51
|
Kojonazarov B, Novoyatleva T, Boehm M, Happe C, Sibinska Z, Tian X, Sajjad A, Luitel H, Kriechling P, Posern G, Evans SM, Grimminger F, Ghofrani HA, Weissmann N, Bogaard HJ, Seeger W, Schermuly RT. p38 MAPK Inhibition Improves Heart Function in Pressure-Loaded Right Ventricular Hypertrophy. Am J Respir Cell Mol Biol 2017; 57:603-614. [PMID: 28657795 DOI: 10.1165/rcmb.2016-0374oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although p38 mitogen-activated protein kinase (MAPK) is known to have a role in ischemic heart disease and many other diseases, its contribution to the pathobiology of right ventricular (RV) hypertrophy and failure is unclear. Therefore, we sought to investigate the role of p38 MAPK in the pathophysiology of pressure overload-induced RV hypertrophy and failure. The effects of the p38 MAPK inhibitor PH797804 were investigated in mice with RV hypertrophy/failure caused by exposure to hypoxia or pulmonary artery banding. In addition, the effects of p38 MAPK inhibition or depletion (by small interfering RNA) were studied in isolated mouse RV fibroblasts. Echocardiography, invasive hemodynamic measurements, immunohistochemistry, collagen assays, immunofluorescence staining, and Western blotting were performed. Expression of phosphorylated p38 MAPK was markedly increased in mouse and human hypertrophied/failed RVs. In mice, PH797804 improved RV function and inhibited cardiac fibrosis compared with placebo. In isolated RV fibroblasts, p38 MAPK inhibition reduced transforming growth factor (TGF)-β-induced collagen production as well as stress fiber formation. Moreover, p38 MAPK inhibition/depletion suppressed TGF-β-induced SMAD2/3 phosphorylation and myocardin-related transcription factor A (MRTF-A) nuclear translocation, and prevented TGF-β-induced cardiac fibroblast transdifferentiation. Moreover, p38 MAPK inhibition in mice exposed to pulmonary artery banding led to diminished nuclear levels of MRTF-A and phosphorylated SMAD3 in RV fibroblasts. Together, our data indicate that p38 MAPK inhibition significantly improves RV function and inhibits RV fibrosis. Inhibition of p38 MAPK in RV cardiac fibroblasts, resulting in coordinated attenuation of MRTF-A cytoplasmic-nuclear translocation and SMAD3 deactivation, indicates that p38 MAPK signaling contributes to distinct disease-causing mechanisms.
Collapse
Affiliation(s)
- Baktybek Kojonazarov
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Tatyana Novoyatleva
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Mario Boehm
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Chris Happe
- 2 VU University Medical Center, Amsterdam, the Netherlands
| | - Zaneta Sibinska
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Xia Tian
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Amna Sajjad
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Himal Luitel
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Philipp Kriechling
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Guido Posern
- 3 Institute of Physiological Chemistry, Halle, Germany
| | - Steven M Evans
- 4 Pfizer Worldwide Research and Development, Cambridge, Massachusetts; and
| | - Friedrich Grimminger
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Hossein A Ghofrani
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Norbert Weissmann
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| | - Harm J Bogaard
- 2 VU University Medical Center, Amsterdam, the Netherlands
| | - Werner Seeger
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany.,5 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- 1 Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
52
|
Wu QQ, Ni J, Zhang N, Liao HH, Tang QZ, Deng W. Andrographolide Protects against Aortic Banding-Induced Experimental Cardiac Hypertrophy by Inhibiting MAPKs Signaling. Front Pharmacol 2017; 8:808. [PMID: 29184496 PMCID: PMC5694538 DOI: 10.3389/fphar.2017.00808] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Despite therapeutic advances, heart failure-related mortality rates remain high. Therefore, understanding the pathophysiological mechanisms involved in the remodeling process is crucial for the development of new therapeutic strategies. Andrographolide (Andr), a botanical compound, has potent cardio-protective effects due to its ability to inhibit mitogen-activated protein kinases (MAPKs). Andr has also been shown to inhibit inflammation and apoptosis, which are factors related to cardiac hypertrophy. Our aim was to evaluate the effects of Andr on cardiac hypertrophy and MAPKs activation. Thus, mice were subjected to aortic banding (AB) with/without Andr administration (25 mg/kg/day, orally). Cardiac function was accessed by echocardiography and hemodynamic parameters. Our results showed that Andr administration for 7 weeks decreased cardiac dysfunction and attenuated cardiac hypertrophy and fibrosis in AB mice. Andr treatment induced a strong reduction in the transcription of both hypertrophy (ANP, BNP, and β-MHC) and fibrosis related genes (collagen I, collagen III, CTGF, and TGFβ). In addition, cardiomyocytes treated with Andr showed a reduced hypertrophic response to angiotensin II. Andr significantly inhibited MAPKs activation in both mouse hearts and cardiomyocytes. Treatment with a combination of MAPKs activators abolished the protective effects of Andr in cardiomyocytes. Furthermore, we found that Andr also inhibited the activation of cardiac fibroblasts via the MAPKs pathway, which was confirmed by the application of MAPKs inhibitors. In conclusion, Andr was found to confer a protective effect against experimental cardiac hypertrophy in mice, suggesting its potential as a novel therapeutic drug for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Qing Q Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jian Ni
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ning Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hai H Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qi Z Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China.,Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Ürümqi, China
| |
Collapse
|
53
|
Amirtharaj GJ, Natarajan SK, Pulimood A, Balasubramanian KA, Venkatraman A, Ramachandran A. Role of Oxygen Free Radicals, Nitric Oxide and Mitochondria in Mediating Cardiac Alterations During Liver Cirrhosis Induced by Thioacetamide. Cardiovasc Toxicol 2017; 17:175-184. [PMID: 27131982 DOI: 10.1007/s12012-016-9371-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thioacetamide (TAA) administration is widely used for induction of liver cirrhosis in rats, where reactive oxygen radicals (ROS) and nitric oxide (NO) participate in development of liver damage. Cardiac dysfunction is an important complication of liver cirrhosis, but the role of ROS or NO in cardiac abnormalities during liver cirrhosis is not well understood. This was investigated in animals after TAA-induced liver cirrhosis and temporal changes in oxidative stress, NO and mitochondrial function in the heart evaluated. TAA induced elevation in cardiac levels of nitrate before development of frank liver cirrhosis, without gross histological alterations. This was accompanied by an early induction of P38 MAP kinase, which is influenced by ROS and plays an important signaling role for induction of iNOS. Increased nitrotyrosine, protein oxidation and lipid peroxidation in the heart and cardiac mitochondria, suggestive of oxidative stress, also preceded frank liver cirrhosis. However, compromised cardiac mitochondrial function with a decrease in respiratory control ratio and increased mitochondrial swelling was seen later, when cirrhosis was evident. In conclusion, TAA induces elevations in ROS and NO in the heart in parallel to early liver damage. This leads to later development of functional deficits in cardiac mitochondria after development of liver cirrhosis.
Collapse
Affiliation(s)
- G Jayakumar Amirtharaj
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - Sathish Kumar Natarajan
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - Anna Pulimood
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - K A Balasubramanian
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - Aparna Venkatraman
- Center for Stem Cell Research, Christian Medical College, Ida Scudder Road, Vellore, 632004, India
| | - Anup Ramachandran
- The Wellcome Trust Research Laboratory, Division of Gastrointestinal Sciences, Christian Medical College, Ida Scudder Road, Vellore, 632004, India.
| |
Collapse
|
54
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
55
|
Differential proteomics reveals S100-A11 as a key factor in aldosterone-induced collagen expression in human cardiac fibroblasts. J Proteomics 2017; 166:93-100. [DOI: 10.1016/j.jprot.2017.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
|
56
|
Kyhl K, Lønborg J, Hartmann B, Kissow H, Poulsen SS, Ali HE, Kjær A, Dela F, Engstrøm T, Treiman M. Lack of effect of prolonged treatment with liraglutide on cardiac remodeling in rats after acute myocardial infarction. Peptides 2017; 93:1-12. [PMID: 28460895 DOI: 10.1016/j.peptides.2017.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/28/2017] [Accepted: 04/27/2017] [Indexed: 02/06/2023]
Abstract
Following the acute phase of a myocardial infarction, a set of structural and functional changes evolves in the myocardium, collectively referred to as cardiac remodeling. This complex set of processes, including interstitial fibrosis, inflammation, myocyte hypertrophy and apoptosis may progress to heart failure. Analogs of the incretin hormone glucagon-like peptide 1 (GLP-1) have shown some promise as cardioprotective agents. We hypothesized that a long-acting GLP-1 analog liraglutide would ameliorate cardiac remodeling over the course of 4 weeks in a rat model of non-reperfused myocardial infarction. In 134 male Sprague Dawley rats myocardial infarctions were induced by ligation of the left anterior descending coronary artery. Rats were randomized to either subcutaneous injection of placebo or 0.3mg liraglutide once daily. Cardiac magnetic resonance imaging was performed after 4 weeks. Histology of the infarcted and remote non-infarcted myocardium, selected molecular remodeling markers and mitochondrial respiration in fibers of remote non-infarcted myocardium were analyzed. Left ventricular end diastolic volume increased in the infarcted hearts by 62% (from 0.58±0.03mL to 0.95±0.07mL, P<0.05) compared to sham operated hearts and left ventricle ejection fraction decreased by 37% (63±1%-40±3%, P<0.05). Increased interstitial fibrosis and phosphorylation of p38 Mitogen Activated Protein Kinase were observed in the non-infarct regions. Mitochondrial fatty acid oxidation was impaired. Liraglutide did not affect any of these alterations. Four-week treatment with liraglutide did not affect cardiac remodeling following a non-reperfused myocardial infarction, as assessed by cardiac magnetic resonance imaging, histological and molecular analysis and measurements of mitochondrial respiration.
