51
|
Colson A, Sonveaux P, Debiève F, Sferruzzi-Perri AN. Adaptations of the human placenta to hypoxia: opportunities for interventions in fetal growth restriction. Hum Reprod Update 2020; 27:531-569. [PMID: 33377492 DOI: 10.1093/humupd/dmaa053] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The placenta is the functional interface between the mother and the fetus during pregnancy, and a critical determinant of fetal growth and life-long health. In the first trimester, it develops under a low-oxygen environment, which is essential for the conceptus who has little defense against reactive oxygen species produced during oxidative metabolism. However, failure of invasive trophoblasts to sufficiently remodel uterine arteries toward dilated vessels by the end of the first trimester can lead to reduced/intermittent blood flow, persistent hypoxia and oxidative stress in the placenta with consequences for fetal growth. Fetal growth restriction (FGR) is observed in ∼10% of pregnancies and is frequently seen in association with other pregnancy complications, such as preeclampsia (PE). FGR is one of the main challenges for obstetricians and pediatricians, as smaller fetuses have greater perinatal risks of morbidity and mortality and postnatal risks of neurodevelopmental and cardio-metabolic disorders. OBJECTIVE AND RATIONALE The aim of this review was to examine the importance of placental responses to changing oxygen environments during abnormal pregnancy in terms of cellular, molecular and functional changes in order to highlight new therapeutic pathways, and to pinpoint approaches aimed at enhancing oxygen supply and/or mitigating oxidative stress in the placenta as a mean of optimizing fetal growth. SEARCH METHODS An extensive online search of peer-reviewed articles using PubMed was performed with combinations of search terms including pregnancy, placenta, trophoblast, oxygen, hypoxia, high altitude, FGR and PE (last updated in May 2020). OUTCOMES Trophoblast differentiation and placental establishment are governed by oxygen availability/hypoxia in early pregnancy. The placental response to late gestational hypoxia includes changes in syncytialization, mitochondrial functions, endoplasmic reticulum stress, hormone production, nutrient handling and angiogenic factor secretion. The nature of these changes depends on the extent of hypoxia, with some responses appearing adaptive and others appearing detrimental to the placental support of fetal growth. Emerging approaches that aim to increase placental oxygen supply and/or reduce the impacts of excessive oxidative stress are promising for their potential to prevent/treat FGR. WIDER IMPLICATIONS There are many risks and challenges of intervening during pregnancy that must be considered. The establishment of human trophoblast stem cell lines and organoids will allow further mechanistic studies of the effects of hypoxia and may lead to advanced screening of drugs for use in pregnancies complicated by placental insufficiency/hypoxia. Since no treatments are currently available, a better understanding of placental adaptations to hypoxia would help to develop therapies or repurpose drugs to optimize placental function and fetal growth, with life-long benefits to human health.
Collapse
Affiliation(s)
- Arthur Colson
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium
| | - Frédéric Debiève
- Pole of Obstetrics, Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain, Brussels, Belgium.,Department of Obstetrics, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
52
|
Maternal proteomic profiling reveals alterations in lipid metabolism in late-onset fetal growth restriction. Sci Rep 2020; 10:21033. [PMID: 33273667 PMCID: PMC7713381 DOI: 10.1038/s41598-020-78207-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Fetal growth restriction defined as the failure to achieve the fetal genetic growth potential is a major cause of perinatal morbidity and mortality. The role of maternal adaptations to placental insufficiency in this disorder is still not fully understood. We aimed to investigate the biological processes and protein–protein interactions involved in late-onset fetal growth restriction in particular. We applied 2D nano LC–MS/MS proteomics analysis on maternal blood samples collected at the time of delivery from 5 singleton pregnancies with late-onset fetal growth restriction and 5 uncomplicated pregnancies. Data were analyzed using R package “limma” and Ingenuity Pathway Analysis. 25 proteins showed significant changes in their relative abundance in late-onset fetal growth restriction (p value < 0.05). Direct protein–protein interactions network demonstrated that Neurogenic locus notch homolog protein 1 (NOTCH1) was the most significant putative upstream regulator of the observed profile. Gene ontology analysis of these proteins revealed the involvement of 14 canonical pathways. The most significant biological processes were efflux of cholesterol, efflux of phospholipids, adhesion of blood cells, fatty acid metabolism and dyslipidemia. Future studies are warranted to validate the potential role of the detected altered proteins as potential therapeutic targets in the late-onset form of fetal growth restriction.
Collapse
|
53
|
Transfer of miR-15a-5p by placental exosomes promotes pre-eclampsia progression by regulating PI3K/AKT signaling pathway via CDK1. Mol Immunol 2020; 128:277-286. [PMID: 33197745 DOI: 10.1016/j.molimm.2020.10.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 01/03/2023]
Abstract
Preeclampsia (PE) is a systemic complication that occurs after the 20th week of gestation and is characterized by the onset of hypertension and proteinuria. Dysregulated circulating microRNA (miRNA) has usually been noted in PE. Understanding the release profile and bioactivity of placental exosomes is a promising mode of identifying dysregulated miRNA, which may be useful biomarkers of PE. Herein, we aimed to investigate the role of placental exosomes and their miRNA cargo miR-15a-5p in PE. miR-15a-5p was found upregulated in exosomes isolated from maternal plasma of PE pregnant women as compared to those from normal pregnant women. Placental exosomes derived from PE pregnant women suppressed the proliferation and invasion of HTR-8/SVneo cells but promoted cell apoptosis, which was dictated by their cargo miR-15a-5p. Further investigation showed that exosomal miR-15a-5p inhibited the activation of the PI3K/AKT pathway by down-regulating CDK1, thus suppressing HTR-8/SVneo cell proliferation, invasion, and apoptosis. In vivo analysis demonstrated that placental exosomes treated with miR-15a-5p inhibitor attenuated histopathologic changes and apoptosis in the placenta of PE mice. In conclusion, these results provided evidence that transfer of miR-15a-5p by placental exosomes could be a promising therapeutic target to combat PE.
Collapse
|
54
|
Schmidt JK, Keding LT, Block LN, Wiepz GJ, Koenig MR, Meyer MG, Dusek BM, Kroner KM, Bertogliat MJ, Kallio AR, Mean KD, Golos TG. Placenta-derived macaque trophoblast stem cells: differentiation to syncytiotrophoblasts and extravillous trophoblasts reveals phenotypic reprogramming. Sci Rep 2020; 10:19159. [PMID: 33154556 PMCID: PMC7644694 DOI: 10.1038/s41598-020-76313-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Nonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSCs) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first and second trimester placental villous cytotrophoblasts followed by culture in TSC medium to maintain cellular proliferation. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was > 4000-fold higher in ST culture media compared to TSC media. The secretion of chorionic gonadotropin by TSC-derived ST reflects a reprogramming of macaque TSCs to an earlier pregnancy phenotype. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and the macaque placental nonclassical MHC class I molecule, Mamu-AG. Extravillous trophoblasts (EVTs) were derived that express macaque EVT markers Mamu-AG and CD56, and also secrete high levels of MMP2. Our analyses of macaque TSCs suggests that these cells represent a proliferative, self-renewing population capable of differentiating to STs and EVTs in vitro thereby establishing an experimental model of primate placentation.
Collapse
Affiliation(s)
- Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.
| | - Logan T Keding
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregory J Wiepz
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michelle R Koenig
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael G Meyer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany M Dusek
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Kamryn M Kroner
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Mario J Bertogliat
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Avery R Kallio
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine D Mean
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
55
|
Adu-Gyamfi EA, Czika A, Gorleku PN, Ullah A, Panhwar Z, Ruan LL, Ding YB, Wang YX. The Involvement of Cell Adhesion Molecules, Tight Junctions, and Gap Junctions in Human Placentation. Reprod Sci 2020; 28:305-320. [PMID: 33146876 DOI: 10.1007/s43032-020-00364-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Placentation is a major determinant of the success of pregnancy. It is regulated by several factors such as cell adhesion molecules, tight junctions, and gap junctions. The cell adhesion molecules are integrins, cadherins, immunoglobulins, nectins, and selectins. The tight junctions are composed of claudins, occludin, and junction adhesion molecule proteins while the gap junctions are composed of connexins of varying molecular weights. During placentation, some of these molecules regulate trophoblast proliferation, trophoblast fusion, trophoblast migration, trophoblast invasion, trophoblast-endothelium adhesion, glandular remodeling, and spiral artery remodeling. There is a dysregulated placental expression of some of these molecules during obstetric complications. We have, hereby, indicated the expression patterns of the subunits of each of these molecules in the various trophoblast subtypes and in the decidua, and have highlighted their involvement in physiological and pathological placentation. The available evidence points to the relevance of these molecules as distinguishing markers of the various trophoblast lineages and as potential therapeutic targets in the management of malplacentation-mediated diseases.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Armin Czika
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Philip Narteh Gorleku
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Amin Ullah
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Zulqarnain Panhwar
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
56
|
Grisaru-Granovsky S, Kumar Nag J, Zakar L, Rudina T, Lal Gupta C, Maoz M, Kozlova D, Bar-Shavit R. PAR 1&2 driven placenta EVT invasion act via LRP5/6 as coreceptors. FASEB J 2020; 34:15701-15717. [PMID: 33136328 DOI: 10.1096/fj.202000306r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022]
Abstract
While the involvement of protease-activated receptors (PARs) in the physiological regulation of human placenta development, as in tumor biology, is recognized, the molecular pathway is unknown. We evaluated the impact of PAR1 and PAR2 function in cytotrophoblast (CTB) proliferation and invasion in a system of extravillous trophoblast (EVT) organ culture and in human cell-lines. Activation of PAR1 - and PAR2 -induced EVT invasion and proliferation, while the shRNA silencing of low-density lipoprotein receptor-related protein 5/6 (LRP5/6) inhibited these processes. PAR1 and PAR2 effectively induce β-catenin stabilization in a manner similar to that shown for the canonical β-catenin stabilization pathway yet independent of Wnts. Immunoprecipitation analyses and protein-protein docking demonstrated the co-association between either PAR1 or PAR2 with LRP5/6 forming an axis of PAR-LRP5/6-Axin. Noticeably, in PAR1 -PAR2 heterodimers a dominant role is assigned to PAR2 over PAR1 as shown by inhibition of PAR1 -induced β-catenin levels, and Dvl nuclear localization. This inhibition takes place either by shRNA silenced hPar2 or in the presence of a TrPAR2 devoid its cytoplasmic tail. Indeed, TrPAR2 cannot form the PAR1 -PAR2 complex, obstructing thereby the flow of signals downstream. Elucidation of the mechanism of PAR-induced invasion contributes to therapeutic options highlighting key partners in the process.
