform environmental conditions in the laboratory. We wished to investigate whether findings in the laboratory translate into the wild. Therefore, in this study, we placed common strains of laboratory mice into large, outdoor enclosures to investigate how a more natural environment might impact their ability to combat intestinal worm infections. We found that while mice are able to clear worm infections in the laboratory, mice residing outdoors harbored higher worm burdens and larger worms than their laboratory cousins. The longer the mice lived outdoors, the greater the number and size of worms in their guts. We found that outdoor mice harbored more diverse gut microbes and even specific bacteria that may have impacted worm growth and survival inside the mice. Mice kept outdoors also produced decreased immune responses of the type essential for worm expulsion. Together, these results demonstrate that the external environment significantly alters how a host responds to worms and germs in her or his gut, thereby leading to variation in the outcome of infections.
Collapse
Affiliation(s)
- Jacqueline M. Leung
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (JML); (ALG)
| | - Sarah A. Budischak
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Hao Chung The
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Vo Van Kiet, Ho Chi Minh City, Viet Nam
| | - Christina Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Rowann Bowcutt
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Rebecca Neill
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mitchell Shellman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - P’ng Loke
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail: (JML); (ALG)
| |
Collapse
|
82
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
83
|
Helm B, Visser ME, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, Bloch G. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160246. [PMID: 28993490 PMCID: PMC5647273 DOI: 10.1098/rstb.2016.0246] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2017] [Indexed: 12/19/2022] Open
Abstract
Most processes within organisms, and most interactions between organisms and their environment, have distinct time profiles. The temporal coordination of such processes is crucial across levels of biological organization, but disciplines differ widely in their approaches to study timing. Such differences are accentuated between ecologists, who are centrally concerned with a holistic view of an organism in relation to its external environment, and chronobiologists, who emphasize internal timekeeping within an organism and the mechanisms of its adjustment to the environment. We argue that ecological and chronobiological perspectives are complementary, and that studies at the intersection will enable both fields to jointly overcome obstacles that currently hinder progress. However, to achieve this integration, we first have to cross some conceptual barriers, clarifying prohibitively inaccessible terminologies. We critically assess main assumptions and concepts in either field, as well as their common interests. Both approaches intersect in their need to understand the extent and regulation of temporal plasticity, and in the concept of 'chronotype', i.e. the characteristic temporal properties of individuals which are the targets of natural and sexual selection. We then highlight promising developments, point out open questions, acknowledge difficulties and propose directions for further integration of ecological and chronobiological perspectives through Wild Clock research.This article is part of the themed issue 'Wild Clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G128QQ, UK
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, 6700 AB Wageningen, The Netherlands
| | - William Schwartz
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, USA
| | | | - Menno Gerkema
- Chronobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
84
|
Kawasaki Y, Nishimura H, Shiga S. Plausible link between circa'bi'dian activity rhythms and circadian clock systems in the large black chafer Holotrichia parallela. ACTA ACUST UNITED AC 2017; 220:4024-4034. [PMID: 28877922 DOI: 10.1242/jeb.163253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/03/2017] [Indexed: 11/20/2022]
Abstract
Two-day rhythms, referred to as circa'bi'dian rhythms, have been reported in humans and mosquitos. However, these rhythms only appear under constant conditions, and the functional mechanisms of 2-day rhythms were unknown. Here, we report clear circabidian rhythms of large black chafers (Holotrichia parallela, Coleoptera: Scarabaeidae) in both the laboratory and field. Under 12 h:12 h light:dark (L:D) conditions at 25°C, H. parallela appeared on the ground at the beginning of the dark phase every 2 days. Under constant darkness, H. parallela exhibited free-running with a period of 47.9±0.3 h, suggesting the existence of a clear circabidian rhythm entrained to two 12 h:12 h L:D cycles. Phase responses of the circabidian rhythm to light pulses occurred under constant darkness in a phase-dependent manner. Phase responses suggest that there are two circadian cycles, each consisting of a less-responsive and more-responsive period, in a circabidian oscillation, and the circabidian rhythm is driven by the circadian clock. A mark-recapture study showed that beetles repeatedly appeared on the same tree approximately every 2 days. However, the periodicity was not as rigid as that observed under laboratory conditions in that individuals often switched appearance days. For instance, a large precipitation made the 2-day rhythm shift phase by half a cycle of the rhythm at a time. We propose a novel function of the circadian clock characterized by the release of an output signal every two cycles to produce the 2-day rhythm.