Collapse
Affiliation(s)
- Kasper Kyhl
- Department of Cardiology, Rigshospitalet; University Hospital of Copenhagen, Denmark; Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark.
| | - Jacob Lønborg
- Department of Cardiology, Rigshospitalet; University Hospital of Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Department of Biomedical Sciences and Novo Nordisk Foundation Center of Basic Metabolic Research, University of Copenhagen, Denmark
| | - Hannelouise Kissow
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Department of Biomedical Sciences and Novo Nordisk Foundation Center of Basic Metabolic Research, University of Copenhagen, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark
| | - Henrik El Ali
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark
| | - Andreas Kjær
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Denmark
| | - Flemming Dela
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark; Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Rigshospitalet; University Hospital of Copenhagen, Denmark
| | - Marek Treiman
- Department of Biomedical Sciences and The Danish National Research Foundation Centre for Heart Arrhythmia, University of Copenhagen, Denmark
| |
Collapse
|
57
|
Rose BA, Yokota T, Chintalgattu V, Ren S, Iruela-Arispe L, Khakoo AY, Minamisawa S, Wang Y. Cardiac myocyte p38α kinase regulates angiogenesis via myocyte-endothelial cell cross-talk during stress-induced remodeling in the heart. J Biol Chem 2017. [PMID: 28637870 DOI: 10.1074/jbc.m117.784553] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stress-induced p38 mitogen-activated protein kinase (MAPK) activity is implicated in pathological remodeling in the heart. For example, constitutive p38 MAPK activation in cardiomyocytes induces pathological features, including myocyte hypertrophy, apoptosis, contractile dysfunction, and fetal gene expression. However, the physiological function of cardiomyocyte p38 MAPK activity in beneficial compensatory vascular remodeling is unclear. This report investigated the functional role and the underlying mechanisms of cardiomyocyte p38 MAPK activity in cardiac remodeling induced by chronic stress. Using both in vitro and in vivo model systems, we found that p38 MAPK activity is required for hypoxia-induced pro-angiogenic activity from cardiomyocytes and that p38 MAPK activation in cardiomyocyte is sufficient to promote paracrine signaling-mediated, pro-angiogenic activity. We further demonstrate that VEGF is a paracrine factor responsible for the p38 MAPK-mediated pro-angiogenic activity from cardiomyocytes and that p38 MAPK pathway activation is sufficient for inducing VEGF secretion from cardiomyocytes in an Sp1-dependent manner. More significantly, cardiomyocyte-specific inactivation of p38α in mouse heart impaired compensatory angiogenesis after pressure overload and promoted early onset of heart failure. In summary, p38αMAPK has a critical role in the cross-talk between cardiomyocytes and vasculature by regulating stress-induced VEGF expression and secretion in cardiomyocytes. We conclude that as part of a stress-induced signaling pathway, p38 MAPK activity significantly contributes to both pathological and compensatory remodeling in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Tomohiro Yokota
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095; Department of Life Science and Medical Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku-ku, 169-8555, Japan
| | | | - Shuxun Ren
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Luisa Iruela-Arispe
- Department of Molecular, Cellular, and Developmental Biology, Molecular Biology Institute, School of Life Sciences, University of California, Los Angeles, California 90095
| | - Aarif Y Khakoo
- Amgen, Inc., Metabolic Disorders, South San Francisco, California 94080
| | - Susumu Minamisawa
- Department of Life Science and Medical Bioscience, Waseda University, 3-4-1 Okubo, Shinjuku-ku, 169-8555, Japan; Department of Cell Physiology, Jikei University, 25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yibin Wang
- Departments of Anesthesiology, Physiology, and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, California 90095.
| |
Collapse
|
58
|
Nawaito SA, Dingar D, Sahadevan P, Hussein B, Sahmi F, Shi Y, Gillis MA, Gaestel M, Tardif JC, Allen BG. MK5 haplodeficiency attenuates hypertrophy and preserves diastolic function during remodeling induced by chronic pressure overload in the mouse heart. Am J Physiol Heart Circ Physiol 2017; 313:H46-H58. [PMID: 28432058 DOI: 10.1152/ajpheart.00597.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/03/2017] [Accepted: 04/15/2017] [Indexed: 11/22/2022]
Abstract
MAPK-activated protein kinase-5 (MK5) is a protein serine/threonine kinase that is activated by p38 MAPK and the atypical MAPKs ERK3 and ERK4. The physiological function(s) of MK5 remains unknown. Here, we examined the effect of MK5 haplodeficiency on cardiac function and myocardial remodeling. At 12 wk of age, MK5 haplodeficient mice (MK5+/-) were smaller than age-matched wild-type littermates (MK5+/+), with similar diastolic function but reduced systolic function. Transverse aortic constriction (TAC) was used to induce chronic pressure overload in 12-wk-old male MK5+/- and MK5+/+ mice. Two weeks post-TAC, heart weight-to-tibia length ratios were similarly increased in MK5+/- and MK5+/+ hearts, as was the abundance of B-type natriuretic peptide and β-myosin heavy chain mRNA. Left ventricular ejection fraction was reduced in both MK5+/+ and MK5+/- mice, whereas regional peak systolic tissue velocities were reduced and isovolumetric relaxation time was prolonged in MK5+/+ hearts but not in MK5+/- hearts. The TAC-induced increase in collagen type 1-α1 mRNA observed in MK5+/+ hearts was markedly attenuated in MK5+/- hearts. Eight weeks post-TAC, systolic function was equally impaired in MK5+/+ and MK5+/- mice. In contrast, the increase in E wave deceleration rate and progression of hypertrophy observed in TAC MK5+/+ mice were attenuated in TAC MK5+/- mice. MK5 immunoreactivity was detected in adult fibroblasts but not in myocytes. MK5+/+, MK5+/-, and MK5-/- fibroblasts all expressed α-smooth muscle actin in culture. Hence, reduced MK5 expression in cardiac fibroblasts was associated with the attenuation of both hypertrophy and development of a restrictive filling pattern during myocardial remodeling in response to chronic pressure overload.NEW & NOTEWORTHY MAPK-activated protein kinase-5 (MK5)/p38-regulated/activated protein kinase is a protein serine/threonine kinase activated by p38 MAPK and/or the atypical MAPKs ERK3 and ERK4. MK5 immunoreactivity was detected in adult ventricular fibroblasts but not in myocytes. MK5 haplodeficiency attenuated the progression of hypertrophy, reduced collagen type 1 mRNA, and protected diastolic function in response to chronic pressure overload.
Collapse
Affiliation(s)
- Sherin Ali Nawaito
- Montreal Heart Institute, Montréal, Québec, Canada.,Department of Physiology and Pharmacology, Université de Montréal, Montréal, Québec, Canada
| | - Dharmendra Dingar
- Montreal Heart Institute, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Pramod Sahadevan
- Montreal Heart Institute, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | - Fatiha Sahmi
- Montreal Heart Institute, Montréal, Québec, Canada
| | - Yanfen Shi
- Montreal Heart Institute, Montréal, Québec, Canada
| | | | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany; and
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montréal, Québec, Canada.,Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Montréal, Québec, Canada; .,Department of Physiology and Pharmacology, Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
59
|
Li Y, Li Z, Zhang C, Li P, Wu Y, Wang C, Bond Lau W, Ma XL, Du J. Cardiac Fibroblast-Specific Activating Transcription Factor 3 Protects Against Heart Failure by Suppressing MAP2K3-p38 Signaling. Circulation 2017; 135:2041-2057. [PMID: 28249877 DOI: 10.1161/circulationaha.116.024599] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/21/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Hypertensive ventricular remodeling is a common cause of heart failure. However, the molecular mechanisms regulating ventricular remodeling remain poorly understood. METHODS We used a discovery-driven/nonbiased approach to identify increased activating transcription factor 3 (ATF3) expression in hypertensive heart. We used loss/gain of function approaches to understand the role of ATF3 in heart failure. We also examined the mechanisms through transcriptome, chromatin immunoprecipitation sequencing analysis, and in vivo and in vitro experiments. RESULTS ATF3 expression increased in murine hypertensive heart and human hypertrophic heart. Cardiac fibroblast cells are the primary cell type expressing high ATF3 levels in response to hypertensive stimuli. ATF3 knockout (ATF3KO) markedly exaggerated hypertensive ventricular remodeling, a state rescued by lentivirus-mediated/miRNA-aided cardiac fibroblast-selective ATF3 overexpression. Conversely, conditional cardiac fibroblast cell-specific ATF3 transgenic overexpression significantly ameliorated ventricular remodeling and heart failure. We identified Map2K3 as a novel ATF3 target. ATF3 binds with the Map2K3 promoter, recruiting HDAC1, resulting in Map2K3 gene-associated histone deacetylation, thereby inhibiting Map2K3 expression. Genetic Map2K3 knockdown rescued the profibrotic/hypertrophic phenotype in ATF3KO cells. Last, we demonstrated that p38 is the downstream molecule of Map2K3 mediating the profibrotic/hypertrophic effects in ATF3KO animals. Inhibition of p38 signaling reduced transforming growth factor-β signaling-related profibrotic and hypertrophic gene expression, and blocked exaggerated cardiac remodeling in ATF3KO cells. CONCLUSIONS Our study provides the first evidence that ATF3 upregulation in cardiac fibroblasts in response to hypertensive stimuli protects the heart by suppressing Map2K3 expression and subsequent p38-transforming growth factor-β signaling. These results suggest that positive modulation of cardiac fibroblast ATF3 may represent a novel therapeutic approach against hypertensive cardiac remodeling.