Collapse
Affiliation(s)
- Sorina Grisaru-Granovsky
- Department of Obstetrics and Gynecology, Hebrew-University, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Jeetendra Kumar Nag
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Liat Zakar
- Department of Obstetrics and Gynecology, Hebrew-University, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Tatyana Rudina
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chhedi Lal Gupta
- Institute of Soil, Water and Environmental Sciences, Volcani Research Center, Agriculture Research Organization, Rishon Lezion, Israel
| | - Myriam Maoz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daria Kozlova
- Department of Obstetrics and Gynecology, Hebrew-University, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
57
|
Sheridan MA, Fernando RC, Gardner L, Hollinshead MS, Burton GJ, Moffett A, Turco MY. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc 2020; 15:3441-3463. [PMID: 32908314 DOI: 10.1038/s41596-020-0381-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022]
Abstract
The human placenta is essential for successful reproduction. There is great variation in the anatomy and development of the placenta in different species, meaning that animal models provide limited information about human placental development and function. Until recently, it has been impossible to isolate trophoblast cells from the human placenta that proliferate in vitro. This has limited our ability to understand pregnancy disorders. Generating an in vitro model that recapitulates the unique features of the human placenta has been challenging. The first in vitro model system of human trophoblast that could be cultured long term and differentiated to syncytiotrophoblast (SCT) and extravillous trophoblast (EVT) was a two-dimensional (2D) culture system of human trophoblast stem cells. Here, we describe a protocol to isolate trophoblast from first-trimester human placentas that can be grown long term in a three-dimensional (3D) organoid culture system. Trophoblast organoids can be established within 2-3 weeks, passaged every 7-10 d, and cultured for over a year. The structural organization of these human trophoblast organoids closely resembles the villous placenta with a layer of cytotrophoblast (VCT) that differentiates into superimposed SCT. Altering the composition of the medium leads to differentiation of the trophoblast organoids into HLA-G+ EVT cells which rapidly migrate and invade through the Matrigel droplet in which they are cultured. Our previous research confirmed that there is similarity between the trophoblast organoids and in vivo placentas in their transcriptomes and ability to produce placental hormones. This organoid culture system provides an experimental model to investigate human placental development and function as well as interactions of trophoblast cells with the local and systemic maternal environment.
Collapse
Affiliation(s)
- Megan A Sheridan
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Ridma C Fernando
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Graham J Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Physiology, Neurobiology and Development, University of Cambridge, Cambridge, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
58
|
Szabo S, Karaszi K, Romero R, Toth E, Szilagyi A, Gelencser Z, Xu Y, Balogh A, Szalai G, Hupuczi P, Hargitai B, Krenacs T, Hunyadi-Gulyas E, Darula Z, Kekesi KA, Tarca AL, Erez O, Juhasz G, Kovalszky I, Papp Z, Than NG. Proteomic identification of Placental Protein 1 (PP1), PP8, and PP22 and characterization of their placental expression in healthy pregnancies and in preeclampsia. Placenta 2020; 99:197-207. [PMID: 32747003 PMCID: PMC8314955 DOI: 10.1016/j.placenta.2020.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Placental Protein 1 (PP1), PP8, and PP22 were isolated from the placenta. Herein, we aimed to identify PP1, PP8, and PP22 proteins and their placental and trophoblastic expression patterns to reveal potential involvement in pregnancy complications. METHODS We analyzed PP1, PP8, and PP22 proteins with LC-MS. We compared the placental behaviors of PP1, PP8, and PP22 to the predominantly placenta-expressed PP5/TFPI-2. Placenta-specificity scores were generated from microarray data. Trophoblasts were isolated from healthy placentas and differentiated; total RNA was isolated and subjected to microarray analysis. We assigned the placentas to the following groups: preterm controls, early-onset preeclampsia, early-onset preeclampsia with HELLP syndrome, term controls, and late-onset preeclampsia. After histopathologic examination, placentas were used for tissue microarray construction, immunostaining with anti-PP1, anti-PP5, anti-PP8, or anti-PP22 antibodies, and immunoscoring. RESULTS PP1, PP8, and PP22 were identified as 'nicotinate-nucleotide pyrophosphorylase', 'serpin B6', and 'protein disulfide-isomerase', respectively. Genes encoding PP1, PP8, and PP22 are not predominantly placenta-expressed, in contrast with PP5. PP1, PP8, and PP22 mRNA expression levels did not increase during trophoblast differentiation, in contrast with PP5. PP1, PP8, and PP22 immunostaining were detected primarily in trophoblasts, while PP5 expression was restricted to the syncytiotrophoblast. The PP1 immunoscore was higher in late-onset preeclampsia, while the PP5 immunoscore was higher in early-onset preeclampsia. DISCUSSION PP1, PP8, and PP22 are expressed primarily in trophoblasts but do not have trophoblast-specific regulation or functions. The distinct dysregulation of PP1 and PP5 expression in either late-onset or early-onset preeclampsia reflects different pathophysiological pathways in these preeclampsia subsets.
Collapse
Affiliation(s)
- Szilvia Szabo
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary.
| | - Katalin Karaszi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA; Detroit Medical Center, Detroit, MI, USA; Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Eszter Toth
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Andras Szilagyi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrea Balogh
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Gabor Szalai
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Beata Hargitai
- West Midlands Perinatal Pathology Centre, Cellular Pathology Department, Birmingham Women's and Children's NHS FT, Birmingham, United Kingdom
| | - Tibor Krenacs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Zsuzsanna Darula
- Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Katalin A Kekesi
- Department of Physiology and Neurobiology, ELTE Eotvos Lorand University, Budapest, Hungary; Laboratory of Proteomics, Institute of Biology, ELTE Eotvos Lorand University, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, MI, USA; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA; Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Gabor Juhasz
- Laboratory of Proteomics, Institute of Biology, ELTE Eotvos Lorand University, Budapest, Hungary; CRU Hungary Ltd., God, Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.
| |
Collapse
|
59
|
Saha B, Ganguly A, Home P, Bhattacharya B, Ray S, Ghosh A, Rumi MAK, Marsh C, French VA, Gunewardena S, Paul S. TEAD4 ensures postimplantation development by promoting trophoblast self-renewal: An implication in early human pregnancy loss. Proc Natl Acad Sci U S A 2020; 117:17864-17875. [PMID: 32669432 PMCID: PMC7395512 DOI: 10.1073/pnas.2002449117] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Early pregnancy loss affects ∼15% of all implantation-confirmed human conceptions. However, evolutionarily conserved molecular mechanisms that regulate self-renewal of trophoblast progenitors and their association with early pregnancy loss are poorly understood. Here, we provide evidence that transcription factor TEAD4 ensures survival of postimplantation mouse and human embryos by controlling self-renewal and stemness of trophoblast progenitors within the placenta primordium. In an early postimplantation mouse embryo, TEAD4 is selectively expressed in trophoblast stem cell-like progenitor cells (TSPCs), and loss of Tead4 in postimplantation mouse TSPCs impairs their self-renewal, leading to embryonic lethality before embryonic day 9.0, a developmental stage equivalent to the first trimester of human gestation. Both TEAD4 and its cofactor, yes-associated protein 1 (YAP1), are specifically expressed in cytotrophoblast (CTB) progenitors of a first-trimester human placenta. We also show that a subset of unexplained recurrent pregnancy losses (idiopathic RPLs) is associated with impaired TEAD4 expression in CTB progenitors. Furthermore, by establishing idiopathic RPL patient-specific human trophoblast stem cells (RPL-TSCs), we show that loss of TEAD4 is associated with defective self-renewal in RPL-TSCs and rescue of TEAD4 expression restores their self-renewal ability. Unbiased genomics studies revealed that TEAD4 directly regulates expression of key cell cycle genes in both mouse and human TSCs and establishes a conserved transcriptional program. Our findings show that TEAD4, an effector of the Hippo signaling pathway, is essential for the establishment of pregnancy in a postimplantation mammalian embryo and indicate that impairment of the Hippo signaling pathway could be a molecular cause for early human pregnancy loss.