Collapse
Affiliation(s)
- Yuta Kawasaki
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Hitoshi Nishimura
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan
| | - Sakiko Shiga
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585, Japan .,Department of Biological Science, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka 560-0043, Japan
| |
Collapse
|
85
|
Franco DL, Canessa P, Bellora N, Risau-Gusman S, Olivares-Yañez C, Pérez-Lara R, Libkind D, Larrondo LF, Marpegan L. Spontaneous circadian rhythms in a cold-adapted natural isolate of Aureobasidium pullulans. Sci Rep 2017; 7:13837. [PMID: 29062053 PMCID: PMC5653790 DOI: 10.1038/s41598-017-14085-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023] Open
Abstract
Circadian systems enable organisms to synchronize their physiology to daily and seasonal environmental changes relying on endogenous pacemakers that oscillate with a period close to 24 h even in the absence of external timing cues. The oscillations are achieved by intracellular transcriptional/translational feedback loops thoroughly characterized for many organisms, but still little is known about the presence and characteristics of circadian clocks in fungi other than Neurospora crassa. We sought to characterize the circadian system of a natural isolate of Aureobasidium pullulans, a cold-adapted yeast bearing great biotechnological potential. A. pullulans formed daily concentric rings that were synchronized by light/dark cycles and were also formed in constant darkness with a period of 24.5 h. Moreover, these rhythms were temperature compensated, as evidenced by experiments conducted at temperatures as low as 10 °C. Finally, the expression of clock-essential genes, frequency, white collar-1, white collar-2 and vivid was confirmed. In summary, our results indicate the existence of a functional circadian clock in A. pullulans, capable of sustaining rhythms at very low temperatures and, based on the presence of conserved clock-gene homologues, suggest a molecular and functional relationship to well-described circadian systems.
Collapse
Affiliation(s)
- Diana L Franco
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), Universidad Nacional del Comahue, CONICET, CRUB, San Carlos de Bariloche, Río Negro, Argentina.,Departamento de Física Médica Centro Atómico Bariloche and Instituto Balseiro, CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Paulo Canessa
- Centro de Biotecnologia Vegetal, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile.,Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile
| | - Nicolás Bellora
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), Universidad Nacional del Comahue, CONICET, CRUB, San Carlos de Bariloche, Río Negro, Argentina
| | | | - Consuelo Olivares-Yañez
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Pérez-Lara
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diego Libkind
- Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), Universidad Nacional del Comahue, CONICET, CRUB, San Carlos de Bariloche, Río Negro, Argentina
| | - Luis F Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luciano Marpegan
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
| |
Collapse
|
86
|
Polidarová L, Houdek P, Sumová A. Chronic disruptions of circadian sleep regulation induce specific proinflammatory responses in the rat colon. Chronobiol Int 2017; 34:1273-1287. [DOI: 10.1080/07420528.2017.1361436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lenka Polidarová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
87
|
Brown TM. Using light to tell the time of day: sensory coding in the mammalian circadian visual network. ACTA ACUST UNITED AC 2017; 219:1779-92. [PMID: 27307539 PMCID: PMC4920240 DOI: 10.1242/jeb.132167] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Circadian clocks are a near-ubiquitous feature of biology, allowing organisms to optimise their physiology to make the most efficient use of resources and adjust behaviour to maximise survival over the solar day. To fulfil this role, circadian clocks require information about time in the external world. This is most reliably obtained by measuring the pronounced changes in illumination associated with the earth's rotation. In mammals, these changes are exclusively detected in the retina and are relayed by direct and indirect neural pathways to the master circadian clock in the hypothalamic suprachiasmatic nuclei. Recent work reveals a surprising level of complexity in this sensory control of the circadian system, including the participation of multiple photoreceptive pathways conveying distinct aspects of visual and/or time-of-day information. In this Review, I summarise these important recent advances, present hypotheses as to the functions and neural origins of these sensory signals, highlight key challenges for future research and discuss the implications of our current knowledge for animals and humans in the modern world.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