Collapse
Affiliation(s)
- Yulin Li
- From Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y.L., Z.L., C.Z., P.L., Y.W., C.W., J.D.); and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.)
| | - Zhenya Li
- From Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y.L., Z.L., C.Z., P.L., Y.W., C.W., J.D.); and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.)
| | - Congcong Zhang
- From Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y.L., Z.L., C.Z., P.L., Y.W., C.W., J.D.); and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.)
| | - Ping Li
- From Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y.L., Z.L., C.Z., P.L., Y.W., C.W., J.D.); and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.)
| | - Yina Wu
- From Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y.L., Z.L., C.Z., P.L., Y.W., C.W., J.D.); and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.)
| | - Chunxiao Wang
- From Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y.L., Z.L., C.Z., P.L., Y.W., C.W., J.D.); and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.)
| | - Wayne Bond Lau
- From Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y.L., Z.L., C.Z., P.L., Y.W., C.W., J.D.); and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.)
| | - Xin-Liang Ma
- From Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y.L., Z.L., C.Z., P.L., Y.W., C.W., J.D.); and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.).
| | - Jie Du
- From Beijing Anzhen Hospital of Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, China (Y.L., Z.L., C.Z., P.L., Y.W., C.W., J.D.); and Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA (W.B.L., X.-L.M.).
| |
Collapse
|
60
|
Borrione P, Fagnani F, Di Gianfrancesco A, Mancini A, Pigozzi F, Pitsiladis Y. The Role of Platelet-Rich Plasma in Muscle Healing. Curr Sports Med Rep 2017; 16:459-463. [DOI: 10.1249/jsr.0000000000000432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
61
|
Knight MB, Drew NK, McCarthy LA, Grosberg A. Emergent Global Contractile Force in Cardiac Tissues. Biophys J 2016; 110:1615-1624. [PMID: 27074686 DOI: 10.1016/j.bpj.2016.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 01/02/2023] Open
Abstract
The heart is a complex organ whose structure and function are intricately linked at multiple length scales. Although several advancements have been achieved in the field of cardiac tissue engineering, current in vitro cardiac tissues do not fully replicate the structure or function necessary for effective cardiac therapy and cardiotoxicity studies. This is partially due to a deficiency in current understandings of cardiac tissue organization's potential downstream effects, such as changes in gene expression levels. We developed a novel (to our knowledge) in vitro tool that can be used to decouple and quantify the contribution of organization and associated downstream effects to tissue function. To do so, cardiac tissue monolayers were designed into a parquet pattern to be organized anisotropically on a local scale, within a parquet tile, and with any desired organization on a global scale. We hypothesized that if the downstream effects were muted, the relationship between developed force and tissue organization could be modeled as a sum of force vectors. With the in vitro experimental platforms of parquet tissues and heart-on-a-chip devices, we were able to prove this hypothesis for both systolic and diastolic stresses. Thus, insight was gained into the relationship between the generated stress and global myofibril organization. Furthermore, it was demonstrated that the developed quantitative tool could be used to estimate the changes in stress production due to downstream effects decoupled from tissue architecture. This has the potential to elucidate properties coupled to tissue architecture, which change force production and pumping function in the diseased heart or stem cell-derived tissues.
Collapse
Affiliation(s)
- Meghan B Knight
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California; Center for Complex Biological Systems, University of California-Irvine, Irvine, California
| | - Nancy K Drew
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California; Center for Complex Biological Systems, University of California-Irvine, Irvine, California; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, California
| | - Linda A McCarthy
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California; Center for Complex Biological Systems, University of California-Irvine, Irvine, California
| | - Anna Grosberg
- Department of Biomedical Engineering, University of California-Irvine, Irvine, California; Department of Chemical and Biochemical Engineering and Materials Science, University of California-Irvine, Irvine, California; Center for Complex Biological Systems, University of California-Irvine, Irvine, California; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, California.
| |
Collapse
|
62
|
Liu R, Molkentin JD. Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). J Mol Cell Cardiol 2016; 101:44-49. [PMID: 27575022 PMCID: PMC5154921 DOI: 10.1016/j.yjmcc.2016.08.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/24/2016] [Accepted: 08/25/2016] [Indexed: 01/19/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play a critical role in regulating cardiac hypertrophy and remodeling in response to increased workload or pathological insults. The spatiotemporal activities and inactivation of MAPKs are tightly controlled by a family of dual-specificity MAPK phosphatases (DUSPs). Over the past 2 decades, we and others have determined the critical role for selected DUSP family members in controlling MAPK activity in the heart and the ensuing effects on ventricular growth and remodeling. More specifically, studies from mice deficient for individual Dusp genes as well as heart-specific inducible transgene-mediated overexpression have implicated select DUSPs as essential signaling effectors in the heart that function by dynamically regulating the level, subcellular and temporal activities of the extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs) and p38 MAPKs. This review summarizes recent literature on the physiological and pathological roles of MAPK-specific DUSPs in regulating MAPK signaling in the heart and the effect on cardiac growth and remodeling.
Collapse
Affiliation(s)
- Ruijie Liu
- Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA; Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jeffery D Molkentin
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
63
|
Katanasaka Y, Suzuki H, Sunagawa Y, Hasegawa K, Morimoto T. Regulation of Cardiac Transcription Factor GATA4 by Post-Translational Modification in Cardiomyocyte Hypertrophy and Heart Failure. Int Heart J 2016; 57:672-675. [PMID: 27818483 DOI: 10.1536/ihj.16-404] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heart failure is a leading cause of cardiovascular mortality in industrialized countries. During development and deterioration of heart failure, cardiomyocytes undergo maladaptive hypertrophy, and changes in the cellular phenotype are accompanied by reinduction of the fetal gene program. Gene expression in cardiomyocytes is regulated by various nuclear transcription factors, co-activators, and co-repressors. The zinc finger protein GATA4 is one such transcription factor involved in the regulation of cardiomyocyte hypertrophy. In response to hypertrophic stimuli such as those involving the sympathetic nervous and renin-angiotensin systems, changes in protein interaction and/or post-translational modifications of GATA4 cause hypertrophic gene transcription in cardiomyocytes. In this article, we focus on cardiac nuclear signaling molecules, especially GATA4, that are promising as potential targets for heart failure therapy.
Collapse
Affiliation(s)
- Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | | |
Collapse
|
64
|
Yue-Chun L, Guang-Yi C, Li-Sha G, Chao X, Xinqiao T, Cong L, Xiao-Ya D, Xiangjun Y. The Protective Effects of Ivabradine in Preventing Progression from Viral Myocarditis to Dilated Cardiomyopathy. Front Pharmacol 2016; 7:408. [PMID: 27847478 PMCID: PMC5088506 DOI: 10.3389/fphar.2016.00408] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/14/2016] [Indexed: 12/04/2022] Open
Abstract
To study the beneficial effects of ivabradine in dilated cardiomyopathy (DCM) mice, which evolved from coxsackievirus B3-induced chronic viral myocarditis. Four-to-five-week-old male balb/c mice were inoculated intraperitoneally with coxsackievirus B3 (Strain Nancy) on days 1, 14, and 28. The day of the first virus inoculation was defined as day 1. Thirty-five days later, the surviving chronic viral myocarditis mice were divided randomly into two groups, a treatment group and an untreated group. Ivabradine was administered by gavage for 30 consecutive days in the treatment group, and the untreated group was administered normal saline. Masson’s trichrome stain was used to evaluate the fibrosis degree in myocardial tissue. The expression levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), collagen I, collagen III and p38-MAPK signaling pathway proteins were detected by Western blot. Electrocardiogram was used to investigate the heart rate and rhythm. The thickness of the ventricular septum and left ventricular posterior wall, left ventricular end diastolic dimension, left ventricular end systolic dimension, left ventricular ejection fractions and fractional shortening were studied by echocardiography. Compared with the untreated chronic viral myocarditis mice, ivabradine significantly increased the survival rate, attenuated the myocardial lesions and fibrosis, improved the impairment of the left ventricular function, diminished the heart dimension, decreased the production of collagen I and collagen III, reduced the expression of the proinflammatory cytokines TNF-α, IL-1β, and IL-6, and lowered the production of phospho-p38 MAPK. The findings indicate the therapeutic effect of ivabradine in preventing the progression from viral myocarditis to DCM in mice with chronic viral myocarditis induced by coxsackievirus B3, is associated with inhibition of the p38 MAPK pathway, downregulated inflammatory responses and decreased collagen expression. Ivabradine appears a promising approach for the treatment of patients with viral myocarditis.
Collapse
Affiliation(s)
- Li Yue-Chun
- Department of Cardiology, First Affiliated Hospital of Soochow UniversitySuzhou, China; Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Chen Guang-Yi
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Ge Li-Sha
- Department of Pediatrics, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Xing Chao
- Department of Clinical Laboratory, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Tian Xinqiao
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou China
| | - Lin Cong
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Dai Xiao-Ya
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Yang Xiangjun
- Department of Cardiology, First Affiliated Hospital of Soochow University Suzhou, China
| |
Collapse
|
65
|
Ying X, Zhao Y, Yao T, Yuan A, Xu L, Gao L, Ding S, Ding H, Pu J, He B. Novel Protective Role for Ubiquitin-Specific Protease 18 in Pathological Cardiac Remodeling. Hypertension 2016; 68:1160-1170. [PMID: 27572150 DOI: 10.1161/hypertensionaha.116.07562] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/04/2016] [Indexed: 12/15/2022]
Abstract
Ubiquitin-specific protease 18 (USP18), a USP family member, is involved in antiviral activity and cancer inhibition. Although USP18 is expressed in heart, the role of USP18 in the heart and in cardiac diseases remains unknown. Here, we show that USP18 expression is elevated in both human dilated hearts and hypertrophic murine models. Cardiomyocyte-specific overexpression of USP18 in mice significantly blunted cardiac remodeling as evidenced by mitigated myocardial hypertrophy, fibrosis, ventricular dilation, and preserved ejection function, whereas USP18-deficient mice displayed exacerbated cardiac remodeling under the same pathological stimuli. Similar results were observed for in vitro angiotensin II-induced neonatal rat cardiomyocyte hypertrophy. The antihypertrophic effects of USP18 under hypertrophic stimuli were associated with the blockage of the transforming growth factor-β-activated kinase 1-p38/c-Jun N-terminal kinase 1/2 signaling cascade. Blocking transforming growth factor-β-activated kinase 1-p38/c-Jun N-terminal kinase 1/2 signaling with a pharmacological inhibitor (5Z-7-oxozeaenol) greatly reversed the detrimental effects observed in USP18-knockout mice subjected to aortic banding. Our data indicate that USP18 inhibits cardiac hypertrophy and postpones cardiac dysfunction during the remodeling process, which is dependent on its modulation of the transforming growth factor-β-activated kinase 1-p38/c-Jun N-terminal kinase 1/2 signaling axis. Thus, USP18 is a potent therapeutic target for heart failure treatment.
