51
|
Eble H, Joswig M, Lamberti L, Ludington WB. Master regulators of biological systems in higher dimensions. Proc Natl Acad Sci U S A 2023; 120:e2300634120. [PMID: 38096409 PMCID: PMC10743376 DOI: 10.1073/pnas.2300634120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
A longstanding goal of biology is to identify the key genes and species that critically impact evolution, ecology, and health. Network analysis has revealed keystone species that regulate ecosystems and master regulators that regulate cellular genetic networks. Yet these studies have focused on pairwise biological interactions, which can be affected by the context of genetic background and other species present, generating higher-order interactions. The important regulators of higher-order interactions are unstudied. To address this, we applied a high-dimensional geometry approach that quantifies epistasis in a fitness landscape to ask how individual genes and species influence the interactions in the rest of the biological network. We then generated and also reanalyzed 5-dimensional datasets (two genetic, two microbiome). We identified key genes (e.g., the rbs locus and pykF) and species (e.g., Lactobacilli) that control the interactions of many other genes and species. These higher-order master regulators can induce or suppress evolutionary and ecological diversification by controlling the topography of the fitness landscape. Thus, we provide a method and mathematical justification for exploration of biological networks in higher dimensions.
Collapse
Affiliation(s)
- Holger Eble
- Chair of Discrete Mathematics/Geometry, Technical University Berlin, Berlin10623, Germany
| | - Michael Joswig
- Chair of Discrete Mathematics/Geometry, Technical University Berlin, Berlin10623, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig04103, Germany
| | - Lisa Lamberti
- Department of Biosystems Science and Engineering, Federal Institute of Technology (ETH Zürich), Basel4058, Switzerland
- Swiss Institute of Bioinformatics, Basel4058, Switzerland
| | - William B. Ludington
- Department of Biosphere Sciences and Engineering, Carnegie Institution for Science, Baltimore, MD21218
- Department of Biology, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
52
|
Spragge F, Bakkeren E, Jahn MT, Araujo EBN, Pearson CF, Wang X, Pankhurst L, Cunrath O, Foster KR. Microbiome diversity protects against pathogens by nutrient blocking. Science 2023; 382:eadj3502. [PMID: 38096285 PMCID: PMC7616675 DOI: 10.1126/science.adj3502] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023]
Abstract
The human gut microbiome plays an important role in resisting colonization of the host by pathogens, but we lack the ability to predict which communities will be protective. We studied how human gut bacteria influence colonization of two major bacterial pathogens, both in vitro and in gnotobiotic mice. Whereas single species alone had negligible effects, colonization resistance greatly increased with community diversity. Moreover, this community-level resistance rested critically upon certain species being present. We explained these ecological patterns through the collective ability of resistant communities to consume nutrients that overlap with those used by the pathogen. Furthermore, we applied our findings to successfully predict communities that resist a novel target strain. Our work provides a reason why microbiome diversity is beneficial and suggests a route for the rational design of pathogen-resistant communities.
Collapse
Affiliation(s)
- Frances Spragge
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Erik Bakkeren
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Martin T. Jahn
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | | | | | - Xuedan Wang
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Louise Pankhurst
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| | - Olivier Cunrath
- CNRS, UMR7242, Biotechnology and cell signaling, University of Strasbourg, Illkirch, France
| | - Kevin R. Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, UK
| |
Collapse
|
53
|
Daybog I, Kolodny O. A computational framework for resolving the microbiome diversity conundrum. Nat Commun 2023; 14:7977. [PMID: 38042865 PMCID: PMC10693575 DOI: 10.1038/s41467-023-42768-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 10/20/2023] [Indexed: 12/04/2023] Open
Abstract
Recent empirical studies offer conflicting findings regarding the relation between host fitness and the composition of its microbiome, a conflict which we term 'the microbial β- diversity conundrum'. The microbiome is crucial for host wellbeing and survival. Surprisingly, different healthy individuals' microbiome compositions, even in the same population, often differ dramatically, contrary to the notion that a vital trait should be highly conserved. Moreover, gnotobiotic individuals exhibit highly deleterious phenotypes, supporting the view that the microbiome is paramount to host fitness. However, the introduction of almost arbitrarily selected microbiota into the system often achieves a significant rescue effect of the deleterious phenotypes. This is true even for microbiota from soil or phylogenetically distant host species, highlighting an apparent paradox. We suggest several solutions to the paradox using a computational framework, simulating the population dynamics of hosts and their microbiomes over multiple generations. The answers invoke factors such as host population size, the specific mode of microbial contribution to host fitness, and typical microbiome richness, offering solutions to the conundrum by highlighting scenarios where even when a host's fitness is determined in full by its microbiome composition, this composition has little effect on the natural selection dynamics of the population.
Collapse
Affiliation(s)
- Itay Daybog
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| | - Oren Kolodny
- Department of Ecology, Evolution and Behavior, The A. Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
54
|
Emmenegger B, Massoni J, Pestalozzi CM, Bortfeld-Miller M, Maier BA, Vorholt JA. Identifying microbiota community patterns important for plant protection using synthetic communities and machine learning. Nat Commun 2023; 14:7983. [PMID: 38042924 PMCID: PMC10693592 DOI: 10.1038/s41467-023-43793-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
Plant-associated microbiomes contribute to important ecosystem functions such as host resistance to biotic and abiotic stresses. The factors that determine such community outcomes are inherently difficult to identify under complex environmental conditions. In this study, we present an experimental and analytical approach to explore microbiota properties relevant for a microbiota-conferred host phenotype, here plant protection, in a reductionist system. We screened 136 randomly assembled synthetic communities (SynComs) of five bacterial strains each, followed by classification and regression analyses as well as empirical validation to test potential explanatory factors of community structure and composition, including evenness, total commensal colonization, phylogenetic diversity, and strain identity. We find strain identity to be the most important predictor of pathogen reduction, with machine learning algorithms improving performances compared to random classifications (94-100% versus 32% recall) and non-modelled predictions (0.79-1.06 versus 1.5 RMSE). Further experimental validation confirms three strains as the main drivers of pathogen reduction and two additional strains that confer protection in combination. Beyond the specific application presented in our study, we provide a framework that can be adapted to help determine features relevant for microbiota function in other biological systems.
Collapse
Affiliation(s)
| | - Julien Massoni
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
55
|
Swanson K, Blakeslee AMH, Fowler AE, Roozbehi S, Field EK. Microbial communities are indicators of parasite infection status. Environ Microbiol 2023; 25:3423-3434. [PMID: 37918974 DOI: 10.1111/1462-2920.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Growing evidence suggests that microbiomes have been shaping the evolutionary pathways of macroorganisms for millennia and that these tiny symbionts can influence, and possibly even control, species interactions like host-parasite relationships. Yet, while studies have investigated host-parasites and microbiomes separately, little has been done to understand all three groups synergistically. Here, we collected infected and uninfected Eurypanopeus depressus crab hosts from a coastal North Carolina oyster reef three times over 4 months. Infected crabs demonstrated an external stage of the rhizocephalan parasite, Loxothylacus panopaei. Community analyses revealed that microbial richness and diversity were significantly different among tissue types (uninfected crab, infected crab, parasite externae and parasite larvae) and over time (summer and fall). Specifically, the microbial communities from parasite externae and larvae had similar microbiomes that were consistent through time. Infected crabs demonstrated microbial communities spanning those of their host and parasite, while uninfected crabs showed more distinctive communities with greater variability over time. Microbial communities were also found to be indicators of early-stage infections. Resolving the microbial community composition of a host and its parasite is an important step in understanding the microbiome's role in the host-parasite relationship and determining how this tripartite relationship impacts coevolutionary processes.
Collapse
Affiliation(s)
- Kyle Swanson
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - April M H Blakeslee
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Amy E Fowler
- Environmental Science & Policy Department, George Mason University, Fairfax, Virginia, USA
| | - Sara Roozbehi
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
56
|
Prakash A, Agashe D, Khan I. Alteration of diet microbiota limits the experimentally evolved immune priming response in flour beetles, but not pathogen resistance. J Evol Biol 2023; 36:1745-1752. [PMID: 37658647 DOI: 10.1111/jeb.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 09/03/2023]
Abstract
Host-associated microbiota play a fundamental role in the training and induction of different forms of immunity, including inducible as well as constitutive components. However, direct experiments analysing the relative importance of microbiota on diverse forms of evolved immune functions are missing. We addressed this gap by using experimentally evolved lines of Tribolium castaneum that either produced inducible immune memory-like responses (immune priming) or constitutively expressed basal resistance (without priming), as divergent counterstrategies against Bacillus thuringiensis infection. We altered the microbial communities present in the diet (i.e. wheat flour) of these evolved lines using UV irradiation and estimated the impact on the beetle's ability to mount a priming response versus basal resistance. Populations that had evolved immune priming lost the ability to mount a priming response upon alteration of diet microbiota. Microbiota manipulation also caused a drastic reduction in their reproductive output and post-infection longevity. In contrast, in pathogen-resistant beetles, microbiota manipulation did not affect post-infection survival or reproduction. The divergent evolution of immune responses across beetle lines was thus associated with divergent reliance on the microbiome. Whether the latter is a direct outcome of differential pathogen exposure during selection or reflects evolved immune functions remains unclear. We hope that our results will motivate further experiments to understand the mechanistic basis of these complex evolutionary associations between microbiota, host immune strategies and fitness outcomes.
Collapse
Affiliation(s)
- Arun Prakash
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, Karnataka, India
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, Karnataka, India
| | - Imroze Khan
- Ashoka University, Rajiv Gandhi Education City, Sonepat, Rai, Haryana, India
| |
Collapse
|
57
|
Arya S, George AB, O’Dwyer JP. Sparsity of higher-order landscape interactions enables learning and prediction for microbiomes. Proc Natl Acad Sci U S A 2023; 120:e2307313120. [PMID: 37991947 PMCID: PMC10691334 DOI: 10.1073/pnas.2307313120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023] Open
Abstract
Microbiome engineering offers the potential to leverage microbial communities to improve outcomes in human health, agriculture, and climate. To translate this potential into reality, it is crucial to reliably predict community composition and function. But a brute force approach to cataloging community function is hindered by the combinatorial explosion in the number of ways we can combine microbial species. An alternative is to parameterize microbial community outcomes using simplified, mechanistic models, and then extrapolate these models beyond where we have sampled. But these approaches remain data-hungry, as well as requiring an a priori specification of what kinds of mechanisms are included and which are omitted. Here, we resolve both issues by introducing a mechanism-agnostic approach to predicting microbial community compositions and functions using limited data. The critical step is the identification of a sparse representation of the community landscape. We then leverage this sparsity to predict community compositions and functions, drawing from techniques in compressive sensing. We validate this approach on in silico community data, generated from a theoretical model. By sampling just [Formula: see text]1% of all possible communities, we accurately predict community compositions out of sample. We then demonstrate the real-world application of our approach by applying it to four experimental datasets and showing that we can recover interpretable, accurate predictions on composition and community function from highly limited data.