88
|
West AC, Smith L, Ray DW, Loudon ASI, Brown TM, Bechtold DA. Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nat Commun 2017; 8:417. [PMID: 28900189 PMCID: PMC5595905 DOI: 10.1038/s41467-017-00462-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Most organisms use internal biological clocks to match behavioural and physiological processes to specific phases of the day-night cycle. Central to this is the synchronisation of internal processes across multiple organ systems. Environmental desynchrony (e.g. shift work) profoundly impacts human health, increasing cardiovascular disease and diabetes risk, yet the underlying mechanisms remain unclear. Here, we characterise the impact of desynchrony between the internal clock and the external light-dark (LD) cycle on mammalian physiology. We reveal that even under stable LD environments, phase misalignment has a profound effect, with decreased metabolic efficiency and disrupted cardiac function including prolonged QT interval duration. Importantly, physiological dysfunction is not driven by disrupted core clock function, nor by an internal desynchrony between organs, but rather the altered phase relationship between the internal clockwork and the external environment. We suggest phase misalignment as a major driver of pathologies associated with shift work, chronotype and social jetlag.The misalignment between internal circadian rhythm and the day-night cycle can be caused by genetic, behavioural and environmental factors, and may have a profound impact on human physiology. Here West et al. show that desynchrony between the internal clock and the external environment alter metabolic parameters and cardiac function in mice.
Collapse
Affiliation(s)
- Alexander C West
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Laura Smith
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - David W Ray
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Andrew S I Loudon
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Timothy M Brown
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - David A Bechtold
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK.
| |
Collapse
|
89
|
Scriba MF, Henry I, Vyssotski AL, Mueller JC, Rattenborg NC, Roulin A. Ultradian Rhythmicity in Sleep-Wakefulness Is Related to Color in Nestling Barn Owls. J Biol Rhythms 2017; 32:456-468. [DOI: 10.1177/0748730417722250] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The possession of a rhythm is usually described as an important adaptation to regular changing environmental conditions such as the light-dark cycle. However, recent studies have suggested plasticity in the expression of a rhythm depending on life history and environmental factors. Barn owl ( Tyto alba) nestlings show variations in behavior and physiology in relation to the size of black feather spots, a trait associated with many behavioral and physiological phenotypes including the circadian expression of corticosterone and the regulation of body mass. This raises the possibility that individual spottiness could be associated with rhythmicity in sleep-wakefulness. Owlets showed ultradian rhythms in sleep-wakefulness, with a period length of 4.5 to 4.9 h. The period length of wakefulness and non-REM sleep was shorter in heavily compared to lightly spotted female nestlings, whereas in males, the opposite result was found. Furthermore, male and female nestlings displaying small black spots showed strong rhythmicity levels in wakefulness and REM sleep. This might be an advantage in a stable environment with predictable periodic changes in light, temperature, or social interactions. Heavily spotted nestlings displayed weak rhythms in wakefulness and REM sleep, which might enable them to be more flexible in reactions to unexpected events such as predation or might be a mechanism to save energy. These findings are consistent with previous findings showing that large-spotted nestlings switch more frequently between wakefulness and sleep, resulting in higher levels of vigilance compared to small-spotted conspecifics. Thus, nestlings with larger black feather spots might differently handle the trade-off between wakefulness and sleep, attention, and social interactions compared to nestlings with smaller black spots.