Collapse
Affiliation(s)
- Xiaoying Ying
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yichao Zhao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Tianbao Yao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Ancai Yuan
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Longwei Xu
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Lingchen Gao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Song Ding
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Hongyi Ding
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jun Pu
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| | - Ben He
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| |
Collapse
|
66
|
Olson AK, Protheroe KN, Scholz TD, Segar JL. The Mitogen-Activated Protein Kinases and Akt Are Developmentally Regulated in the Chronically Anemic Fetal Sheep Heart. ACTA ACUST UNITED AC 2016; 13:157-65. [PMID: 16638585 DOI: 10.1016/j.jsgi.2006.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Protein kinase B (Akt) and the mitogen-activated protein kinases (MAPKs) mediate hypertrophy in the adult heart, although their importance in the developing heart is poorly understood. The goal of the current study was to determine if volume loading the fetal heart resulting from chronic anemia affects regulation of Akt and the MAPKs and if this response is developmentally regulated. METHODS Anemia was created by 7 days of isovolumic hemorrhage beginning at 101 days (early GA) or 129 days (late GA) gestational age (GA) in fetal sheep (term = 145 days), following which protein levels of total and active Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK), and p38 were determined in the right and left ventricle (RV and LV). RV protein-to-DNA ratios were also assessed. RESULTS At both GAs, ventricular (RV + LV + septum) weight normalized to body weight was significantly increased in anemic fetuses. Anemia had no effect on expression of myocardial total or active Akt, JNK, or p38 at either GA. Levels of total ERK1/2 were also unchanged, although active ERK1/2 was significantly decreased in the late but not early GA anemic fetuses. Total JNK and total and active ERK1/2 and Akt were significantly greater in early versus late GA anemic fetuses. Protein-to-DNA ratios were unchanged in response to anemia at both GAs, but were greater in late GA compared to early GA anemic fetuses. CONCLUSION These results identify important developmental differences in the response of the MAPKs and Akt in the stressed fetal heart. Differences in protein-to-DNA ratios likely reflect the different populations of cardiomyocytes composing the fetal heart at these two GAs and their cell-dependent response to a hemodynamic load.
Collapse
Affiliation(s)
- Aaron K Olson
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
67
|
Quintana MT, Parry TL, He J, Yates CC, Sidorova TN, Murray KT, Bain JR, Newgard CB, Muehlbauer MJ, Eaton SC, Hishiya A, Takayama S, Willis MS. Cardiomyocyte-Specific Human Bcl2-Associated Anthanogene 3 P209L Expression Induces Mitochondrial Fragmentation, Bcl2-Associated Anthanogene 3 Haploinsufficiency, and Activates p38 Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1989-2007. [PMID: 27321750 DOI: 10.1016/j.ajpath.2016.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/20/2016] [Accepted: 03/17/2016] [Indexed: 12/24/2022]
Abstract
The Bcl2-associated anthanogene (BAG) 3 protein is a member of the BAG family of cochaperones, which supports multiple critical cellular processes, including critical structural roles supporting desmin and interactions with heat shock proteins and ubiquitin ligases intimately involved in protein quality control. The missense mutation P209L in exon 3 results in a primarily cardiac phenotype leading to skeletal muscle and cardiac complications. At least 10 other Bag3 mutations have been reported, nine resulting in a dilated cardiomyopathy for which no specific therapy is available. We generated αMHC-human Bag3 P209L transgenic mice and characterized the progressive cardiac phenotype in vivo to investigate its utility in modeling human disease, understand the underlying molecular mechanisms, and identify potential therapeutic targets. We identified a progressive heart failure by echocardiography and Doppler analysis and the presence of pre-amyloid oligomers at 1 year. Paralleling the pathogenesis of neurodegenerative diseases (eg, Parkinson disease), pre-amyloid oligomers-associated alterations in cardiac mitochondrial dynamics, haploinsufficiency of wild-type BAG3, and activation of p38 signaling were identified. Unexpectedly, increased numbers of activated cardiac fibroblasts were identified in Bag3 P209L Tg+ hearts without increased fibrosis. Together, these findings point to a previously undescribed therapeutic target that may have application to mutation-induced myofibrillar myopathies as well as other common causes of heart failure that commonly harbor misfolded proteins.
Collapse
Affiliation(s)
- Megan T Quintana
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Jun He
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China
| | - Cecelia C Yates
- Department of Health Promotions and Development, School of Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tatiana N Sidorova
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Samuel C Eaton
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | | | - Shin Takayama
- Department of Pathology, Boston University, Boston, Massachusetts
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
68
|
Wu HE, Baumgardt SL, Fang J, Paterson M, Liu Y, Du J, Shi Y, Qiao S, Bosnjak ZJ, Warltier DC, Kersten JR, Ge ZD. Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy. Sci Rep 2016; 6:27925. [PMID: 27295516 PMCID: PMC4904741 DOI: 10.1038/srep27925] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca(2+) handling proteins, intracellular [Ca(2+)]i, and sarcoplasmic reticulum Ca(2+) content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- National Institute on Drug Abuse, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MA 21224, USA
| | - Shelley L. Baumgardt
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Juan Fang
- Department of Pediatrics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Mark Paterson
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Yanan Liu
- Department of Medicine, Columbia University, 630 W. 168th Street, New York, NY 10032, USA
| | - Jianhai Du
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Yang Shi
- Aurora Research Institute, Aurora Health Care, 750 W. Virginia Street, Milwaukee, WI 53234, USA
| | - Shigang Qiao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zeljko J. Bosnjak
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - David C. Warltier
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Judy R. Kersten
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
69
|
Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 2016; 97:245-62. [PMID: 27262674 DOI: 10.1016/j.yjmcc.2016.06.001] [Citation(s) in RCA: 663] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/10/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The heart must continuously pump blood to supply the body with oxygen and nutrients. To maintain the high energy consumption required by this role, the heart is equipped with multiple complex biological systems that allow adaptation to changes of systemic demand. The processes of growth (hypertrophy), angiogenesis, and metabolic plasticity are critically involved in maintenance of cardiac homeostasis. Cardiac hypertrophy is classified as physiological when it is associated with normal cardiac function or as pathological when associated with cardiac dysfunction. Physiological hypertrophy of the heart occurs in response to normal growth of children or during pregnancy, as well as in athletes. In contrast, pathological hypertrophy is induced by factors such as prolonged and abnormal hemodynamic stress, due to hypertension, myocardial infarction etc. Pathological hypertrophy is associated with fibrosis, capillary rarefaction, increased production of pro-inflammatory cytokines, and cellular dysfunction (impairment of signaling, suppression of autophagy, and abnormal cardiomyocyte/non-cardiomyocyte interactions), as well as undesirable epigenetic changes, with these complex responses leading to maladaptive cardiac remodeling and heart failure. This review describes the key molecules and cellular responses involved in physiological/pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan; Division of Molecular Aging and Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| |
Collapse
|
70
|
Liu R, van Berlo JH, York AJ, Vagnozzi RJ, Maillet M, Molkentin JD. DUSP8 Regulates Cardiac Ventricular Remodeling by Altering ERK1/2 Signaling. Circ Res 2016; 119:249-60. [PMID: 27225478 DOI: 10.1161/circresaha.115.308238] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 01/05/2023]
Abstract
RATIONALE Mitogen-activated protein kinase (MAPK) signaling regulates the growth response of the adult myocardium in response to increased cardiac workload or pathological insults. The dual-specificity phosphatases (DUSPs) are critical effectors, which dephosphorylate the MAPKs to control the basal tone, amplitude, and duration of MAPK signaling. OBJECTIVE To examine DUSP8 as a regulator of MAPK signaling in the heart and its impact on ventricular and cardiac myocyte growth dynamics. METHODS AND RESULTS Dusp8 gene-deleted mice and transgenic mice with inducible expression of DUSP8 in the heart were used here to investigate how this MAPK-phosphatase might regulate intracellular signaling and cardiac growth dynamics in vivo. Dusp8 gene-deleted mice were mildly hypercontractile at baseline with a cardiac phenotype of concentric ventricular remodeling, which protected them from progressing towards heart failure in 2 surgery-induced disease models. Cardiac-specific overexpression of DUSP8 produced spontaneous eccentric remodeling and ventricular dilation with heart failure. At the cellular level, adult cardiac myocytes from Dusp8 gene-deleted mice were thicker and shorter, whereas DUSP8 overexpression promoted cardiac myocyte lengthening with a loss of thickness. Mechanistically, activation of extracellular signal-regulated kinases 1/2 were selectively increased in Dusp8 gene-deleted hearts at baseline and following acute pathological stress stimulation, whereas p38 MAPK and c-Jun N-terminal kinases were mostly unaffected. CONCLUSIONS These results indicate that DUSP8 controls basal and acute stress-induced extracellular signal-regulated kinases 1/2 signaling in adult cardiac myocytes that then alters the length-width growth dynamics of individual cardiac myocytes, which further alters contractility, ventricular remodeling, and disease susceptibility.