Collapse
Affiliation(s)
- Biswarup Saha
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Avishek Ganguly
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Pratik Home
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
| | - Bhaswati Bhattacharya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ananya Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
| | - Courtney Marsh
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Valerie A French
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
60
|
Bhattacharya B, Home P, Ganguly A, Ray S, Ghosh A, Islam MR, French V, Marsh C, Gunewardena S, Okae H, Arima T, Paul S. Atypical protein kinase C iota (PKCλ/ι) ensures mammalian development by establishing the maternal-fetal exchange interface. Proc Natl Acad Sci U S A 2020; 117:14280-14291. [PMID: 32513715 PMCID: PMC7322033 DOI: 10.1073/pnas.1920201117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In utero mammalian development relies on the establishment of the maternal-fetal exchange interface, which ensures transportation of nutrients and gases between the mother and the fetus. This exchange interface is established via development of multinucleated syncytiotrophoblast cells (SynTs) during placentation. In mice, SynTs develop via differentiation of the trophoblast stem cell-like progenitor cells (TSPCs) of the placenta primordium, and in humans, SynTs are developed via differentiation of villous cytotrophoblast (CTB) progenitors. Despite the critical need in pregnancy progression, conserved signaling mechanisms that ensure SynT development are poorly understood. Herein, we show that atypical protein kinase C iota (PKCλ/ι) plays an essential role in establishing the SynT differentiation program in trophoblast progenitors. Loss of PKCλ/ι in the mouse TSPCs abrogates SynT development, leading to embryonic death at approximately embryonic day 9.0 (E9.0). We also show that PKCλ/ι-mediated priming of trophoblast progenitors for SynT differentiation is a conserved event during human placentation. PKCλ/ι is selectively expressed in the first-trimester CTBs of a developing human placenta. Furthermore, loss of PKCλ/ι in CTB-derived human trophoblast stem cells (human TSCs) impairs their SynT differentiation potential both in vitro and after transplantation in immunocompromised mice. Our mechanistic analyses indicate that PKCλ/ι signaling maintains expression of GCM1, GATA2, and PPARγ, which are key transcription factors to instigate SynT differentiation programs in both mouse and human trophoblast progenitors. Our study uncovers a conserved molecular mechanism, in which PKCλ/ι signaling regulates establishment of the maternal-fetal exchange surface by promoting trophoblast progenitor-to-SynT transition during placentation.
Collapse
Affiliation(s)
- Bhaswati Bhattacharya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Pratik Home
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
| | - Avishek Ganguly
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ananya Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Md Rashedul Islam
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Valerie French
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Courtney Marsh
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
61
|
Pivotal role of the transcriptional co-activator YAP in trophoblast stemness of the developing human placenta. Proc Natl Acad Sci U S A 2020; 117:13562-13570. [PMID: 32482863 PMCID: PMC7306800 DOI: 10.1073/pnas.2002630117] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Various pregnancy complications, such as severe forms of preeclampsia or intrauterine growth restriction, are thought to arise from failures in the differentiation of human placental trophoblasts. Progenitors of the latter either develop into invasive extravillous trophoblasts, remodeling the uterine vasculature, or fuse into multinuclear syncytiotrophoblasts transporting oxygen and nutrients to the growing fetus. However, key regulatory factors controlling trophoblast self-renewal and differentiation have been poorly elucidated. Using primary cells, three-dimensional organoids, and CRISPR-Cas9 genome-edited JEG-3 clones, we herein show that YAP, the transcriptional coactivator of the Hippo signaling pathway, promotes maintenance of cytotrophoblast progenitors by different genomic mechanisms. Genetic or chemical manipulation of YAP in these cellular models revealed that it stimulates proliferation and expression of cell cycle regulators and stemness-associated genes, but inhibits cell fusion and production of syncytiotrophoblast (STB)-specific proteins, such as hCG and GDF15. Genome-wide comparisons of primary villous cytotrophoblasts overexpressing constitutively active YAP-5SA with YAP KO cells and syncytializing trophoblasts revealed common target genes involved in trophoblast stemness and differentiation. ChIP-qPCR unraveled that YAP-5SA overexpression increased binding of YAP-TEAD4 complexes to promoters of proliferation-associated genes such as CCNA and CDK6 Moreover, repressive YAP-TEAD4 complexes containing the histone methyltransferase EZH2 were detected in the genomic regions of the STB-specific CGB5 and CGB7 genes. In summary, YAP plays a pivotal role in the maintenance of the human placental trophoblast epithelium. Besides activating stemness factors, it also directly represses genes promoting trophoblast cell fusion.
Collapse
|
62
|
Matsumoto S, Porter CJ, Ogasawara N, Iwatani C, Tsuchiya H, Seita Y, Chang YW, Okamoto I, Saitou M, Ema M, Perkins TJ, Stanford WL, Tanaka S. Establishment of macaque trophoblast stem cell lines derived from cynomolgus monkey blastocysts. Sci Rep 2020; 10:6827. [PMID: 32321940 PMCID: PMC7176671 DOI: 10.1038/s41598-020-63602-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
The placenta forms a maternal-fetal junction that supports many physiological functions such as the supply of nutrition and exchange of gases and wastes. Establishing an in vitro culture model of human and non-human primate trophoblast stem/progenitor cells is important for investigating the process of early placental development and trophoblast differentiation. In this study, we have established five trophoblast stem cell (TSC) lines from cynomolgus monkey blastocysts, named macTSC #1-5. Fibroblast growth factor 4 (FGF4) enhanced proliferation of macTSCs, while other exogenous factors were not required to maintain their undifferentiated state. macTSCs showed a trophoblastic gene expression profile and trophoblast-like DNA methylation status and also exhibited differentiation capacity towards invasive trophoblast cells and multinucleated syncytia. In a xenogeneic chimera assay, these stem cells contributed to trophectoderm (TE) development in the chimeric blastocysts. macTSC are the first primate trophoblast cell lines whose proliferation is promoted by FGF4. These cell lines provide a valuable in vitro culture model to analyze the similarities and differences in placental development between human and non-human primates.
Collapse
Affiliation(s)
- Shoma Matsumoto
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Toky, 113-8657, Japan
| | | | - Naomi Ogasawara
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Toky, 113-8657, Japan
| | - Chizuru Iwatani
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Sciences, Shiga University of Medical Sciences, Shiga, 520-2192, Japan
| | - Hideaki Tsuchiya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Sciences, Shiga University of Medical Sciences, Shiga, 520-2192, Japan
| | - Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Sciences, Shiga University of Medical Sciences, Shiga, 520-2192, Japan
| | - Yu-Wei Chang
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Japan Science and Technology (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan.,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto, 606-8507, Japan
| | - Masatsugu Ema
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | | | - William L Stanford
- The Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Satoshi Tanaka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Toky, 113-8657, Japan.
| |
Collapse
|
63
|
Farah O, Nguyen C, Tekkatte C, Parast MM. Trophoblast lineage-specific differentiation and associated alterations in preeclampsia and fetal growth restriction. Placenta 2020; 102:4-9. [PMID: 33218578 DOI: 10.1016/j.placenta.2020.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 12/26/2022]
Abstract
The human placenta is a poorly-understood organ, but one that is critical for proper development and growth of the fetus in-utero. The epithelial cell type that contributes to primary placental functions is called "trophoblast," including two main subtypes, villous and extravillous trophoblast. Cytotrophoblast and syncytiotrophoblast comprise the villous compartment and contribute to gas and nutrient exchange, while extravillous trophoblast invade and remodel the uterine wall and vessels, in order to supply maternal blood to the growing fetus. Abnormal differentiation of trophoblast contributes to placental dysfunction and is associated with complications of pregnancy, including preeclampsia (PE) and fetal growth restriction (FGR). This review describes what is known about the cellular organization of the placenta during both normal development and in the setting of PE/FGR. It also explains known trophoblast lineage-specific markers and pathways regulating their differentiation, and how these are altered in the setting of PE/FGR, focusing on studies which have used human placental tissues. Finally, it also highlights remaining questions and needed resources to advance this field.
Collapse
Affiliation(s)
- Omar Farah
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Calvin Nguyen
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Chandana Tekkatte
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
64
|
Treissman J, Yuan V, Baltayeva J, Le HT, Castellana B, Robinson WP, Beristain AG. Low oxygen enhances trophoblast column growth by potentiating differentiation of the extravillous lineage and promoting LOX activity. Development 2020; 147:dev.181263. [PMID: 31871275 DOI: 10.1242/dev.181263] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022]
Abstract
Early placental development and the establishment of the invasive trophoblast lineage take place within a low oxygen environment. However, conflicting and inconsistent findings have obscured the role of oxygen in regulating invasive trophoblast differentiation. In this study, the effect of hypoxic, normoxic and atmospheric oxygen on invasive extravillous pathway progression was examined using a human placental explant model. Here, we show that exposure to low oxygen enhances extravillous column outgrowth and promotes the expression of genes that align with extravillous trophoblast (EVT) lineage commitment. By contrast, supra-physiological atmospheric levels of oxygen promote trophoblast proliferation while simultaneously stalling EVT progression. Low oxygen-induced EVT differentiation coincided with elevated transcriptomic levels of lysyl oxidase (LOX) in trophoblast anchoring columns, in which functional experiments established a role for LOX activity in promoting EVT column outgrowth. The findings of this work support a role for low oxygen in potentiating the differentiation of trophoblasts along the extravillous pathway. In addition, these findings generate insight into new molecular processes controlled by oxygen during early placental development.
