51
|
Roobsoong W, Roytrakul S, Sattabongkot J, Li J, Udomsangpetch R, Cui L. Determination of the Plasmodium vivax schizont stage proteome. J Proteomics 2011; 74:1701-10. [PMID: 21515433 DOI: 10.1016/j.jprot.2011.03.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/29/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
With the genome of the malaria parasite Plasmodium vivax sequenced, it is important to determine the proteomes of the parasite in order to assist efforts in antigen and drug target discovery. Since a method for continuous culture of P. vivax parasite is not available, we tried to study the proteome of the erythrocytic stages using fresh parasite isolates from patients. In schizont-enriched samples, 316 proteins were confidently identified by tandem mass spectrometry. Almost 50% of the identified proteins were hypothetical, while other major categories include proteins with binding function, protein fate, protein synthesis, metabolism and cellular transport. To identify proteins that are recognized by host humoral immunity, parasite proteins were separated by two-dimensional gel electrophoresis and screened by Western blot using an immune serum from a P. vivax patient. Mass spectrometry analysis of protein spots recognized by the serum identified four potential antigens including PV24. The recombinant protein PV24 was recognized by antibodies from vivax malaria patients even during the convalescent period, indicating that PV24 could elicit long-lasting antibody responses in P. vivax patients.
Collapse
Affiliation(s)
- Wanlapa Roobsoong
- Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | | | | | | | | |
Collapse
|
52
|
Zeyrek FY, Tachibana SI, Yuksel F, Doni N, Palacpac N, Arisue N, Horii T, Coban C, Tanabe K. Limited polymorphism of the Plasmodium vivax merozoite surface protein 1 gene in isolates from Turkey. Am J Trop Med Hyg 2011; 83:1230-7. [PMID: 21118926 DOI: 10.4269/ajtmh.2010.10-0353] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The 200-kD merozoite surface protein of Plasmodium vivax (PvMSP-1) is one of the leading vaccine candidates against P. vivax malaria. However, the gene encoding PvMSP-1 (pvmsp1) is highly polymorphic and is a major obstacle to effective vaccine development. To further understand polymorphism in pvmsp1, we obtained 30 full-length pvmsp1 sequences from southeastern Turkey. Comparative analysis of sequences from Turkey and other areas showed substantially limited polymorphism. Substitutions were found at 280 and 162 amino acid sites in samples from other regions and those from Turkey, respectively. Eight substitutions were unique to Turkey. In one of them, D/E at position 1706 in the C-terminal 19-kD region, the K/E change at 1709 was the only polymorphism previously known. Limited diversity was also observed in microsatellites. Data suggest a recent population bottleneck in Turkey that may have obscured a signature for balancing selection in the C-terminal 42-kD region, which was otherwise detectable in other areas.
Collapse
Affiliation(s)
- Fadile Yildiz Zeyrek
- Department of Microbiology, Harran University Medical Faculty, Sanliurfa, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Lima-Junior JC, Jiang J, Rodrigues-da-Silva RN, Banic DM, Tran TM, Ribeiro RY, Meyer VSE, De-Simone SG, Santos F, Moreno A, Barnwell JW, Galinski MR, Oliveira-Ferreira J. B cell epitope mapping and characterization of naturally acquired antibodies to the Plasmodium vivax merozoite surface protein-3α (PvMSP-3α) in malaria exposed individuals from Brazilian Amazon. Vaccine 2011; 29:1801-11. [PMID: 21215342 DOI: 10.1016/j.vaccine.2010.12.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 10/18/2022]
Abstract
The Plasmodium vivax Merozoite Surface Protein-3α (PvMSP-3α) is considered as a potential vaccine candidate. However, the detailed investigations of the type of immune responses induced in naturally exposed populations are necessary. Therefore, we aim to characterize the naturally induced antibody to PvMSP-3α in 282 individuals with different levels of exposure to malaria infections residents in Brazilian Amazon. PvMSP3 specific antibodies (IgA, IgG and IgG subclass) to five recombinant proteins and the epitope mapping by Spot-synthesis technique to full-protein sequence of amino acids (15aa sequence with overlapping sequence of 9aa) were performed. Our results indicates that PvMSP3 is highly immunogenic in naturally exposed populations, where 78% of studied individuals present IgG immune response against the full-length recombinant protein (PVMSP3-FL) and IgG subclass profile was similar to all five recombinant proteins studied with a high predominance of IgG1 and IgG3. We also observe that IgG and subclass levels against PvMSP3 are associated with malaria exposure. The PvMSP3 epitope mapping by Spot-synthesis shows a natural recognition of at least 15 antigenic determinants, located mainly in the two blocks of repeats, confirming the high immunogenicity of this region. In conclusion, PvMSP-3α is immunogenic in naturally exposed individuals to malaria infections and that antibodies to PvMSP3 are induced to several B cell epitopes. The presence of PvMSP3 cytophilic antibodies (IgG1 and IgG3), suggests that this mechanism could also occur in P. vivax.
Collapse
Affiliation(s)
- J C Lima-Junior
- Laboratory of Immunoparasitology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Choi KM, Choi YK, Kang YA, Seo SY, Lee HW, Cho SH, Lee WJ, Rhie HG, Lee HS, Kim JY. Study of the genetic discrimination between imported and autochthonous cases of malaria in South Korea. J Travel Med 2011; 18:63-6. [PMID: 21199147 DOI: 10.1111/j.1708-8305.2010.00473.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There has been a great increase of Plasmodium vivax incidences in the Republic of Korea and the genetic diversity of the parasite became more complex with the rapid dissemination of newly introduced genotypes. Surveillance of imported malaria is very important, but there is no good way to determine imported vs. internal cases. In this study, we characterized imported vivax cases, analyzed the genetic sequence of three imported vivax malaria cases for the merozoite surface protein-1 (MSP-1) and circumsporozoite protein (CSP) genes, and clearly discriminated an imported vivax case that was misdiagnosed as indigenous by genetic analysis. PCR reaction for the merozoite surface protein-1 (MSP-1) and circumsporozoite protein (CSP) genes from three imported vivax cases were amplified and sequenced. The genetic variations were compared with a previously constructed database of South Korean isolates. The imported vivax cases showed various patterns on incubation period before onset. Most cases were from other parts of Asia. The MSP-1 gene sequence analysis of three imported cases showed that the imported cases had completely different sequences from any subtypes from Korean isolates. Case-1 and Case-2 exact match with an Indian isolate, and Case-3 had great similarity with isolates from countries neighboring Indonesia. CSP gene analysis based on the repeat patterns showed similar results that the sequences from the imported cases well matched with the patient's traveled countries and completely discriminated with indigenous cases. AMA-1 gene analysis also supported these results. We were able to clearly distinguish three imported vivax cases from indigenous by using a genetic database of Korean isolates and were able to suspect its origin by genotyping. This study demonstrated the usefulness of genetic survey on imported malaria cases.
Collapse
Affiliation(s)
- Kyung Mi Choi
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea Center for Disease Control and Prevention, 194 Tongil-Lo, Eunpyung-Gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Bhat AA, Seth RK, Kumar S, Ali R, Mohan T, Biswas S, Rao DN. Induction of cell-mediated immune responses to peptide antigens of P. vivax in microparticles using intranasal immunization. Immunol Invest 2010; 39:483-99. [PMID: 20450288 DOI: 10.3109/08820131003674826] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
T-cells play a critical role in resistance to malaria, not only because they function as helper cells for an antibody response, but also because they serve as effector cells. Such cellular immunity is directly implicated in protection from sporozoites as well as from blood stage parasites. The aim of this study was to induce cell mediated immune responses to peptide antigens of Plasmodium vivax co-encapsulated with CpG oligodeoxynucleotide (ODN) in microparticles. In the present study, we have investigated the immunomodulatory effects of two CpG adjuvants, CpG 1826 and CpG 2006 to the five peptide antigens of Plasmodium vivax derived from circumsporozoite protein, merozoite surface protein-1, apical membrane antigen-1 and gametocyte surface antigen (Pvs24) in microparticle delivery. The T-cell proliferation response study of the cells collected from spleen, lamina propria and peyer's patches showed significantly high (p<0.001) stimulation index when primed with peptide antigens in microparticles co-encapsulating CpG ODN adjuvant as compared to peptide alone primed mice. The cytokine measurement profile of IFN-gamma, TNF-alpha, IL-2, IL-4 and IL-10 in culture supernatants of cells primed with peptide antigens in microparticles co-encapsulating CpG ODN showed higher levels of IFN- gamma followed by TNF-alpha and IL-2, with relatively low levels of IL-4 and IL-10.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | | | | | | | | | | |
Collapse
|
56
|
Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies. BMC Genet 2010; 11:65. [PMID: 20626846 PMCID: PMC2910014 DOI: 10.1186/1471-2156-11-65] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 07/13/2010] [Indexed: 12/02/2022] Open
Abstract
Background The ideal malaria parasite populations for initial mapping of genomic regions contributing to phenotypes such as drug resistance and virulence, through genome-wide association studies, are those with high genetic diversity, allowing for numerous informative markers, and rare meiotic recombination, allowing for strong linkage disequilibrium (LD) between markers and phenotype-determining loci. However, levels of genetic diversity and LD in field populations of the major human malaria parasite P. vivax remain little characterized. Results We examined single-nucleotide polymorphisms (SNPs) and LD patterns across a 100-kb chromosome segment of P. vivax in 238 field isolates from areas of low to moderate malaria endemicity in South America and Asia, where LD tends to be more extensive than in holoendemic populations, and in two monkey-adapted strains (Salvador-I, from El Salvador, and Belem, from Brazil). We found varying levels of SNP diversity and LD across populations, with the highest diversity and strongest LD in the area of lowest malaria transmission. We found several clusters of contiguous markers with rare meiotic recombination and characterized a relatively conserved haplotype structure among populations, suggesting the existence of recombination hotspots in the genome region analyzed. Both silent and nonsynonymous SNPs revealed substantial between-population differentiation, which accounted for ~40% of the overall genetic diversity observed. Although parasites clustered according to their continental origin, we found evidence for substructure within the Brazilian population of P. vivax. We also explored between-population differentiation patterns revealed by loci putatively affected by natural selection and found marked geographic variation in frequencies of nucleotide substitutions at the pvmdr-1 locus, putatively associated with drug resistance. Conclusion These findings support the feasibility of genome-wide association studies in carefully selected populations of P. vivax, using relatively low densities of markers, but underscore the risk of false positives caused by population structure at both local and regional levels. See commentary: http://www.biomedcentral.com/1741-7007/8/90
Collapse
|
57
|
Lalitha PV, Biswas S, Pillai CR, Seth RK, Saxena RK. Expression, purification and characterization of allelic variants of MSP-1(42) from Indian Plasmodium falciparum isolates. Vaccine 2010; 28:4661-7. [PMID: 20452429 DOI: 10.1016/j.vaccine.2010.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2009] [Revised: 04/10/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
The C-terminal 19 and 42 kDa fragments of Plasmodium falciparum merozoite surface protein 1 (MSP-1) have shown to be protective in animals against lethal parasite challenge. The MSP-1(19) being highly conserved may lack sufficient number of T-cell epitopes in order to elicit a broader response in genetically diverse populations. The inclusion of additional epitopes from the N-terminal MSP-1(42) has shown to enhance the protective efficacy of MSP-1(19) vaccine. In an attempt to examine the strain specific immunogenicity to MSP-1, we have cloned and expressed three diverse allelic variants of MSP-1(42) from Indian P. falciparum isolates in bacteria. Among three alleles, one was extremely rare and not been found before. These purified and refolded recombinant products were recognized by conformation specific monoclonal antibodies and hyper-immune sera. Immunization of mice and rabbits with the purified proteins generated high titer biologically active polyclonal antibodies supporting further development of this vaccine candidate antigen.