Collapse
Affiliation(s)
- Ruijie Liu
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Jop H van Berlo
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Allen J York
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Ronald J Vagnozzi
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Marjorie Maillet
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.)
| | - Jeffery D Molkentin
- From the Department of Pediatrics, University of Cincinnati (R.L., J.H.v.B., A.J.Y., R.J.V., M.M., J.D.M.) and Howard Hughes Medical Institute (J.D.M.), Cincinnati Children's Hospital Medical Center, Cincinnati, OH; and Division of Cardiology, Department of Medicine, Lillehei Heart Institute, University of Minnesota, St. Paul (J.H.v.B.).
| |
Collapse
|
71
|
Abstract
Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
Collapse
Affiliation(s)
- Joshua G Travers
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Fadia A Kamal
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jeffrey Robbins
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Katherine E Yutzey
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Burns C Blaxall
- From the Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, OH.
| |
Collapse
|
72
|
González-Terán B, López JA, Rodríguez E, Leiva L, Martínez-Martínez S, Bernal JA, Jiménez-Borreguero LJ, Redondo JM, Vazquez J, Sabio G. p38γ and δ promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nat Commun 2016; 7:10477. [PMID: 26795633 PMCID: PMC5476828 DOI: 10.1038/ncomms10477] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
Disrupted organ growth leads to disease development. Hypertrophy underlies postnatal heart growth and is triggered after stress, but the molecular mechanisms involved in these processes are largely unknown. Here we show that cardiac activation of p38γ and p38δ increases during postnatal development and by hypertrophy-inducing stimuli. p38γ/δ promote cardiac hypertrophy by phosphorylating the mTORC1 and mTORC2 inhibitor DEPTOR, which leads to its degradation and mTOR activation. Hearts from mice lacking one or both kinases are below normal size, have high levels of DEPTOR, low activity of the mTOR pathway and reduced protein synthesis. The phenotype of p38γ/δ−/− mice is reverted by overactivation of mTOR with amino acids, shRNA-mediated knockdown of Deptor, or cardiomyocyte overexpression of active p38γ and p38δ. Moreover, in WT mice, heart weight is reduced by cardiac overexpression of DEPTOR. Our results demonstrate that p38γ/δ control heart growth by modulating mTOR pathway through DEPTOR phosphorylation and subsequent degradation. mTOR signalling pathway is a critical regulator of cardiac hypertrophy. Here the authors show that two kinases, p38γ and p38δ, control heart growth by promoting mTOR activity via phosphorylation and consequent proteasome degradation of mTOR inhibitor DEPTOR, extending our knowledge of cardiac hypertrophy regulation.
Collapse
Affiliation(s)
- Bárbara González-Terán
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain
| | - Juan Antonio López
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain
| | - Elena Rodríguez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain
| | - Luis Leiva
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain
| | - Sara Martínez-Martínez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain
| | - Juan Antonio Bernal
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain
| | - Luis Jesús Jiménez-Borreguero
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain.,Hospital de La Princesa, 28006 Madrid, Spain
| | - Juan Miguel Redondo
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain
| | - Jesús Vazquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain
| | - Guadalupe Sabio
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, CNIC, 28029 Madrid, Spain
| |
Collapse
|
73
|
Zhao J, Yin M, Deng H, Jin FQ, Xu S, Lu Y, Mastrangelo MA, Luo H, Jin ZG. Cardiac Gab1 deletion leads to dilated cardiomyopathy associated with mitochondrial damage and cardiomyocyte apoptosis. Cell Death Differ 2015; 23:695-706. [PMID: 26517531 DOI: 10.1038/cdd.2015.143] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/01/2015] [Accepted: 09/18/2015] [Indexed: 01/28/2023] Open
Abstract
A vital step in the development of heart failure is the transition from compensatory cardiac hypertrophy to decompensated dilated cardiomyopathy (DCM) during cardiac remodeling under mechanical or pathological stress. However, the molecular mechanisms underlying the development of DCM and heart failure remain incompletely understood. In the present study, we investigate whether Gab1, a scaffolding adaptor protein, protects against hemodynamic stress-induced DCM and heat failure. We first observed that the protein levels of Gab1 were markedly reduced in hearts from human patients with DCM and from mice with experimental viral myocarditis in which DCM developed. Next, we generated cardiac-specific Gab1 knockout mice (Gab1-cKO) and found that Gab-cKO mice developed DCM in hemodynamic stress-dependent and age-dependent manners. Under transverse aorta constriction (TAC), Gab1-cKO mice rapidly developed decompensated DCM and heart failure, whereas Gab1 wild-type littermates exhibited adaptive left ventricular hypertrophy without changes in cardiac function. Mechanistically, we showed that Gab1-cKO mouse hearts displayed severe mitochondrial damages and increased cardiomyocyte apoptosis. Loss of cardiac Gab1 in mice impaired Gab1 downstream MAPK signaling pathways in the heart under TAC. Gene profiles further revealed that ablation of Gab1 in heart disrupts the balance of anti- and pro-apoptotic genes in cardiomyocytes. These results demonstrate that cardiomyocyte Gab1 is a critical regulator of the compensatory cardiac response to aging and hemodynamic stress. These findings may provide new mechanistic insights and potential therapeutic target for DCM and heart failure.
Collapse
Affiliation(s)
- J Zhao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M Yin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - H Deng
- Center for Heart Lung Innovation/Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - F Q Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - S Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Y Lu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M A Mastrangelo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - H Luo
- Center for Heart Lung Innovation/Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Z G Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
74
|
Péladeau C, Ahmed A, Amirouche A, Crawford Parks TE, Bronicki LM, Ljubicic V, Renaud JM, Jasmin BJ. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles. Hum Mol Genet 2015; 25:24-43. [PMID: 26494902 DOI: 10.1093/hmg/ddv444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and β-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aatika Ahmed
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adel Amirouche
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
75
|
Yokota T, Wang Y. p38 MAP kinases in the heart. Gene 2015; 575:369-376. [PMID: 26390817 DOI: 10.1016/j.gene.2015.09.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/31/2015] [Accepted: 09/15/2015] [Indexed: 12/28/2022]
Abstract
p38 kinases are members of the mitogen-activated protein kinases (MAPK) with established contribution to a wide range of signaling pathways and different biological processes. The prototypic p38 MAPK, p38α was originally identified as an essential signaling kinase for inflammatory cytokine production Extensive studies have now revealed that p38s have critical roles in many different tissues far beyond immune regulation and inflammatory responses. In this review, we will focus on the structure and molecular biology of p38s, and their specific roles in heart, especially regarding myocyte proliferation, apoptosis, and hypertrophic responses.
Collapse
Affiliation(s)
- Tomohiro Yokota
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Physiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
76
|
Cotecchia S, Del Vescovo CD, Colella M, Caso S, Diviani D. The alpha1-adrenergic receptors in cardiac hypertrophy: signaling mechanisms and functional implications. Cell Signal 2015; 27:1984-93. [PMID: 26169957 DOI: 10.1016/j.cellsig.2015.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 01/05/2023]
Abstract
Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.
Collapse
Affiliation(s)
- Susanna Cotecchia
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy.
| | - Cosmo Damiano Del Vescovo
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Matilde Colella
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy
| | - Stefania Caso
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70125 Bari, Italy; Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| | - Dario Diviani
- Department de Pharmacologie et de de Toxicologie, Université de Lausanne, Rue du Bugnon 27, 1005, Lausanne, Switzerland
| |
Collapse
|
77
|
Abstract
It is well established that cardiac remodeling plays a pivotal role in the development of heart failure, a leading cause of death worldwide. Meanwhile, sympathetic hyperactivity is an important factor in inducing cardiac remodeling. Therefore, an in-depth understanding of beta-adrenoceptor signaling pathways would help to find better ways to reverse the adverse remodeling. Here, we reviewed five pathways, namely mitogen-activated protein kinase signaling, Gs-AC-cAMP signaling, Ca(2+)-calcineurin-NFAT/CaMKII-HDACs signaling, PI3K signaling and beta-3 adrenergic signaling, in cardiac remodeling. Furthermore, we constructed a cardiac-remodeling-specific regulatory network including miRNA, transcription factors and target genes within the five pathways. Both experimental and clinical studies have documented beneficial effects of beta blockers in cardiac remodeling; nevertheless, different blockers show different extent of therapeutic effect. Exploration of the underlying mechanisms could help developing more effective drugs. Current evidence of treatment effect of beta blockers in remodeling was also reviewed based upon information from experimental data and clinical trials. We further discussed the mechanism of how beta blockers work and why some beta blockers are more potent than others in treating cardiac remodeling within the framework of cardiac remodeling network.
Collapse
|
78
|
In Vivo Protective Effects of Diosgenin against Doxorubicin-Induced Cardiotoxicity. Nutrients 2015; 7:4938-54. [PMID: 26091236 PMCID: PMC4488824 DOI: 10.3390/nu7064938] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/30/2015] [Accepted: 06/08/2015] [Indexed: 01/03/2023] Open
Abstract
Doxorubicin (DOX) induces oxidative stress leading to cardiotoxicity. Diosgenin, a steroidal saponin of Dioscorea opposita, has been reported to have antioxidant activity. Our study was aimed to find out the protective effect of diosgenin against DOX-induced cardiotoxicity in mice. DOX treatment led to a significant decrease in the ratio of heart weight to body weight, and increases in the blood pressure and the serum levels of lactate dehydrogenase (LDH), creatine phosphokinase (CPK) and creatine kinase myocardial bound (CK-MB), markers of cardiotoxicity. In the heart tissue of the DOX-treated mice, DOX reduced activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GPx), were recovered by diosgenin. Diosgenin also decreased the serum levels of cardiotoxicity markers, cardiac levels of thiobarbituric acid relative substances (TBARS) and reactive oxygen species (ROS), caspase-3 activation, and mitochondrial dysfunction, as well as the expression of nuclear factor kappa B (NF-κB), an inflammatory factor. Moreover, diosgenin had the effects of increasing the cardiac levels of cGMP via modulation of phosphodiesterase-5 (PDE5) activity, and in improving myocardial fibrosis in the DOX-treated mice. Molecular data showed that the protective effects of diosgenin might be mediated via regulation of protein kinase A (PKA) and p38. Our data imply that diosgenin possesses antioxidant and anti-apoptotic activities, and cGMP modulation effect, which in turn protect the heart from the DOX-induced cardiotoxicity.
Collapse
|
79
|
Abstract
Fibrotic diseases are a significant global burden for which there are limited treatment options. The effector cells of fibrosis are activated fibroblasts called myofibroblasts, a highly contractile cell type characterized by the appearance of α-smooth muscle actin stress fibers. The underlying mechanism behind myofibroblast differentiation and persistence has been under much investigation and is known to involve a complex signaling network involving transforming growth factor-β, endothelin-1, angiotensin II, CCN2 (connective tissue growth factor), and platelet-derived growth factor. This review addresses the contribution of these signaling molecules to cardiac fibrosis.