Collapse
Affiliation(s)
- Jenna Treissman
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Victor Yuan
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Jennet Baltayeva
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Hoa T Le
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Barbara Castellana
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Wendy P Robinson
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada.,Department of Medical Genetics, The University of British Columbia, Vancouver V5Z 4H4, Canada
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver V5Z 4H4, Canada .,Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver V5Z 4H4, Canada
| |
Collapse
|
65
|
Szilagyi A, Gelencser Z, Romero R, Xu Y, Kiraly P, Demeter A, Palhalmi J, Gyorffy BA, Juhasz K, Hupuczi P, Kekesi KA, Meinhardt G, Papp Z, Draghici S, Erez O, Tarca AL, Knöfler M, Than NG. Placenta-Specific Genes, Their Regulation During Villous Trophoblast Differentiation and Dysregulation in Preterm Preeclampsia. Int J Mol Sci 2020; 21:ijms21020628. [PMID: 31963593 PMCID: PMC7013556 DOI: 10.3390/ijms21020628] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
The human placenta maintains pregnancy and supports the developing fetus by providing nutrition, gas-waste exchange, hormonal regulation, and an immunological barrier from the maternal immune system. The villous syncytiotrophoblast carries most of these functions and provides the interface between the maternal and fetal circulatory systems. The syncytiotrophoblast is generated by the biochemical and morphological differentiation of underlying cytotrophoblast progenitor cells. The dysfunction of the villous trophoblast development is implicated in placenta-mediated pregnancy complications. Herein, we describe gene modules and clusters involved in the dynamic differentiation of villous cytotrophoblasts into the syncytiotrophoblast. During this process, the immune defense functions are first established, followed by structural and metabolic changes, and then by peptide hormone synthesis. We describe key transcription regulatory molecules that regulate gene modules involved in placental functions. Based on transcriptomic evidence, we infer how villous trophoblast differentiation and functions are dysregulated in preterm preeclampsia, a life-threatening placenta-mediated obstetrical syndrome for the mother and fetus. In the conclusion, we uncover the blueprint for villous trophoblast development and its impairment in preterm preeclampsia, which may aid in the future development of non-invasive biomarkers for placental functions and early identification of women at risk for preterm preeclampsia as well as other placenta-mediated pregnancy complications.
Collapse
Affiliation(s)
- Andras Szilagyi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199, USA
| | - Yi Xu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Peter Kiraly
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Amanda Demeter
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Janos Palhalmi
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Balazs A. Gyorffy
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
| | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Katalin Adrienna Kekesi
- Laboratory of Proteomics, Institute of Biology, Eotvos Lorand University, H-1117 Budapest, Hungary; (B.A.G.); (K.A.K.)
- Department of Physiology and Neurobiology, Eotvos Lorand University, H-1117 Budapest, Hungary
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary
| | - Sorin Draghici
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA;
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Adi Laurentiu Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Medical University of Vienna, Vienna A-1090, Austria; (G.M.); (M.K.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.S.); (Z.G.); (P.K.); (A.D.); (J.P.); (K.J.)
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD 20692, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (O.E.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Maternity Private Clinic of Obstetrics and Gynecology, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-382-6788
| |
Collapse
|
66
|
Abstract
The placenta is essential for normal in utero development in mammals. In humans, defective placental formation underpins common pregnancy disorders such as pre-eclampsia and fetal growth restriction. The great variation in placental types across mammals means that animal models have been of limited use in understanding human placental development. However, new tools for studying human placental development, including 3D organoids, stem cell culture systems and single cell RNA sequencing, have brought new insights into this field. Here, we review the morphological, molecular and functional aspects of human placental formation, with a focus on the defining cell of the placenta - the trophoblast.
Collapse
Affiliation(s)
- Margherita Y Turco
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Physiology, Neuroscience and Development, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ashley Moffett
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
67
|
Milano-Foster J, Ray S, Home P, Ganguly A, Bhattacharya B, Bajpai S, Pal A, Mason CW, Paul S. Regulation of human trophoblast syncytialization by histone demethylase LSD1. J Biol Chem 2019; 294:17301-17313. [PMID: 31591264 PMCID: PMC6873176 DOI: 10.1074/jbc.ra119.010518] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
A successful pregnancy is critically dependent upon proper placental development and function. During human placentation, villous cytotrophoblast (CTB) progenitors differentiate to form syncytiotrophoblasts (SynTBs), which provide the exchange surface between the mother and fetus and secrete hormones to ensure proper progression of pregnancy. However, epigenetic mechanisms that regulate SynTB differentiation from CTB progenitors are incompletely understood. Here, we show that lysine-specific demethylase 1 (LSD1; also known as KDM1A), a histone demethylase, is essential to this process. LSD1 is expressed both in CTB progenitors and differentiated SynTBs in first-trimester placental villi; accordingly, expression in SynTBs is maintained throughout gestation. Impairment of LSD1 function in trophoblast progenitors inhibits induction of endogenous retrovirally encoded genes SYNCYTIN1/endogenous retrovirus group W member 1, envelope (ERVW1) and SYNCYTIN2/endogenous retrovirus group FRD member 1, envelope (ERVFRD1), encoding fusogenic proteins critical to human trophoblast syncytialization. Loss of LSD1 also impairs induction of chorionic gonadotropin α (CGA) and chorionic gonadotropin β (CGB) genes, which encode α and β subunits of human chorionic gonadotrophin (hCG), a hormone essential to modulate maternal physiology during pregnancy. Mechanistic analyses at the endogenous ERVW1, CGA, and CGB loci revealed a regulatory axis in which LSD1 induces demethylation of repressive histone H3 lysine 9 dimethylation (H3K9Me2) and interacts with transcription factor GATA2 to promote RNA polymerase II (RNA-POL-II) recruitment and activate gene transcription. Our study reveals a novel LSD1-GATA2 axis, which regulates human trophoblast syncytialization.
Collapse
Affiliation(s)
- Jessica Milano-Foster
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Soma Ray
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Pratik Home
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Avishek Ganguly
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Bhaswati Bhattacharya
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Shilpika Bajpai
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Aratrika Pal
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Clifford W Mason
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Soumen Paul
- Institute of Reproductive Health and Perinatal Research, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
68
|
Vondra S, Kunihs V, Eberhart T, Eigner K, Bauer R, Haslinger P, Haider S, Windsperger K, Klambauer G, Schütz B, Mikula M, Zhu X, Urban AE, Hannibal RL, Baker J, Knöfler M, Stangl H, Pollheimer J, Röhrl C. Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages. J Lipid Res 2019; 60:1922-1934. [PMID: 31530576 PMCID: PMC6824492 DOI: 10.1194/jlr.p093427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
During pregnancy, extravillous trophoblasts (EVTs) invade the maternal decidua and remodel the local vasculature to establish blood supply for the growing fetus. Compromised EVT function has been linked to aberrant pregnancy associated with maternal and fetal morbidity and mortality. However, metabolic features of this invasive trophoblast subtype are largely unknown. Using primary human trophoblasts isolated from first trimester placental tissues, we show that cellular cholesterol homeostasis is differentially regulated in EVTs compared with villous cytotrophoblasts. Utilizing RNA-sequencing, gene set-enrichment analysis, and functional validation, we provide evidence that EVTs display increased levels of free and esterified cholesterol. Accordingly, EVTs are characterized by increased expression of the HDL-receptor, scavenger receptor class B type I, and reduced expression of the LXR and its target genes. We further reveal that EVTs express elevated levels of hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1) (a rate-limiting enzyme in progesterone synthesis) and are capable of secreting progesterone. Increasing cholesterol export by LXR activation reduced progesterone secretion in an ABCA1-dependent manner. Importantly, HSD3B1 expression was decreased in EVTs of idiopathic recurrent spontaneous abortions, pointing toward compromised progesterone metabolism in EVTs of early miscarriages. Here, we provide insights into the regulation of cholesterol and progesterone metabolism in trophoblastic subtypes and its putative relevance in human miscarriage.
Collapse
Affiliation(s)
- Sigrid Vondra
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Tanja Eberhart
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Karin Eigner
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Raimund Bauer
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Sandra Haider
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Karin Windsperger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Günter Klambauer
- Institute of Machine Learning,Johannes Kepler University Linz, Linz, Austria
| | - Birgit Schütz
- Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Xiaowei Zhu
- Departments of PsychiatryStanford University School of Medicine, Stanford, CA,Genetics,Stanford University School of Medicine, Stanford, CA
| | - Alexander E. Urban
- Departments of PsychiatryStanford University School of Medicine, Stanford, CA,Genetics,Stanford University School of Medicine, Stanford, CA
| | | | - Julie Baker
- Genetics,Stanford University School of Medicine, Stanford, CA
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria,To whom correspondence should be addressed. e-mail: (C.R.); (J.P.)
| | - Clemens Röhrl
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria,University of Applied Sciences Upper Austria, Wels, Austria,To whom correspondence should be addressed. e-mail: (C.R.); (J.P.)
| |
Collapse
|
69
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
70
|
Frontier Progress in the Establishment of Trophoblast Stem Cell and the Identification of New Cell Subtypes at the Maternal-Fetal Interface. MATERNAL-FETAL MEDICINE 2019. [DOI: 10.1097/fm9.0000000000000023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
71
|
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 2019; 76:3479-3496. [PMID: 31049600 PMCID: PMC6697717 DOI: 10.1007/s00018-019-03104-6] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Abnormal placentation is considered as an underlying cause of various pregnancy complications such as miscarriage, preeclampsia and intrauterine growth restriction, the latter increasing the risk for the development of severe disorders in later life such as cardiovascular disease and type 2 diabetes. Despite their importance, the molecular mechanisms governing human placental formation and trophoblast cell lineage specification and differentiation have been poorly unravelled, mostly due to the lack of appropriate cellular model systems. However, over the past few years major progress has been made by establishing self-renewing human trophoblast stem cells and 3-dimensional organoids from human blastocysts and early placental tissues opening the path for detailed molecular investigations. Herein, we summarize the present knowledge about human placental development, its stem cells, progenitors and differentiated cell types in the trophoblast epithelium and the villous core. Anatomy of the early placenta, current model systems, and critical key regulatory factors and signalling cascades governing placentation will be elucidated. In this context, we will discuss the role of the developmental pathways Wingless and Notch, controlling trophoblast stemness/differentiation and formation of invasive trophoblast progenitors, respectively.