Collapse
Affiliation(s)
- P V Lalitha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | | | | | | | | |
Collapse
|
58
|
Kwon MH, Kim HH, Lee HS, Kim TS, Oh CM, Ahn YJ, Hwang SK, Sohn Y, Kim H, Lee HW. Plasmodium vivax: comparison of the immune responses between oral and parenteral immunization of rPv54 in BALB/c mice. Exp Parasitol 2010; 126:217-23. [PMID: 20460123 DOI: 10.1016/j.exppara.2010.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Revised: 05/02/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
The merozoite surface protein-1 (MSP-1) from Plasmodium vivax was evaluated as an oral vaccine candidate by cloning and expressing the interspecies conserved block 10 (ICB10) of the MSP-1 from a Korean isolate in Escherichia coli. The expressed fusion protein contained ICB10 and a maltose-binding protein (MBP), rPv54, has a molecular weight of approximately 54 kDa as determined by SDS-PAGE analysis. IgG against rPv54 was successfully produced in BALB/c mice by oral immunization and sustained for more than 4 months. IgG2b was dominantly produced in both oral and parenteral immunizations. The rPv54 increased the frequency of NK, NKT, CD4+ T, CD8+ T, and B cells in both immunizations. IL-5 and TNF-alpha were increased in both significantly. In conclusion, rPv54 might be a valuable potential vaccine candidate for the oral and parenteral immunization against vivax malaria.
Collapse
Affiliation(s)
- Myoung-Hee Kwon
- Division of Malaria and Parasitic Diseases, National Institute of Health, Centers for Disease Control and Prevention, Seoul 122-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
A novel Plasmodium falciparum erythrocyte binding protein associated with the merozoite surface, PfDBLMSP. Int J Parasitol 2010; 39:763-73. [PMID: 19367830 DOI: 10.1016/j.ijpara.2008.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins on the surface of the merozoite, the invasive form of the malaria parasite Plasmodium falciparum,and those secreted from its apical secretory organelles are promising vaccine candidates against blood stage malaria. In the present study, we have identified a novel parasite protein (PfDBLMSP; Gene IDPF10_0348), that harbors a predicted signal sequence, a central Duffy binding-like (DBL) domain and a secreted polymorphic antigen associated with merozoites (SPAM) domain in its C-terminal half. Transcription and translation of pfdblmsp is up-regulated specifically in schizont stage parasites, similar to other well-chararacterized merozoite proteins involved in invasion of red blood cells (RBCs). PfDBLMSPwas localized on the merozoite surface with a GFP targeting approach using schizont-stage specific expression systems, and by immunofluorescence assays of the endogenous protein. PfDBLMSP expressed on the surface of mammalian cells (COS-7) showed binding with human RBCs and this binding was sensitive to trypsin and neuraminidase treatments. The recombinant proteins corresponding to the DBL and SPAM domains showed reactivity with immune sera from individuals residing in P. falciparum endemic areas. Polymorphism in PfDBLMSP sequences from different P. falciparum strains and field isolates suggested that its DBL domain is under natural immune pressure. Our data on localization and functional assays suggest a possible role of PfDBLMSP in binding of merozoites with erythrocytes during invasion.
Collapse
|
60
|
Choi YK, Choi KM, Park MH, Lee EG, Kim YJ, Lee BC, Cho SH, Rhie HG, Lee HS, Yu JR, Lee JS, Kim TS, Kim JY. Rapid dissemination of newly introduced Plasmodium vivax genotypes in South Korea. Am J Trop Med Hyg 2010; 82:426-32. [PMID: 20207868 PMCID: PMC2829904 DOI: 10.4269/ajtmh.2010.09-0245] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 09/28/2009] [Indexed: 11/07/2022] Open
Abstract
Reemerged Plasmodium vivax malaria in South Korea has not yet been eradicated despite continuous governmental efforts. It has rather become an endemic disease. Our study aimed to determine the genetic diversity in P. vivax merozoite surface protein-1 (PvMSP-1) and circumsporozoite protein (PvCSP) genes over an extended period after its reemergence to its current status. Sequence analysis of PvMSP-1 gene sequences from the 632 P. vivax isolates during 1996-2007 indicates that most isolates recently obtained were different from isolates obtained in the initial reemergence period. There was initially only one subtype (recombinant) present but its subtypes have varied since 2000; six MSP-1 subtypes were recently found. A similar variation was observed by CSP gene analysis; a new CSP subtype was found. Understanding genetic variation patterns of the parasite may help to analyze trends and assess extent of endemic malaria in South Korea.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jung-Yeon Kim
- Divisions of Malaria and Parasitic Diseases, Division of Infectious Disease Surveillance, and Center for Immunology and Pathology, National Institute of Health, Korea Centers for Disease Control and Prevention, Seoul, Republic of Korea; Department of Biological Science, Inha University, Incheon, Republic of Korea; Department of Parasitology, Konkuk University, College of Medicine, Seoul, Republic of Korea; Institute of Global Environment and Department of Biology, Kyung Hee University, Seoul, Republic of Korea; Department of Parasitology, Inha University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
61
|
Hwang SY, Kim SH, Kho WG. Genetic characteristics of polymorphic antigenic markers among Korean isolates of Plasmodium vivax. THE KOREAN JOURNAL OF PARASITOLOGY 2010; 47 Suppl:S51-8. [PMID: 19885335 DOI: 10.3347/kjp.2009.47.s.s51] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 11/23/2022]
Abstract
Plasmodium vivax, a protozoan malaria parasite of humans, represents a major public health concern in the Republic of Korea (= South Korea). However, little is known about the genetic properties and population structures of the P. vivax isolates circulating in South Korea. This article reviews known polymorphic genetic markers in South Korean isolates of P. vivax and briefly summarizes the current issues surrounding the gene and population structures of this parasite. The critical genetic characteristics of major antigens of the parasite, such as circumsporozoite protein (CSP), merozoite surface protein 1 (MSP-1) and MSP-3, Duffy binding protein (DBP), apical membrane antigen 1 (AMA-1), and GAM-1, are also discussed.
Collapse
Affiliation(s)
- Seung-Young Hwang
- Department of Parasitology, Inje University College of Medicine, Busan 614-735, Korea
| | | | | |
Collapse
|
62
|
Zakeri S, Safi N, Afsharpad M, Butt W, Ghasemi F, Mehrizi AA, Atta H, Zamani G, Djadid ND. Genetic structure of Plasmodium vivax isolates from two malaria endemic areas in Afghanistan. Acta Trop 2010; 113:12-9. [PMID: 19716798 DOI: 10.1016/j.actatropica.2009.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 11/17/2022]
Abstract
In this study, the nature and extent of genetic diversity of Plasmodium vivax populations circulating in Afghanistan have been investigated by analyzing three genetic markers: csp, msp-1, and msp-3 alpha. Blood samples (n=202) were collected from patients presenting with vivax malaria from south-western (Herat) and south-eastern (Nangarhar) parts of Afghanistan, and analysed using nested-PCR/RFLP and sequencing methods. Genotyping pvmsp-1 revealed type 1, type 2 and recombinant type 3 allelic variants, with type 1 predominant in parasites in both study areas. The sequence analysis of 57 P. vivax isolates identified a total of 26 distinct alleles. Genotyping pvcsp gene showed that VK210 type (86.6%) is predominant in Afghanistan. Moreover, three major types of the pvmsp-3 alpha locus: type A, type B and type C were distinguished among Afghani isolates. The predominant fragments among Nangarhar and Herat parasites were type A (70.8% and 67.9%, respectively). PCR/RFLP products with Hha I and Alu I were detected 52 and 38 distinct variants among Nangarhar and Herat isolates, respectively. These results strongly indicate that the P. vivax populations in Afghanistan are highly diverse.
Collapse
Affiliation(s)
- Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Acquired immune response to defined Plasmodium vivax antigens in individuals residing in northern India. Microbes Infect 2009; 12:199-206. [PMID: 20034587 DOI: 10.1016/j.micinf.2009.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 11/09/2009] [Accepted: 12/10/2009] [Indexed: 11/20/2022]
Abstract
In this investigation, we evaluated the naturally acquired immune response to Plasmodium vivax stage-specific antigens in individuals of different age groups belonging to malaria endemic areas of northern India. Four synthetic peptides containing both B- and T-cell epitopes from P. vivax circumsporozoite protein, merozoite surface protein-1, apical membrane antigen-1 and gametocyte surface antigen-1 were used to determine both humoral and cellular immune responses. Immunity, in terms of antibody response and T-cell proliferation against these stage-specific peptides, has been observed in the study subjects. The results demonstrated age-dependent antibody response in this population. Forty two patients were diagnosed with P. vivax. There was a significant association (P=0.013) between number of antibody responders and recognition of stage-specific epitopes by antibodies. The antibody response to B-epitopes of P. vivax CSP, MSP1, AMA1 and GAM1 was associated with age; adults responded more frequently to these antigens than did younger children. In this population, 66% (201/304) cases showed seropositivity to all peptides and 13% (41/304) showed negative response. Peripheral blood mononuclear cells of more than 75% of individuals proliferated in response to stimulation by all four epitopes. In conclusion, the results demonstrated immunogenicity of the epitopes to P. vivax in population of this endemic zone.