Collapse
Affiliation(s)
- Madeleine F. Scriba
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Avian Sleep Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Isabelle Henry
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Alexei L. Vyssotski
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Jakob C. Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Niels C. Rattenborg
- Avian Sleep Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
90
|
Leypunskiy E, Lin J, Yoo H, Lee U, Dinner AR, Rust MJ. The cyanobacterial circadian clock follows midday in vivo and in vitro. eLife 2017; 6:e23539. [PMID: 28686160 PMCID: PMC5605227 DOI: 10.7554/elife.23539] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/06/2017] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythms are biological oscillations that schedule daily changes in physiology. Outside the laboratory, circadian clocks do not generally free-run but are driven by daily cues whose timing varies with the seasons. The principles that determine how circadian clocks align to these external cycles are not well understood. Here, we report experimental platforms for driving the cyanobacterial circadian clock both in vivo and in vitro. We find that the phase of the circadian rhythm follows a simple scaling law in light-dark cycles, tracking midday across conditions with variable day length. The core biochemical oscillator comprised of the Kai proteins behaves similarly when driven by metabolic pulses in vitro, indicating that such dynamics are intrinsic to these proteins. We develop a general mathematical framework based on instantaneous transformation of the clock cycle by external cues, which successfully predicts clock behavior under many cycling environments.
Collapse
Affiliation(s)
- Eugene Leypunskiy
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, United States
| | - Jenny Lin
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - Haneul Yoo
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, United States
| | - UnJin Lee
- Department of Ecology and Evolution, The University of Chicago, Chicago, United States
| | - Aaron R Dinner
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, United States
- Department of Chemistry, The University of Chicago, Chicago, United States
- James Franck Institute, The University of Chicago, Chicago, United States
| | - Michael J Rust
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, United States
- Department of Ecology and Evolution, The University of Chicago, Chicago, United States
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
- Department of Physics, The University of Chicago, Chicago, United States
| |
Collapse
|
91
|
Fritzsche P, Chunkov MM, Ushakova MV, Omarov KZ, Weinert D, Surov AV. Diurnal surface activity of the Ciscaucasian hamster (Mesocricetus raddei) in the field. Mamm Biol 2017. [DOI: 10.1016/j.mambio.2017.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
92
|
Terzibasi-Tozzini E, Martinez-Nicolas A, Lucas-Sánchez A. The clock is ticking. Ageing of the circadian system: From physiology to cell cycle. Semin Cell Dev Biol 2017. [PMID: 28630025 DOI: 10.1016/j.semcdb.2017.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The circadian system is the responsible to organise the internal temporal order in relation to the environment of every process of the organisms producing the circadian rhythms. These rhythms have a fixed phase relationship among them and with the environment in order to optimise the available energy and resources. From a cellular level, circadian rhythms are controlled by genetic positive and negative auto-regulated transcriptional and translational feedback loops, which generate 24h rhythms in mRNA and protein levels of the clock components. It has been described about 10% of the genome is controlled by clock genes, with special relevance, due to its implications, to the cell cycle. Ageing is a deleterious process which affects all the organisms' structures including circadian system. The circadian system's ageing may produce a disorganisation among the circadian rhythms, arrhythmicity and, even, disconnection from the environment, resulting in a detrimental situation to the organism. In addition, some environmental conditions can produce circadian disruption, also called chronodisruption, which may produce many pathologies including accelerated ageing. Finally, some strategies to prevent, palliate or counteract chronodisruption effects have been proposed to enhance the circadian system, also called chronoenhancement. This review tries to gather recent advances in the chronobiology of the ageing process, including cell cycle, neurogenesis process and physiology.