Collapse
Affiliation(s)
- Shreya Arya
- Department of Physics, University of Illinois, Urbana-Champaign, Urbana, IL61801
| | - Ashish B. George
- Center for Artificial Intelligence and Modeling, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA0214
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
| | - James P. O’Dwyer
- Center for Artificial Intelligence and Modeling, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
58
|
Domin H, Zimmermann J, Taubenheim J, Fuentes Reyes G, Saueressig L, Prasse D, Höppner M, Schmitz RA, Hentschel U, Kaleta C, Fraune S. Sequential host-bacteria and bacteria-bacteria interactions determine the microbiome establishment of Nematostella vectensis. MICROBIOME 2023; 11:257. [PMID: 37978412 PMCID: PMC10656924 DOI: 10.1186/s40168-023-01701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND The microbiota of multicellular organisms undergoes considerable changes during host ontogeny but the general mechanisms that control community assembly and succession are poorly understood. Here, we use bacterial recolonization experiments in Nematostella vectensis as a model to understand general mechanisms determining bacterial establishment and succession. We compared the dynamic establishment of the microbiome on the germfree host and on inert silicone tubes. RESULTS Following the dynamic reconstruction of microbial communities on both substrates, we show that the initial colonization events are strongly influenced by the host but not by the silicone tube, while the subsequent bacteria-bacteria interactions are the main driver of bacterial succession. Interestingly, the recolonization pattern on adult hosts resembles the ontogenetic colonization succession. This process occurs independently of the bacterial composition of the inoculum and can be followed at the level of individual bacteria. To identify potential metabolic traits associated with initial colonization success and potential metabolic interactions among bacteria associated with bacterial succession, we reconstructed the metabolic networks of bacterial colonizers based on their genomes. These analyses revealed that bacterial metabolic capabilities reflect the recolonization pattern, and the degradation of chitin might be a selection factor during early recolonization of the animal. Concurrently, transcriptomic analyses revealed that Nematostella possesses two chitin synthase genes, one of which is upregulated during early recolonization. CONCLUSIONS Our results show that early recolonization events are strongly controlled by the host while subsequent colonization depends on metabolic bacteria-bacteria interactions largely independent of host ontogeny. Video Abstract.
Collapse
Affiliation(s)
- H Domin
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - J Zimmermann
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - J Taubenheim
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - G Fuentes Reyes
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - L Saueressig
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - D Prasse
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - M Höppner
- Institute for Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - R A Schmitz
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - U Hentschel
- RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, 24105, Germany
- Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - C Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, 24105, Germany
| | - S Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany.
| |
Collapse
|
59
|
Brunner JD, Gallegos-Graves LA, Kroeger ME. Inferring microbial interactions with their environment from genomic and metagenomic data. PLoS Comput Biol 2023; 19:e1011661. [PMID: 37956203 PMCID: PMC10681327 DOI: 10.1371/journal.pcbi.1011661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/27/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Microbial communities assemble through a complex set of interactions between microbes and their environment, and the resulting metabolic impact on the host ecosystem can be profound. Microbial activity is known to impact human health, plant growth, water quality, and soil carbon storage which has lead to the development of many approaches and products meant to manipulate the microbiome. In order to understand, predict, and improve microbial community engineering, genome-scale modeling techniques have been developed to translate genomic data into inferred microbial dynamics. However, these techniques rely heavily on simulation to draw conclusions which may vary with unknown parameters or initial conditions, rather than more robust qualitative analysis. To better understand microbial community dynamics using genome-scale modeling, we provide a tool to investigate the network of interactions between microbes and environmental metabolites over time. Using our previously developed algorithm for simulating microbial communities from genome-scale metabolic models (GSMs), we infer the set of microbe-metabolite interactions within a microbial community in a particular environment. Because these interactions depend on the available environmental metabolites, we refer to the networks that we infer as metabolically contextualized, and so name our tool MetConSIN: Metabolically Contextualized Species Interaction Networks.
Collapse
Affiliation(s)
- James D. Brunner
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | - Marie E. Kroeger
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| |
Collapse
|
60
|
Veresoglou SD, Johnson D. Species-area relationships in microbial-mediated mutualisms. Trends Microbiol 2023; 31:1111-1117. [PMID: 37301688 DOI: 10.1016/j.tim.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Symbioses involving microorganisms prevail in nature and are key to regulating numerous ecosystem processes and in driving evolution. A major concern in understanding the ecology of symbioses involving microorganisms arises in the effectiveness of sampling strategies to capture the contrasting size of organisms involved. In many mutualisms, including mycorrhizas and gut systems, hosts interact simultaneously with multiple smaller sized mutualists, the identity of which determines success for the host. This complicates quantifying the diversity of mutualisms because sampling techniques fail to capture effectively the diversity of each partner. Here we propose the use of species-area relationships (SARs) to explicitly consider the spatial scale of microbial partners in symbioses, which we propose will improve our understanding of the ecology of mutualisms.
Collapse
Affiliation(s)
- Stavros D Veresoglou
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, 518107, China.
| | - David Johnson
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M139PT, UK
| |
Collapse
|
61
|
Flores-Arguedas H, Antolin-Camarena O, Saavedra S, Angulo MT. Assembly archetypes in ecological communities. J R Soc Interface 2023; 20:20230349. [PMID: 38016640 PMCID: PMC10684342 DOI: 10.1098/rsif.2023.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
An instrumental discovery in comparative and developmental biology is the existence of assembly archetypes that synthesize the vast diversity of organisms' body plans-from legs and wings to human arms-into simple, interpretable and general design principles. Here, we combine a novel mathematical formalism based on category theory with experimental data to show that similar 'assembly archetypes' exist at the larger organization scale of ecological communities when assembling a species pool across diverse environmental contexts, particularly when species interactions are highly structured. We applied our formalism to clinical data discovering two assembly archetypes that differentiate between healthy and unhealthy human gut microbiota. The concept of assembly archetypes and the methods to synthesize them can pave the way to discovering the general assembly principles of the ecological communities we observe in nature.
Collapse
Affiliation(s)
- Hugo Flores-Arguedas
- Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, Queretaro, Mexico
| | - Omar Antolin-Camarena
- Institute of Mathematics, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Marco Tulio Angulo
- Institute of Mathematics, Universidad Nacional Autónoma de México, Juriquilla, Queretaro, Mexico
| |
Collapse
|
62
|
Sannino DR, Dobson AJ. Acetobacter pomorum in the Drosophila gut microbiota buffers against host metabolic impacts of dietary preservative formula and batch variation in dietary yeast. Appl Environ Microbiol 2023; 89:e0016523. [PMID: 37800920 PMCID: PMC10617557 DOI: 10.1128/aem.00165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/05/2023] [Indexed: 10/07/2023] Open
Abstract
Gut microbiota are fundamentally important for healthy function in animal hosts. Drosophila melanogaster is a powerful system for understanding host-microbiota interactions, with modulation of the microbiota inducing phenotypic changes that are conserved across animal taxa. Qualitative differences in diet, such as preservatives and dietary yeast batch variation, may affect fly health indirectly via microbiota, and may potentially have hitherto uncharacterized effects directly on the fly. These factors are rarely considered, controlled, and are not standardized among laboratories. Here, we show that the microbiota's impact on fly triacylglyceride (TAG) levels-a commonly-measured metabolic index-depends on both preservatives and yeast, and combinatorial interactions among the three variables. In studies of conventional, axenic, and gnotobiotic flies, we found that microbial impacts were apparent only on specific yeast-by-preservative conditions, with TAG levels determined by a tripartite interaction of the three experimental factors. When comparing axenic and conventional flies, we found that preservatives caused more variance in host TAG than microbiota status, and certain yeast-preservative combinations even reversed effects of microbiota on TAG. Preservatives had major effects in axenic flies, suggesting either direct effects on the fly or indirect effects via media. However, Acetobacter pomorum buffers the fly against this effect, despite the preservatives inhibiting growth, indicating that this bacterium benefits the host in the face of mutual environmental toxicity. Our results suggest that antimicrobial preservatives have major impacts on host TAG, and that microbiota modulates host TAG dependent on the combination of the dietary factors of preservative formula and yeast batch. IMPORTANCE Drosophila melanogaster is a premier model for microbiome science, which has greatly enhanced our understanding of the basic biology of host-microbe interactions. However, often overlooked factors such as dietary composition, including yeast batch variability and preservative formula, may confound data interpretation of experiments within the same lab and lead to different findings when comparing between labs. Our study supports this notion; we find that the microbiota does not alter host TAG levels independently. Rather, TAG is modulated by combinatorial effects of microbiota, yeast batch, and preservative formula. Specific preservatives increase TAG even in germ-free flies, showing that a commonplace procedure in fly husbandry alters metabolic physiology. This work serves as a cautionary tale that fly rearing methodology can mask or drive microbiota-dependent metabolic changes and also cause microbiota-independent changes.
Collapse
Affiliation(s)
- David R. Sannino
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Adam J. Dobson
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
63
|
Yitbarek S, Guittar J, Knutie SA, Ogbunugafor CB. Deconstructing taxa x taxa xenvironment interactions in the microbiota: A theoretical examination. iScience 2023; 26:107875. [PMID: 37860776 PMCID: PMC10583047 DOI: 10.1016/j.isci.2023.107875] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 03/21/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
A major objective of microbial ecology is to identify how the composition of microbial taxa shapes host phenotypes. However, most studies focus on pairwise interactions and ignore the potentially significant effects of higher-order microbial interactions.Here, we quantify the effects of higher-order interactions among taxa on host infection risk. We apply our approach to an in silico dataset that is built to resemble a population of insect hosts with gut-associated microbial communities at risk of infection from an intestinal parasite across a breadth of nutrient environmental contexts.We find that the effect of higher-order interactions is considerable and can change appreciably across environmental contexts. Furthermore, we show that higher-order interactions can stabilize community structure thereby reducing host susceptibility to parasite invasion.Our approach illustrates how incorporating the effects of higher-order interactions among gut microbiota across environments can be essential for understanding their effects on host phenotypes.
Collapse
Affiliation(s)
- Senay Yitbarek
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - John Guittar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI 49060, USA
| | - Sarah A. Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
64
|
Xu W, Rustenhoven J, Nelson CA, Dykstra T, Ferreiro A, Papadopoulos Z, Burnham CAD, Dantas G, Fremont DH, Kipnis J. A novel immune modulator IM33 mediates a glia-gut-neuronal axis that controls lifespan. Neuron 2023; 111:3244-3254.e8. [PMID: 37582366 PMCID: PMC10592285 DOI: 10.1016/j.neuron.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/19/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
Aging is a complex process involving various systems and behavioral changes. Altered immune regulation, dysbiosis, oxidative stress, and sleep decline are common features of aging, but their interconnection is poorly understood. Using Drosophila, we discover that IM33, a novel immune modulator, and its mammalian homolog, secretory leukocyte protease inhibitor (SLPI), are upregulated in old flies and old mice, respectively. Knockdown of IM33 in glia elevates the gut reactive oxygen species (ROS) level and alters gut microbiota composition, including increased Lactiplantibacillus plantarum abundance, leading to a shortened lifespan. Additionally, dysbiosis induces sleep fragmentation through the activation of insulin-producing cells in the brain, which is mediated by the binding of Lactiplantibacillus plantarum-produced DAP-type peptidoglycan to the peptidoglycan recognition protein LE (PGRP-LE) receptor. Therefore, IM33 plays a role in the glia-microbiota-neuronal axis, connecting neuroinflammation, dysbiosis, and sleep decline during aging. Identifying molecular mediators of these processes could lead to the development of innovative strategies for extending lifespan.
