51
|
Momburg F, Tan P. Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol Immunol 2002; 39:217-33. [PMID: 12200052 DOI: 10.1016/s0161-5890(02)00103-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MHC class I molecules are loaded with peptides that mostly originate from the degradation of cytosolic protein antigens and that are translocated across the endoplasmic reticulum (ER) membrane by the transporter associated with antigen processing (TAP). The ER-resident molecule tapasin (Tpn) is uniquely dedicated to tether class I molecules jointly with the chaperone calreticulin (Crt) and the oxidoreductase ERp57 to TAP. As learned from the study of a Tpn-deficient cell line and from mice harboring a disrupted Tpn gene, the transient association of class I molecules with Tpn and TAP is critically important for the stabilization of class I molecules and the optimization of the peptide cargo presented to cytotoxic T cells. The different functions of molecular domains of Tpn and the highly coordinated formation of the TAP-associated peptide loading complex will also be discussed in this review.
Collapse
Affiliation(s)
- F Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
52
|
Payelle-Brogard B, Magnac C, Alcover A, Roux P, Dighiero G. Defective assembly of the B-cell receptor chains accounts for its low expression in B-chronic lymphocytic leukaemia. Br J Haematol 2002; 118:976-85. [PMID: 12199775 DOI: 10.1046/j.1365-2141.2002.03759.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
B-cell chronic lymphocytic leukaemia (B-CLL) characteristically displays low amounts of B-cell receptor (BCR), which mainly consists of the heterodimer CD79a/CD79b bound non-covalently with the surface immunoglobulin (SIg). This heterodimer is required for SIg expression and BCR signalling. To better define the mechanisms related to low BCR expression, we have investigated transcription, protein synthesis, assembly and transport of the BCR in B-CLL cells. Our results demonstrated that: (1) there was no major defect in transcriptional expression of the B29 (CD79b) gene; (2) the BCR components were intracellularly detected, thus adequately synthesized, in almost all patients; (3) neither a genetic defect in the transmembrane region of SIg, which associated with CD79a/CD79b, nor a genetic abnormality in the chaperone protein calnexin that is involved in folding and assembly of the BCR were found; (4) a constant defect in the assembly of IgM and CD79b chains occurred leading to abnormal accumulation of both chains in different intracellular compartments; (5) in a majority of CLL patients all of the nascent IgM failed to be processed into mature chains and remained unsuitable for transport. These findings demonstrated that a post-transcriptional defect located at the BCR intracellular assembly and/or trafficking levels could be involved in its low surface expression in B-CLL.
Collapse
MESH Headings
- Antigens, CD/genetics
- Biological Transport
- CD79 Antigens
- Calnexin/genetics
- Cells, Cultured
- Gene Expression
- Humans
- Immunoglobulin M/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Microscopy, Confocal
- Receptors, Antigen, B-Cell/analysis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
|
53
|
Hwang LY, Lieu PT, Peterson PA, Yang Y. Functional regulation of immunoproteasomes and transporter associated with antigen processing. Immunol Res 2002; 24:245-72. [PMID: 11817324 DOI: 10.1385/ir:24:3:245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The central event in the cellular immune response to invading pathogens is the presentation of non-self antigenic peptides by major histocompatibility complex (MHC) class I molecules to cytotoxic T lymphocytes (CTLs). As peptide binding and transport proteins, MHC class I molecules have evolved distinct biochemical and cellular strategies for acquiring antigenic peptides, providing CTLs an extracellular representation of the intracellular antigen content. Whereas efficient generation of MHC class I binding peptides depends on the intracellular, immunoproteasome-mediated proteolysis machinery, translocation of peptides into the lumen of the endoplasmic reticulum requires the endoplasmic reticulum-resident, adenosine 5'-triphosphate (ATP) binding cassette transporter associated with antigen processing (TAP). Here we show, for the first time, that immunoproteasomes, TAP complexes, and MHC class I molecules are physically associated, providing an effective means of transporting MHC class I binding peptides from their sites of generation into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. In this review, we assess the current understanding of the functional regulation of immunoproteasomes and transporter associated with antigen processing.