Collapse
Affiliation(s)
- Martin Knöfler
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria.
| | - Sandra Haider
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Leila Saleh
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Jürgen Pollheimer
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Teena K J B Gamage
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
72
|
Le HT, Atif J, Mara DL, Castellana B, Treissman J, Baltayeva J, Beristain AG. ADAM8 localizes to extravillous trophoblasts within the maternal-fetal interface and potentiates trophoblast cell line migration through a β1 integrin-mediated mechanism. Mol Hum Reprod 2019; 24:495-509. [PMID: 30124911 DOI: 10.1093/molehr/gay034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Does A Disintegrin And Metalloproteinase 8 (ADAM8) control extravillous trophoblast (EVT) differentiation and migration in early human placental development? SUMMARY ANSWER ADAM8 mRNA preferentially localizes to invasive HLA-G-positive trophoblasts, associates with the acquirement of an EVT phenotype and promotes trophoblast migration through a mechanism requiring β1-integrin. WHAT IS KNOWN ALREADY Placental establishment in the first trimester of pregnancy requires the differentiation of progenitor trophoblasts into invasive EVTs that produce a diverse repertoire of proteases that facilitate matrix remodeling and activation of signaling pathways important in controlling cell migration. While multiple ADAM proteases, including ADAM8, are highly expressed by invasive trophoblasts, the role of ADAM8 in controlling EVT-related processes is unknown. STUDY DESIGN, SIZE, DURATION First trimester placental villi and decidua (6-12 weeks' gestation), primary trophoblasts and trophoblastic cell lines (JEG3, JAR, Bewo, HTR8/SVNeo) were used to examine ADAM8 expression, localization and function. All experiments were performed on at least three independent occasions (n = 3). PARTICIPANTS/MATERIALS, SETTING, METHODS Placental villi and primary trophoblasts derived from IRB approved first trimester placental (n = 24) and decidual (n = 4) were used to examine ADAM8 localization and expression by in situ RNAScope hybridization, flow cytometry, quantitative PCR and immunoblot analyses. Primary trophoblasts were differentiated into EVT-like cells by plating on fibronectin and were assessed by immunofluorescence microscopy and immunoblot analysis of keratin-7, vimentin, epidermal growth factor receptor (EGFR), HLA-G and ADAM8. ADAM8 function was examined in primary EVTs and trophoblastic cell lines utilizing siRNA-directed silencing and over-expression strategies. Trophoblast migration was assessed using Transwell chambers, cell-matrix binding was tested using fibronectin-adhesion assays, and ADAM8-β1-integrin interactions were determined by immunofluorescence microscopy, co-immunoprecipitation experiments and function-promoting/inhibiting antibodies. MAIN RESULTS AND THE ROLE OF CHANCE Within first trimester placental tissues, ADAM8 preferentially localized to HLA-G+ trophoblasts residing within anchoring columns and decidua. Functional experiments in primary trophoblasts and trophoblastic cell lines show that ADAM8 promotes trophoblast migration through a mechanism independent of intrinsic protease activity. We show that ADAM8 localizes to peri-nuclear and cell-membrane actin-rich structures during cell-matrix attachment and promotes trophoblast binding to fibronectin matrix. Moreover, ADAM8 potentiates β1-integrin activation and promotes cell migration through a mechanism dependent on β1-integrin function. LIMITATIONS, REASONS FOR CAUTION The primary limitation of this study was the use of in vitro experiments in examining ADAM8 function, as well as the implementation of immortalized trophoblastic cell lines. Histological localization of ADAM8 within placental and decidual tissue sections was limited to mRNA level analysis. Further, patient information corresponding to tissues obtained by elective terminations was not available. WIDER IMPLICATIONS OF THE FINDINGS The novel non-proteolytic pro-migratory role for ADAM8 in controlling trophoblast migration revealed by this study sheds insight into the importance of ADAM8 in EVT biology and placental development. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC-Discovery Grant) and the Canadian Institutes of Health Research (CIHR-Open Operating Grant). There are no conflicts or competing interests. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- H T Le
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - J Atif
- Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - D L Mara
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada
| | - B Castellana
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - J Treissman
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - J Baltayeva
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| | - A G Beristain
- British Columbia Children's Hospital Research Institute, 950 West 28th Ave, Vancouver, Canada.,Department of Obstetrics and Gynecology, The University of British Columbia, Faculty of Medicine, Suite 930, 1125 Howe Street, Vancouver, Canada
| |
Collapse
|
73
|
Soares MJ, Varberg KM, Iqbal K. Hemochorial placentation: development, function, and adaptations. Biol Reprod 2019; 99:196-211. [PMID: 29481584 DOI: 10.1093/biolre/ioy049] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/21/2018] [Indexed: 11/12/2022] Open
Abstract
Placentation is a reproductive adaptation that permits fetal growth and development within the protected confines of the female reproductive tract. Through this important role, the placenta also determines postnatal health and susceptibility to disease. The hemochorial placenta is a prominent feature in primate and rodent development. This manuscript provides an overview of the basics of hemochorial placental development and function, provides perspectives on major discoveries that have shaped placental research, and thoughts on strategies for future investigation.
Collapse
Affiliation(s)
- Michael J Soares
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA and the Center for Perinatal Research, Children΄s Research Institute, Children΄s Mercy, Kansas City, Missouri, USA
| | - Kaela M Varberg
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research and the Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
74
|
Yang Y, Zhang D, Qin H, Liu S, Yan Q. poFUT1 promotes endometrial decidualization by enhancing the O-fucosylation of Notch1. EBioMedicine 2019; 44:563-573. [PMID: 31201143 PMCID: PMC6606927 DOI: 10.1016/j.ebiom.2019.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial stromal cell decidualization is critical for embryo implantation. Dysfunctional decidualization leads to implantation failure, miscarriage and even pregnancy associated disorders in subsequent pregnancy trimesters. Protein glycosylation is involved in many physiological and pathological processes. Protein O-fucosyltransferase 1 (poFUT1) is the key enzyme for the O-fucosylation of proteins. However, the role and mechanism of poFUT1 in human endometrial stromal cell decidualization remain elusive. METHODS We employed immunohistochemistry to detect the level of poFUT1 in the uterine endometrium from those of the proliferative phase, secretory phase, early pregnancy women and miscarriage patients. Using human endometrial stromal cells (hESCs) and a mouse model, the underlying mechanisms of poFUT1 in decidualization was investigated. FINDINGS The level of poFUT1 was increased in the stromal cells of the secretory phase relative to those in the proliferative phase of the menstrual cycle, and decreased in the stromal cells of miscarriage patients compared to women with healthy early pregnancies. Furthermore, we found that poFUT1 promoted hESCs decidualization. The results also demonstrated that poFUT1 increased O-fucosylation on Notch1 in hESCs, which activated Notch1 signaling pathway. Activated Notch1 (NICD), as a specific trans-factor of PRL and IGFBP1 promoters, enhanced PRL and IGFBP1 transcriptional activity, thus inducing hESCs decidualization. INTERPRETATION Level of poFUT1 is lower in the uterine endometrium from miscarriage patients than early pregnancy women. poFUT1 is critical in endometrial decidualization by controlling the O-fucosylation on Notch1. Our findings provide a new mechanism perspective on poFUT1 in uterine decidualization that may be a useful diagnostic and therapeutic target for miscarriage. FUND: National Natural Science Foundation of China (31770857, 31670810 and 31870794). Liaoning Provincial Program for Top Discipline of Basic Medical Sciences.
Collapse
Affiliation(s)
- Yu Yang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Dandan Zhang
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Shuai Liu
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Qiu Yan
- Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
75
|
Bazhenov DO, Furaeva KN, Stepanova OI, Viazmina LP, Sheveleva AR, Khokhlova EV, Mikhailova VA, Selkov SA, Sokolov DI. Receptor expression by JEG-3 trophoblast cells in the presence of placenta secreted factors. Gynecol Endocrinol 2019; 35:35-40. [PMID: 31532312 DOI: 10.1080/09513590.2019.1653560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Preeclampsia still remains one of the most severe pregnancy complications and is an actual problem in the obstetrics practice. At present, the joint impact of cytokines and other placenta secreted factors on trophoblast cell functional activity during preeclampsia complicated pregnancy remains unclear. The aim of the study is to estimate the surface receptors expression by trophoblast cells in the presence of placenta secreted factors during physiological pregnancy and at preeclampsia. Trophoblast cells of the JEG-3 line were incubated in the presence of supernatants obtained by cultivation of placentas from women with physiological pregnancy and with preeclampsia. Surface receptors expression by trophoblast cells was estimated by FACS Canto II flow cytometer. It was established that in the third trimester both under normal and pathological conditions, the placenta secreted factors impact on the cytokine receptor expression by trophoblast differs while the trophoblast response capacity to the migration and proliferation stimulating and inhibiting signals remains stable. JEG-3 line cells enhanced the expression of CD186, CD140a, Integrin β6, VE-cadherin, CD29, and CD140a in the case of incubation in the presence of placenta supernatants from the third-trimester pregnancy complicated with preeclampsia compared to incubation in the presence of placenta supernatants form the third trimester of physiological pregnancy.