Collapse
Affiliation(s)
- Andrew Leask
- From the Departments of Dentistry and Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
80
|
Arabacilar P, Marber M. The case for inhibiting p38 mitogen-activated protein kinase in heart failure. Front Pharmacol 2015; 6:102. [PMID: 26029107 PMCID: PMC4428223 DOI: 10.3389/fphar.2015.00102] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/24/2015] [Indexed: 11/30/2022] Open
Abstract
This minireview discusses the evidence that the inhibition of p38 mitogen-activated protein kinases (p38 MAPKs) maybe of therapeutic value in heart failure. Most previous experimental studies, as well as past and ongoing clinical trials, have focussed on the role of p38 MAPKs in myocardial infarction and acute coronary syndromes. There is now growing evidence that these kinases are activated within the myocardium of the failing human heart and in the heart and blood vessels of animal models of heart failure. Furthermore, from a philosophical viewpoint the chronic activation of the adaptive stress pathways that lead to the activation of p38 MAPKs in heart failure is analogous to the chronic activation of the sympathetic, renin-aldosterone-angiotensin and neprilysin systems. These have provided some of the most effective therapies for heart failure. This minireview questions whether similar and synergistic advantages would follow the inhibition of p38 MAPKs.
Collapse
Affiliation(s)
- Pelin Arabacilar
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital London, UK
| | - Michael Marber
- Cardiovascular Division, Department of Cardiology, King's College London British Heart Foundation Centre, The Rayne Institute, St Thomas' Hospital London, UK
| |
Collapse
|
81
|
Biesemann N, Mendler L, Kostin S, Wietelmann A, Borchardt T, Braun T. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38. Cell Tissue Res 2015; 361:779-87. [PMID: 25725788 DOI: 10.1007/s00441-015-2139-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/27/2015] [Indexed: 01/12/2023]
Abstract
Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.
Collapse
Affiliation(s)
- Nadine Biesemann
- Department of Cardiac Development and Remodelling, Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, D-61231, Bad Nauheim, Germany
| | | | | | | | | | | |
Collapse
|
82
|
Chichger H, Vang A, O'Connell KA, Zhang P, Mende U, Harrington EO, Choudhary G. PKC δ and βII regulate angiotensin II-mediated fibrosis through p38: a mechanism of RV fibrosis in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2015; 308:L827-36. [PMID: 25659900 DOI: 10.1152/ajplung.00184.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 02/03/2015] [Indexed: 01/26/2023] Open
Abstract
Pulmonary hypertension (PH) eventually leads to right ventricular (RV) fibrosis and dysfunction that is associated with increased morbidity and mortality. Although angiotensin II plays an important role in RV remodeling associated with hypoxic PH, the molecular mechanisms underlying RV fibrosis in PH largely remain unresolved. We hypothesized that PKC-p38 signaling is involved in RV collagen accumulation in PH and in response to angiotensin II stimulation. Adult male Sprague-Dawley rats were exposed to 3 wk of normoxia or hypoxia (10% FiO2 ) as a model of PH. Hypoxic rats developed RV hypertrophy and fibrosis associated with an increase in PKC βII and δ protein expression and p38 dephosphorylation in freshly isolated RV cardiac fibroblasts. Further mechanistic studies were performed in cultured primary cardiac fibroblasts stimulated with angiotensin II, a key activator of ventricular fibrosis in PH. Angiotensin II induced a reduction in p38 phosphorylation that was attenuated following chemical inhibition of PKC βII and δ. Molecular and chemical inhibition of PKC βII and δ abrogated angiotensin II-induced cardiac fibroblast proliferation and collagen deposition in vitro. The effects of PKC inhibition on proliferation and fibrosis were reversed by chemical inhibition of p38. Conversely, constitutive activation of p38 attenuated angiotensin II-induced increase of cardiac fibroblast proliferation and collagen accumulation. PKC βII- and δ-dependent inactivation of p38 regulates cardiac fibroblast proliferation and collagen deposition in response to angiotensin II, which suggests that the PKC-p38 signaling in cardiac fibroblasts may be involved and important in the pathophysiology of RV fibrosis in PH.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Kelly A O'Connell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peng Zhang
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Ulrike Mende
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
83
|
Isserlin R, Merico D, Wang D, Vuckovic D, Bousette N, Gramolini AO, Bader GD, Emili A. Systems analysis reveals down-regulation of a network of pro-survival miRNAs drives the apoptotic response in dilated cardiomyopathy. MOLECULAR BIOSYSTEMS 2015; 11:239-51. [PMID: 25361207 PMCID: PMC4856157 DOI: 10.1039/c4mb00265b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Apoptosis is a hallmark of multiple etiologies of heart failure, including dilated cardiomyopathy. Since microRNAs are master regulators of cardiac development and key effectors of intracellular signaling, they represent novel candidates for understanding the mechanisms driving the increased dysfunction and loss of cardiomyocytes during cardiovascular disease progression. To determine the role of cardiac miRNAs in the apoptotic response, we used microarray technology to monitor miRNA levels in a validated murine phospholambam mutant model of dilated cardiomyopathy. 24 miRNAs were found to be differentially expressed, most of which have not been previously linked to dilated cardiomyopathy. We showed that individual silencing of 7 out of 8 significantly down-regulated miRNAs (mir-1, -29c, -30c, -30d, -149, -486, -499) led to a strong apoptotic phenotype in cell culture, suggesting they repress pro-apoptotic factors. To identify putative miRNA targets most likely relevant to cell death, we computationally integrated transcriptomic, proteomic and functional annotation data. We showed the dependency of prioritized target abundance on miRNA expression using RNA interference and quantitative mass spectrometry. We concluded that down regulation of key pro-survival miRNAs causes up-regulation of apoptotic signaling effectors that contribute to cardiac cell loss, potentially leading to system decompensation and heart failure.
Collapse
Affiliation(s)
- Ruth Isserlin
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S 3E1.
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Wang M, Li Z, Zhang X, Xie X, Zhang Y, Wang X, Hou Y. Rosuvastatin attenuates atrial structural remodelling in rats with myocardial infarction through the inhibition of the p38 MAPK signalling pathway. Heart Lung Circ 2014; 24:386-94. [PMID: 25613240 DOI: 10.1016/j.hlc.2014.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/14/2014] [Accepted: 11/08/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The purpose of this study was to verify the hypothesis that rosuvastatin attenuates atrial structural remodelling in rats with myocardial infarction (MI) through the regulation of the p38 mitogen-activated protein kinase (MAPK) signalling pathway. METHODS A total of 66 rats were used in this study to establish a model of MI. The 56 rats that survived the first 24h after surgery were randomly divided into four groups: the control group (C group), the rosuvastatin group (R group), the low-dose torasemide group (T1 group), and the high-dose torasemide group (T2 group). The four groups of rats received daily intragastric administration of normal saline, rosuvastatin, or torasemide (T1: 1mg/kg body weight; T2: 2mg/kg body weight) for a total of four weeks. The rats in the sham-operated group (n=14) also received daily intragastric administration of normal saline for four weeks. After four weeks of intervention, the left ventricular end-diastolic pressure (LVEDP) was measured in all groups of rats by haemodynamic methods. The rats were then sacrificed, and the left atrial tissues were collected. The collagen volume fractions (CVFs) in the left atrial tissues were determined using Masson's trichrome staining. The expression of phosphorylated p38 (P-p38) MAPK in the left atrial tissues was examined by immunohistochemistry and western blot analysis. RESULTS The results showed that LVEDP, CVF, and P-p38 MAPK expression were drastically elevated in the four MI groups in comparison to the sham-operated group (p<0.001). Rosuvastatin elevated the left ventricular fractional shortening (LVFS) and left ventricular ejection fraction (LVEF). Both rosuvastatin and torasemide improved the haemodynamic parameters. No significant difference was detected in LVEDP between the R group and the T1 group (p=0.37). In contrast, LVEDP was significantly higher in the R group than in the T2 group (p <0.05). CVF (%) was markedly decreased in the R group compared to the C, T1, and T2 groups (decreased by 47.4%, 28%, and 20.1%, respectively). Immunohistochemical analysis showed that the indices of P-p38 MAPK positive cells were significantly decreased in the R group in comparison with the C, T1, and T2 groups (decreased by 44.6%, 36.6%, and 21.4%, respectively). Western blot analysis demonstrated that P-p38 MAPK expression was markedly reduced in the R group compared with the C and T1 groups (reduced by 67% and 40.5%, respectively). The level of P-p38 MAPK in the R group was slightly higher than in the T2 group. However, the difference was not statistically significant (p>0.05). CONCLUSION Rosuvastatin attenuates atrial structural remodelling in rats with MI. The mechanism underlying this phenomenon may be associated with the downregulation of P-p38 MAPK by rosuvastatin.
Collapse
Affiliation(s)
- Mengzan Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China; Department of Cardiology, People's Hospital of Liaocheng, Liaocheng 252000, PR China
| | - Zhiyuan Li
- Department of Cardiology, Shandong Provincial Taishan Hospital, Taian 271000, PR China; Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Xiaohong Zhang
- Department of Echocardiography, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Xinxing Xie
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Yujiao Zhang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Ximin Wang
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Yinglong Hou
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China.
| |
Collapse
|
85
|
Lauriol J, Keith K, Jaffré F, Couvillon A, Saci A, Goonasekera SA, McCarthy JR, Kessinger CW, Wang J, Ke Q, Kang PM, Molkentin JD, Carpenter C, Kontaridis MI. RhoA signaling in cardiomyocytes protects against stress-induced heart failure but facilitates cardiac fibrosis. Sci Signal 2014; 7:ra100. [PMID: 25336613 DOI: 10.1126/scisignal.2005262] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras-related guanosine triphosphatase RhoA mediates pathological cardiac hypertrophy, but also promotes cell survival and is cardioprotective after ischemia/reperfusion injury. To understand how RhoA mediates these opposing roles in the myocardium, we generated mice with a cardiomyocyte-specific deletion of RhoA. Under normal conditions, the hearts from these mice showed functional, structural, and growth parameters similar to control mice. Additionally, the hearts of the cardiomyocyte-specific, RhoA-deficient mice subjected to transverse aortic constriction (TAC)-a procedure that induces pressure overload and, if prolonged, heart failure-exhibited a similar amount of hypertrophy as those of the wild-type mice subjected to TAC. Thus, neither normal cardiac homeostasis nor the initiation of compensatory hypertrophy required RhoA in cardiomyocytes. However, in response to chronic TAC, hearts from mice with cardiomyocyte-specific deletion of RhoA showed greater dilation, with thinner ventricular walls and larger chamber dimensions, and more impaired contractile function than those from control mice subjected to chronic TAC. These effects were associated with aberrant calcium signaling, as well as decreased activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and AKT. In addition, hearts from mice with cardiomyocyte-specific RhoA deficiency also showed less fibrosis in response to chronic TAC, with decreased transcriptional activation of genes involved in fibrosis, including myocardin response transcription factor (MRTF) and serum response factor (SRF), suggesting that the fibrotic response to stress in the heart depends on cardiomyocyte-specific RhoA signaling. Our data indicated that RhoA regulates multiple pathways in cardiomyocytes, mediating both cardioprotective (hypertrophy without dilation) and cardio-deleterious effects (fibrosis).