Collapse
Affiliation(s)
- L Y Hwang
- The R. W. Johnson Pharmaceutical Research Institute, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
54
|
Tan P, Kropshofer H, Mandelboim O, Bulbuc N, Hämmerling GJ, Momburg F. Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1950-60. [PMID: 11823531 DOI: 10.4049/jimmunol.168.4.1950] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ER protein tapasin (Tpn) forms a bridge between MHC class I H chain (HC)/beta(2)-microglobulin and the TAP peptide transporter. The function of this TAP-associated complex was unclear because it was reported that soluble Tpn that has lost TAP interaction would be fully competent in terms of peptide loading and Ag presentation. We found, however, that only wild-type human Tpn (hTpn), but not three soluble hTpn variants, a transmembrane domain point mutant of hTpn (L410-->F), wild-type mouse Tpn, nor a mouse-human Tpn hybrid, fully up-regulated peptide-dependent Bw4 epitopes when expressed in Tpn-deficient.220.B*4402 cells. Consistent with suboptimal peptide loading, the t(1/2) of class I molecules was considerably reduced in the presence of soluble hTpn, hTpn-L410F, and murine Tpn. Furthermore, eluted peptide spectra and the class I-mediated inhibition of NK clones showed distinct differences to the hTpn transfectant. Only wild-type hTpn efficiently recruited HC and calreticulin (Crt) into complexes with TAP and endoplasmic reticulum p57 (ERp57). The L410F mutant was defective in TAP association, but bound to class I molecules, Crt, and ERp57. Mouse Tpn associated with human TAP and ERp57 on the one hand, and with HC and Crt on the other, but failed to recruit normal amounts of HLA class I molecules into the TAP complex. We conclude that the loading with peptides conferring high stability requires the Tpn-mediated introduction of HC into the TAP complex, whereas the mere interaction with Tpn is not sufficient.
Collapse
Affiliation(s)
- Pamela Tan
- Department of Molecular Immunology, German Cancer Research Center (Deutsches Krebsforschungszentrum), Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
55
|
Abstract
MHC class I antigen presentation refers to the co-ordinated activities of many intracellular pathways that promote the cell surface appearance of MHC class I/beta2m heterodimers loaded with a spectrum of self or foreign peptides. These MHC class I peptide complexes form ligands for CD8 positive T cells and NK cells. MHC class I heterodimers are loaded within the endoplasmic reticulum (ER) with peptides derived from intracellular proteins. Alternatively, MHC class I molecules may be loaded with peptides derived from extracellular proteins in a process called MHC class I cross presentation. This pathway is less well defined but can overlap those pathways operating in classical MHC class I presentation and has recently been reviewed elsewhere (1). This review will address the current concepts regarding the intracellular assembly of MHC class I molecules with their peptide cargo within the ER and their subsequent progress to the cell surface.
Collapse
Affiliation(s)
- A Williams
- Cancer Sciences Division, University of Southampton School of Medicine, UK
| | | | | |
Collapse
|
56
|
Miyasaka T, Kaminogawa S, Shimizu M, Hisatsune T, Reinach PS, Miyamoto Y. Characterization of human taurine transporter expressed in insect cells using a recombinant baculovirus. Protein Expr Purif 2001; 23:389-97. [PMID: 11722175 DOI: 10.1006/prep.2001.1505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A recombinant baculovirus system was used to express the human taurine transporter in Sf9 cells and characterize its mediated uptake activity. This uptake process exhibited: (i) Na(+) dependence, (ii) larger inhibition of taurine transport by competing beta-amino acids than by alpha- and gamma-amino acids, (iii) apparent Michaelis constant, K(t), for taurine transport of 1.6 +/- 0.2 microM, and (iv) a maximal velocity, V(max), of 262 +/- 18 pmol/mg protein per 15 min. Coexpression of a molecular chaperone, human calnexin, enhanced taurine transporter activity by 43%. During development of taurine transporter expression, exposure to tunicamycin (10 microg/ml) decreased taurine transport activity by 76%. The taurine transporter linked to glutathione S-transferase (GST) was expressed to determine whether this conjugate also elicits taurine transport activity. Even though transport activity was markedly decreased, its Na(+) dependence was still evident. Coexpression of calnexin enhanced expression of this conjugated transporter activity by 54%. Immunoblot analysis revealed that calnexin did not change the amount of GST-taurine transporter conjugate or its molecular mass (i.e., 58.4-68.0 kDa). However, tunicamycin decreased its molecular mass. Taken together, taurine transport activity in a baculovirus expression system has characteristics similar to its wild-type counterpart. Stimulation of transport activity by coexpression with calnexin suggests the importance of transporter folding for optimal transport activity. Glycosylation of the transporter also increases its transport activity. Finally, GST-taurine transporter conjugate usage may aid transporter purification even though its transport activity decreases.