Collapse
Affiliation(s)
- Dmitry O Bazhenov
- Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution "Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott" , Saint-Petersburg , Russia
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine" , St. Petersburg , Russia
| | - Kseniya N Furaeva
- Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution "Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott" , Saint-Petersburg , Russia
| | - Olga I Stepanova
- Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution "Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott" , Saint-Petersburg , Russia
| | - Larisa P Viazmina
- Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution "Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott" , Saint-Petersburg , Russia
| | - Anastasiya R Sheveleva
- Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution "Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott" , Saint-Petersburg , Russia
| | - Evgeniya V Khokhlova
- Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution "Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott" , Saint-Petersburg , Russia
| | - Valentina A Mikhailova
- Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution "Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott" , Saint-Petersburg , Russia
- State Budgetary Educational Institution of Higher Professional Education First Pavlov State Medical University of St. Petersburg under the Ministry of Healthcare of Russian Federation , St. Petersburg , Russia
| | - Sergey A Selkov
- Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution "Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott" , Saint-Petersburg , Russia
| | - Dmitry I Sokolov
- Laboratory of Intercellular Interactions, Department of Immunology and Intercellular Interactions, Federal State Budgetary Scientific Institution "Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott" , Saint-Petersburg , Russia
- Federal State Budgetary Scientific Institution "Institute of Experimental Medicine" , St. Petersburg , Russia
- State Budgetary Educational Institution of Higher Professional Education First Pavlov State Medical University of St. Petersburg under the Ministry of Healthcare of Russian Federation , St. Petersburg , Russia
| |
Collapse
|
76
|
Wong FT, Lin C, Cox BJ. Cellular systems biology identifies dynamic trophoblast populations in early human placentas. Placenta 2019; 76:10-18. [DOI: 10.1016/j.placenta.2018.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/31/2018] [Indexed: 01/02/2023]
|
77
|
Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol 2018; 9:2597. [PMID: 30483261 PMCID: PMC6243063 DOI: 10.3389/fimmu.2018.02597] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs is critical for adapting blood flow and nutrient transport to the developing fetus. Failures in this process have been noticed in different pregnancy complications such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon invasion into the decidua, the endometrium of pregnancy, EVTs encounter different maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal cells expressing a plethora of growth factors and cytokines. Here, we will summarize development of the EVT lineage, a process occurring independently of the uterine environment, and formation of its different subtypes. Further, we will discuss interactions of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different immune cells regulate EVT differentiation, invasion and survival. The present literature suggests that the decidual environment and its soluble factors critically modulate EVT function and reproductive success.
Collapse
Affiliation(s)
- Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Jennet Baltayeva
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Guillermo Beristain
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
78
|
Michelsen TM, Henriksen T, Reinhold D, Powell TL, Jansson T. The human placental proteome secreted into the maternal and fetal circulations in normal pregnancy based on 4-vessel sampling. FASEB J 2018; 33:2944-2956. [PMID: 30335547 DOI: 10.1096/fj.201801193r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We sought to identify proteins secreted by the human placenta into the maternal and fetal circulations. Blood samples from the maternal radial artery and uterine vein and umbilical artery and vein were obtained during cesarean section in 35 healthy women with term pregnancy. Slow off-rate modified aptamer (SOMA) protein-binding technology was used to quantify 1310 known proteins. The uteroplacental and umbilical venoarterial concentration differences were calculated. Thirty-four proteins were significantly secreted by the placenta into the maternal circulation, including placental growth factor, growth/differentiation factor 15, and matrix metalloproteinase 12. There were 341 proteins significantly secreted by the placenta into the fetal circulation. Only 7 proteins were secreted into both the fetal and maternal circulations, suggesting a distinct directionality in placental protein release. We examined changes across gestation in the proteins found to be significantly secreted by the placenta into the maternal circulation using serial blood samples from healthy women. Among the 34 proteins secreted into the maternal circulation, 8 changed significantly across gestation. The identified profiles of secreted placental proteins will allow us to identify novel minimally invasive biomarkers for human placental function across gestation and discover previously unknown proteins secreted by the human placenta that regulate maternal physiology and fetal development.-Michelsen, T. M., Henriksen, T., Reinhold, D., Powell, T. L., Jansson, T. The human placental proteome secreted into the maternal and fetal circulations in normal pregnancy based on 4-vessel sampling.
Collapse
Affiliation(s)
- Trond M Michelsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Obstetrics and Gynecology, Department of Obstetrics Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Tore Henriksen
- Division of Obstetrics and Gynecology, Department of Obstetrics Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | | | - Theresa L Powell
- Division of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
79
|
Haider S, Meinhardt G, Saleh L, Kunihs V, Gamperl M, Kaindl U, Ellinger A, Burkard TR, Fiala C, Pollheimer J, Mendjan S, Latos PA, Knöfler M. Self-Renewing Trophoblast Organoids Recapitulate the Developmental Program of the Early Human Placenta. Stem Cell Reports 2018; 11:537-551. [PMID: 30078556 PMCID: PMC6092984 DOI: 10.1016/j.stemcr.2018.07.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 01/14/2023] Open
Abstract
Defective placentation is the underlying cause of various pregnancy complications, such as severe intrauterine growth restriction and preeclampsia. However, studies on human placental development are hampered by the lack of a self-renewing in vitro model that would recapitulate formation of trophoblast progenitors and differentiated subtypes, syncytiotrophoblast (STB) and invasive extravillous trophoblast (EVT), in a 3D orientation. Hence, we established long-term expanding organoid cultures from purified first-trimester cytotrophoblasts (CTBs). Molecular analyses revealed that the CTB organoid cultures (CTB-ORGs) express markers of trophoblast stemness and proliferation and are highly similar to primary CTBs at the level of global gene expression. Whereas CTB-ORGs spontaneously generated STBs, withdrawal of factors for self-renewal induced trophoblast outgrowth, expressing the EVT progenitor marker NOTCH1, and provoked formation of adjacent, distally located HLA-G+ EVTs. In summary, we established human CTB-ORGs that grow and differentiate under defined culture conditions, allowing future human placental disease modeling. Derivation of cytotrophoblast organoids from human placenta Long-term expansion of trophoblast organoids in a chemically defined medium Formation of the extravillous trophoblast lineage under defined culture conditions
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Gudrun Meinhardt
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Leila Saleh
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Viktoria Kunihs
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Magdalena Gamperl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Ulrich Kaindl
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Adolf Ellinger
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria
| | - Sasha Mendjan
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Paulina A Latos
- Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Reproductive Biology Unit, Währinger Gürtel 18-20, 5Q, 1090 Vienna, Austria.
| |
Collapse
|
80
|
Liu Y, Fan X, Wang R, Lu X, Dang YL, Wang H, Lin HY, Zhu C, Ge H, Cross JC, Wang H. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res 2018; 28:819-832. [PMID: 30042384 PMCID: PMC6082907 DOI: 10.1038/s41422-018-0066-y] [Citation(s) in RCA: 230] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/12/2022] Open
Abstract
The placenta is crucial for a successful pregnancy and the health of both the fetus and the pregnant woman. However, how the human trophoblast lineage is regulated, including the categorization of the placental cell subtypes is poorly understood. Here we performed single-cell RNA sequencing (RNA-seq) on sorted placental cells from first- and second-trimester human placentas. New subtypes of cells of the known cytotrophoblast cells (CTBs), extravillous trophoblast cells (EVTs), Hofbauer cells, and mesenchymal stromal cells were identified and cell-type-specific gene signatures were defined. Functionally, this study revealed many previously unknown functions of the human placenta. Notably, 102 polypeptide hormone genes were found to be expressed by various subtypes of placental cells, which suggests a complex and significant role of these hormones in regulating fetal growth and adaptations of maternal physiology to pregnancy. These results document human placental trophoblast differentiation at single-cell resolution and thus advance our understanding of human placentation during the early stage of pregnancy.
Collapse
Affiliation(s)
- Yawei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaoying Fan
- Biomedical Pioneering Innovation Center, College of Life Science, Peking University, 100871, Beijing, China
| | - Rui Wang
- Biomedical Pioneering Innovation Center, College of Life Science, Peking University, 100871, Beijing, China
| | - Xiaoyin Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yan-Li Dang
- Department of Obstetrics and Gynecology, The 306th Hospital of PLA, 100101, Beijing, China
| | - Huiying Wang
- Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, 100038, Beijing, China
| | - Hai-Yan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Cheng Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hao Ge
- Biomedical Pioneering Innovation Center, College of Life Science, Peking University, 100871, Beijing, China
| | - James C Cross
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
81
|
Pregnancy-associated diamine oxidase originates from extravillous trophoblasts and is decreased in early-onset preeclampsia. Sci Rep 2018; 8:6342. [PMID: 29679053 PMCID: PMC5910386 DOI: 10.1038/s41598-018-24652-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/09/2018] [Indexed: 11/08/2022] Open
Abstract
Human extravillous trophoblast (EVT) invasion of the pregnant uterus constitutes a pivotal event for the establishment of the maternal-fetal interface. Compromised EVT function manifesting in inadequate arterial remodeling is associated with the severe pregnancy disorder early-onset preeclampsia (eoPE). Recent studies suggest that EVTs invade the entire uterine vasculature including arteries, veins and lymphatics in the first trimester of pregnancy. We therefore hypothesized that EVT-derived factors accumulate in the circulation of pregnant women early in gestation and may serve to predict eoPE. In contrast to published literature, we demonstrate that placenta-associated diamine oxidase (DAO) is not expressed by maternal decidual cells but solely by EVTs, especially when in close proximity to decidual vessels. Cultures of primary EVTs express and secret large amounts of bioactive DAO. ELISA measurements indicate a pregnancy-specific rise in maternal DAO plasma levels around gestational week (GW) 7 coinciding with vascular invasion of EVTs. Strikingly, DAO levels from eoPE cases were significantly lower (40%) compared to controls in the first trimester of pregnancy but revealed no difference at mid gestation. Furthermore, DAO-containing pregnancy plasma rapidly inactivates pathophysiologically relevant histamine levels. This study represents the first proof of concept suggesting EVT-specific signatures as diagnostic targets for the prediction of eoPE.