Collapse
Affiliation(s)
| | - Antonio Martinez-Nicolas
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Alejandro Lucas-Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus Mare Nostrum, IUIE. IMIB-Arrixaca, Murcia, Spain; Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| |
Collapse
|
93
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|
94
|
Jiang P, Turek FW. Timing of meals: when is as critical as what and how much. Am J Physiol Endocrinol Metab 2017; 312:E369-E380. [PMID: 28143856 PMCID: PMC6105931 DOI: 10.1152/ajpendo.00295.2016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/08/2023]
Abstract
Over the past decade, a large body of literature has demonstrated that disruptions of the endogenous circadian clock, whether environmental or genetic, lead to metabolic dysfunctions that are associated with obesity, diabetes, and other metabolic disorders. The phrase, "It is not only what you eat and how much you eat, but also when you eat" sends a simple message about circadian timing and body weight regulation. Communicating this message to clinicians and patients, while also elucidating the neuroendocrine, molecular, and genetic mechanisms underlying this phrase is essential to embrace the growing knowledge of the circadian impact on metabolism as a part of healthy life style as well as to incorporate it into clinical practice for improvement of overall human health. In this review, we discuss findings from animal models, as well as epidemiological and clinical studies in humans, which collectively promote the awareness of the role of circadian clock in metabolic functions and dysfunctions.
Collapse
Affiliation(s)
- Peng Jiang
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois
| | - Fred W Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois
| |
Collapse
|
95
|
Albrecht U. The circadian clock, metabolism and obesity. Obes Rev 2017; 18 Suppl 1:25-33. [PMID: 28164453 DOI: 10.1111/obr.12502] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/25/2022]
Abstract
In the last decades, obesity has been on the rise becoming a burden for health care systems. The reasons behind this rise are most likely caused by lifestyle rather than by an increase in gene mutations, because manifestations of genetic alterations would take longer than just a few decades. Lifestyle has a great impact on the circadian system and therefore on the body internal organization of physiological and biochemical processes, regulating various aspects of behavior and metabolism. In the following, I will discuss recent studies delineating relationships between metabolic processes and the circadian system, how metabolites and nutrients regulate the circadian clock and how nuclear receptors can act as metabolic sensors and clock regulators. Finally, I will discuss how clock modulation and feeding patterns influence the development of obesity.
Collapse
Affiliation(s)
- U Albrecht
- Department of Biology, Biochemistry, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
96
|
Sridhar GR, Sanjana NSN. Sleep, circadian dysrhythmia, obesity and diabetes. World J Diabetes 2016; 7:515-522. [PMID: 27895820 PMCID: PMC5107711 DOI: 10.4239/wjd.v7.i19.515] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/12/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023] Open
Abstract
Synchrony of biological processes with environmental cues developed over millennia to match growth, reproduction and senescence. This entails a complex interplay of genetic, metabolic, chemical, light, hormonal and hedonistic factors across life forms. Sleep is one of the most prominent rhythms where such a match is established. Over the past 100 years or so, it has been possible to disturb the synchrony between sleep-wake cycle and environmental cues. Development of electric lights, shift work and continual accessibility of the internet has disrupted this match. As a result, many non-communicable diseases such as obesity, insulin resistance, type 2 diabetes, coronary artery disease and malignancies have been attributed in part to such disruption. In this presentation a review is made of the origin and evolution of sleep studies, the pathogenic mediators for such asynchrony, clinical evidence and relevance and suggested management options to deal with the disturbances.
Collapse
|
97
|
Dominoni DM, Borniger JC, Nelson RJ. Light at night, clocks and health: from humans to wild organisms. Biol Lett 2016; 12:20160015. [PMID: 26888917 DOI: 10.1098/rsbl.2016.0015] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The increasing use of electric lights has modified the natural light environment dramatically, posing novel challenges to both humans and wildlife. Indeed, several biomedical studies have linked artificial light at night to the disruption of circadian rhythms, with important consequences for human health, such as the increasing occurrence of metabolic syndromes, cancer and reduced immunity. In wild animals, light pollution is associated with changes in circadian behaviour, reproduction and predator-prey interactions, but we know little about the underlying physiological mechanisms and whether wild species suffer the same health problems as humans. In order to fill this gap, we advocate the need for integrating ecological studies in the field, with chronobiological approaches to identify and characterize pathways that may link temporal disruption caused by light at night and potential health and fitness consequences.