Collapse
|
64
|
IgG subclasses pattern and high-avidity antibody to the C-terminal region of merozoite surface protein 1 of Plasmodium vivax in an unstable hypoendemic region in Iran. Acta Trop 2009; 112:1-7. [PMID: 19481997 DOI: 10.1016/j.actatropica.2009.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 05/03/2009] [Accepted: 05/22/2009] [Indexed: 11/22/2022]
Abstract
The C-terminal region of Plasmodium vivax merozoite surface protein 1 (PvMSP-1(19)) is a leading vaccine candidate for inclusion in a polyvalent malaria vaccine. In the present study, the IgG subclasses profile and the avidity of IgG to PvMSP-1(19) were evaluated in individuals (n=94) naturally exposed to P. vivax parasite in malaria endemic areas in Chabahar districts, Iran. In individuals with patent P. vivax malaria, 86.1% was sero-positive to PvMSP-1(19) and IgG1 (81.9%) was the predominant subclass. In addition, to determine the persistence of specific IgG, IgG1 and IgG3 antibodies to PvMSP-1(19), the frequency of antibodies was determined in the infected subjects (n=74) after treatment with standard chloroquine and it was detected that the frequency of responders was significantly reduced to 51.3%, 51% and 16.2%, respectively. The antigen-binding avidity of IgG antibodies to PvMSP-1(19) was measured in sero-positive sera and the high-avidity of IgG, IgG1 and IgG3 was found in 66.6%, 61% and 47% of the infected subjects with P. vivax, respectively. The present result shows that individuals who exposed to vivax malaria in the endemic region in Iran develop antibodies with high-avidity to PvMSP-1(19). These results could help to understand the interactions between the host and P. vivax parasite in development of MSP-1(19)-based vaccine.
Collapse
|
65
|
Bhat AA, Seth RK, Babu J, Biswas S, Rao DN. Induction of mucosal and systemic humoral immune responses in murine system by intranasal immunization with peptide antigens of P. vivax and CpG oligodeoxynucleotide (ODN) in microparticle delivery. Int Immunopharmacol 2009; 9:1197-208. [PMID: 19595793 DOI: 10.1016/j.intimp.2009.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/19/2009] [Accepted: 06/25/2009] [Indexed: 01/19/2023]
Abstract
In the present study we have investigated the immunomodulatory effects of two adjuvants, CpG 1826 (two copies of CpG motifs) and CpG 2006 (three copies of CpG motifs) to the five peptide antigens of Plasmodium vivax derived from circumsporozoite protein (CSP), merozoite surface protein-1 (MSP1#1, MSP1#23), apical membrane antigen-1 (AMA-1) and gametocyte surface antigen (Pvs24) in alum and microparticle formulations, using intramuscular and intranasal routes of immunization. Alum formulation without CpG ODN generated low serum IgG and IgA antibody titers and the predominant IgG isotypes were IgG1 but with the addition of CpG ODN (1826 or 2006), the antibody titers were increased by four fold with the predominance of IgG2a/2b isotypes. The SIgA peak titers in lung and intestinal washes were significantly increased with the intranasal mode of administration. Specific activity measurement was done to calculate for the accurate amounts of total serum IgG, IgA and SIgA in washes and showed direct correlation between antibody titer and its concentration. High titer anti-Pvs24 antibodies have significant inhibitory effects on parasite development in the mosquito midgut when tested in membrane feeding assays. The immunofluorescence results show that the peptide specific antisera reacted with the air-dried parasite antigens isolated from P. vivax patients. The present study demonstrates that intranasal route of immunization appears to be an alternate mode of inducing protective immunity in P. vivax malaria.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
66
|
Zakeri S, Raeisi A, Afsharpad M, Kakar Q, Ghasemi F, Atta H, Zamani G, Memon MS, Salehi M, Djadid ND. Molecular characterization of Plasmodium vivax clinical isolates in Pakistan and Iran using pvmsp-1, pvmsp-3alpha and pvcsp genes as molecular markers. Parasitol Int 2009; 59:15-21. [PMID: 19545647 DOI: 10.1016/j.parint.2009.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/24/2009] [Accepted: 06/08/2009] [Indexed: 11/30/2022]
Abstract
In this study, the diversity of Plasmodium vivax populations circulating in Pakistan and Iran has been investigated by using circumsporozoite protein (csp) and merozoite surface proteins 1 and 3alpha (msp-1 and msp-3alpha) genes as genetic markers. Infected P. vivax blood samples were collected from Pakistan (n=187) and Iran (n=150) during April to October 2008, and were analyzed using nested-PCR/RFLP and sequencing methods. Genotyping pvmsp-1 (variable block 5) revealed the presence of type 1, type 2 and recombinant type 3 allelic variants, with type 1 predominant, in both study areas. The sequence analysis of 33 P. vivax isolates from Pakistan and 30 from Iran identified 16 distinct alleles each, with one allele (R-8) from Iran which was not reported previously. Genotyping pvcsp gene also showed that VK210 type is predominant in both countries. Moreover, based on the size of amplified fragment of pvmsp-3alpha, three major types: type A (1800bp), type B (1500bp) and type C (1200bp), were distinguished among the examined isolates that type A was predominant among Pakistani (72.7%) and Iranian (77.3%) parasites. PCR/RFLP products of pvmsp-3alpha with HhaI and AluI have detected 40 and 39 distinct variants among Pakistani and Iranian examined isolates, respectively. Based on these three studied genes, the rate of combined multiple genotypes were 30% and 24.6% for Pakistani and Iranian P. vivax isolates, respectively. These results indicate an extensive diversity in the P. vivax populations in both studies.
Collapse
Affiliation(s)
- Sedigheh Zakeri
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Naturally acquired humoral and cellular immune responses to Plasmodium vivax merozoite surface protein 9 in Northwestern Amazon individuals. Vaccine 2009; 26:6645-54. [PMID: 18832003 DOI: 10.1016/j.vaccine.2008.09.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 11/22/2022]
Abstract
Antibody and T-cell reactivities to Plasmodium vivax merozoite surface protein 9 (PvMSP9) were evaluated in a cross-sectional study of individuals naturally exposed to malaria infections living in Ribeirinha, a native riverine community and in Colina, a transmigrant community, Rondonia, Brazil. The antibody responses to PvMSP9-RIRIIand PvMSP9-Nt domains in Ribeirinha were higher compared with Colina and correlated with age and time of malaria exposure. IgG2 was most prevalent for PvMSP9-RII in both communities, and IgG1 was the predominant isotype for PvMSP9-Nt and PvMSP9-RIRII in Ribeirinha. IFN-gamma and IL-4 predominated in Ribeirinha, while IFN-gamma predominated in Colina. Variation in exposure to P. vivax likely accounts for the differences observed in cytokine and antibody levels between the two populations studied.
Collapse
|
68
|
Véron V, Legrand E, Yrinesi J, Volney B, Simon S, Carme B. Genetic diversity of msp3alpha and msp1_b5 markers of Plasmodium vivax in French Guiana. Malar J 2009; 8:40. [PMID: 19284592 PMCID: PMC2660359 DOI: 10.1186/1475-2875-8-40] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 03/11/2009] [Indexed: 11/16/2022] Open
Abstract
Background Reliable molecular typing tools are required for a better understanding of the molecular epidemiology of Plasmodium vivax. The genes msp3a and msp1_block5 are highly polymorphic and have been used as markers in many P. vivax population studies. These markers were used to assess the genetic diversity of P. vivax strains from French Guiana (South America) and to develop a molecular typing protocol. Methods A total of 120 blood samples from 109 patients (including 10 patients suffered from more than one malaria episode, samples were collected during each episode) with P. vivax infection were genotyped. All samples were analysed by msp3a PCR-RFLP and msp1_b5 gene sequencing was performed on 57 samples. Genotyping protocol applied to distinguish between new infection or relapse from heterologus hypnozoites and treatment failure or relapse from homologus hypnozoites was based on analysing first msp3a by PCR-RFLP and secondly, only if the genotypes of the two samples are identical, on sequencing the msp1_b5 gene. Results msp3a alleles of three sizes were amplified by PCR: types A, B and C. Eleven different genotypes were identified among the 109 samples analysed by msp3a PCR-RFLP. In 13.8% of cases, a mixed genotype infection was observed. The sequence of msp1_b5 gene revealed 22 unique genotypes and 12.3% of cases with mixed infection. In the 57 samples analysed by both methods, 45 genotypes were found and 21% were mixed. Among ten patients with two or three malaria episodes, the protocol allowed to identify five new infections or relapses from heterologous hypnozoites and six treatment failures of relapses from homologous hypnozoites. Conclusion The study showed a high diversity of msp3a and msp1_b5 genetic markers among P. vivax strains in French Guiana with a low polyclonal infection rate. These results indicated that the P. vivax genotyping protocol presented has a good discrimination power and can be used in clinical drug trials or epidemiological studies.
Collapse
Affiliation(s)
- Vincent Véron
- Laboratoire Hospitalo-Universitaire de Parasitologie et Mycologie Médicale, Equipe EA3593, UFR de Médecine de l'Université des Antilles et de la Guyane, Cayenne, French Guiana.
| | | | | | | | | | | |
Collapse
|
69
|
Abstract
More attention is being focused on malaria today than any time since the world's last efforts to achieve eradication over 40 years ago. The global community is now discussing strategies aimed at dramatically reducing malarial disease burden and the eventual eradication of all types of malaria, everywhere. As a consequence, Plasmodium vivax, which has long been neglected and mistakenly considered inconsequential, is now entering into the strategic debates taking place on malaria epidemiology and control, drug resistance, pathogenesis and vaccines. Thus, contrary to the past, the malaria research community is becoming more aware and concerned about the widespread spectrum of illness and death caused by up to a couple of hundred million cases of vivax malaria each year. This review brings these issues to light and provides an overview of P. vivax vaccine development, then and now. Progress had been slow, given inherent research challenges and minimal support in the past, but prospects are looking better for making headway in the next few years. P. vivax, known to invade the youngest red blood cells, the reticulocytes, presents a strong challenge towards developing a reliable long-term culture system to facilitate needed research. The P. vivax genome was published recently, and vivax researchers now need to coordinate efforts to discover new vaccine candidates, establish new vaccine approaches, capitalize on non-human primate models for testing, and investigate the unique biological features of P. vivax, including the elusive P. vivax hypnozoites. Comparative studies on both P. falciparum and P. vivax in many areas of research will be essential to eradicate malaria. And to this end, the education and training of future generations of dedicated "malariologists" to advance our knowledge, understanding and the development of new interventions against each of the malaria species infecting humans also will be essential.