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Kimberly Keith
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Fabrice Jaffré
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Anthony Couvillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Abdel Saci
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sanjeewa A Goonasekera
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | - Jason R McCarthy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chase W Kessinger
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jianxun Wang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Qingen Ke
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Peter M Kang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Cincinnati, OH 45229, USA
| | | | - Maria I Kontaridis
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
86
|
|
87
|
Henning RJ, Sanberg P, Jimenez E. Human cord blood stem cell paracrine factors activate the survival protein kinase Akt and inhibit death protein kinases JNK and p38 in injured cardiomyocytes. Cytotherapy 2014; 16:1158-68. [DOI: 10.1016/j.jcyt.2014.01.415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/06/2014] [Accepted: 01/30/2014] [Indexed: 01/08/2023]
|
88
|
Dimauro I, Grasso L, Fittipaldi S, Fantini C, Mercatelli N, Racca S, Geuna S, Di Gianfrancesco A, Caporossi D, Pigozzi F, Borrione P. Platelet-rich plasma and skeletal muscle healing: a molecular analysis of the early phases of the regeneration process in an experimental animal model. PLoS One 2014; 9:e102993. [PMID: 25054279 PMCID: PMC4108405 DOI: 10.1371/journal.pone.0102993] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 06/24/2014] [Indexed: 12/27/2022] Open
Abstract
Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1β, and TGF-β1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Loredana Grasso
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Simona Fittipaldi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Cristina Fantini
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Silvia Racca
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Di Gianfrancesco
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- * E-mail:
| | - Fabio Pigozzi
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Paolo Borrione
- Unit of Internal Medicine, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
89
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
90
|
Norris AW, Bahr TM, Scholz TD, Peterson ES, Volk KA, Segar JL. Angiotensin II-induced cardiovascular load regulates cardiac remodeling and related gene expression in late-gestation fetal sheep. Pediatr Res 2014; 75:689-696. [PMID: 24614802 PMCID: PMC4251591 DOI: 10.1038/pr.2014.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/19/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Angiotensin II (ANG II) stimulates fetal heart growth, although little is known regarding changes in cardiomyocyte endowment or the molecular pathways mediating the response. We measured cardiomyocyte proliferation and morphology in ANG II-treated fetal sheep and assessed transcriptional pathway responses in ANG II and losartan (an ANG II type 1 receptor antagonist) treated fetuses. METHODS In twin-gestation pregnant sheep, one fetus received ANG II (50 μg/kg/min i.v.) or losartan (20 mg/kg/d i.v.) for 7 d; noninstrumented twins served as controls. RESULTS ANG II produced increases in heart mass, cardiomyocyte area (left ventricle (LV) and right ventricle mononucleated and LV binucleated cells), and the percentage of Ki-67-positive mononucleated cells in the LV (all P < 0.05). ANG II and losartan produced generally opposing changes in gene expression, affecting an estimated 55% of the represented transcriptome. The most prominent significantly affected biological pathways included those involved in cytoskeletal remodeling and cell cycle activity. CONCLUSION ANG II produces an increase in fetal cardiac mass via cardiomyocyte hypertrophy and likely hyperplasia, involving transcriptional responses in cytoskeletal remodeling and cell cycle pathways.
Collapse
Affiliation(s)
- Andrew W. Norris
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Timothy M. Bahr
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Thomas D. Scholz
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Emily S. Peterson
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ken A. Volk
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Jeffrey L. Segar
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, USA,Corresponding Author: Jeffrey L. Segar, MD Professor, Department of Pediatrics University of Iowa Carver College of Medicine University of Iowa Children's Hospital 200 Hawkins Drive, Iowa City, IA 52242 319.356.7244 (phone) 319.356.4685 (facsimile)
| |
Collapse
|
91
|
Chen G, Pan SQ, Shen C, Pan SF, Zhang XM, He QY. Puerarin inhibits angiotensin II-induced cardiac hypertrophy via the redox-sensitive ERK1/2, p38 and NF-κB pathways. Acta Pharmacol Sin 2014; 35:463-75. [PMID: 24608673 DOI: 10.1038/aps.2013.185] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 11/27/2013] [Indexed: 12/28/2022]
Abstract
AIM To investigate the effects of puerarin (Pue), an isoflavone derived from Kudzu roots, on angiotensin II (Ang II)-induced hypertrophy of cardiomyocytes in vivo and in vitro. METHODS C57BL/6J mice were infused with Ang II and treated with Pue (100 mg·kg(-1)·d(-1), po) for 15 d. After the treatment, systolic blood pressure (SBP) and left ventricular wall thickness were assessed. The ratios of heart weight to body weight (HW/BW) and left ventricular weight to body weight (LVW/BW) were determined, and heart morphometry was assessed. Expression of fetal-type genes (ANP, BNP and β-MHC) in left ventricles was measured using semi-quantitative RT-PCR. Mouse primary cardiomyocytes were treated with Pue (50, 100, 200 μmol/L), then exposed to Ang II (1 μmol/L). ROS level was examined with flow cytometry, the binding activity of NF-κB was determined using EMSA. Western blot was used to measure the levels of ERK1/2, p38 and NF-κB pathway proteins. [(3)H]leucine incorporation was used to measure the rate of protein synthesis. RESULTS Oral administration of Pue significantly suppressed Ang II-induced increases in the myocyte surface area, HW/BW, LVW/BW, SBP and left ventricular wall thickness. Furthermore, Pue significantly suppressed Ang II-induced increases in ANP, BNP and β-MHC expression in the left ventricles in vivo. Treatment of cardiomyocytes with Pue (50-500 μmol/L) did not affect the viability of cardiomyocytes in vitro. Pretreatment of cardiomyocytes with Pue dose-dependently inhibited Ang II-induced increases in ROS production, NF-κB binding activity, protein synthesis and cell breadth. Furthermore, pretreatment with Pue significantly suppressed Ang II-induced activation of ERK1/2, p38 and the NF-κB pathway proteins and the expression of ANP and β-MHC in cardiomyocytes. The positive drug valsartan exerted similar effects on Ang II-induced cardiac hypertrophy in vivo and in vitro. CONCLUSION Pue attenuates Ang II-induced cardiac hypertrophy by inhibiting activation of the redox-sensitive ERK1/2, p38 and the NF-κB pathways.
Collapse
|
92
|
Kaikkonen L, Magga J, Ronkainen VP, Koivisto E, Perjes Á, Chuprun JK, Vinge LE, Kilpiö T, Aro J, Ulvila J, Alakoski T, Bibb JA, Szokodi I, Koch WJ, Ruskoaho H, Kerkelä R. p38α regulates SERCA2a function. J Mol Cell Cardiol 2013; 67:86-93. [PMID: 24361238 DOI: 10.1016/j.yjmcc.2013.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 12/15/2022]
Abstract
cAMP-dependent protein kinase (PKA) regulates the L-type calcium channel, the ryanodine receptor, and phospholamban (PLB) thereby increasing inotropy. Cardiac contractility is also regulated by p38 MAPK, which is a negative regulator of cardiac contractile function. The aim of this study was to identify the mechanism mediating the positive inotropic effect of p38 inhibition. Isolated adult and neonatal cardiomyocytes and perfused rat hearts were utilized to investigate the molecular mechanisms regulated by p38. PLB phosphorylation was enhanced in cardiomyocytes by chemical p38 inhibition, by overexpression of dominant negative p38α and by p38α RNAi, but not with dominant negative p38β. Treatment of cardiomyocytes with dominant negative p38α significantly decreased Ca(2+)-transient decay time indicating enhanced sarco/endoplasmic reticulum Ca(2+)-ATPase function and increased cardiomyocyte contractility. Analysis of signaling mechanisms involved showed that inhibition of p38 decreased the activity of protein phosphatase 2A, which renders protein phosphatase inhibitor-1 phosphorylated and thereby inhibits PP1. In conclusion, inhibition of p38α enhances PLB phosphorylation and diastolic Ca(2+) uptake. Our findings provide evidence for novel mechanism regulating cardiac contractility upon p38 inhibition.