Collapse
Affiliation(s)
- Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Jeremy C Borniger
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
98
|
Atamian HS, Harmer SL. Circadian regulation of hormone signaling and plant physiology. PLANT MOLECULAR BIOLOGY 2016; 91:691-702. [PMID: 27061301 DOI: 10.1007/s11103-016-0477-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/31/2016] [Indexed: 05/20/2023]
Abstract
The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.
Collapse
Affiliation(s)
- Hagop S Atamian
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Stacey L Harmer
- Department of Plant Biology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
99
|
Flôres DEFL, Bettilyon CN, Jia L, Yamazaki S. The Running Wheel Enhances Food Anticipatory Activity: An Exploratory Study. Front Behav Neurosci 2016; 10:143. [PMID: 27458354 PMCID: PMC4932273 DOI: 10.3389/fnbeh.2016.00143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/22/2016] [Indexed: 12/23/2022] Open
Abstract
Rodents anticipate rewarding stimuli such as daily meals, mates, and stimulant drugs. When a single meal is provided daily at a fixed time of day, an increase in activity, known as food anticipatory activity (FAA), occurs several hours before feeding time. The factors affecting the expression of FAA have not been well-studied. Understanding these factors may provide clues to the undiscovered anatomical substrates of food entrainment. In this study we determined whether wheel-running activity, which is also rewarding to rodents, modulated the robustness of FAA. We found that access to a freely rotating wheel enhanced the robustness of FAA. This enhancement was lost when the wheel was removed. In addition, while prior exposure to a running wheel alone did not enhance FAA, the presence of a locked wheel did enhance FAA as long as mice had previously run in the wheel. Together, these data suggest that FAA, like wheel-running activity, is influenced by reward signaling.
Collapse
Affiliation(s)
- Danilo E F L Flôres
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA; Institute of Biosciences, University of São PauloSão Paulo, Brazil
| | - Crystal N Bettilyon
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Lori Jia
- Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA; Hockaday SchoolDallas, TX, USA
| | - Shin Yamazaki
- Department of Neuroscience, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
100
|
Beale AD, Whitmore D, Moran D. Life in a dark biosphere: a review of circadian physiology in "arrhythmic" environments. J Comp Physiol B 2016; 186:947-968. [PMID: 27263116 PMCID: PMC5090016 DOI: 10.1007/s00360-016-1000-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/05/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022]
Abstract
Most of the life with which humans interact is exposed to highly rhythmic and extremely predictable changes in illumination that occur with the daily events of sunrise and sunset. However, while the influence of the sun feels omnipotent to surface dwellers such as ourselves, life on earth is dominated, in terms of biomass, by organisms isolated from the direct effects of the sun. A limited understanding of what life is like away from the sun can be inferred from our knowledge of physiology and ecology in the light biosphere, but a full understanding can only be gained by studying animals from the dark biosphere, both in the laboratory and in their natural habitats. One of the least understood aspects of life in the dark biosphere is the rhythmicity of physiology and what it means to live in an environment of low or no rhythmicity. Here we describe methods that may be used to understand rhythmic physiology in the dark and summarise some of the studies of rhythmic physiology in "arrhythmic" environments, such as the poles, deep sea and caves. We review what can be understood about the adaptive value of rhythmic physiology on the Earth's surface from studies of animals from arrhythmic environments and what role a circadian clock may play in the dark.
Collapse
Affiliation(s)
- Andrew David Beale
- Department of Cell and Developmental Biology, Centre for Cell and Molecular Dynamics, University College London, 21 University Street, London, WC1E 6BT, UK.
| | - David Whitmore
- Department of Cell and Developmental Biology, Centre for Cell and Molecular Dynamics, University College London, 21 University Street, London, WC1E 6BT, UK
| | - Damian Moran
- Plant and Food Research, Seafood Technologies Group, Nelson, New Zealand.
| |
Collapse
|