Collapse
|
82
|
Lee CQE, Turco MY, Gardner L, Simons BD, Hemberger M, Moffett A. Integrin α2 marks a niche of trophoblast progenitor cells in first trimester human placenta. Development 2018. [PMID: 29540503 PMCID: PMC6124543 DOI: 10.1242/dev.162305] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During pregnancy the trophoblast cells of the placenta are the only fetal cells in direct contact with maternal blood and decidua. Their functions include transport of nutrients and oxygen, secretion of pregnancy hormones, remodelling of the uterine arteries, and communicating with maternal cells. Despite the importance of trophoblast cells in placental development and successful pregnancy, little is known about the identity, location and differentiation of human trophoblast progenitors. We identify a proliferative trophoblast niche at the base of the cytotrophoblast cell columns in first trimester placentas that is characterised by integrin α2 (ITGA2) expression. Pulse-chase experiments with 5-iodo-2′-deoxyuridine indicate that these cells might contribute to both villous (VCT) and extravillous (EVT) lineages. These proliferating trophoblast cells can be isolated by flow cytometry using ITGA2 as a marker and express genes from both VCT and EVT. Microarray expression analysis shows that ITAG2+ cells display a unique transcriptional signature, including genes involved in NOTCH signalling, and exhibit a combination of epithelial and mesenchymal characteristics. ITGA2 thus marks a niche allowing the study of pure populations of trophoblast progenitor cells. Summary: ITGA2 marks a proliferative trophoblast progenitor compartment in first trimester human placenta that appears to be regulated by NOTCH signalling and exhibits a unique combination of epithelial and mesenchymal expression characteristics.
Collapse
Affiliation(s)
- Cheryl Q E Lee
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK
| | - Margherita Y Turco
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK
| | - Lucy Gardner
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK.,Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Myriam Hemberger
- Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK.,Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Ashley Moffett
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge CB2 1QP, UK .,Centre for Trophoblast Research, Tennis Court Road, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
83
|
Ding L, Li S, Zhang Y, Gai J, Kou J. MXRA5 is decreased in preeclampsia and affects trophoblast cell invasion through the MAPK pathway. Mol Cell Endocrinol 2018; 461:248-255. [PMID: 28919298 DOI: 10.1016/j.mce.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023]
Abstract
Preeclampsia causes gestational failure in a significant number of women annually. Insufficient trophoblast cell invasion plays an essential role in preeclampsia pathogenesis. Matrix-remodeling associated 5 (MXRA5) is a proteoglycan involved in adhesion and matrix remodeling. This study sought to explore the role of MXRA5 in trophoblast cell invasion. Preeclamptic villi were obtained for the delineation of MXRA5 expression. Specific MXRA5 siRNA and pcDNA3.1/MXRA5 were used to manipulate MXRA5 expression in HTR-8/SVneo. Cell viability was determined by MTT and apoptosis by flow cytometry. Cell invasion was evaluated using Matrigel invasion assay. MXRA5 expression was lower in preeclamptic villi and cytotrophoblasts. Silencing MXRA5 expression in HTR-8/SVneo decreased cell viability and invasion, which were augmented by MXRA5 overexpression. Furthermore, MXRA5 modulated N-cadherin, E-cadherin, MMP-2, and MMP-9 expression through p38 MAPK and ERK1/2 signaling transduction. In addition, the expression of MXRA5 was influenced by exogenous TNF-α but not by IFN-γ. Overexpression of MXRA5 attenuated HTR-8/SVneo apoptosis induced by TNF-α. MXRA5 is downregulated in preeclamptic cytotrophoblasts and can regulate trophoblast cell invasion via the MAPK pathway.
Collapse
Affiliation(s)
- Lan Ding
- The First Department of Obstetrics, Cangzhou Central Hospital, Cangzhou 061001, China
| | - Shaocong Li
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Yanshang Zhang
- Department of Obstetrics, Hebei General Hospital, Shijiazhuang 050051, China
| | - Junfeng Gai
- Department of Gynaecology, Binzhou City Center Hospital, Binzhou 251700, China
| | - Jianfang Kou
- Department of Gynaecology, The Affiliated Zhengzhou Hospital of Jinan University, Zhengzhou Second Hospital, Zhengzhou 450006, China.
| |
Collapse
|
84
|
Chang CW, Wakeland AK, Parast MM. Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J Endocrinol 2018; 236:R43-R56. [PMID: 29259074 PMCID: PMC5741095 DOI: 10.1530/joe-17-0402] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 12/13/2022]
Abstract
Development of the early embryo takes place under low oxygen tension. Under such conditions, the embryo implants and the trophectoderm, the outer layer of blastocyst, proliferate, forming the cytotrophoblastic shell, the early placenta. The cytotrophoblasts (CTBs) are the so-called epithelial 'stem cells' of the placenta, which, depending on the signals they receive, can differentiate into either extravillous trophoblast (EVT) or syncytiotrophoblast (STB). EVTs anchor the placenta to the uterine wall and remodel maternal spiral arterioles in order to provide ample blood supply to the growing fetus. STBs arise through CTB fusion, secrete hormones necessary for pregnancy maintenance and form a barrier across which nutrient and gas exchange can take place. The bulk of EVT differentiation occurs during the first trimester, before the onset of maternal arterial blood flow into the intervillous space of the placenta, and thus under low oxygen tension. These conditions affect numerous signaling pathways, including those acting through hypoxia-inducible factor, the nutrient sensor mTOR and the endoplasmic reticulum stress-induced unfolded protein response pathway. These pathways are known to be involved in placental development and disease, and specific components have even been identified as directly involved in lineage-specific trophoblast differentiation. Nevertheless, much controversy surrounds the role of hypoxia in trophoblast differentiation, particularly with EVT. This review summarizes previous studies on this topic, with the intent of integrating these results and synthesizing conclusions that resolve some of the controversy, but then also pointing to remaining areas, which require further investigation.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| | - Anna K Wakeland
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| | - Mana M Parast
- Department of PathologyUniversity of California San Diego, La Jolla, California, USA
- Sanford Consortium for Regenerative MedicineUniversity of California San Diego, La Jolla, California, USA
| |
Collapse
|
85
|
Woods L, Perez-Garcia V, Hemberger M. Regulation of Placental Development and Its Impact on Fetal Growth-New Insights From Mouse Models. Front Endocrinol (Lausanne) 2018; 9:570. [PMID: 30319550 PMCID: PMC6170611 DOI: 10.3389/fendo.2018.00570] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/06/2018] [Indexed: 01/01/2023] Open
Abstract
The placenta is the chief regulator of nutrient supply to the growing embryo during gestation. As such, adequate placental function is instrumental for developmental progression throughout intrauterine development. One of the most common complications during pregnancy is insufficient growth of the fetus, a problem termed intrauterine growth restriction (IUGR) that is most frequently rooted in a malfunctional placenta. Together with conventional gene targeting approaches, recent advances in screening mouse mutants for placental defects, combined with the ability to rapidly induce mutations in vitro and in vivo by CRISPR-Cas9 technology, has provided new insights into the contribution of the genome to normal placental development. Most importantly, these data have demonstrated that far more genes are required for normal placentation than previously appreciated. Here, we provide a summary of common types of placental defects in established mouse mutants, which will help us gain a better understanding of the genes impacting on human placentation. Based on a recent mouse mutant screen, we then provide examples on how these data can be mined to identify novel molecular hubs that may be critical for placental development. Given the close association between placental defects and abnormal cardiovascular and brain development, these functional nodes may also shed light onto the etiology of birth defects that co-occur with placental malformations. Taken together, recent insights into the regulation of mouse placental development have opened up new avenues for research that will promote the study of human pregnancy conditions, notably those based on defects in placentation that underlie the most common pregnancy pathologies such as IUGR and pre-eclampsia.
Collapse
Affiliation(s)
- Laura Woods
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Vicente Perez-Garcia
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Vicente Perez-Garcia
| | - Myriam Hemberger
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Myriam Hemberger
| |
Collapse
|
86
|
Haider S, Kunihs V, Fiala C, Pollheimer J, Knöfler M. Expression pattern and phosphorylation status of Smad2/3 in different subtypes of human first trimester trophoblast. Placenta 2017; 57:17-25. [PMID: 28864007 DOI: 10.1016/j.placenta.2017.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/21/2017] [Accepted: 06/05/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION TGF-β superfamily members are thought to play a pivotal role in placental development and differentiation. However, their downstream effectors, the Smad transcription factors, have been poorly investigated in human trophoblasts. METHODS Expression and localisation of the canonical TGF-β targets Smad2/3 and their regulators (Smad4 and Smad7) were investigated in first trimester placenta and purified cytotrophoblast (CTB) subtypes using immunofluorescence, western blotting and qPCR. Canonical and non-canonical activation was analysed in nuclear/cytoplasmic extracts of trophoblast subtypes as well as in tissue sections using antibodies against Smad2/3, phosphorylated either at the C-terminus (pSmad2C/3C) or in their linker regions (pSmad2L/3L). Smad phosphorylation was also examined in differentiating extravillous trophoblasts (EVTs) in the absence or presence of decidual stromal cell (DSC)-conditioned medium. RESULTS Smad2, Smad4 and Smad7 protein were uniformly expressed between 6th and 12th week placentae and the different isolated CTB subtypes. Activated pSmad2L was mainly detected in nuclei and cytoplasm of villous CTBs, whereas pSmad2C was absent from these cells. In contrast, pSmad2C could be detected in the cytoplasm of cell column trophoblasts and in the cytoplasm/nuclei of EVTs. Smad3 and its phosphorylated forms pSmad3C and pSmad3L specifically localised to EVT nuclei. During EVT differentiation autocrine activation of pSmad2C/3C and pSmad3L was observed. DSC-conditioned medium further increased Smad2/3 phosphorylation in EVTs. DISCUSSION The lack of pSmad2C in villous CTBs suggests that other mitogens than TGF-β could promote Smad2 linker phosphorylation under homeostatic conditions. Whereas autocrine signalling activates Smad2/3 in differentiating EVTs, paracrine factors contribute to Smad phosphorylation in these cells.