Collapse
Affiliation(s)
- Leena Kaikkonen
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Johanna Magga
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | | | - Elina Koivisto
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Ábel Perjes
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - J Kurt Chuprun
- Temple University School of Medicine, MERB 9th floor, 3500 N Broad St., Philadelphia, PA 19140, USA
| | - Leif Erik Vinge
- Research Institute of Internal Medicine, Sognsvannsveien 20, 0027 Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Sognsvannsveien 20, 0027 Oslo, Norway; Center for Heart Failure Research, University of Oslo, Norway
| | - Teemu Kilpiö
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Jani Aro
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Johanna Ulvila
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - Tarja Alakoski
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland
| | - James A Bibb
- Department of Psychiatry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA
| | - Istvan Szokodi
- Heart Institute, Medical School, University of Pécs, 13 Ifjúság St., 7624 Pécs Hungary
| | - Walter J Koch
- Temple University School of Medicine, MERB 9th floor, 3500 N Broad St., Philadelphia, PA 19140, USA
| | - Heikki Ruskoaho
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland; Dept. of Pharmacology and Toxicology, Faculty of Pharmacy; University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Risto Kerkelä
- Dept. of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, P.O. BOX 5000, FI-90014 Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland.
| |
Collapse
|
93
|
Windak R, Müller J, Felley A, Akhmedov A, Wagner EF, Pedrazzini T, Sumara G, Ricci R. The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart. PLoS One 2013; 8:e73294. [PMID: 24039904 PMCID: PMC3769267 DOI: 10.1371/journal.pone.0073294] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/18/2013] [Indexed: 11/27/2022] Open
Abstract
Systemic hypertension increases cardiac workload and subsequently induces signaling networks in heart that underlie myocyte growth (hypertrophic response) through expansion of sarcomeres with the aim to increase contractility. However, conditions of increased workload can induce both adaptive and maladaptive growth of heart muscle. Previous studies implicate two members of the AP-1 transcription factor family, junD and fra-1, in regulation of heart growth during hypertrophic response. In this study, we investigate the function of the AP-1 transcription factors, c-jun and c-fos, in heart growth. Using pressure overload-induced cardiac hypertrophy in mice and targeted deletion of Jun or Fos in cardiomyocytes, we show that c-jun is required for adaptive cardiac hypertrophy, while c-fos is dispensable in this context. c-jun promotes expression of sarcomere proteins and suppresses expression of extracellular matrix proteins. Capacity of cardiac muscle to contract depends on organization of principal thick and thin filaments, myosin and actin, within the sarcomere. In line with decreased expression of sarcomere-associated proteins, Jun-deficient cardiomyocytes present disarrangement of filaments in sarcomeres and actin cytoskeleton disorganization. Moreover, Jun-deficient hearts subjected to pressure overload display pronounced fibrosis and increased myocyte apoptosis finally resulting in dilated cardiomyopathy. In conclusion, c-jun but not c-fos is required to induce a transcriptional program aimed at adapting heart growth upon increased workload.
Collapse
Affiliation(s)
- Renata Windak
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
| | - Julius Müller
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
| | - Allison Felley
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Alexander Akhmedov
- Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Erwin F. Wagner
- Genes, Development and Disease Group, F-BBVA Cancer Cell Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Department of Medicine, University of Lausanne Medical School, Lausanne, Switzerland
| | - Grzegorz Sumara
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, Illkirch, France
- * E-mail: (RR); (GS)
| | - Romeo Ricci
- Institute of Cell Biology, Eidgenössische Technische Hochschule Zurich (ETHZ), Zurich, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Strasbourg, Illkirch, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
- * E-mail: (RR); (GS)
| |
Collapse
|
94
|
Drawnel FM, Archer CR, Roderick HL. The role of the paracrine/autocrine mediator endothelin-1 in regulation of cardiac contractility and growth. Br J Pharmacol 2013; 168:296-317. [PMID: 22946456 DOI: 10.1111/j.1476-5381.2012.02195.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Endothelin-1 (ET-1) is a critical autocrine and paracrine regulator of cardiac physiology and pathology. Produced locally within the myocardium in response to diverse mechanical and neurohormonal stimuli, ET-1 acutely modulates cardiac contractility. During pathological cardiovascular conditions such as ischaemia, left ventricular hypertrophy and heart failure, myocyte expression and activity of the entire ET-1 system is enhanced, allowing the peptide to both initiate and maintain maladaptive cellular responses. Both the acute and chronic effects of ET-1 are dependent on the activation of intracellular signalling pathways, regulated by the inositol-trisphosphate and diacylglycerol produced upon activation of the ET(A) receptor. Subsequent stimulation of protein kinases C and D, calmodulin-dependent kinase II, calcineurin and MAPKs modifies the systolic calcium transient, myofibril function and the activity of transcription factors that coordinate cellular remodelling. The precise nature of the cellular response to ET-1 is governed by the timing, localization and context of such signals, allowing the peptide to regulate both cardiomyocyte physiology and instigate disease. LINKED ARTICLES This article is part of a themed section on Endothelin. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.168.issue-1.
Collapse
Affiliation(s)
- Faye M Drawnel
- Babraham Research Campus, Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
95
|
Fujiu K, Nagai R. Contributions of cardiomyocyte–cardiac fibroblast–immune cell interactions in heart failure development. Basic Res Cardiol 2013; 108:357. [DOI: 10.1007/s00395-013-0357-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/13/2013] [Accepted: 03/21/2013] [Indexed: 12/20/2022]
|
96
|
A-kinase anchoring protein Lbc coordinates a p38 activating signaling complex controlling compensatory cardiac hypertrophy. Mol Cell Biol 2013; 33:2903-17. [PMID: 23716597 DOI: 10.1128/mcb.00031-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.
Collapse
|
97
|
Mitogen-activated protein kinase-activated protein kinases 2 and 3 regulate SERCA2a expression and fiber type composition to modulate skeletal muscle and cardiomyocyte function. Mol Cell Biol 2013; 33:2586-602. [PMID: 23608535 DOI: 10.1128/mcb.01692-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-activated protein kinases 2 and 3 (MK2/3) represent protein kinases downstream of the p38 MAPK. Using MK2/3 double-knockout (MK2/3(-/-)) mice, we analyzed the role of MK2/3 in cross-striated muscle by transcriptome and proteome analyses and by histology. We demonstrated enhanced expression of the slow oxidative skeletal muscle myofiber gene program, including the peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α). Using reporter gene and electrophoretic gel mobility shift assays, we demonstrated that MK2 catalytic activity directly regulated the promoters of the fast fiber-specific myosin heavy-chain IId/x and the slow fiber-specific sarco/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) gene. Elevated SERCA2a gene expression caused by a decreased ratio of transcription factor Egr-1 to Sp1 was associated with accelerated relaxation and enhanced contractility in MK2/3(-/-) cardiomyocytes, concomitant with improved force parameters in MK2/3(-/-) soleus muscle. These results link MK2/3 to the regulation of calcium dynamics and identify enzymatic activity of MK2/3 as a critical factor for modulating cross-striated muscle function by generating a unique muscle phenotype exhibiting both reduced fatigability and enhanced force in MK2/3(-/-) mice. Hence, the p38-MK2/3 axis may represent a novel target for the design of therapeutic strategies for diseases related to fiber type changes or impaired SERCA2 function.
Collapse
|
98
|
Inhibition of thyroid hormone receptor α1 impairs post-ischemic cardiac performance after myocardial infarction in mice. Mol Cell Biochem 2013; 379:97-105. [DOI: 10.1007/s11010-013-1631-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/21/2013] [Indexed: 01/22/2023]
|
99
|
Lu YY, Chen YC, Kao YH, Chen SA, Chen YJ. Extracellular matrix of collagen modulates arrhythmogenic activity of pulmonary veins through p38 MAPK activation. J Mol Cell Cardiol 2013; 59:159-66. [PMID: 23524328 DOI: 10.1016/j.yjmcc.2013.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 02/05/2013] [Accepted: 03/13/2013] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. Cardiac fibrosis with enhanced extracellular collagen plays a critical role in the pathophysiology of AF through structural and electrical remodeling. Pulmonary veins (PVs) are important foci for AF genesis. The purpose of this study was to evaluate whether collagen can directly modulate PV arrhythmogenesis. Action potentials and ionic currents were investigated in isolated male New Zealand rabbit PV cardiomyocytes with and without collagen incubation (10μg/ml, 5-7h) using the whole-cell patch-clamp technique. Compared to control PV cardiomyocytes (n=25), collagen-treated PV cardiomyocytes (n=22) had a faster beating rate (3.2±04 vs. 1.9±0.2Hz, p<0.005) and a larger amplitude of delayed afterdepolarization (16±2 vs. 10±1mV, p<0.01). Moreover, collagen-treated PV cardiomyocytes showed a larger transient outward potassium current, small-conductance Ca(2+)-activated K(+) current, inward rectifier potassium current, pacemaker current, and late sodium current than control PV cardiomyocytes, but amplitudes of the sodium current, sustained outward potassium current, and L-type calcium current were similar. Collagen increased the p38 MAPK phosphorylation in PV cardiomyocytes as compared to control. The change of the spontaneous activity and action potential morphology were ameliorated by SB203580 (the p38 MAPK catalytic activity inhibitor), indicating that collagen can directly increase PV cardiomyocyte arrhythmogenesis through p38 MAPK activation, which may contribute to the pathogenesis of AF.
Collapse
Affiliation(s)
- Yen-Yu Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
100
|
Asrih M, Mach F, Nencioni A, Dallegri F, Quercioli A, Montecucco F. Role of mitogen-activated protein kinase pathways in multifactorial adverse cardiac remodeling associated with metabolic syndrome. Mediators Inflamm 2013; 2013:367245. [PMID: 23365487 PMCID: PMC3556856 DOI: 10.1155/2013/367245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Metabolic syndrome has been widely associated with an increased risk for acute cardiovascular events. Emerging evidence supports metabolic syndrome as a condition favoring an adverse cardiac remodeling, which might evolve towards heart dysfunction and failure. This pathological remodeling has been described to result from the cardiac adaptive response to clinical mechanical conditions (such as hypertension, dyslipidemia, and hyperglycemia), soluble inflammatory molecules (such as cytokines and chemokines), as well as hormones (such as insulin), characterizing the pathophysiology of metabolic syndrome. Moreover, these cardiac processes (resulting in cardiac hypertrophy and fibrosis) are also associated with the modulation of intracellular signalling pathways within cardiomyocytes. Amongst the different intracellular kinases, mitogen-activated protein kinases (MAPKs) were shown to be involved in heart damage in metabolic syndrome. However, their role remains controversial. In this paper, we will discuss and update evidence on MAPK-mediated mechanisms underlying cardiac adverse remodeling associated with metabolic syndrome.
Collapse
Affiliation(s)
- Mohamed Asrih
- Division of Cardiology, Geneva University Hospital, Faculty of Medicine, Foundation for Medical Researches, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Geneva University Hospital, Faculty of Medicine, Foundation for Medical Researches, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| | - Alessandra Quercioli
- Division of Cardiology, Geneva University Hospital, Faculty of Medicine, Foundation for Medical Researches, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Fabrizio Montecucco
- Division of Cardiology, Geneva University Hospital, Faculty of Medicine, Foundation for Medical Researches, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, V.le Benedetto XV 6, 16132 Genoa, Italy
| |
Collapse
|