Collapse
Affiliation(s)
- Wangchao Xu
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Justin Rustenhoven
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand; Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Christopher A Nelson
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Aura Ferreiro
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zachary Papadopoulos
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA; Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, School of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
65
|
Houwenhuyse S, Callens M, Bulteel L, Decaestecker E. Comparison between the gut bacterial community of laboratory cultured and wild Daphnia. FEMS Microbiol Ecol 2023; 99:fiad116. [PMID: 37740575 DOI: 10.1093/femsec/fiad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023] Open
Abstract
The fitness of an organism is often impacted by the composition and biological activity of its associated bacterial community. Many factors, including host genetics, diet, and temperature can influence the bacterial community composition. Furthermore, these factors can differ strongly between natural and laboratory environments. Consequently, several studies have highlighted results from laboratory experiments investigating host-associated bacterial communities to be conflicting with those obtained under field conditions. Here, we compared the Daphnia magna gut bacterial communities in natural host populations with those of laboratory cultured hosts. We further analyzed changes in the gut bacterial communities after transferring hosts from natural populations to the laboratory on the short- and long-term. Results show that, in general, the gut bacterial communities from natural populations differ from those of laboratory cultures and that their composition and diversity changed one hour after being transferred to the laboratory. Over the following 14 days, the composition and diversity changed gradually. On the longer term (after two years of rearing hosts in the laboratory) the composition and diversity of the gut bacterial communities was strongly altered compared to the initial state. Our findings indicate that the gut bacterial communities of Daphnia magna in laboratory experiments is not representative for natural field conditions, and that caution should be taken when interpreting results from laboratory experiments for natural settings.
Collapse
Affiliation(s)
- Shira Houwenhuyse
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Gent University, Karel Lodewijk Ledeganckstraat 35, 9000, Gent, Belgium
| | - Martijn Callens
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
- Animal Sciences Unit - Aquatic Environment and Quality, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende 8400, Belgium
| | - Lore Bulteel
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ellen Decaestecker
- Laboratory of Aquatic Biology, Department of Biology, University of Leuven- KU Leuven, Campus KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium
| |
Collapse
|
66
|
Chaturvedi A, Li X, Dhandapani V, Marshall H, Kissane S, Cuenca-Cambronero M, Asole G, Calvet F, Ruiz-Romero M, Marangio P, Guigó R, Rago D, Mirbahai L, Eastwood N, Colbourne J, Zhou J, Mallon E, Orsini L. The hologenome of Daphnia magna reveals possible DNA methylation and microbiome-mediated evolution of the host genome. Nucleic Acids Res 2023; 51:9785-9803. [PMID: 37638757 PMCID: PMC10570034 DOI: 10.1093/nar/gkad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Properties that make organisms ideal laboratory models in developmental and medical research are often the ones that also make them less representative of wild relatives. The waterflea Daphnia magna is an exception, by both sharing many properties with established laboratory models and being a keystone species, a sentinel species for assessing water quality, an indicator of environmental change and an established ecotoxicology model. Yet, Daphnia's full potential has not been fully exploited because of the challenges associated with assembling and annotating its gene-rich genome. Here, we present the first hologenome of Daphnia magna, consisting of a chromosomal-level assembly of the D. magna genome and the draft assembly of its metagenome. By sequencing and mapping transcriptomes from exposures to environmental conditions and from developmental morphological landmarks, we expand the previously annotates gene set for this species. We also provide evidence for the potential role of gene-body DNA-methylation as a mutagen mediating genome evolution. For the first time, our study shows that the gut microbes provide resistance to commonly used antibiotics and virulence factors, potentially mediating Daphnia's environmental-driven rapid evolution. Key findings in this study improve our understanding of the contribution of DNA methylation and gut microbiota to genome evolution in response to rapidly changing environments.
Collapse
Affiliation(s)
- Anurag Chaturvedi
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaojing Li
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Hollie Marshall
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- Department of Genetics and Genome Biology, the University of Leicester, Leicester LE1 7RH, UK
| | - Stephen Kissane
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Maria Cuenca-Cambronero
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- Aquatic Ecology Group, University of Vic - Central University of Catalonia, 08500 Vic, Spain
| | - Giovanni Asole
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Ferriol Calvet
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Paolo Marangio
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Daria Rago
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Leda Mirbahai
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Niamh Eastwood
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Jiarui Zhou
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Eamonn Mallon
- Department of Genetics and Genome Biology, the University of Leicester, Leicester LE1 7RH, UK
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- The Alan Turing Institute, British Library, London NW1 2DB, UK
| |
Collapse
|
67
|
Zhang S, Shen Y, Wang S, Lin Z, Su R, Jin F, Zhang Y. Responses of the gut microbiota to environmental heavy metal pollution in tree sparrow (Passer montanus) nestlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115480. [PMID: 37716068 DOI: 10.1016/j.ecoenv.2023.115480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Gut microbiota plays a critical role in regulating the health and adaptation of wildlife. However, our understanding of how exposure to environmental heavy metals influences the gut microbiota of wild birds, particularly during the vulnerable and sensitive nestling stage, remains limited. In order to investigate the relationship between heavy metals and the gut microbiota, we analyzed the characteristics of gut microbiota and heavy metals levels in tree sparrow nestlings at different ages (6, 9 and 12-day-old). The study was conducted in two distinct areas: Baiyin (BY), which is heavily contaminated with heavy metals, and Liujiaxia (LJX), a relatively unpolluted area. Our result reveled a decrease in gut microbiota diversity and increased inter-individual variation among nestlings in BY. However, we also observed an increase in the abundance of bacterial groups and an up-regulation of bacterial metabolic functions associated with resistance to heavy metals toxicity in BY. Furthermore, we identified a metal-associated shift in the relative abundance of microbial taxa in 12-day-old tree sparrow nestlings in BY, particularly involving Aeromonadaceae, Ruminococcaceae and Pseudomonadaceae. Moreover, a significant positive correlation was found between the body condition of tree sparrow nestlings and the abundance of Bifidobacteriaceae in BY. Collectively, our findings indicate that the gut microbiota of tree sparrow nestlings is susceptible to heavy metals during early development. However, the results also highlight the presence of adaptive responses that enable them to effectively cope with environmental heavy metal pollution.
Collapse
Affiliation(s)
- Sheng Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Shen
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaocun Lin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Su
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Jin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
68
|
Pinnow N, Chibani CM, Güllert S, Weiland-Bräuer N. Microbial community changes correlate with impaired host fitness of Aurelia aurita after environmental challenge. Anim Microbiome 2023; 5:45. [PMID: 37735458 PMCID: PMC10515101 DOI: 10.1186/s42523-023-00266-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Climate change globally endangers certain marine species, but at the same time, such changes may promote species that can tolerate and adapt to varying environmental conditions. Such acclimatization can be accompanied or possibly even be enabled by a host's microbiome; however, few studies have so far directly addressed this process. Here we show that acute, individual rises in seawater temperature and salinity to sub-lethal levels diminished host fitness of the benthic Aurelia aurita polyp, demonstrated by up to 34% reduced survival rate, shrinking of the animals, and almost halted asexual reproduction. Changes in the fitness of the polyps to environmental stressors coincided with microbiome changes, mainly within the phyla Proteobacteria and Bacteroidota. The absence of bacteria amplified these effects, pointing to the benefit of a balanced microbiota to cope with a changing environment. In a future ocean scenario, mimicked by a combined but milder rise of temperature and salinity, the fitness of polyps was severely less impaired, together with condition-specific changes in the microbiome composition. Our results show that the effects on host fitness correlate with the strength of environmental stress, while salt-conveyed thermotolerance might be involved. Further, a specific, balanced microbiome of A. aurita polyps supports the host's acclimatization. Microbiomes may provide a means for acclimatization, and microbiome flexibility can be a fundamental strategy for marine animals to adapt to future ocean scenarios and maintain biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Nicole Pinnow
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Cynthia M Chibani
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Simon Güllert
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Current address: Sysmex Inostics GmbH, Falkenried 88, 20251, Hamburg, Germany
| | - Nancy Weiland-Bräuer
- General Microbiology, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| |
Collapse
|
69
|
Dundore-Arias JP, Michalska-Smith M, Millican M, Kinkel LL. More Than the Sum of Its Parts: Unlocking the Power of Network Structure for Understanding Organization and Function in Microbiomes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:403-423. [PMID: 37217203 DOI: 10.1146/annurev-phyto-021021-041457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant and soil microbiomes are integral to the health and productivity of plants and ecosystems, yet researchers struggle to identify microbiome characteristics important for providing beneficial outcomes. Network analysis offers a shift in analytical framework beyond "who is present" to the organization or patterns of coexistence between microbes within the microbiome. Because microbial phenotypes are often significantly impacted by coexisting populations, patterns of coexistence within microbiomes are likely to be especially important in predicting functional outcomes. Here, we provide an overview of the how and why of network analysis in microbiome research, highlighting the ways in which network analyses have provided novel insights into microbiome organization and functional capacities, the diverse network roles of different microbial populations, and the eco-evolutionary dynamics of plant and soil microbiomes.
Collapse
Affiliation(s)
- J P Dundore-Arias
- Department of Biology and Chemistry, California State University, Monterey Bay, Seaside, California, USA
| | - M Michalska-Smith
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA;
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | | | - L L Kinkel
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA;
| |
Collapse
|
70
|
Téfit MA, Budiman T, Dupriest A, Yew JY. Environmental microbes promote phenotypic plasticity in reproduction and sleep behaviour. Mol Ecol 2023; 32:5186-5200. [PMID: 37577956 PMCID: PMC10544802 DOI: 10.1111/mec.17095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/15/2023]
Abstract
The microbiome has been hypothesized as a driving force of phenotypic variation in host organisms that is capable of extending metabolic processes, altering development and in some cases, conferring novel functions that are critical for survival. Only a few studies have directly shown a causal role for the environmental microbiome in altering host phenotypic features. To assess the extent to which environmental microbes induce variation in host life-history traits and behaviour, we inoculated axenic Drosophila melanogaster with microbes isolated from drosophilid populations collected from two different field sites and generated two populations with distinct bacterial and fungal profiles. We show that microbes isolated from environmental sites with modest abiotic differences induce large variation in host reproduction, fatty acid levels, stress tolerance and sleep behaviour. Importantly, clearing microbes from each experimental population removed the phenotypic differences. The results support the causal role of environmental microbes as drivers of host phenotypic plasticity and potentially, rapid adaptation and evolution.