Collapse
Affiliation(s)
- Mary R Galinski
- Emory Vaccine Center and Yerkes National Primate Research Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - John W Barnwell
- Malaria Branch, Division of Parasitic Diseases, National Center for Zoonotic, Vector-Borne and Enteric Diseases, the Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
70
|
Ladeia-Andrade S, Ferreira MU, Scopel KKG, Braga EM, Bastos MDS, Wunderlich G, Coura JR. Naturally acquired antibodies to merozoite surface protein (MSP)-1(19) and cumulative exposure to Plasmodium falciparum and Plasmodium vivax in remote populations of the Amazon Basin of Brazil. Mem Inst Oswaldo Cruz 2008; 102:943-51. [PMID: 18209933 DOI: 10.1590/s0074-02762007000800009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 12/18/2007] [Indexed: 11/21/2022] Open
Abstract
To infer recent patterns of malaria transmission, we measured naturally acquired IgG antibodies to the conserved 19-kDa C-terminal region of the merozoite surface protein (MSP)-1 of both Plasmodium vivax (PvMSP-1(19)) and Plasmodium falciparum (PfMSP-1(19)) in remote malaria-exposed populations of the Amazon Basin. Community-based cross-sectional surveys were carried out between 2002 and 2003 in subjects of all age groups living along the margins of the Unini and Jaú rivers, Northwestern Brazil. We found high prevalence rates of IgG antibodies to PvMSP-1(19) (64.0 - 69.6%) and PfMSP-1(19) (51.6 - 52.0%), with significant differences in the proportion of subjects with antibodies to PvMSP-1(19) according to age, place of residence and habitual involvement in high-risk activities, defining some groups of highly exposed people who might be preferential targets of malaria control measures. In contrast, no risk factor other than age was significantly associated with seropositivity to PfMSP-1(19). Only 14.1% and 19.3% of the subjects tested for antibodies to PvMSP-1(19) and PfMSP-1(19) in consecutive surveys (142 - 203 days apart) seroconverted or had a three fold or higher increase in the levels of antibodies to these antigens. We discuss the extent to which serological data correlated with the classical malariometric indices and morbidity indicators measured in the studied population at the time of the seroprevalence surveys and highlight some limitations of serological data for epidemiological inference.
Collapse
Affiliation(s)
- Simone Ladeia-Andrade
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz-Fiocruz, 21045-900 Rio de Janeiro, Brasil.
| | | | | | | | | | | | | |
Collapse
|
71
|
Tyagi RK, Sharma PK, Vyas SP, Mehta A. Various carrier system(s)- mediated genetic vaccination strategies against malaria. Expert Rev Vaccines 2008; 7:499-520. [PMID: 18444895 DOI: 10.1586/14760584.7.4.499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The introduction of vaccine technology has facilitated an unprecedented multiantigen approach to develop an effective vaccine against complex pathogens, such as Plasmodium spp., that cause severe malaria. The capacity of multisubunit DNA vaccines encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and IFN-gamma responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be multi-immune (i.e., capable of eliciting more than one type of immune response, including cell-mediated and humoral). In the case of malaria parasites, a cytotoxic T-lymphocyte response is categorically needed against the intracellular hepatocyte stage while a humoral response, with antibodies targeted against antigens from all stages of the life cycle, is also needed. Therefore, the key to success for any DNA-based therapy is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of nonviral DNA-mediated gene-transfer techniques, such as liposomes, virosomes, microspheres and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. In addition, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells. Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. This review comprises various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccines.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Biomedical Parasitology Unit, Pasteur Institute, 25-28 Rue Du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
72
|
Identification and characterization of a novel Plasmodium falciparum merozoite apical protein involved in erythrocyte binding and invasion. PLoS One 2008; 3:e1732. [PMID: 18320051 PMCID: PMC2253826 DOI: 10.1371/journal.pone.0001732] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022] Open
Abstract
Proteins that coat Plasmodium falciparum merozoite surface and those secreted from its apical secretory organelles are considered promising candidates for the vaccine against malaria. In the present study, we have identified an asparagine rich parasite protein (PfAARP; Gene ID PFD1105w), that harbors a predicted signal sequence, a C-terminal transmembrane region and whose transcription and translation patterns are similar to some well characterized merozoite surface/apical proteins. PfAARP was localized to the apical end of the merozoites by GFP-targeting approach using an inducible, schizont-stage expression system, by immunofluorescence assays using anti-PfAARP antibodies. Immuno-electron microsopic studies showed that PfAARP is localized in the apical ends of the rhoptries in the merozoites. RBC binding assays with PfAARP expressed on COS cells surface showed that it binds to RBCs through its N-terminal region with a receptor on the RBC surface that is sensitive to trypsin and neuraminidase treatments. Sequencing of PfAARP from different P. falciparum strains as well as field isolates showed that the N-terminal region is highly conserved. Recombinant protein corresponding to the N-terminal region of PfAARP (PfAARP-N) was produced in its functional form in E. coli. PfAARP-N showed reactivity with immune sera from individuals residing in P. falciparum endemic area. The anti-PfAARP-N rabbit antibodies significantly inhibited parasite invasion in vitro. Our data on localization, functional assays and invasion inhibition, suggest a role of PfAARP in erythrocyte binding and invasion by the merozoite.
Collapse
|
73
|
Bastos MS, da Silva-Nunes M, Malafronte RS, Hoffmann EHE, Wunderlich G, Moraes SL, Ferreira MU. Antigenic polymorphism and naturally acquired antibodies to Plasmodium vivax merozoite surface protein 1 in rural Amazonians. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1249-59. [PMID: 17699838 PMCID: PMC2168105 DOI: 10.1128/cvi.00243-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Merozoite surface protein 1 of Plasmodium vivax (PvMSP-1), a major target for malaria vaccine development, contains six highly polymorphic domains interspersed with conserved sequences. Although there is evidence that the sequence divergence in PvMSP-1 has been maintained over 5 million years by balanced selection exerted by the host's acquired immunity, the variant specificity of naturally acquired antibodies to PvMSP-1 remains poorly investigated. Here, we show that 15 recombinant proteins corresponding to PvMSP-1 variants commonly found in local parasites were poorly recognized by 376 noninfected subjects aged 5 to 90 years exposed to malaria in rural Amazonia; less than one-third of them had detectable immunoglobulin G (IgG) antibodies to at least one variant of blocks 2, 6, and 10 that were expressed, although 54.3% recognized the invariant 19-kDa C-terminal domain PvMSP-1(19). Although the proportion of responders to PvMSP-1 variants increased substantially during subsequent acute P. vivax infections, the specificity of IgG antibodies did not necessarily match the PvMSP-1 variant(s) found in infecting parasites. We discuss the relative contribution of antigenic polymorphism, poor immunogenicity, and original antigenic sin (the skew in the specificity of antibodies elicited by exposure to new antigenic variants due to preexisting variant-specific responses) to the observed patterns of antibody recognition of PvMSP-1. We suggest that antibody responses to the repertoire of variable domains of PvMSP-1 to which subjects are continuously exposed are elicited only after several repeated infections and may require frequent boosting, with clear implications for the development of PvMSP-1-based subunit vaccines.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Amino Acid Sequence
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/blood
- Antigenic Variation/genetics
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Brazil
- Child
- Child, Preschool
- Cohort Studies
- Female
- Genetic Variation
- Humans
- Immunity, Innate/genetics
- Infant
- Infant, Newborn
- Male
- Merozoite Surface Protein 1/genetics
- Merozoite Surface Protein 1/immunology
- Middle Aged
- Molecular Sequence Data
- Plasmodium vivax/genetics
- Plasmodium vivax/immunology
- Polymorphism, Genetic
- Protein Structure, Tertiary/genetics
- Rural Population
Collapse
Affiliation(s)
- Melissa S Bastos
- Laboratories of Immunoepidemology, Institute of Tropical Medicine of São Paulo, University of São Paulo, 05403-000 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
74
|
de Souza-Neiras WC, de Melo LMS, Machado RLD. The genetic diversity of Plasmodium vivax: a review. Mem Inst Oswaldo Cruz 2007; 102:245-54. [PMID: 17568928 DOI: 10.1590/s0074-02762007000300002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 05/08/2007] [Indexed: 11/22/2022] Open
Abstract
The genetic diversity of Plasmodium vivax has been investigated in several malaria-endemic areas, including the Brazilian Amazon region, where this is currently the most prevalent species causing malaria in humans. This review summarizes current views on the use of molecular markers to examine P. vivax populations, with a focus on studies performed in Brazilian research laboratories. We emphasize the importance of phylogenetic studies on this parasite and discuss the perspectives created by our increasing understanding of genetic diversity and population structure of this parasite for the development of new control strategies, including vaccines, and more effective drugs for the treatment of P. vivax malaria.
Collapse
Affiliation(s)
- Wanessa Christina de Souza-Neiras
- Departamento de Biologia, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista, Súo José do Rio Preto, SP, Brasil.
| | | | | |
Collapse
|
75
|
Devi YS, Mukherjee P, Yazdani SS, Shakri AR, Mazumdar S, Pandey S, Chitnis CE, Chauhan VS. Immunogenicity of Plasmodium vivax combination subunit vaccine formulated with human compatible adjuvants in mice. Vaccine 2007; 25:5166-74. [PMID: 17544179 DOI: 10.1016/j.vaccine.2007.04.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 04/27/2007] [Accepted: 04/29/2007] [Indexed: 11/15/2022]
Abstract
An effective malaria vaccine will probably require the delivery of multiple antigens that induce several layers of immunity. Malaria antigens expressed on the surface and in apical organelles of blood-stage merozoites are potential vaccine candidates given their importance in the invasion of erythrocytes. The present study examined the kinetics of humoral response in BALB/c mice following immunization with combination of two blood-stage Plasmodium vivax invasion related molecules, the N-terminal, cysteine-rich region II of P. vivax Duffy binding protein (PvRII) and the 19kDa C-terminal region of merozoite surface protein 1 (PvMSP1(19)) formulated with Montanide ISA 720 and alhydrogel. Immunization with combination of recombinant PvRII and PvMSP1(19) formulated with the Montanide ISA 720 elicited higher antibody titer compared to the alhydrogel formulation. In case of both the adjuvants tested, combination of PvRII and PvMSP1(19) did not result in suppression of antibody response against either antigen when compared to immunization with individual antigens alone. Analysis of IgG subclasses showed that combination of both the recombinant proteins induced a mixed Th1/Th2-type response with almost all IgG subtypes being expressed in equivalent amount. Antibodies elicited against PvRII showed significant inhibitory effect on the binding of PvRII to recombinant Duffy antigen receptor for chemokines (DARC) in an in vitro binding assay. The results of the present study provide a rationale for a combination vaccine against P. vivax malaria based on PvMSP1(19) and PvRII.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Protozoan/blood
- Antibody Formation/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Blotting, Western
- Chromatography, High Pressure Liquid
- Enzyme-Linked Immunosorbent Assay
- Immunization/methods
- Immunoglobulin G/blood
- Malaria Vaccines/administration & dosage
- Malaria Vaccines/immunology
- Malaria, Vivax/immunology
- Malaria, Vivax/prevention & control
- Male
- Merozoite Surface Protein 1/genetics
- Merozoite Surface Protein 1/immunology
- Mice
- Mice, Inbred BALB C
- Plasmodium vivax/genetics
- Plasmodium vivax/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Recombinant Proteins/immunology
- Time Factors
Collapse
Affiliation(s)
- Yengkhom Sangeeta Devi
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), P.O. Box 10504, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Herrera S, Corradin G, Arévalo-Herrera M. An update on the search for a Plasmodium vivax vaccine. Trends Parasitol 2007; 23:122-8. [PMID: 17258937 DOI: 10.1016/j.pt.2007.01.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/09/2006] [Accepted: 01/17/2007] [Indexed: 11/27/2022]
Abstract
Although Plasmodium falciparum is the leading cause of morbidity and mortality due to malaria worldwide, nearly 2.5 billion people, mostly outside Africa, are also at risk from malaria caused by Plasmodium vivax infection. Currently, almost all efforts to develop a malaria vaccine have focused on P. falciparum. For example, there are 23 P. falciparum vaccine candidates undergoing advanced clinical studies and only two P. vivax vaccine candidates being tested in preliminary (Phase I) clinical trials, with few others being assessed in preclinical studies. More investment and a greater effort toward the development of P. vivax vaccine components for a multi-species vaccine are required. This is mainly because of the wide geographical coexistence of both parasite species but also because of increasing drug resistance, recent observations of severe and lethal P. vivax cases and relapsing parasite behaviour. Availability of the P. vivax genome has contributed to antigen discovery but new means to test vaccines in future trials remain to be designed.