Collapse
Affiliation(s)
- S Haider
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - V Kunihs
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - C Fiala
- Gynmed Clinic, Vienna, Austria
| | - J Pollheimer
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria
| | - M Knöfler
- Department of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
87
|
Motomura K, Okada N, Morita H, Hara M, Tamari M, Orimo K, Matsuda G, Imadome KI, Matsuda A, Nagamatsu T, Fujieda M, Sago H, Saito H, Matsumoto K. A Rho-associated coiled-coil containing kinases (ROCK) inhibitor, Y-27632, enhances adhesion, viability and differentiation of human term placenta-derived trophoblasts in vitro. PLoS One 2017; 12:e0177994. [PMID: 28542501 PMCID: PMC5438149 DOI: 10.1371/journal.pone.0177994] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
Although human term placenta-derived primary cytotrophoblasts (pCTBs) represent a good human syncytiotrophoblast (STB) model, in vitro culture of pCTBs is not always easily accomplished. Y-27632, a specific inhibitor of Rho-associated coiled-coil containing kinases (ROCK), reportedly prevented apoptosis and improved cell-to-substrate adhesion and culture stability of dissociated cultured human embryonic stem cells and human corneal endothelial cells. The Rho kinase pathway regulates various kinds of cell behavior, some of which are involved in pCTB adhesion and differentiation. In this study, we examined Y-27632's potential for enhancing pCTB adhesion, viability and differentiation. pCTBs were isolated from term, uncomplicated placentas by trypsin-DNase I-Dispase II treatment and purified by HLA class I-positive cell depletion. Purified pCTBs were cultured on uncoated plates in the presence of epidermal growth factor (10 ng/ml) and various concentrations of Y-27632. pCTB adhesion to the plates was evaluated by phase-contrast imaging, viability was measured by WST-8 assay, and differentiation was evaluated by immunofluorescence staining, expression of fusogenic genes and hCG-β production. Ras-related C3 botulinum toxin substrate 1 (Rac1; one of the effector proteins of the Rho family) and protein kinase A (PKA) involvement was evaluated by using their specific inhibitors, NSC-23766 and H-89. We found that Y-27632 treatment significantly enhanced pCTB adhesion to plates, viability, cell-to-cell fusion and hCG-β production, but showed no effects on pCTB proliferation or apoptosis. Furthermore, NSC-23766 and H-89 each blocked the effects of Y-27632, suggesting that Y-27632 significantly enhanced pCTB differentiation via Rac1 and PKA activation. Our findings suggest that Rac1 and PKA may be interactively involved in CTB differentiation, and addition of Y-27632 to cultures may be an effective method for creating a stable culture model for studying CTB and STB biology in vitro.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
- * E-mail: (K. Motomura); (K. Matsumoto)
| | - Naoko Okada
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Mariko Hara
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Keisuke Orimo
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Go Matsuda
- Division of Advanced Medicine for Virus Infections, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ken-Ichi Imadome
- Division of Advanced Medicine for Virus Infections, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mikiya Fujieda
- Department of Pediatrics, Kochi Medical School, Kochi, Japan
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- * E-mail: (K. Motomura); (K. Matsumoto)
| |
Collapse
|
88
|
Abstract
INTRODUCTION Trophoblast progenitor cell differentiation towards the extravillous trophoblast (EVT) lineage initiates within proximal regions of anchoring columns of first trimester placental villi. While molecular processes controlling the initial stages of progenitor cell differentiation along the EVT pathway have been described, much remains unknown about factors important in distal column cell differentiation into invasive EVTs. ADAMs are proteases that regulate growth factor signaling, cell-matrix adhesion, and matrix proteolysis, and thus impact many processes relevant in placentation. Global gene expression studies identified the ADAM subtype, ADAM28, to be highly expressed in EVT-like trophoblasts, suggesting that it may play a role in EVT function. This study aims to test the functional importance of ADAM28 in column cell outgrowth and maintenance. METHODS ADAM28 mRNA levels and protein localization were determined by qPCR and immunofluorescence microscopy analyses in purified placental villi cell populations and tissues. ADAM28 function in trophoblast column outgrowth was examined using ADAM28-targetting siRNAs in Matrigel-imbedded placental explant cultures. RESULTS Within placental villi, ADAM28 mRNA levels were highest in HLA-G+ column trophoblasts, and consistent with this, ADAM28 was preferentially localized to HLA-G+ trophoblasts within distal anchoring columns and decidual tissue. siRNA-directed loss of ADAM28 impaired trophoblast column outgrowth and resulted in increased apoptosis in matrix-invading trophoblasts. DISCUSSION Our findings suggest that ADAM28 promotes column outgrowth by providing survival cues within anchoring column cells. This study also provides insight into a possible role for ADAM28 in driving differentiation of column trophoblasts into invasive HLA-G+ EVT subsets.
Collapse
Affiliation(s)
- L C De Luca
- British Columbia's Children's Hospital Research Institute, Vancouver, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, Canada
| | - H T Le
- British Columbia's Children's Hospital Research Institute, Vancouver, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, Canada
| | - D L Mara
- British Columbia's Children's Hospital Research Institute, Vancouver, Canada
| | - A G Beristain
- British Columbia's Children's Hospital Research Institute, Vancouver, Canada; Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
89
|
Paul S, Home P, Bhattacharya B, Ray S. GATA factors: Master regulators of gene expression in trophoblast progenitors. Placenta 2017; 60 Suppl 1:S61-S66. [PMID: 28526138 DOI: 10.1016/j.placenta.2017.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/08/2017] [Indexed: 11/28/2022]
Abstract
Mammalian reproduction is critically dependent on trophoblast cells, which ensure embryo implantation and placentation. Development of trophoblast cell lineages is a multi-step process and relies upon proper spatial and temporal gene expression, which is regulated by multiple transcription factors. However, most of the transcription factors that are implicated in trophoblast development regulate gene expression at a specific developmental stage or in a specific trophoblast subtype. In contrast, recent studies from our group and other laboratories indicate that conserved GATA family of transcription factors, GATA2 and GATA3, are important to regulate gene expression at multiple stages of trophoblast development. Furthermore, our conditional gene deletion studies revealed that functional redundancy of GATA2 and GATA3 ensures both self-renewal of trophoblast stem and progenitor cells and their differentiation to trophoblast cells of a matured placenta. Together these findings indicate that GATA2/GATA3 are the master orchestrators of gene expression in trophoblast cells and they fine tune gene regulatory network to establish distinct trophoblast cell types during placentation.
Collapse
Affiliation(s)
- Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA; Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Pratik Home
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Bhaswati Bhattacharya
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Soma Ray
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
90
|
Windsperger K, Dekan S, Pils S, Golletz C, Kunihs V, Fiala C, Kristiansen G, Knöfler M, Pollheimer J. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions. Hum Reprod 2017; 32:1208-1217. [DOI: 10.1093/humrep/dex058] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
|
91
|
Notch signalling in placental development and gestational diseases. Placenta 2017; 56:65-72. [PMID: 28117145 DOI: 10.1016/j.placenta.2017.01.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 01/14/2023]
Abstract
Activation of Notch signalling upon cell-cell contact of neighbouring cells controls a plethora of cellular processes such as stem cell maintenance, cell lineage determination, cell proliferation, and survival. Accumulating evidence suggests that the pathway also critically regulates these events during placental development and differentiation. Herein, we summarize our present knowledge about Notch signalling in murine and human placentation and discuss its potential role in the pathophysiology of gestational disorders. Studies in mice suggest that Notch controls trophectoderm formation, decidualization, placental branching morphogenesis and endovascular trophoblast invasion. In humans, the particular signalling cascade promotes formation of the extravillous trophoblast lineage and regulates trophoblast proliferation, survival and differentiation. Expression patterns as well as functional analyses indicate distinct roles of Notch receptors in different trophoblast subtypes. Altered effects of Notch signalling have been detected in choriocarcinoma cells, consistent with its role in cancer development and progression. Moreover, deregulation of Notch signalling components were observed in pregnancy disorders such as preeclampsia and fetal growth restriction. In summary, Notch plays fundamental roles in different developmental processes of the placenta. Abnormal signalling through this pathway could contribute to the pathogenesis of gestational diseases with aberrant placentation and trophoblast function.
Collapse
|
92
|
Chang CW, Parast MM. Human trophoblast stem cells: Real or not real? Placenta 2017; 60 Suppl 1:S57-S60. [PMID: 28087122 DOI: 10.1016/j.placenta.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 10/24/2022]
Abstract
Abnormal trophoblast differentiation is the root cause of many placenta-based pregnancy complications, including preeclampsia and fetal growth restriction. Human trophoblast differentiation is difficult to study due to the lack of a stem cell model. Such a multipotent "trophoblast stem" (TS) cell, with the ability to differentiate into all trophoblast subtypes, has been derived from mouse blastocysts, but attempts to derive similar human cells have failed. We consider here several possibilities for the TS cell niche in the human placenta. Aside from discussion of such a niche in the pre-implantation blastocyst, we discuss evidence for these TS cells residing in the post-implantation villous cytotrophoblast layer, or even in the non-trophoblast portions, of the human placenta. It is our hope that recognition of the niche would lead to successful derivation and in vitro establishment of such cells, which could then be disseminated widely to the placental biology community for advancing the field. Availability of self-renewing human TS cells, whose gene expression and environment could be manipulated, will provide a platform, not just for the study of pathophysiology of placental disease, but also for the discovery of diagnostic biomarkers and therapeutic targets for common pregnancy complications.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|