Collapse
Affiliation(s)
- Mélisandre A Téfit
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Tifanny Budiman
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Adrianna Dupriest
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Joanne Y Yew
- School of Ocean and Earth Science and Technology, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
71
|
Tabbabi A, Mizushima D, Yamamoto DS, Kato H. Effects of host species on microbiota composition in Phlebotomus and Lutzomyia sand flies. Parasit Vectors 2023; 16:310. [PMID: 37653518 PMCID: PMC10472604 DOI: 10.1186/s13071-023-05939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Blood-sucking phlebotomine sand flies are vectors of the protozoan parasites Leishmania spp. Although the intestinal microbiota is involved in a wide range of biological and physiological processes and has the potential to alter vector competence, little is known about the factors that modify the gut microbiota composition of sand flies. As a key step toward addressing this issue, we investigated the impact of host species on the gut bacterial composition in Phlebotomus and Lutzomyia sand flies reared under the same conditions. METHODS Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing were used to characterize the overall bacterial composition of three laboratory-reared sandflies: Phlebotomus papatasi, Ph. duboscqi, and Lutzomyia longipalpis. RESULTS Our results showed that the larvae of the three sand fly species harbored almost the same microbes but had different relative abundances. Adult Ph. papatasi and Ph. duboscqi revealed similar microbiome compositions, which were distinct from that of adult Lu. longipalpis. Furthermore, we showed that Ph. papatasi and Ph. duboscqi are hosts for different bacterial genera. The experiment was repeated twice to improve accuracy and increase reliability of the data, and the same results were obtained even when a distinct composition of the microbiome among the same species was identified probably because of the use of different larvae food batch. CONCLUSIONS The present study provides key insights into the role of host species in the gut microbial content of different sand fly species reared under the same conditions, which may influence their susceptibility to Leishmania infection.
Collapse
Affiliation(s)
- Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
72
|
Ahmed B, Beneš F, Hajšlová J, Fišarová L, Vosátka M, Hijri M. Enhanced production of select phytocannabinoids in medical Cannabis cultivars using microbial consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1219836. [PMID: 37719209 PMCID: PMC10502174 DOI: 10.3389/fpls.2023.1219836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023]
Abstract
The root microbiome of medical cannabis plants has been largely unexplored due to past legal restrictions in many countries. Microbes that live on and within the tissue of Cannabis sativa L. similar to other plants, provide advantages such as stimulating plant growth, helping it absorb minerals, providing protection against pathogen attacks, and influencing the production of secondary metabolites. To gain insight into the microbial communities of C. sativa cultivars with different tetrahydrocannabinol (THC) and cannabidiol (CBD) profiles, a greenhouse trial was carried out with and without inoculants added to the growth substrate. Illumina MiSeq metabarcoding was used to analyze the root and rhizosphere microbiomes of the five cultivars. Plant biomass production showed higher levels in three of five cultivars inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis and microbial suspension. The blossom dry weight of the cultivar THE was greater when inoculated with R. irregularis and microbial suspension than with no inoculation. Increasing plant biomass and blossom dry weight are two important parameters for producing cannabis for medical applications. In mature Cannabis, 12 phytocannabinoid compounds varied among cultivars and were affected by inoculants. Significant differences (p ≤ 0.01) in concentrations of cannabidivarinic acid (CBDVA), cannabidivarin (CBDV), cannabigerol (CBG), cannabidiol (CBD), and cannabigerolic acid (CBGA) were observed in all Cannabis cultivars when amended with F, K1, and K2 inoculants. We found microbes that were shared among cultivars. For example, Terrimicrobium sp., Actinoplanes sp., and Trichoderma reesei were shared by the cultivars ECC-EUS-THE, CCL-ECC, and EUS-THE, respectively. Actinoplanes sp. is a known species that produces phosphatase enzymes, while Trichoderma reesei is a fungal train that produces cellulase and contributes to organic matter mineralization. However, the role of Terrimicrobium sp. as an anaerobic bacterium remains unknown. This study demonstrated that the use of inoculants had an impact on the production of phytocannabinoids in five Cannabis cultivars. These inoculants could have useful applications for optimizing cannabis cultivation practices and increasing the production of phytocannabinoids.
Collapse
Affiliation(s)
- Bulbul Ahmed
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| | - František Beneš
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czechia
| | - Jana Hajšlová
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Prague, Czechia
| | - Lenka Fišarová
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Miroslav Vosátka
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
73
|
Lee H, Bloxham B, Gore J. Resource competition can explain simplicity in microbial community assembly. Proc Natl Acad Sci U S A 2023; 120:e2212113120. [PMID: 37603734 PMCID: PMC10469513 DOI: 10.1073/pnas.2212113120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 06/16/2023] [Indexed: 08/23/2023] Open
Abstract
Predicting the composition and diversity of communities is a central goal in ecology. While community assembly is considered hard to predict, laboratory microcosms often follow a simple assembly rule based on the outcome of pairwise competitions. This assembly rule predicts that a species that is excluded by another species in pairwise competition cannot survive in a multispecies community with that species. Despite the empirical success of this bottom-up prediction, its mechanistic origin has remained elusive. In this study, we elucidate how this simple pattern in community assembly can emerge from resource competition. Our geometric analysis of a consumer-resource model shows that trio community assembly is always predictable from pairwise outcomes when one species grows faster than another species on every resource. We also identify all possible trio assembly outcomes under three resources and find that only two outcomes violate the assembly rule. Simulations demonstrate that pairwise competitions accurately predict trio assembly with up to 100 resources and the assembly of larger communities containing up to twelve species. We then further demonstrate accurate quantitative prediction of community composition using the harmonic mean of pairwise fractions. Finally, we show that cross-feeding between species does not decrease assembly rule prediction accuracy. Our findings highlight that simple community assembly can emerge even in ecosystems with complex underlying dynamics.
Collapse
Affiliation(s)
- Hyunseok Lee
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Blox Bloxham
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jeff Gore
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
74
|
Mason CJ, Auth J, Geib SM. Gut bacterial population and community dynamics following adult emergence in pest tephritid fruit flies. Sci Rep 2023; 13:13723. [PMID: 37607978 PMCID: PMC10444893 DOI: 10.1038/s41598-023-40562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023] Open
Abstract
Gut microbiota are important contributors to insect success. Host-microbe interactions are dynamic and can change as hosts age and/or encounter different environments. A turning point in these relationships the transition from immature to adult life stages, particularly for holometabolous insects where there is radical restructuring of the gut. Improved knowledge of population and community dynamics of gut microbiomes upon adult emergence inform drivers of community assembly and physiological aspects of host-microbe interactions. Here, we evaluated the bacterial communities of the pest tephritid species melon fly (Zeugodacus cucurbitae) and Medditeranean fruit fly (medfly, Ceratitis capitata) associated with the pupae life stage and timepoints immediately following adult eclosion. We used a combination of culturing to determine cultivatable bacterial titers, qPCR to determine 16S-rRNA SSU copy numbers, and 16S V4 sequencing to determine changes in communities. Both culturing and qPCR revealed that fly bacterial populations declined upon adult emergence by 10 to 100-fold followed by recovery within 24 h following eclosion. Titers reached ~ 107 CFUs (~ 108 16S rRNA copies) within a week post-emergence. We also observed concurrent changes in amplicon sequence variance (ASVs), where the ASV composition differed overtime for both melon fly and medfly adults at different timepoints. Medfly, in particular, had different microbiome compositions at each timepoint, indicating greater levels of variation before stabilization. These results demonstrate that tephritid microbiomes experience a period of flux following adult emergence, where both biomass and the makeup of the community undergoes dramatic shifts. The host-microbe dynamics we document suggest plasticity in the community and that there may be specific periods where the tephritid gut microbiome may be pliable to introduce and establish new microbial strains in the host.
Collapse
Affiliation(s)
- Charles J Mason
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Jean Auth
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA
| | - Scott M Geib
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA
| |
Collapse
|
75
|
Liu S, Xiao Y, Wang X, Guo D, Wang Y, Wang Y. Effects of Microhabitat Temperature Variations on the Gut Microbiotas of Free-Living Hibernating Animals. Microbiol Spectr 2023; 11:e0043323. [PMID: 37378560 PMCID: PMC10434193 DOI: 10.1128/spectrum.00433-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Variations in ambient temperature (Ta) may significantly influence the gut microbiotas of ectothermic and endothermic animals, affecting fitness. It remains unclear, however, whether temperature fluctuations affect the gut microbial communities of hibernating animals during torpor. To investigate temperature-induced changes in the gut microbiota during hibernation under entirely natural conditions, we took advantage of two adjacent but distinct populations of the least horseshoe bat (Rhinolophus pusillus), which inhabit sites with a similar summer Ta but a different winter Ta. Using 16S rRNA gene high-throughput sequencing, we estimated differences in gut microbial diversity and composition between the hibernating (winter) and active (summer) R. pusillus populations at both sites. During the active period, gut microbiotas did not differ significantly between the two populations, probably due to the similar Tas. However, during hibernation, a higher Ta was associated with decreased α-diversity in the gut microbiome. During hibernation, temperature variation did not significantly affect the relative abundance of Proteobacteria, the dominant phylum at both sites, but marked site-specific differences were detected in the relative abundances of Firmicutes, Actinobacteria, and Tenericutes. In total, 74 amplicon sequence variants (ASVs) were significantly differentially abundant between the hibernating and active bat guts across the two sites; most of these ASVs were associated with the cooler site, and many belonged to pathogenic genera, suggesting that lower ambient temperatures during hibernation may increase the risk of pathogen proliferation in the host gut. Our findings help to clarify the mechanisms underlying the gut microbiota-driven adaptation of hibernating mammals to temperature changes. IMPORTANCE Temperature variations affect gut microbiome diversity and structure in both ectothermic and endothermic animals. Here, we aimed to characterize temperature-induced changes in the gut microbiotas of adjacent natural populations of the least horseshoe bat (Rhinolophus pusillus) which hibernate at different ambient temperatures. We found that the ambient temperature significantly affected the α-diversity, but not the β-diversity, of the gut microbiota. Bats hibernating at cooler temperatures experienced more drastic shifts in gut microbiome structure, with consequent effects on energy-related metabolic pathways. Our results provide novel insights into the effects of ambient temperature on the gut microbiotas of hibernating animals.
Collapse
Affiliation(s)
- Sen Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Xufan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Dongge Guo
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanmei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ying Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
76
|
Jensen N, Weiland-Bräuer N, Joel S, Chibani CM, Schmitz RA. The Life Cycle of Aurelia aurita Depends on the Presence of a Microbiome in Polyps Prior to Onset of Strobilation. Microbiol Spectr 2023; 11:e0026223. [PMID: 37378516 PMCID: PMC10433978 DOI: 10.1128/spectrum.00262-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Aurelia aurita's intricate life cycle alternates between benthic polyp and pelagic medusa stages. The strobilation process, a critical asexual reproduction mechanism in this jellyfish, is severely compromised in the absence of the natural polyp microbiome, with limited production and release of ephyrae. Yet, the recolonization of sterile polyps with a native polyp microbiome can correct this defect. Here, we investigated the precise timing necessary for recolonization as well as the host-associated molecular processes involved. We deciphered that a natural microbiota had to be present in polyps prior to the onset of strobilation to ensure normal asexual reproduction and a successful polyp-to-medusa transition. Providing the native microbiota to sterile polyps after the onset of strobilation failed to restore the normal strobilation process. The absence of a microbiome was associated with decreased transcription of developmental and strobilation genes as monitored by reverse transcription-quantitative PCR. Transcription of these genes was exclusively observed for native polyps and sterile polyps that were recolonized before the initiation of strobilation. We further propose that direct cell contact between the host and its associated bacteria is required for the normal production of offspring. Overall, our findings indicate that the presence of a native microbiome at the polyp stage prior to the onset of strobilation is essential to ensure a normal polyp-to-medusa transition. IMPORTANCE All multicellular organisms are associated with microorganisms that play fundamental roles in the health and fitness of the host. Notably, the native microbiome of the Cnidarian Aurelia aurita is crucial for the asexual reproduction by strobilation. Sterile polyps display malformed strobilae and a halt of ephyrae release, which is restored by recolonizing sterile polyps with a native microbiota. Despite that, little is known about the microbial impact on the strobilation process's timing and molecular consequences. The present study shows that A. aurita's life cycle depends on the presence of the native microbiome at the polyp stage prior to the onset of strobilation to ensure the polyp-to-medusa transition. Moreover, sterile individuals correlate with reduced transcription levels of developmental and strobilation genes, evidencing the microbiome's impact on strobilation on the molecular level. Transcription of strobilation genes was exclusively detected in native polyps and those recolonized before initiating strobilation, suggesting microbiota-dependent gene regulation.