Collapse
Affiliation(s)
- Sócrates Herrera
- Malaria Vaccine and Drug Development Center, AA 26020, Cali, Colombia; Immunology Institute, Universidad del Valle, AA 25574, Cali, Colombia.
| | | | | |
Collapse
|
77
|
Serrano ML, Pérez HA, Medina JD. Structure of C-terminal fragment of merozoite surface protein-1 from Plasmodium vivax determined by homology modeling and molecular dynamics refinement. Bioorg Med Chem 2006; 14:8359-65. [PMID: 17035028 DOI: 10.1016/j.bmc.2006.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
One current vaccine candidate against Plasmodium vivax targeting asexual blood stage is the major merozoite surface protein-1 of P. vivax (PvMSP-1). Vaccine trials with PvMSP-1(19) and PvMSP-1(33) have succeeded in protecting monkeys and a large proportion of individuals, naturally exposed to P. vivax transmission, develop specific antibodies to PvMSP-1(19). This study presents a model for the three-dimensional structure of the C-terminal 19kDa fragment of P. vivax MSP-1 determined by means of homology modeling and molecular dynamics refinement. The structure proved to be consistent with MSP-1(19) of known crystal or solution structures. The presence of a main binding pocket, well suited for protein-protein interactions, was determined by CASTp. Corrections reported to the sequence of PvMSP-1(19) Belem strain were also inspected. Our model is currently used as a basis to understand antibody interactions with PvMSP-1(19).
Collapse
Affiliation(s)
- María Luisa Serrano
- Laboratorio de Modelado Molecular, Unidad de Química Medicinal, Facultad de Farmacia, Universidad Central de Venezuela, Caracas 1041-A, Venezuela.
| | | | | |
Collapse
|
78
|
Wickramarachchi T, Illeperuma RJ, Perera L, Bandara S, Holm I, Longacre S, Handunnetti SM, Udagama-Randeniya PV. Comparison of naturally acquired antibody responses against the C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 under low transmission and unstable malaria conditions in Sri Lanka. Int J Parasitol 2006; 37:199-208. [PMID: 17055511 DOI: 10.1016/j.ijpara.2006.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 11/17/2022]
Abstract
We report here, for the first time, a comparison of naturally acquired antibody responses to the 42 and 19 kDa C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 assayed by ELISA using p42 and p19 baculovirus-derived recombinant proteins, respectively. Test populations comprised patients with microscopy confirmed acute P. vivax infections from two regions endemic for vivax malaria where low transmission and unstable malaria conditions prevail, and a non-endemic urban area, in Sri Lanka. The antibody prevalence to the two proteins, both at the individual and population levels, tend to respond more to p42 than to p19 in all test areas, where >14% of individuals preferentially recognized p42, compared with <2% for p19. In patients with no previous exposure to malaria, 21% preferentially recognized p42, whereas none exclusively recognized p19. A significantly lower prevalence of anti-p19 IgM, but not anti-p42 IgM, was observed among residents from endemic areas compared with their non-endemic counterparts. Individuals from both endemic areas produced significantly less anti-p19 IgM compared with anti-p42 IgM. IgG1 was the predominant IgG isotype for both antigens in all individuals. With increasing exposure to malaria in both endemic areas, anti-p19 antibody responses were dominated by the functionally important IgG1 and IgG3 isotypes, with a concurrent reduction in IgM that was lacking in the non-endemic residents. This antibody switch was also reflected for PvAMA-1 as we previously reported with the identical battery of sera. In contrast, the antibody switch for p42 was restricted to endemic residents with more extensive exposure. These results suggest that an IgM-dominated antibody response against the p42 polymorphic region in endemic residents may interfere with the development of an IgG-dominated "protective" isotype shift to p19, that may complicate vaccine development.
Collapse
|
79
|
Kim JR, Imwong M, Nandy A, Chotivanich K, Nontprasert A, Tonomsing N, Maji A, Addy M, Day NPJ, White NJ, Pukrittayakamee S. Genetic diversity of Plasmodium vivax in Kolkata, India. Malar J 2006; 5:71. [PMID: 16907979 PMCID: PMC1560144 DOI: 10.1186/1475-2875-5-71] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 08/14/2006] [Indexed: 12/01/2022] Open
Abstract
Background Plasmodium vivax malaria accounts for approximately 60% of malaria cases in Kolkata, India. There has been limited information on the genotypic polymorphism of P. vivax in this malaria endemic area. Three highly polymorphic and single copy genes were selected for a study of genetic diversity in Kolkata strains. Methods Blood from 151 patients with P. vivax infection diagnosed in Kolkata between April 2003 and September 2004 was genotyped at three polymorphic loci: the P. vivax circumsporozoite protein (pvcs), the merozoite surface protein 1 (pvmsp1) and the merozoite surface protein 3-alpha (pvmsp3-alpha). Results Analysis of these three genetic markers revealed that P. vivax populations in Kolkata are highly diverse. A large number of distinguishable alleles were found from three genetic markers: 11 for pvcs, 35 for pvmsp1 and 37 for pvmsp3-alpha. These were, in general, randomly distributed amongst the isolates. Among the 151 isolates, 142 unique genotypes were detected the commonest genotype at a frequency of less than 2% (3/151). The overall rate of mixed genotype infections was 10.6%. Conclusion These results indicate that the P. vivax parasite population is highly diverse in Kolkata, despite the low level of transmission. The genotyping protocols used in this study may be useful for differentiating re-infection from relapse and recrudescence in studies assessing of malarial drug efficacy in vivax malaria.
Collapse
Affiliation(s)
- Jung-Ryong Kim
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mallika Imwong
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Amitabha Nandy
- Department of Parasitology and Protozoology, the Calcutta School of Tropical Medicine, Kolkata, India
| | - Kesinee Chotivanich
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Apichart Nontprasert
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Tonomsing
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ardhendu Maji
- Department of Parasitology and Protozoology, the Calcutta School of Tropical Medicine, Kolkata, India
| | - Manjulika Addy
- Department of Parasitology and Protozoology, the Calcutta School of Tropical Medicine, Kolkata, India
| | - Nick PJ Day
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxfordshire OX3 7LJ, UK
| | - Nicholas J White
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Old Road, Headington, Oxfordshire OX3 7LJ, UK
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- The Royal Institute of Thailand, Grand Palace, Bangkok, Thailand
| |
Collapse
|
80
|
Zakeri S, Barjesteh H, Djadid ND. Merozoite surface protein-3alpha is a reliable marker for population genetic analysis of Plasmodium vivax. Malar J 2006; 5:53. [PMID: 16817951 PMCID: PMC1579225 DOI: 10.1186/1475-2875-5-53] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 07/03/2006] [Indexed: 11/23/2022] Open
Abstract
Background The knowledge on population structure of the parasite isolates has contributed greatly to understanding the dynamics of the disease transmission for designing and evaluating malaria vaccines as well as for drug applications. msp-1 and msp-3α genes have been used as a genetic marker in population studies of Plasmodium vivax isolates. In this study, msp-3α was compared and assessed with msp-1 marker in order to find whether msp-3α is a reliable genetic marker for P. vivax population studies. Methods This comparative study was designed and carried out as the first assessment of diversity in Pvmsp-3α gene by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in the 50 northern and 94 southern P. vivax isolates from Iran, which had been analysed before for msp-1 gene. Results Three allele size as, Type A (1.8 kb), Type B (1.5 kb) and Type C (1.2 kb) have been detected among both northern and southern isolates based on PCR results. Type C (70%) and Type A (68.7%) were the predominant fragments among northern and southern parasites, respectively. 99 distinct Pvmsp-3α fragments defined by the size were detected in the 94 southern samples by PCR analysis. However, no mixed genotype infections have been detected among northern isolates. Based on restriction pattern from digestion with Hha I and Alu I 12 and 49 distinct allelic variants have been detected among 50 northern and 94 southern isolates. However, based on msp-1 gene, 30 distinct variants identified in all 146-sequenced Iranian P. vivax isolate. Conclusion The results suggested that PCR-RFLP on msp-3α gene is an adequate, applicable and easily used technique for molecular epidemiology studies of P. vivax isolates without the need for further sequencing analysis.
Collapse
Affiliation(s)
- Sedigheh Zakeri
- Malaria Research Group (MRG), Biotechnology Department, Pasteur Institute of Iran, Pasteur Avenue, P.O.BOX 1316943551, Tehran, Iran
| | - Hesam Barjesteh
- Malaria Research Group (MRG), Biotechnology Department, Pasteur Institute of Iran, Pasteur Avenue, P.O.BOX 1316943551, Tehran, Iran
| | - Navid D Djadid
- Malaria Research Group (MRG), Biotechnology Department, Pasteur Institute of Iran, Pasteur Avenue, P.O.BOX 1316943551, Tehran, Iran
| |
Collapse
|
81
|
Nogueira PA, Alves FP, Fernandez-Becerra C, Pein O, Santos NR, Pereira da Silva LH, Camargo EP, del Portillo HA. A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. Infect Immun 2006; 74:2726-33. [PMID: 16622209 PMCID: PMC1459730 DOI: 10.1128/iai.74.5.2726-2733.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. The occurrence of clinical protection in P. vivax malaria in Brazil was first reported among residents of the riverine community of Portuchuelo, in Rondônia, western Amazon. We thus analyzed immune sera from this same human population to determine if naturally acquired humoral immune responses against the merozoite surface protein 1 of P. vivax, PvMSP1, could be associated with reduced risk of infection and/or clinical protection. Our results demonstrated that this association could be established with anti-PvMSP1 antibodies predominantly of the immunoglobulin G3 subclass directed against the N terminus but not against the C terminus, in spite of the latter being more immunogenic and capable of natural boosting. This is the first report of a prospective study of P. vivax malaria demonstrating an association of reduced risk of infection and clinical protection with antibodies against an antigen of this parasite.
Collapse
|
82
|
Putaporntip C, Jongwutiwes S, Iwasaki T, Kanbara H, Hughes AL. Ancient common ancestry of the merozoite surface protein 1 of Plasmodium vivax as inferred from its homologue in Plasmodium knowlesi☆. Mol Biochem Parasitol 2006; 146:105-8. [PMID: 16337018 DOI: 10.1016/j.molbiopara.2005.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 11/02/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Chaturong Putaporntip
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
83
|
Mohmmed A, Kishore S, Patra KP, Dasaradhi PVN, Malhotra P, Chauhan VS. Identification of karyopherin beta as an immunogenic antigen of the malaria parasite using immune mice and human sera. Parasite Immunol 2005; 27:197-203. [PMID: 15987343 DOI: 10.1111/j.1365-3024.2005.00759.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A differential immunoscreening of the lambdagt11 Plasmodium falciparum genomic expression library was carried out using anti-P. yoelii sera (convalescent-phase mouse sera) and immune sera collected from healthy adults, to identify novel cross-reactive and possibly protective antigens of the parasite. One clone, with an insert size of 1132 bp that reacted strongly with both the sera was selected. The insert was found to be a part of the P. falciparum karyopherin beta (PfKbeta) homologue. RT-PCR and Northern blot analysis confirmed the expression of PfKbeta in the blood stages of the parasite. The approximately 110 kDa protein was localized in the cytoplasm at the ring and trophozoite, and in the parasitophorous vacuole at the schizont stage. Two large fragments of PfKbeta representing the N- and C-terminal halves were expressed in E. coli. The recombinant proteins were highly immunogenic in mice, and also found to be the target for immune response in natural infections of Plasmodium spp. Anti-sera against the protein showed a low level of anti-parasitic activity. Immunization with recombinant PfKbeta fragments was only partially protective against a heterologous challenge infection in mice. Our results show that the parasite releases a highly immunogenic, cytoplasmic protein into the host which may not contribute to the development of protective immunity.
Collapse
Affiliation(s)
- Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | | | | | | | | |
Collapse
|
84
|
Perez-Leal O, Sierra AY, Barrero CA, Moncada C, Martinez P, Cortes J, Lopez Y, Salazar LM, Hoebeke J, Patarroyo MA. Identifying and characterising the Plasmodium falciparum merozoite surface protein 10 Plasmodium vivax homologue. Biochem Biophys Res Commun 2005; 331:1178-84. [PMID: 15883000 DOI: 10.1016/j.bbrc.2005.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Indexed: 10/25/2022]
Abstract
Plasmodium vivax malaria is one of the most prevalent parasitic diseases in Asia and Latin-America. The difficulty of maintaining this parasite culture in vitro has hampered identifying and characterising proteins implied in merozoite invasion of red blood cells. We have been able to identify an open reading frame in P. vivax encoding the Plasmodium falciparum merozoite surface protein 10 homologous protein using the partial sequences from this parasite's genome reported during 2004. This new protein contains 479 amino-acids, two epidermal growth factor-like domains, hydrophobic regions at the N- and C-termini, being compatible with a signal peptide and a glycosylphosphatidylinositol anchor site, respectively. The protein is expressed during the parasite's asexual stage and is recognised by polyclonal sera in parasite lysate using Western blot. P. vivax-infected patients' sera highly recognised recombinant protein by ELISA.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- Molecular Biology Department, Fundacion Instituto de Inmunologia de Colombia, Bogota, Colombia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Leclerc MC, Gauthier C, Villegas L, Urdaneta L. Genetic diversity of merozoite surface protein-1 gene of Plasmodium vivax isolates in mining villages of Venezuela (Bolivar State). Acta Trop 2005; 95:26-32. [PMID: 15862584 DOI: 10.1016/j.actatropica.2005.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 02/07/2005] [Accepted: 03/08/2005] [Indexed: 11/21/2022]
Abstract
The merozoite surface protein-1 gene of Plasmodium vivax is highly polymorphic and so, currently used in epidemiological studies of P. vivax malaria. We sequenced the variable block 5 of the gene from 39 Venezuelan isolates, 18 of which were co-infected with Plasmodium falciparum. We observed a limited variability with 34 isolates belonging to the type Salvador I, none Belem type and only five recombinants. Among the recombinants, only two types of sequences were observed with, respectively, 18 and 21 poly-Q residues. Nucleotide substitutions explained the major differences of the 11 patterns observed. We could evidence neither specific MSP-1 genotype associated with co-infected samples, nor peculiar MSP-1 genotype distribution inside the investigated areas. In comparison with other low endemic regions in the world, our sampling has a lower genetic diversity, which could be mainly explained by the lack of Belem type. In fact, the variable repeats of poly-Q residues involved in the polymorphism of Belem type and recombinant isolates are responsible for a great part of variability observed in MSP-1 block 5.
Collapse
Affiliation(s)
- Marie Claude Leclerc
- Laboratoire de Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2774, 911 Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
86
|
Imwong M, Pukrittayakamee S, Grüner AC, Rénia L, Letourneur F, Looareesuwan S, White NJ, Snounou G. Practical PCR genotyping protocols for Plasmodium vivax using Pvcs and Pvmsp1. Malar J 2005; 4:20. [PMID: 15854233 PMCID: PMC1131918 DOI: 10.1186/1475-2875-4-20] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 04/27/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium vivax is the second most prevalent malaria parasite affecting more than 75 million people each year, mostly in South America and Asia. In addition to major morbidity this parasite is associated with relapses and a reduction in birthweight. The emergence and spread of drug resistance in Plasmodium falciparum is a major factor in the resurgence of this parasite. P. vivax resistance to drugs has more recently emerged and monitoring the situation would be helped, as for P. falciparum, by molecular methods that can be used to characterize parasites in field studies and drug efficacy trials. METHODS Practical PCR genotyping protocols based on polymorphic loci present in two P. vivax genetic markers, Pvcs and Pvmsp1, were developed. The methodology was evaluated using 100 P. vivax isolates collected in Thailand. RESULTS AND DISCUSSION Analysis revealed that P. vivax populations in Thailand are highly diverse genetically, with mixed genotype infections found in 26 % of the samples (average multiplicity of infection = 1.29). A large number of distinguishable alleles were found for the two markers, 23 for Pvcs and 36 for Pvmsp1. These were generally randomly distributed amongst the isolates. A total of 68 distinct genotypes could be enumerated in the 74 isolates with a multiplicity of infection of 1. CONCLUSION These results indicate that the genotyping protocols presented can be useful in the assessment of in vivo drug efficacy clinical trials conducted in endemic areas and for epidemiological studies of P. vivax infections.
Collapse
Affiliation(s)
- Mallika Imwong
- Department of Clinical Tropical medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anne Charlotte Grüner
- Département d'Immunologie, INSERM U567, CNRS UMR8104, Institut Cochin, Université René Descartes, Paris 75014, France
| | - Laurent Rénia
- Département d'Immunologie, INSERM U567, CNRS UMR8104, Institut Cochin, Université René Descartes, Paris 75014, France
| | - Frank Letourneur
- Laboratoire Commun de Séquençage, Institut Cochin, Université René Descartes, Paris 75014, France
| | - Sornchai Looareesuwan
- Department of Clinical Tropical medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Wellcome Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Georges Snounou
- Unité de Parasitologie Bio-Médicale, CNRS URA2851, Institut Pasteur, Paris, France
- Parasitologie Comparée et Modèles Expérimentaux USM307, CNRS IFR101, Muséum National d'Histoire Naturelle, CP52, 61 Rue Buffon, 75231 Paris Cedex 05, Paris, France
| |
Collapse
|
87
|
Perez-Leal O, Sierra AY, Barrero CA, Moncada C, Martinez P, Cortes J, Lopez Y, Torres E, Salazar LM, Patarroyo MA. Plasmodium vivax merozoite surface protein 8 cloning, expression, and characterisation. Biochem Biophys Res Commun 2005; 324:1393-9. [PMID: 15504368 DOI: 10.1016/j.bbrc.2004.09.202] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Indexed: 11/18/2022]
Abstract
Plasmodium vivax, one of the four parasite species causing malaria in humans, is the most widespread throughout the world, leading to nearly 80 million cases per year, mainly in Latin-America and Asia. An open reading frame encoding the Plasmodium falciparum merozoite surface protein 8 P. vivax homologue has been identified in the present study by screening the current data obtained from this parasite's partially sequenced genome. This new protein contains 487 amino-acids, two epidermal growth factor like domains, hydrophobic regions at the N- and C-termini compatible with a signal peptide, and a glycosylphosphatidylinositol anchor site, respectively. This gene's transcription and its encoded protein expression have been assessed, as well as its recognition by P. vivax-infected patients' sera. Based on this recognition, and a previous study showing that mice immunised with the Plasmodium yoelii homologous protein were protected, we consider the PvMSP8 a good candidate to be included in a multi-stage multi-antigen P. vivax vaccine.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- Molecular Biology Department, Fundacion Instituto de Inmunologia de Colombia, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Rayner JC, Huber CS, Feldman D, Ingravallo P, Galinski MR, Barnwell JW. Plasmodium vivax merozoite surface protein PvMSP-3β is radically polymorphic through mutation and large insertions and deletions. INFECTION GENETICS AND EVOLUTION 2004; 4:309-19. [PMID: 15374528 DOI: 10.1016/j.meegid.2004.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 03/10/2004] [Accepted: 03/23/2004] [Indexed: 10/26/2022]
Abstract
Plasmodium vivax causes the majority of malaria outside of sub-Saharan Africa and is an important burden for affected countries. The recent spread of drug-resistant P. vivax strains in these countries has led to renewed pressure for the development of a P. vivax vaccine. The complex life cycle of P. vivax presents many potential vaccine targets, but among the most promising candidates are subunits of the surface coat that surrounds the merozoite, the parasite stage that infects erythrocytes and initiates much of the pathology of malaria. Although the genes for several constituents of the P. vivax surface coat have now been cloned and sequenced, little is known about the extent to which these proteins vary between populations, an important consideration in vaccine development. The merozoite surface protein MSP-3beta is a member of a family of related merozoite surface proteins, all of which contain a central alanine-rich domain that is predicted to form a coiled-coil tertiary structure. We have sequenced the PvMSP-3 beta gene from P. vivax isolates originating in Central and South America, Asia and the Pacific. In this first assessment of PvMSP-3 beta variation between populations, we discovered widespread and significant diversity, mostly within the alanine-rich central region. We observed frequent differences in PvMSP-3 beta gene size, caused by the insertion and/or deletion of several large sequence blocks, as well as numerous single nucleotide polymorphisms and smaller scale insertions and deletions. Despite this high level of sequence diversity, certain physical properties of the encoded protein are maintained, particularly the ability to form coiled-coil tertiary structures, suggesting that although PvMSP-3 beta varies widely, it is under functional constraints. The implications for PvMSP-3 beta function and vaccine development are discussed.