Collapse
Affiliation(s)
- Nadin Jensen
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Nancy Weiland-Bräuer
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Shindhuja Joel
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Cynthia Maria Chibani
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| | - Ruth Anne Schmitz
- Institute of General Microbiology, Christian-Albrechts University Kiel, Kiel, Germany
| |
Collapse
|
77
|
Shu Q, Guo X, Tian C, Wang Y, Zhang X, Cheng J, Li F, Li B. Homeostatic Regulation of the Duox-ROS Defense System: Revelations Based on the Diversity of Gut Bacteria in Silkworms ( Bombyx mori). Int J Mol Sci 2023; 24:12731. [PMID: 37628915 PMCID: PMC10454487 DOI: 10.3390/ijms241612731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The Duox-ROS defense system plays an important role in insect intestinal immunity. To investigate the role of intestinal microbiota in Duox-ROS regulation herein, 16S rRNA sequencing technology was utilized to compare the characteristics of bacterial populations in the midgut of silkworm after different time-periods of treatment with three feeding methods: 1-4 instars artificial diet (AD), 1-4 instars mulberry leaf (ML) and 1-3 instars artificial diet + 4 instar mulberry leaf (TM). The results revealed simple intestinal microbiota in the AD group whilst microbiota were abundant and variable in the ML and TM silkworms. By analyzing the relationship among intestinal pH, reactive oxygen species (ROS) content and microorganism composition, it was identified that an acidic intestinal environment inhibited the growth of intestinal microbiota of silkworms, observed concurrently with low ROS content and a high activity of antioxidant enzymes (SOD, TPX, CAT). Gene expression associated with the Duox-ROS defense system was detected using RT-qPCR and identified to be low in the AD group and significantly higher in the TM group of silkworms. This study provides a new reference for the future improvement of the artificial diet feeding of silkworm and a systematic indicator for the further study of the relationship between changes in the intestinal environment and intestinal microbiota balance caused by dietary alterations.
Collapse
Affiliation(s)
- Qilong Shu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiqian Guo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Chao Tian
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Yuanfei Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Xiaoxia Zhang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Jialu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou 215123, China; (Q.S.); (X.G.); (C.T.); (Y.W.); (X.Z.); (J.C.); (F.L.)
- Sericulture Institute, Soochow University, Suzhou 215123, China
| |
Collapse
|
78
|
Bapteste E, Huneman P, Keller L, Teulière J, Lopez P, Teeling EC, Lindner AB, Baudisch A, Ludington WB, Franceschi C. Expanding evolutionary theories of ageing to better account for symbioses and interactions throughout the Web of Life. Ageing Res Rev 2023; 89:101982. [PMID: 37321383 PMCID: PMC10771319 DOI: 10.1016/j.arr.2023.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
How, when, and why organisms age are fascinating issues that can only be fully addressed by adopting an evolutionary perspective. Consistently, the main evolutionary theories of ageing, namely the Mutation Accumulation theory, the Antagonistic Pleiotropy theory, and the Disposable Soma theory, have formulated stimulating hypotheses that structure current debates on both the proximal and ultimate causes of organismal ageing. However, all these theories leave a common area of biology relatively under-explored. The Mutation Accumulation theory and the Antagonistic Pleiotropy theory were developed under the traditional framework of population genetics, and therefore are logically centred on the ageing of individuals within a population. The Disposable Soma theory, based on principles of optimising physiology, mainly explains ageing within a species. Consequently, current leading evolutionary theories of ageing do not explicitly model the countless interspecific and ecological interactions, such as symbioses and host-microbiomes associations, increasingly recognized to shape organismal evolution across the Web of Life. Moreover, the development of network modelling supporting a deeper understanding on the molecular interactions associated with ageing within and between organisms is also bringing forward new questions regarding how and why molecular pathways associated with ageing evolved. Here, we take an evolutionary perspective to examine the effects of organismal interactions on ageing across different levels of biological organisation, and consider the impact of surrounding and nested systems on organismal ageing. We also apply this perspective to suggest open issues with potential to expand the standard evolutionary theories of ageing.
Collapse
Affiliation(s)
- Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France.
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques (CNRS/ Université Paris I Sorbonne), Paris, France
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Ariel B Lindner
- Université de Paris, INSERM U1284, Center for Research and Interdisciplinarity (CRI), Paris, France
| | - Annette Baudisch
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, 5230 Odense M, Denmark
| | - William B Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Claudio Franceschi
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; Department of Applied Mathematics and Laboratory of Systems Medicine of Aging, Lobachevsky University, Nizhny Novgorod 603950, Russia
| |
Collapse
|
79
|
Lewin-Epstein O, Jaques Y, Feldman MW, Kaufer D, Hadany L. Evolutionary modeling suggests that addictions may be driven by competition-induced microbiome dysbiosis. Commun Biol 2023; 6:782. [PMID: 37495841 PMCID: PMC10372008 DOI: 10.1038/s42003-023-05099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Recent studies revealed mechanisms by which the microbiome affects its host's brain, behavior and wellbeing, and that dysbiosis - persistent microbiome-imbalance - is associated with the onset and progress of various chronic diseases, including addictive behaviors. Yet, understanding of the ecological and evolutionary processes that shape the host-microbiome ecosystem and affect the host state, is still limited. Here we propose that competition dynamics within the microbiome, associated with host-microbiome mutual regulation, may promote dysbiosis and aggravate addictive behaviors. We construct a mathematical framework, modeling the dynamics of the host-microbiome ecosystem in response to alterations. We find that when this ecosystem is exposed to substantial perturbations, the microbiome may shift towards a composition that reinforces the new host state. Such a positive feedback loop augments post-perturbation imbalances, hindering attempts to return to the initial equilibrium, promoting relapse episodes and prolonging addictions. We show that the initial microbiome composition is a key factor: a diverse microbiome enhances the ecosystem's resilience, whereas lower microbiome diversity is more prone to lead to dysbiosis, exacerbating addictions. This framework provides evolutionary and ecological perspectives on host-microbiome interactions and their implications for host behavior and health, while offering verifiable predictions with potential relevance to clinical treatments.
Collapse
Affiliation(s)
- Ohad Lewin-Epstein
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Yanabah Jaques
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Marcus W Feldman
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Daniela Kaufer
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Lilach Hadany
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 6997801, Israel.
- Sagol school of neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
80
|
Medeiros MJ, Seo L, Macias A, Price DK, Yew JY. Bacterial and fungal components of the gut microbiome have distinct, sex-specific roles in Hawaiian Drosophila reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.549088. [PMID: 37503295 PMCID: PMC10370118 DOI: 10.1101/2023.07.14.549088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Gut microbiomes provide numerous physiological benefits for host animals. The role of bacterial members of microbiomes in host physiology is well-documented. However, much less is known about the contributions and interactions of fungal members of the microbiome even though fungi are significant components of many microbiomes, including those of humans and insects. Here, we used antibacterial and antifungal drugs to manipulate the gut microbiome of a Hawaiian picture-wing Drosophila species, D. grimshawi, and identified distinct, sex-specific roles for the bacteria and fungi in microbiome community stability and reproduction. Female oogenesis, fecundity and mating drive were significantly diminished when fungal communities were suppressed. By contrast, male fecundity was more strongly affected by bacterial but not fungal populations. For males and females, suppression of both bacteria and fungi severely reduced fecundity and altered fatty acid levels and composition, implicating the importance of interkingdom interactions on reproduction and lipid metabolism. Overall, our results reveal that bacteria and fungi have distinct, sexually-dimorphic effects on host physiology and interkingdom dynamics in the gut help to maintain microbiome community stability and enhance reproduction.
Collapse
Affiliation(s)
- Matthew J. Medeiros
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Laura Seo
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Aziel Macias
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Donald K. Price
- Department of Life Sciences, University of Nevada at Las Vegas
| | - Joanne Y. Yew
- Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa
- Department of Life Sciences, University of Nevada at Las Vegas
| |
Collapse
|
81
|
Liang M, Feng W, Chen X, Tang Y, Li J, Li W. Effects of different temperatures on growth and intestinal microbial composition of juvenile Eriocheir sinensis. Front Physiol 2023; 14:1163055. [PMID: 37520823 PMCID: PMC10373936 DOI: 10.3389/fphys.2023.1163055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
The change in temperature will change the composition of intestinal microorganisms of juvenile Eriocheir sinensis, and the composition of intestinal microorganisms will affect the growth and development of juvenile crabs. In order to explore the relationship between intestinal microorganisms and growth of E. sinensis at different temperatures, the status of growth and intestinal microflora of juvenile E. sinensis reared at different water temperatures (15 °C, 23 °C, and 30 °C) were compared in this study. The results showed that the respective survival rate of juvenile E. sinensis in the three water temperature groups was 100%, 87.5%, and 64.44%. Moreover, the molting rate increased with an increase in water temperature, which was at 0%, 10%, and 71.11% for the three respective temperature groups. The average weight gain rate showed an overall increasing trend with the increase of water temperature. Moreover, the final fatness of the crabs in the 30 °C water temperature group was significantly lower than that in the 15 °C and 23 °C groups (p < 0.05); there was no significant difference in the liver-to-body ratio among the three groups. The results of the alpha diversity analysis of the 16S rRNA data revealed that there was no significant difference in the intestinal microbial abundance among the three water temperature groups; however, the intestinal microbial diversity in the 23 °C water temperature group was significantly lower than that in the 15 °C and 30 °C groups. At the phylum level, the dominant flora of the three groups was Firmicutes, Proteobacteria, and Bacteroidota. At the genus level, the abundance of Parabacteroides and Aeromonas in the intestine of the crabs in the 30 °C water temperature group was significantly higher than that in the 15 °C and 23 °C groups (p < 0.05). The function prediction showed that the main functional diversity of intestinal microflora of juvenile E. sinensis in the three water temperature groups was similar and mainly involved in metabolic-related functions, but there were still differences in the effects of water temperature on functional pathways such as metabolism, immunity, and growth among each group, either promoting or inhibiting. In conclusion, different water temperatures can affect the composition and function of intestinal flora of E. sinensis, and 23 °C-30 °C is the optimal water temperature for the growth of juvenile E. sinensis.