Collapse
Affiliation(s)
- Julian C Rayner
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, MS F-36, 4770 Buford Highway, Atlanta, GA 30341, USA
| | | | | | | | | | | |
Collapse
|
89
|
Severini C, Menegon M, Di Luca M, Abdullaev I, Majori G, Razakov SA, Gradoni L. Risk of Plasmodium vivax malaria reintroduction in Uzbekistan: genetic characterization of parasites and status of potential malaria vectors in the Surkhandarya region. Trans R Soc Trop Med Hyg 2004; 98:585-92. [PMID: 15289095 DOI: 10.1016/j.trstmh.2004.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2003] [Revised: 01/05/2004] [Accepted: 01/12/2004] [Indexed: 11/21/2022] Open
Abstract
Plasmodium vivax malaria was eradicated from Uzbekistan in 1961. Due to resurgence of the disease in neighbouring states and massive population migration, there has been an increase of P. vivax malaria, imported from Tajikistan, resulting in a number of indigenous cases being identified in areas bordering that country. A molecular study using the merozoite surface protein 1 (msp-1) gene as a marker was performed on 24 P. vivax genomic isolates from 12 indigenous and 10 imported malaria cases that occurred in the Surkhandarya region during the summer of 2002. Results have shown a significant difference in the frequency of msp-1 types between indigenous and imported isolates, the latter showing greater genetic heterogeneity. An entomological investigation in the area suggested that three Anopheles species, namely A. superpictus, A. pulcherrimus and A. hyrcanus may have a potential role in the endemic transmission of P. vivax.
Collapse
Affiliation(s)
- Carlo Severini
- Laboratorio di Parassitologia, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
90
|
Leclerc MC, Menegon M, Cligny A, Noyer JL, Mammadov S, Aliyev N, Gasimov E, Majori G, Severini C. Genetic diversity of Plasmodium vivax isolates from Azerbaijan. Malar J 2004; 3:40. [PMID: 15535878 PMCID: PMC534801 DOI: 10.1186/1475-2875-3-40] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 11/09/2004] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Plasmodium vivax, although causing a less serious disease than Plasmodium falciparum, is the most widespread of the four human malarial species. Further to the recent recrudescence of P. vivax cases in the Newly Independent States (NIS) of central Asia, a survey on the genetic diversity and dissemination in Azerbaijan was undertaken. Azerbaijan is at the crossroads of Asia and, as such, could see a rise in the number of cases, although an effective malaria control programme has been established in the country. METHODS Thirty-six P. vivax isolates from Central Azerbaijan were characterized by analysing the genetic polymorphism of the circumsporozoite protein (CSP) and the merozoite surface protein 1 (MSP-1) genes, using PCR amplifications and amplicons sequencing. RESULTS Analysis of CSP sequences showed that all the processed isolates belong to the VK 210 type, with variations in the alternation of alanine residue (A) or aspartic acid residue (D) in the repeat motif GDRA(A/D)GQPA along the sequence. As far as MSP-1 genotyping is concerned, it was found that the majority of isolates analysed belong to Belem and Sal I types. Five recombinant isolates were also identified. Combined analysis with the two genetic markers allowed the identification of 19 plasmodial sub-types. CONCLUSION The results obtained in the present study indicate that there are several P. vivax clones circulating in Azerbaijan and, consequently, a careful malaria surveillance could be of paramount importance to identify, at early stage, the occurrence of possible P. vivax malaria outbreaks.
Collapse
Affiliation(s)
- Marie Claude Leclerc
- UR IRD 165, Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Instituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Alexandra Cligny
- UR IRD 165, Génétique et Evolution des Maladies Infectieuses, UMR CNRS/IRD 2724, 911 Avenue Agropolis, BP 64501, 34394 Montpellier cedex 5, France
| | - Jean Louis Noyer
- CIRAD UMR 1096/PIA, TA40/03, Avenue Agropolis, F-34398 Montpellier, France
| | - Suleyman Mammadov
- Parasitology Department, Republican Center of Hygiene and Epidemiology, Baku, Azerbaijan
| | - Namig Aliyev
- National Research Institute of Medical Prevention, Baku
| | | | - Giancarlo Majori
- Department of Infectious, Parasitic and Immunomediated Diseases, Instituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Instituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy
| |
Collapse
|
91
|
Sachdeva S, Ahmad G, Malhotra P, Mukherjee P, Chauhan VS. Comparison of immunogenicities of recombinant Plasmodium vivax merozoite surface protein 1 19- and 42-kiloDalton fragments expressed in Escherichia coli. Infect Immun 2004; 72:5775-82. [PMID: 15385477 PMCID: PMC517592 DOI: 10.1128/iai.72.10.5775-5782.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 42- and 19-kDa C-terminal fragments of merozoite surface protein 1 (MSP-1(42) and MSP-1(19), respectively) are both promising blood-stage vaccine candidate antigens. At present, it is not clear which of the two antigens will be more suitable for inclusion in a cocktail malaria vaccine. In the present study, we expressed the two C-terminal fragments of Plasmodium vivax MSP-1 (PvMSP-1) in an Escherichia coli expression system and purified them by using a rapid two-step protocol. Both of the products were recognized by monoclonal antibodies against PvMSP-1 as well as by immune sera from several individuals exposed to P. vivax. We analyzed and compared the immunological responses to recombinant PvMSP-1(19) and PvMSP-1(42) in mice by using six different adjuvant formulations. Moderate to high antibody responses were observed with both of the antigens in different adjuvant formulations. Surprisingly, alum, which is generally considered to be a poor adjuvant for recombinant malaria antigens, was found to be as good an adjuvant as Montanide ISA 720, ASO2A, and other adjuvant formulations. Most adjuvant formulations induced high levels of immunoglobulin G1 (IgG1), followed by IgG3 and IgG2. Lymphocytes from animals in the PvMSP-1(42)- and PvMSP-1(19)-immunized groups showed proliferative responses upon stimulation with the respective antigens, and high levels of interleukin-4 (IL-4), IL-5, and gamma interferon were detected in the culture supernatants. Immunodepletion studies with sera from mice immunized with these two antigens showed that while immunization with PvMSP-1(42) does produce a PvMSP-1(19)-specific response, a substantial portion is also focused on structures in PvMSP-1(42) not represented by the epidermal growth factor-like domains of PvMSP-1(19). These findings may have implications for the design of MSP-1-based vaccine constructs.
Collapse
Affiliation(s)
- Suraksha Sachdeva
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | | | | | |
Collapse
|
92
|
Zimmerman PA, Mehlotra RK, Kasehagen LJ, Kazura JW. Why do we need to know more about mixed Plasmodium species infections in humans? Trends Parasitol 2004; 20:440-7. [PMID: 15324735 PMCID: PMC3728821 DOI: 10.1016/j.pt.2004.07.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four Plasmodium species cause malaria in humans. Most malaria-endemic regions feature mixed infections involving two or more of these species. Factors contributing to heterogeneous parasite species and disease distribution include differences in genetic polymorphisms underlying parasite drug resistance and host susceptibility, mosquito vector ecology and transmission seasonality. It is suggested that unknown factors limit mixed Plasmodium species infections, and that mixed-species infections protect against severe Plasmodium falciparum malaria. Careful examination of methods used to detect these parasites and interpretation of individual- and population-based data are necessary to understand the influence of mixed Plasmodium species infections on malarial disease. This should ensure that deployment of future antimalarial vaccines and drugs will be conducted in a safe and timely manner.
Collapse
Affiliation(s)
- Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, 2103 Cornell Road, Wolstein Research Building, Cleveland, OH 44106-7286, USA.
| | | | | | | |
Collapse
|
93
|
Han HJ, Park SG, Kim SH, Hwang SY, Han J, Traicoff J, Kho WG, Chung JY. Epidermal growth factor-like motifs 1 and 2 of Plasmodium vivax merozoite surface protein 1 are critical domains in erythrocyte invasion. Biochem Biophys Res Commun 2004; 320:563-70. [PMID: 15219866 DOI: 10.1016/j.bbrc.2004.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Indexed: 11/22/2022]
Abstract
Plasmodium vivax merozoite surface protein 1 (PvMSP1) is believed to be important in erythrocyte invasion. However, the detailed mechanism of PvMSP1-mediated invasion has been unclear. We demonstrate that the C-terminal 19 kDa domain (PvMSP119) of PvMSP1, the 42-kDa fragment of PvMSP1 is further cleaved to a 33 kDa N-terminal polypeptide and a 19 kDa C-terminal fragment in a secondary processing step, is a critical domain in the binding between parasite ligand and erythrocyte receptor. Also, its cytoadherence was successfully blocked by naturally acquired immunity, was partially sensitive to neuraminidase and trypsin. When expressed separately epidermal growth factor (EGF)-like motifs 1 and 2, subunits of the PvMSP119, mediated 64% and 66% of the erythrocyte-binding activity, respectively, relative to their expression together as a single intact ligand domain. These results suggest that the EGF-like motifs 1 and 2 of PvMSP119 function as a core-binding portion in the attachment of PvMSP1 to erythrocytes.
Collapse
Affiliation(s)
- Hye-Jin Han
- Department of Microbiology, Inje University College of Medicine, Busan 614-735, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Oliveira-Ferreira J, Vargas-Serrato E, Barnwell JW, Moreno A, Galinski MR. Immunogenicity of Plasmodium vivax merozoite surface protein-9 recombinant proteins expressed in E. coli. Vaccine 2004; 22:2023-30. [PMID: 15121316 DOI: 10.1016/j.vaccine.2003.07.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2002] [Revised: 04/10/2003] [Accepted: 07/15/2003] [Indexed: 10/26/2022]
Abstract
Merozoite surface protein-9 of Plasmodium vivax (PvMSP-9) is highly conserved and present in several malaria species. Here, we present the immunogenic properties of two recombinant glutathione S-transferase (GST) fusion proteins comprising the N-terminus (PvMSP-9-Nt) and the second block of tandem repeats (PvMSP-9-RepII) of PvMSP9. These recombinants proteins were used to immunize BALB/c mice. The specificity and subtyping of the antibodies and the cellular immune responses were evaluated by enzyme-linked immunosorbent assay (ELISA) and ELISPOT, respectively, using the recombinant proteins as antigens. Our results demonstrate that both the N-terminal and the tandem repeat regions of MSP9 are immunogenic in mice. The ELISA antibody titers elicited by PvMSP-9-Nt were significantly higher (1:819,200) than the antibody titers elicited by PvMSP-9-RII (1:409,600). Analysis of IgG subclasses showed that both recombinant proteins induce similar antibody patterns where IgG1, IgG2a and IgG2b were most predominant. Moreover, all sera from mice immunized with either PvMSP-9-Nt or PvMSP-9-RII, which were positive by ELISA showed reactivity with P. vivax, P. cynomolgi, P. knowlesi and P. coatneyi schizonts by immunofluorescence assays (IFA). Similar results were observed in western immunoblot analyses using parasite extracts. Furthermore, immunization of mice with the PvMSP-9-Nt upon stimulation with PvMSP-9-Nt secreted IFN-gamma and IL-5. We have also used the two PvMSP-9 recombinant constructs to show that individuals exposed to P. vivax infections in an endemic area of Brazil had IgG antibodies reactive with the recombinant proteins.