Collapse
Affiliation(s)
- Meng Liang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Wenrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Xue Chen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianlin Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenjing Li
- Jiangsu Haorun Biological Industry Group Co., Ltd, Taizhou, China
| |
Collapse
|
82
|
Schäfer M, Pacheco AR, Künzler R, Bortfeld-Miller M, Field CM, Vayena E, Hatzimanikatis V, Vorholt JA. Metabolic interaction models recapitulate leaf microbiota ecology. Science 2023; 381:eadf5121. [PMID: 37410834 DOI: 10.1126/science.adf5121] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Resource allocation affects the structure of microbiomes, including those associated with living hosts. Understanding the degree to which this dependency determines interspecies interactions may advance efforts to control host-microbiome relationships. We combined synthetic community experiments with computational models to predict interaction outcomes between plant-associated bacteria. We mapped the metabolic capabilities of 224 leaf isolates from Arabidopsis thaliana by assessing the growth of each strain on 45 environmentally relevant carbon sources in vitro. We used these data to build curated genome-scale metabolic models for all strains, which we combined to simulate >17,500 interactions. The models recapitulated outcomes observed in planta with >89% accuracy, highlighting the role of carbon utilization and the contributions of niche partitioning and cross-feeding in the assembly of leaf microbiomes.
Collapse
Affiliation(s)
- Martin Schäfer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Alan R Pacheco
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Rahel Künzler
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | - Evangelia Vayena
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | - Vassily Hatzimanikatis
- Laboratory of Computational Systems Biotechnology, École Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| | | |
Collapse
|
83
|
Amit G, Bashan A. Top-down identification of keystone taxa in the microbiome. Nat Commun 2023; 14:3951. [PMID: 37402745 DOI: 10.1038/s41467-023-39459-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Keystone taxa in ecological communities are native taxa that play an especially important role in the stability of their ecosystem. However, we still lack an effective framework for identifying these taxa from the available high-throughput sequencing without the notoriously difficult step of reconstructing the detailed network of inter-specific interactions. In addition, while most microbial interaction models assume pair-wise relationships, it is yet unclear whether pair-wise interactions dominate the system, or whether higher-order interactions are relevant. Here we propose a top-down identification framework, which detects keystones by their total influence on the rest of the taxa. Our method does not assume a priori knowledge of pairwise interactions or any specific underlying dynamics and is appropriate to both perturbation experiments and metagenomic cross-sectional surveys. When applied to real high-throughput sequencing of the human gastrointestinal microbiome, we detect a set of candidate keystones and find that they are often part of a keystone module - multiple candidate keystone species with correlated occurrence. The keystone analysis of single-time-point cross-sectional data is also later verified by the evaluation of two-time-points longitudinal sampling. Our framework represents a necessary advancement towards the reliable identification of these key players of complex, real-world microbial communities.
Collapse
Affiliation(s)
- Guy Amit
- Department of Physics, Bar-Ilan University, Ramat-Gan, 590002, Israel
- Department of Natural Sciences, The Open University of Israel, Raanana, 4353701, Israel
| | - Amir Bashan
- Department of Physics, Bar-Ilan University, Ramat-Gan, 590002, Israel.
| |
Collapse
|
84
|
Ziab M, Chaganti SR, Heath DD. The effects of host quantitative genetic architecture on the gut microbiota composition of Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2023; 131:43-55. [PMID: 37179383 PMCID: PMC10313681 DOI: 10.1038/s41437-023-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The microbiota consists of microbes living in or on an organism and has been implicated in host health and function. Environmental and host-related factors were shown to shape host microbiota composition and diversity in many fish species, but the role of host quantitative architecture across populations and among families within a population is not fully characterized. Here, Chinook salmon were used to determine if inter-population differences and additive genetic variation within populations influenced the gut microbiota diversity and composition. Specifically, hybrid stocks of Chinook salmon were created by crossing males from eight populations with eggs from an inbred line created from self-fertilized hermaphrodite salmon. Based on high-throughput sequencing of the 16S rRNA gene, significant gut microbial community diversity and composition differences were found among the hybrid stocks. Furthermore, additive genetic variance components varied among hybrid stocks, indicative of population-specific heritability patterns, suggesting the potential to select for specific gut microbiota composition for aquaculture purposes. Determining the role of host genetics in shaping their gut microbiota has important implications for predicting population responses to environmental changes and will thus impact conservation efforts for declining populations of Chinook salmon.
Collapse
Affiliation(s)
- Mubarak Ziab
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
85
|
Wodrich APK, Scott AW, Giniger E. What do we mean by "aging"? Questions and perspectives revealed by studies in Drosophila. Mech Ageing Dev 2023; 213:111839. [PMID: 37354919 PMCID: PMC10330756 DOI: 10.1016/j.mad.2023.111839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
What is the nature of aging, and how best can we study it? Here, using a series of questions that highlight differing perspectives about the nature of aging, we ask how data from Drosophila melanogaster at the organismal, tissue, cellular, and molecular levels shed light on the complex interactions among the phenotypes associated with aging. Should aging be viewed as an individual's increasing probability of mortality over time or as a progression of physiological states? Are all age-correlated changes in physiology detrimental to vigor or are some compensatory changes that maintain vigor? Why do different age-correlated functions seem to change at different rates in a single individual as it ages? Should aging be considered as a single, integrated process across the scales of biological resolution, from organismal to molecular, or must we consider each level of biological scale as a separate, distinct entity? Viewing aging from these differing perspectives yields distinct but complementary interpretations about the properties and mechanisms of aging and may offer a path through the complexities related to understanding the nature of aging.
Collapse
Affiliation(s)
- Andrew P K Wodrich
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States; Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, United States; College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Andrew W Scott
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD, United States.
| |
Collapse
|
86
|
Bonal M, Goetghebuer L, Joseph C, Gonze D, Faust K, George IF. Deciphering Interactions Within a 4-Strain Riverine Bacterial Community. Curr Microbiol 2023; 80:238. [PMID: 37294449 DOI: 10.1007/s00284-023-03342-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
The dynamics of a community of four planktonic bacterial strains isolated from river water was followed in R2 broth for 72 h in batch experiments. These strains were identified as Janthinobacterium sp., Brevundimonas sp., Flavobacterium sp. and Variovorax sp. 16S rRNA gene sequencing and flow cytometry analyses were combined to monitor the change in abundance of each individual strain in bi-cultures and quadri-culture. Two interaction networks were constructed that summarize the impact of the strains on each other's growth rate in exponential phase and carrying capacity in stationary phase. The networks agree on the absence of positive interactions but also show differences, implying that ecological interactions can be specific to particular growth phases. Janthinobacterium sp. was the fastest growing strain and dominated the co-cultures. However, its growth rate was negatively affected by the presence of other strains 10 to 100 times less abundant than Janthinobacterium sp. In general, we saw a positive correlation between growth rate and carrying capacity in this system. In addition, growth rate in monoculture was predictive of carrying capacity in co-culture. Taken together, our results highlight the necessity to take growth phases into account when measuring interactions within a microbial community. In addition, evidence that a minor strain can greatly influence the dynamics of a dominant one underlines the necessity to choose population models that do not assume a linear dependency of interaction strength to abundance of other species for accurate parameterization from such empirical data.
Collapse
Affiliation(s)
- Mathias Bonal
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Lise Goetghebuer
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Clémence Joseph
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Didier Gonze
- Unit of Theoretical Chronobiology, Faculty of Sciences, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Louvain, Belgium
| | - Isabelle F George
- Laboratory of Ecology of Aquatic Systems, Brussels Bioengineering School, Université Libre de Bruxelles, 1050, Brussels, Belgium.
- Laboratory of Marine Biology, Department of Biology, Université Libre de Bruxelles, 1050, Brussels, Belgium.
| |
Collapse
|
87
|
Henry LP, Bergelson J. Evolutionary implications of host genetic control for engineering beneficial microbiomes. CURRENT OPINION IN SYSTEMS BIOLOGY 2023; 34:None. [PMID: 37287906 PMCID: PMC10242548 DOI: 10.1016/j.coisb.2023.100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Engineering new functions in the microbiome requires understanding how host genetic control and microbe-microbe interactions shape the microbiome. One key genetic mechanism underlying host control is the immune system. The immune system can promote stability in the composition of the microbiome by reshaping the ecological dynamics of its members, but the degree of stability will depend on the interplay between ecological context, immune system development, and higher-order microbe-microbe interactions. The eco-evolutionary interplay affecting composition and stability should inform the strategies used to engineer new functions in the microbiome. We conclude with recent methodological developments that provide an important path forward for both engineering new functionality in the microbiome and broadly understanding how ecological interactions shape evolutionary processes in complex biological systems.
Collapse
|
88
|
Prüter H, Gillingham MAF, Krietsch J, Kuhn S, Kempenaers B. Sexual transmission may drive pair similarity of the cloacal microbiome in a polyandrous species. J Anim Ecol 2023. [PMID: 37230950 DOI: 10.1111/1365-2656.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
All animals host a microbial community within and on their reproductive organs, known as the reproductive microbiome. In free-living birds, studies on the sexual transmission of bacteria have typically focused on a few pathogens instead of the bacterial community as a whole, despite a potential link to reproductive function. Theory predicts higher sexual transmission of the reproductive microbiome in females via the males' ejaculates and higher rates of transmission in promiscuous systems. We studied the cloacal microbiome of breeding individuals of a socially polyandrous, sex-role-reversed shorebird, the red phalarope (Phalaropus fulicarius). We expected (i) higher microbial diversity in females compared to males; (ii) low compositional differentiation between sexes; (iii) lower variation in composition between individuals (i.e. microbiome dispersion) in females than in males; (iv) convergence in composition as the breeding season progresses as a consequence of sexual transmission and/or shared habitat use; and (v) higher similarity in microbial composition between social pair members than between two random opposite-sex individuals. We found no or small between-sex differences in cloacal microbiome diversity/richness and composition. Dispersion of predicted functional pathways was lower in females than in males. As predicted, microbiome dispersion decreased with sampling date relative to clutch initiation of the social pair. Microbiome composition was significantly more similar among social pair members than among two random opposite-sex individuals. Pair membership explained 21.5% of the variation in taxonomic composition and 10.1% of functional profiles, whereas temporal and sex effects explained only 0.6%-1.6%. Consistent with evidence of functional convergence of reproductive microbiomes within pairs, some select taxa and predicted functional pathways were less variable between social pair members than between random opposite-sex individuals. As predicted if sexual transmission of the reproductive microbiome is high, sex differences in microbiome composition were weak in a socially polyandrous system with frequent copulations. Moreover, high within-pair similarity in microbiome composition, particularly for a few taxa spanning the spectrum of the beneficial-pathogenic axis, demonstrates the link between mating behaviour and the reproductive microbiome. Our study is consistent with the hypothesis that sexual transmission plays an important role in driving reproductive microbiome ecology and evolution.