Collapse
Affiliation(s)
- Joseli Oliveira-Ferreira
- Department of Immunology, Institute Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
95
|
Maestre A, Sunil S, Ahmad G, Mohmmed A, Echeverri M, Corredor M, Blair S, Chauhan VS, Malhotra P. Inter-allelic recombination in the Plasmodium vivax merozoite surface protein 1 gene among Indian and Colombian isolates. Malar J 2004; 3:4. [PMID: 15003129 PMCID: PMC385245 DOI: 10.1186/1475-2875-3-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 03/05/2004] [Indexed: 11/10/2022] Open
Abstract
Background A major concern in malaria vaccine development is the polymorphism observed among different Plasmodium isolates in different geographical areas across the globe. The merozoite surface protein 1 (MSP-1) is a leading vaccine candidate antigen against asexual blood stages of malaria parasite. To date, little is known about the extent of sequence variation in the Plasmodium vivax MSP-1 gene (Pvmsp-1) among Indian isolates. Since P. vivax accounts for >50% of malaria cases in India and in Colombia, it is essential to know the Pvmsp-1 gene variability in these two countries to sustain it as a vaccine candidate. The extent of polymorphism in Pvmsp-1 gene among Indian and Colombian isolates is described. Methods The sequence variation in the region encompassing the inter-species conserved blocks (ICBs) five and six of Pvmsp-1 gene was examined. PCR was carried out to amplify the polymorphic region of Pvmsp-1 and the PCR products from twenty (nine Indian and 11 Colombian) isolates were sequenced and aligned with Belem and Salvador-1 sequences. Results Results revealed three distinct types of sequences among these isolates, namely, Salvador-like, Belem-like and a third type sequence which was generated due to interallelic recombination between Salvador-like sequences and Belem-like sequences. Existence of the third type in majority (44%) showed that allelic recombinations play an important role in PvMSP1 diversity in natural parasite population. Micro-heterogeneity was also seen in a few of these isolates due to nucleotide substitutions, insertions as well as deletions. Conclusions Intergenic recombination in the Pvmsp-1 gene was found and suggest that this is the main cause for genetic diversity of the Pvmsp-1 gene.
Collapse
Affiliation(s)
- Amanda Maestre
- International Centre for Genetic Engineering and Biotechnology, New Delhi. India
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia. Medellin. Colombia
| | - Sujatha Sunil
- International Centre for Genetic Engineering and Biotechnology, New Delhi. India
- Malaria Research Centre, Delhi, India
| | - Gul Ahmad
- International Centre for Genetic Engineering and Biotechnology, New Delhi. India
| | - Asif Mohmmed
- International Centre for Genetic Engineering and Biotechnology, New Delhi. India
| | - Marcela Echeverri
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia. Medellin. Colombia
| | - Mauricio Corredor
- Universidad de Pamplona, Corporación para Investigaciones Biológicas, Medellín. Colombia
| | - Silvia Blair
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia. Medellin. Colombia
| | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology, New Delhi. India
| | - Pawan Malhotra
- International Centre for Genetic Engineering and Biotechnology, New Delhi. India
| |
Collapse
|
96
|
Zakeri S, Dinparast Djadid N, Zeinali S. Sequence heterogeneity of the merozoite surface protein-1 gene (MSP-1) of Plasmodium vivax wild isolates in southeastern Iran. Acta Trop 2003; 88:91-7. [PMID: 12943983 DOI: 10.1016/s0001-706x(03)00192-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The merozoite surface protein of Plasmodium vivax (PvMSP-1) has been considered as a vaccine candidate, which exhibits antigenic diversity among isolates. We investigated the extent of sequence variation in the polymorphic region 5 of PvMSP-1 in order to characterize the genetic structure and composition of P. vivax in clinical isolates from Iranshahr and Chahbahar districts of Sistan and Baluchistan province, Iran. The PvMSP-1 gene amplification revealed size variation among the isolates, ranging from 430 to 550 bp. Sequences were obtained for 15 Iranian and one Pakistani isolates and 14 different alleles were detected. Results also showed three distinct sequence types of the polymorphic region. Sequence analysis has shown several single nucleotide polymorphisms to occur in this block of PvMSP-1, creating different alleles in the progeny and also microheterogeneity in the region. Thus, this study provides preliminary evidence of sequence heterogeneity in the Iranian P. vivax population.
Collapse
Affiliation(s)
- Sedigheh Zakeri
- Department of Biotechnology, Malaria Research Unit, Pasteur Institute of Iran, P.O. Box 13164, Tehran, Iran.
| | | | | |
Collapse
|
97
|
Feng X, Carlton JM, Joy DA, Mu J, Furuya T, Suh BB, Wang Y, Barnwell JW, Su XZ. Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc Natl Acad Sci U S A 2003; 100:8502-7. [PMID: 12799466 PMCID: PMC166258 DOI: 10.1073/pnas.1232502100] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2003] [Indexed: 01/26/2023] Open
Abstract
The study of genetic variation in malaria parasites has practical significance for developing strategies to control the disease. Vaccines based on highly polymorphic antigens may be confounded by allelic restriction of the host immune response. In response to drug pressure, a highly plastic genome may generate resistant mutants more easily than a monomorphic one. Additionally, the study of the distribution of genomic polymorphisms may provide information leading to the identification of genes associated with traits such as parasite development and drug resistance. Indeed, the age and diversity of the human malaria parasite Plasmodium falciparum has been the subject of recent debate, because an ancient parasite with a complex genome is expected to present greater challenges for drug and vaccine development. The genome diversity of the important human pathogen Plasmodium vivax, however, remains essentially unknown. Here we analyze an approximately 100-kb contiguous chromosome segment from five isolates, revealing 191 single-nucleotide polymorphisms (SNPs) and 44 size polymorphisms. The SNPs are not evenly distributed across the segment with blocks of high and low diversity. Whereas the majority (approximately 63%) of the SNPs are in intergenic regions, introns contain significantly less SNPs than intergenic sequences. Polymorphic tandem repeats are abundant and are more uniformly distributed at a frequency of about one polymorphic tandem repeat per 3 kb. These data show that P. vivax has a highly diverse genome, and provide useful information for further understanding the genome diversity of the parasite.
Collapse
Affiliation(s)
- Xiaorong Feng
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Jane M. Carlton
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Deirdre A. Joy
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Tetsuya Furuya
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Bernard B. Suh
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Yufeng Wang
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - John W. Barnwell
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| | - Xin-Zhuan Su
- Laboratory of Malaria and Vector Research,
National Institute of Allergy and Infectious Diseases, National Institutes of
Health, Bethesda, MD 20892; Parasite Genomics
Group, The Institute for Genomic Research, Rockville, MD 20850;
Department of Bioinformatics, American Type
Culture Collection, Manassas, VA 20110; and
Division of Parasitic Diseases, Centers for
Disease Control and Prevention, Atlanta, GA 30341
| |
Collapse
|
98
|
Pizarro JC, Chitarra V, Verger D, Holm I, Pêtres S, Dartevelle S, Nato F, Longacre S, Bentley GA. Crystal structure of a Fab complex formed with PfMSP1-19, the C-terminal fragment of merozoite surface protein 1 from Plasmodium falciparum: a malaria vaccine candidate. J Mol Biol 2003; 328:1091-103. [PMID: 12729744 DOI: 10.1016/s0022-2836(03)00376-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Merozoite surface protein 1 (MSP1) is the major protein component on the surface of the merozoite, the erythrocyte-invasive form of the malaria parasite Plasmodium. Present in all species of Plasmodium, it undergoes two distinct proteolytic maturation steps during the course of merozoite development that are essential for invasion of the erythrocyte. Antibodies specific for the C-terminal maturation product, MSP1-19, can inhibit erythrocyte invasion and parasite growth. This polypeptide is therefore considered to be one of the more promising malaria vaccine candidates. We describe here the crystal structure of recombinant MSP1-19 from P.falciparum (PfMSP1-19), the most virulent species of the parasite in humans, as a complex with the Fab fragment of the monoclonal antibody G17.12. This antibody recognises a discontinuous epitope comprising 13 residues on the first epidermal growth factor (EGF)-like domain of PfMSP1-19. Although G17.12 was raised against the recombinant antigen expressed in an insect cell/baculovirus system, it binds uniformly to the surface of merozoites from the late schizont stage, showing that the cognate epitope is exposed on the naturally occurring MSP1 polypeptide complex. Although the epitope includes residues that have been mapped to regions recognised by invasion-inhibiting antibodies studied by other workers, G17.12 does not inhibit erythrocyte invasion or MSP1 processing.
Collapse
Affiliation(s)
- J C Pizarro
- Unité d'Immunologie Structurale (CNRS URA 2185), Département de Biologie Structurale et Chimie, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris, cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Cui L, Mascorro CN, Fan Q, Rzomp KA, Khuntirat B, Zhou G, Chen H, Yan G, Sattabongkot J. Genetic diversity and multiple infections of Plasmodium vivax malaria in Western Thailand. Am J Trop Med Hyg 2003; 68:613-9. [PMID: 12812356 DOI: 10.4269/ajtmh.2003.68.613] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Using two polymorphic genetic markers, the merozoite surface protein-3alpha (MSP-3alpha) and the circumsporozoite protein (CSP), we investigated the population diversity of Plasmodium vivax in Mae Sod, Thailand from April 2000 through June 2001. Genotyping the parasites isolated from 90 malaria patients attending two local clinics for the dimorphic CSP gene revealed that the majority of the parasites (77%) were the VK210 type. Genotyping the MSP3-alpha gene indicated that P. vivax populations exhibited an equally high level of polymorphism as those from Papua New Guinea, a hyperendemic region. Based on the length of polymerase chain reaction products, three major types of the MSP-3alpha locus were distinguished, with frequencies of 74.8%, 18.7%, and 6.5%, respectively. The 13 alleles distinguished by restriction fragment length polymorphism analysis did not show a significant seasonal variation in frequency. Genotyping the MSP-3alpha and CSP genes showed that 19.3% and 25.6% of the patients had multiple infections, respectively, and the combined rate was 35.6%. Comparisons of MSP-3alpha sequences from nine clones further confirmed the high level of genetic diversity of the parasite and also suggested that geographic isolation may exist. These results strongly indicate that P. vivax populations are highly diverse and multiple clonal infections are common in this malaria-hypoendemic region of Thailand.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Little is known of the genetic diversity and population structure of Plasmodium vivax, a debilitating and highly prevalent malaria parasite of humans. This article reviews the known polymorphic genetic markers, summarizes current data on the population structure of this parasite and discusses future prospects for using knowledge of the genetic diversity to improve control measures.
Collapse
Affiliation(s)
- Liwang Cui
- Department of Entomology, Penn State University, 501 ASI, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|