Collapse
Affiliation(s)
- Hanna Prüter
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Mark A F Gillingham
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Biodiversity Research Institute (CSIC, Oviedo University, Principality of Asturias), University of Oviedo, Mieres, Spain
| | - Johannes Krietsch
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Sylvia Kuhn
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
89
|
Diaz-Colunga J, Skwara A, Gowda K, Diaz-Uriarte R, Tikhonov M, Bajic D, Sanchez A. Global epistasis on fitness landscapes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220053. [PMID: 37004717 PMCID: PMC10067270 DOI: 10.1098/rstb.2022.0053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/23/2022] [Indexed: 04/04/2023] Open
Abstract
Epistatic interactions between mutations add substantial complexity to adaptive landscapes and are often thought of as detrimental to our ability to predict evolution. Yet, patterns of global epistasis, in which the fitness effect of a mutation is well-predicted by the fitness of its genetic background, may actually be of help in our efforts to reconstruct fitness landscapes and infer adaptive trajectories. Microscopic interactions between mutations, or inherent nonlinearities in the fitness landscape, may cause global epistasis patterns to emerge. In this brief review, we provide a succinct overview of recent work about global epistasis, with an emphasis on building intuition about why it is often observed. To this end, we reconcile simple geometric reasoning with recent mathematical analyses, using these to explain why different mutations in an empirical landscape may exhibit different global epistasis patterns-ranging from diminishing to increasing returns. Finally, we highlight open questions and research directions. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Juan Diaz-Colunga
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Abigail Skwara
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Karna Gowda
- Department of Ecology & Evolution & Center for the Physics of Evolving Systems, The University of Chicago, Chicago, IL 60637, USA
| | - Ramon Diaz-Uriarte
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid 28029, Spain
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (UAM-CSIC), Madrid 28029, Spain
| | - Mikhail Tikhonov
- Department of Physics, Washington University of St Louis, St Louis, MO 63130, USA
| | - Djordje Bajic
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, USA
- Department of Microbial Biotechnology, Campus de Cantoblanco, CNB-CSIC, Madrid 28049, Spain
| |
Collapse
|
90
|
Roche KE, Bjork JR, Dasari MR, Grieneisen L, Jansen D, Gould TJ, Gesquiere LR, Barreiro LB, Alberts SC, Blekhman R, Gilbert JA, Tung J, Mukherjee S, Archie EA. Universal gut microbial relationships in the gut microbiome of wild baboons. eLife 2023; 12:e83152. [PMID: 37158607 PMCID: PMC10292843 DOI: 10.7554/elife.83152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/08/2023] [Indexed: 05/10/2023] Open
Abstract
Ecological relationships between bacteria mediate the services that gut microbiomes provide to their hosts. Knowing the overall direction and strength of these relationships is essential to learn how ecology scales up to affect microbiome assembly, dynamics, and host health. However, whether bacterial relationships are generalizable across hosts or personalized to individual hosts is debated. Here, we apply a robust, multinomial logistic-normal modeling framework to extensive time series data (5534 samples from 56 baboon hosts over 13 years) to infer thousands of correlations in bacterial abundance in individual baboons and test the degree to which bacterial abundance correlations are 'universal'. We also compare these patterns to two human data sets. We find that, most bacterial correlations are weak, negative, and universal across hosts, such that shared correlation patterns dominate over host-specific correlations by almost twofold. Further, taxon pairs that had inconsistent correlation signs (either positive or negative) in different hosts always had weak correlations within hosts. From the host perspective, host pairs with the most similar bacterial correlation patterns also had similar microbiome taxonomic compositions and tended to be genetic relatives. Compared to humans, universality in baboons was similar to that in human infants, and stronger than one data set from human adults. Bacterial families that showed universal correlations in human infants were often universal in baboons. Together, our work contributes new tools for analyzing the universality of bacterial associations across hosts, with implications for microbiome personalization, community assembly, and stability, and for designing microbiome interventions to improve host health.
Collapse
Affiliation(s)
- Kimberly E Roche
- Program in Computational Biology and Bioinformatics, Duke UniversityDurhamUnited States
| | - Johannes R Bjork
- University of Groningen and University Medical Center Groningen, Department of Gastroenterology and HepatologyGroningenNetherlands
- University of Groningen and University Medical Center Groningen, Department of GeneticsGroningenNetherlands
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Mauna R Dasari
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Laura Grieneisen
- Department of Biology, University of British Columbia-Okanagan CampusKelownaCanada
| | - David Jansen
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| | - Trevor J Gould
- Department of Ecology, Evolution, and Behavior, University of MinnesotaMinneapolisUnited States
| | | | - Luis B Barreiro
- Committee on Genetics, Genomics, and Systems Biology, University of ChicagoChicagoUnited States
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
- Committee on Immunology, University of ChicagoChicagoUnited States
| | - Susan C Alberts
- Department of Biology, Duke UniversityDurhamUnited States
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
| | - Ran Blekhman
- Section of Genetic Medicine, Department of Medicine, University of ChicagoChicagoUnited States
| | - Jack A Gilbert
- Department of Pediatrics and the Scripps Institution of Oceanography, University of California, San DiegoSan DiegoUnited States
| | - Jenny Tung
- Department of Biology, Duke UniversityDurhamUnited States
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke University Population Research Institute, Duke UniversityDurhamUnited States
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Sayan Mukherjee
- Program in Computational Biology and Bioinformatics, Duke UniversityDurhamUnited States
- Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & Biostatistics, Duke UniversityDurhamUnited States
- Center for Scalable Data Analytics and Artificial Intelligence, University of LeipzigLeipzigGermany
- Max Plank Institute for Mathematics in the Natural SciencesLeipzigGermany
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre DameNotre DameUnited States
| |
Collapse
|
91
|
Shen K, Din AU, Sinha B, Zhou Y, Qian F, Shen B. Translational informatics for human microbiota: data resources, models and applications. Brief Bioinform 2023; 24:7152256. [PMID: 37141135 DOI: 10.1093/bib/bbad168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
With the rapid development of human intestinal microbiology and diverse microbiome-related studies and investigations, a large amount of data have been generated and accumulated. Meanwhile, different computational and bioinformatics models have been developed for pattern recognition and knowledge discovery using these data. Given the heterogeneity of these resources and models, we aimed to provide a landscape of the data resources, a comparison of the computational models and a summary of the translational informatics applied to microbiota data. We first review the existing databases, knowledge bases, knowledge graphs and standardizations of microbiome data. Then, the high-throughput sequencing techniques for the microbiome and the informatics tools for their analyses are compared. Finally, translational informatics for the microbiome, including biomarker discovery, personalized treatment and smart healthcare for complex diseases, are discussed.
Collapse
Affiliation(s)
- Ke Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Ahmad Ud Din
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Baivab Sinha
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Yi Zhou
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| | - Fuliang Qian
- Center for Systems Biology, Suzhou Medical College of Soochow University, Suzhou 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Suzhou 215123, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China
| |
Collapse
|
92
|
Tang Y, Zhang L, Liu S, Zhou J, Ren Z, Qu X, Li Y, Lou F. Intestinal microbiota analyses of five economic fishery resources in the South China Sea. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 46:101085. [PMID: 37146453 DOI: 10.1016/j.cbd.2023.101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The investigation of intestinal microbiota can provide evidence for revealing the growth and development regulation, feeding habits, environmental adaptability and pollutant indication of marine organisms. To data, the intestinal microbiota of marine organisms in the South China Sea is relatively lacking. To supplement these information, we sequenced intestinal microbiota from five fishery resources (including Auxis rochei, A. thazard, Symplectoteuthis oualaniensis, Thunnus albacores, and Coryphaena equiselis) in the South China Sea using high-throughput Illumina sequencing technology. After filtering, a total of 18,706,729 reads were finally produced and then clustered into OTUs. The mean number of OTUs detected in A. rochei, A. thazard, C. equiselis, S. oualaniensis, and T. albacores was 127, 137, 52, 136, and 142, respectively. Although the Actinobacteria, Bacteroidetes, Cyanobacteria, Deferribacteres, Firmicutes, Proteobacteria, Spirochaetes, Tenericutes, [Thermi], and unclassified_Bacteria were the most abundant in the five species, Photobacterium is the most abundant microbiota. Meanwhile, intestinal microbiota showed species- and sampling sites- specificity, thus only 84 microbiota species were common to all species. Additionally, the potential functions of OTUs in the five species is mainly involved in the synthesis and metabolism of carbohydrate, amino acid, fatty acid and vitamin. This study can provide basic data for clarifying the diversity and species- specificity of intestinal microbiota of five species in the South China Sea, and help to improve the intestinal microbiota database of marine organisms.
Collapse
Affiliation(s)
- Yongzheng Tang
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Liyan Zhang
- Fujian Institute of Oceanography, Xiamen, Fujian 361013, China
| | - Shigang Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
| | - Jiaoli Zhou
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Zhongjie Ren
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Xiuyu Qu
- School of Ocean, Yantai University, Yantai, Shandong 264005, China
| | - Yuan Li
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China.
| | - Fangrui Lou
- School of Ocean, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
93
|
Barak N, Fadeev E, Brekhman V, Aharonovich D, Lotan T, Sher D. Selecting 16S rRNA Primers for Microbiome Analysis in a Host-Microbe System: The Case of the Jellyfish Rhopilema nomadica. Microorganisms 2023; 11:microorganisms11040955. [PMID: 37110378 PMCID: PMC10144005 DOI: 10.3390/microorganisms11040955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Amplicon sequencing of the 16S rRNA gene is extensively used to characterize bacterial communities, including those living in association with eukaryotic hosts. Deciding which region of the 16S rRNA gene to analyze and selecting the appropriate PCR primers remains a major decision when initiating any new microbiome study. Based on a detailed literature survey of studies focusing on cnidarian microbiomes, we compared three commonly used primers targeting different hypervariable regions of the 16S rRNA gene, V1V2, V3V4, and V4V5, using the jellyfish Rhopilema nomadica as a model. Although all primers exhibit a similar pattern in bacterial community composition, the performance of the V3V4 primer set was superior to V1V2 and V4V5. The V1V2 primers misclassified bacteria from the Bacilli class and exhibited low classification resolution for Rickettsiales, which represent the second most abundant 16S rRNA gene sequence in all the primers. The V4V5 primer set detected almost the same community composition as the V3V4, but the ability of these primers to also amplify the eukaryotic 18S rRNA gene may hinder bacterial community observations. However, after overcoming the challenges possessed by each one of those primers, we found that all three of them show very similar bacterial community dynamics and compositions. Nevertheless, based on our results, we propose that the V3V4 primer set is potentially the most suitable for studying jellyfish-associated bacterial communities. Our results suggest that, at least for jellyfish samples, it may be feasible to directly compare microbial community estimates from different studies, each using different primers but otherwise similar experimental protocols. More generally, we recommend specifically testing different primers for each new organism or system as a prelude to large-scale 16S rRNA gene amplicon analyses, especially of previously unstudied host-microbe associations.
Collapse
Affiliation(s)
- Noga Barak
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria
| | - Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dikla Aharonovich
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Daniel Sher
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
94
|
Jeon J, Rahman MM, Han C, Shin J, Sa KJ, Kim J. Spodoptera frugiperda (Lepidoptera: Noctuidae) Life Table Comparisons and Gut Microbiome Analysis Reared on Corn Varieties. INSECTS 2023; 14:358. [PMID: 37103173 PMCID: PMC10146201 DOI: 10.3390/insects14040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The fall armyworm (Spodoptera frugiperda, FAW) is an invasive migratory pest that has recently spread to Korea, damaging several corn cultivars with significant economic value. Comparisons of the growth stages of FAW were conducted based on the preferred feed. Therefore, we selected six maize cultivars, including three categories: (i) commercial waxy corn (mibaek 2-ho, heukjeom 2-ho, dreamoak); (ii) popcorn (oryun popcorn, oryun 2-ho); and (iii) processing corn (miheukchal). A significant effect was observed during the larvae period, pupal period, egg hatching ratio, and larvae weight, whereas the total survival period and adult period did not show significant variation among the tested corn cultivars. We identified variations in the FAW gut bacterial community that were dependent on the genotype of the corn maize feed. The identified phyla included Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Among these genera, the most abundant bacterial genus was Enterococcus, followed by Ureibacillus. Enterococcus mundtii was the most abundant among the top 40 bacterial species. The intergenic PCR-based amplification and gene sequence of the colony isolates were also matched to the GenBank owing to the prevalence of E. mundtii. These results showed that the bacterial diversity and abundance of particular bacteria in the guts of FAWs were influenced by the six major maize corn cultivars.
Collapse
Affiliation(s)
- Jungwon Jeon
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Md-Mafizur Rahman
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh
| | - Changhee Han
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jiyeong Shin
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyu Jin Sa
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Juil Kim
- Interdisciplinary Graduate Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Plant Medicine, Division of Bio-Resource Sciences, College of Agriculture and Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
95
|
Crona K, Krug J, Srivastava M. Geometry of fitness landscapes: peaks, shapes and universal positive epistasis. J Math Biol 2023; 86:62. [PMID: 36976406 DOI: 10.1007/s00285-023-01889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
Darwinian evolution is driven by random mutations, genetic recombination (gene shuffling) and selection that favors genotypes with high fitness. For systems where each genotype can be represented as a bitstring of length L, an overview of possible evolutionary trajectories is provided by the L-cube graph with nodes labeled by genotypes and edges directed toward the genotype with higher fitness. Peaks (sinks in the graphs) are important since a population can get stranded at a suboptimal peak. The fitness landscape is defined by the fitness values of all genotypes in the system. Some notion of curvature is necessary for a more complete analysis of the landscapes, including the effect of recombination. The shape approach uses triangulations (shapes) induced by fitness landscapes. The main topic for this work is the interplay between peak patterns and shapes. Because of constraints on the shapes for [Formula: see text] imposed by peaks, there are in total 25 possible combinations of peak patterns and shapes. Similar constraints exist for higher L. Specifically, we show that the constraints induced by the staircase triangulation can be formulated as a condition of universal positive epistasis, an order relation on the fitness effects of arbitrary sets of mutations that respects the inclusion relation between the corresponding genetic backgrounds. We apply the concept to a large protein fitness landscape for an immunoglobulin-binding protein expressed in Streptococcal bacteria.
Collapse
Affiliation(s)
- Kristina Crona
- Department of Mathematics and Statistics, American University, Washington, DC, USA.
| | - Joachim Krug
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Malvika Srivastava
- Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
96
|
Bourne ME, Gloder G, Weldegergis BT, Slingerland M, Ceribelli A, Crauwels S, Lievens B, Jacquemyn H, Dicke M, Poelman EH. Parasitism causes changes in caterpillar odours and associated bacterial communities with consequences for host-location by a hyperparasitoid. PLoS Pathog 2023; 19:e1011262. [PMID: 36947551 PMCID: PMC10069771 DOI: 10.1371/journal.ppat.1011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/03/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
Microorganisms living in and on macroorganisms may produce microbial volatile compounds (mVOCs) that characterise organismal odours. The mVOCs might thereby provide a reliable cue to carnivorous enemies in locating their host or prey. Parasitism by parasitoid wasps might alter the microbiome of their caterpillar host, affecting organismal odours and interactions with insects of higher trophic levels such as hyperparasitoids. Hyperparasitoids parasitise larvae or pupae of parasitoids, which are often concealed or inconspicuous. Odours of parasitised caterpillars aid them to locate their host, but the origin of these odours and its relationship to the caterpillar microbiome are unknown. Here, we analysed the odours and microbiome of the large cabbage white caterpillar Pieris brassicae in relation to parasitism by its endoparasitoid Cotesia glomerata. We identified how bacterial presence in and on the caterpillars is correlated with caterpillar odours and tested the attractiveness of parasitised and unparasitised caterpillars to the hyperparasitoid Baryscapus galactopus. We manipulated the presence of the external microbiome and the transient internal microbiome of caterpillars to identify the microbial origin of odours. We found that parasitism by C. glomerata led to the production of five characteristic volatile products and significantly affected the internal and external microbiome of the caterpillar, which were both found to have a significant correlation with caterpillar odours. The preference of the hyperparasitoid was correlated with the presence of the external microbiome. Likely, the changes in external microbiome and body odour after parasitism were driven by the resident internal microbiome of caterpillars, where the bacterium Wolbachia sp. was only present after parasitism. Micro-injection of Wolbachia in unparasitised caterpillars increased hyperparasitoid attraction to the caterpillars compared to untreated caterpillars, while no differences were found compared to parasitised caterpillars. In conclusion, our results indicate that host-parasite interactions can affect multi-trophic interactions and hyperparasitoid olfaction through alterations of the microbiome.
Collapse
Affiliation(s)
- Mitchel E Bourne
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Gabriele Gloder
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Berhane T Weldegergis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Marijn Slingerland
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Andrea Ceribelli
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department M2S, KU Leuven, Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
| | - Hans Jacquemyn
- Leuven Plant Institute (LPI), KU Leuven, Leuven, Belgium
- Laboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, Leuven, Belgium
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erik H Poelman
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
97
|
Dodge R, Jones EW, Zhu H, Obadia B, Martinez DJ, Wang C, Aranda-Díaz A, Aumiller K, Liu Z, Voltolini M, Brodie EL, Huang KC, Carlson JM, Sivak DA, Spradling AC, Ludington WB. A symbiotic physical niche in Drosophila melanogaster regulates stable association of a multi-species gut microbiota. Nat Commun 2023; 14:1557. [PMID: 36944617 PMCID: PMC10030875 DOI: 10.1038/s41467-023-36942-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
The gut is continuously invaded by diverse bacteria from the diet and the environment, yet microbiome composition is relatively stable over time for host species ranging from mammals to insects, suggesting host-specific factors may selectively maintain key species of bacteria. To investigate host specificity, we used gnotobiotic Drosophila, microbial pulse-chase protocols, and microscopy to investigate the stability of different strains of bacteria in the fly gut. We show that a host-constructed physical niche in the foregut selectively binds bacteria with strain-level specificity, stabilizing their colonization. Primary colonizers saturate the niche and exclude secondary colonizers of the same strain, but initial colonization by Lactobacillus species physically remodels the niche through production of a glycan-rich secretion to favor secondary colonization by unrelated commensals in the Acetobacter genus. Our results provide a mechanistic framework for understanding the establishment and stability of a multi-species intestinal microbiome.
Collapse
Affiliation(s)
- Ren Dodge
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Eric W Jones
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - Haolong Zhu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Benjamin Obadia
- Molecular and Cell Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Daniel J Martinez
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
| | - Chenhui Wang
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - Andrés Aranda-Díaz
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Aumiller
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhexian Liu
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Marco Voltolini
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Milano, Italy
| | - Eoin L Brodie
- Lawrence Berkeley National Lab, Berkeley, CA, 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Jean M Carlson
- Department of Physics, University of California, Santa Barbara, CA, 93106, USA
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Allan C Spradling
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Howard Hughes Medical Institute, Baltimore, MD, 21218, USA
| | - William B Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, 21218, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
98
|
Axenic and gnotobiotic insect technologies in research on host-microbiota interactions. Trends Microbiol 2023:S0966-842X(23)00055-0. [PMID: 36906503 DOI: 10.1016/j.tim.2023.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Insects are one of the most important animal life forms on earth. Symbiotic microbes are closely related to the growth and development of the host insects and can affect pathogen transmission. For decades, various axenic insect-rearing systems have been developed, allowing further manipulation of symbiotic microbiota composition. Here we review the historical development of axenic rearing systems and the latest progress in using axenic and gnotobiotic approaches to study insect-microbe interactions. We also discuss the challenges of these emerging technologies, possible solutions to address these challenges, and future research directions that can contribute to a more comprehensive understanding of insect-microbe interactions.
Collapse
|
99
|
Ding MQ, Yang SS, Ding J, Zhang ZR, Zhao YL, Dai W, Sun HJ, Zhao L, Xing D, Ren N, Wu WM. Gut Microbiome Associating with Carbon and Nitrogen Metabolism during Biodegradation of Polyethene in Tenebrio larvae with Crop Residues as Co-Diets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3031-3041. [PMID: 36790312 DOI: 10.1021/acs.est.2c05009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tenebrio molitor and Tenebrio obscurus (Coleoptera: Tenebrionidae) larvae are two commercial insects that eat plant and crop residues as diets and also biodegrade synthetic plastics polyethylene (PE). We examined biodegradation of low-density PE (LDPE) foam (Mn = 28.9 kDa and Mw = 342.0 kDa) with and without respective co-diets, i.e., wheat brain (WB) or corn flour (CF), corn straw (CS), and rice straw (RS) at 4:1 (w/w), and their gut microbiome and genetic metabolic functional groups at 27.0 ± 0.5 °C after 28 days of incubation. The presence of co-diets enhanced LDPE consumption in both larvae and broad-depolymerized the ingested LDPE. The diet type shaped gut microbial diversity, potential pathways, and metabolic functions. The sequence of effectiveness of co-diets was WB or CF > CS > RS for larval development and LDPE degradation. Co-occurrence networks indicated that the larvae co-fed with LDPE displayed more complex correlations of gut microbiome than the larvae fed with single diets. The primary diet of WB or CF and crop residues CS and RS provided energy and nitrogen source to significantly enhance LDPE biodegradation with synergistic activities of the gut microbiota. For the larvae fed LDPE and LDPE plus co-diets, nitrogen fixation function was stimulated compared to normal diets and associated with LDPE biodegradation.
Collapse
Affiliation(s)
- Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Rong Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Yi-Lin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Dai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Han-Jun Sun
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
100
|
Baichman-Kass A, Song T, Friedman J. Competitive interactions between culturable bacteria are highly non-additive. eLife 2023; 12:e83398. [PMID: 36852917 PMCID: PMC10072878 DOI: 10.7554/elife.83398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/28/2023] [Indexed: 03/01/2023] Open
Abstract
Microorganisms are found in diverse communities whose structure and function are determined by interspecific interactions. Just as single species seldom exist in isolation, communities as a whole are also constantly challenged and affected by external species. Though much work has been done on characterizing how individual species affect each other through pairwise interactions, the joint effects of multiple species on a single (focal) species remain underexplored. As such, it is still unclear how single-species effects combine to a community-level effect on a species of interest. To explore this relationship, we assayed thousands of communities of two, three, and four bacterial species, measuring the effect of single, pairs of, and trios of 61 affecting species on six different focal species. We found that when multiple species each have a negative effect on a focal species, their joint effect is typically not given by the sum of the effects of individual affecting species. Rather, they are dominated by the strongest individual-species effect. Therefore, while joint effects of multiple species are often non-additive, they can still be derived from the effects of individual species, making it plausible to map complex interaction networks based on pairwise measurements. This finding is important for understanding the fate of species introduced into an occupied environment and is relevant for applications in medicine and agriculture, such as probiotics and biocontrol agents, as well as for ecological questions surrounding migrating and invasive species.
Collapse
Affiliation(s)
| | - Tingting Song
- Institute of Environmental Sciences, Hebrew UniversityRehovotIsrael
| | | |
Collapse
|