Collapse
Affiliation(s)
- T Miyasaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | | | | | | | | | | |
Collapse
|
57
|
Foy SP, Matsuuchi L. Association of B lymphocyte antigen receptor polypeptides with multiple chaperone proteins. Immunol Lett 2001; 78:149-60. [PMID: 11578689 DOI: 10.1016/s0165-2478(01)00256-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The B cell antigen receptor (BCR) is comprised of four different polypeptides, immunoglobulin (Ig) heavy chain, Ig light chain, and the two signaling subunits of this receptor, Ig-alpha and Ig-beta. These four chains must assemble correctly in the endoplasmic reticulum (ER) before the BCR can be transported to the cell surface. The roles of the different chaperone proteins in mediating the assembly of mIg with the Ig-alpha/beta are not fully understood. To gain insights into the roles of chaperone proteins in BCR assembly, we have generated transfected non-lymphoid cell lines that express various intermediate assembled forms of the BCR and used them to examine the interactions of chaperone proteins with subunits of the BCR. We examined the interactions of BiP (GRP78), GRP94 and calnexin with the mu heavy chain, lambda light chain, Ig-alpha and Ig-beta. We report for the first time that Ig-alpha associates with GRP94 and that this interaction increases dramatically when other BCR chains are co-expressed. In contrast, the mu heavy chain interacts strongly with BiP (GRP78) when expressed by itself but this interaction is reduced when the lambda light chain is expressed, with the resulting mu(lambda) complexes interacting with GRP94 and calnexin. Thus, our data are consistent with the idea that there is an ordered association of BCR components with different protein chaperones during BCR assembly.
Collapse
Affiliation(s)
- S P Foy
- Department of Zoology (Cell Biology Group), The University of British Columbia, 6270 University Blvd., BC, V6T 1Z4, Vancouver, Canada
| | | |
Collapse
|
58
|
Land A, Braakman I. Folding of the human immunodeficiency virus type 1 envelope glycoprotein in the endoplasmic reticulum. Biochimie 2001; 83:783-90. [PMID: 11530211 DOI: 10.1016/s0300-9084(01)01314-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The lumen of the endoplasmic reticulum (ER) provides a unique folding environment that is distinct from other organelles supporting protein folding. The relatively oxidizing milieu allows the formation of disulfide bonds. N-linked oligosaccharides that are attached during synthesis play multiple roles in the folding process of glycoproteins. They stabilize folded domains and increase protein solubility, which prevents aggregation of folding intermediates. Glycans mediate the interaction of newly synthesized glycoproteins with some resident ER folding factors, such as calnexin and calreticulin. Here we present an overview of the present knowledge on the folding process of the heavily glycosylated human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein in the ER.
Collapse
Affiliation(s)
- A Land
- Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
59
|
Karttunen JT, Lehner PJ, Gupta SS, Hewitt EW, Cresswell P. Distinct functions and cooperative interaction of the subunits of the transporter associated with antigen processing (TAP). Proc Natl Acad Sci U S A 2001; 98:7431-6. [PMID: 11381133 PMCID: PMC34686 DOI: 10.1073/pnas.121180198] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ATP-binding cassette (ABC) transporter TAP translocates peptides from the cytosol to awaiting MHC class I molecules in the endoplasmic reticulum. TAP is made up of the TAP1 and TAP2 polypeptides, which each possess a nucleotide binding domain (NBD). However, the role of ATP in peptide binding and translocation is poorly understood. We present biochemical and functional evidence that the NBDs of TAP1 and TAP2 are non-equivalent. Photolabeling experiments with 8-azido-ATP demonstrate a cooperative interaction between the two NBDs that can be stimulated by peptide. The substitution of key lysine residues in the Walker A motifs of TAP1 and TAP2 suggests that TAP1-mediated ATP hydrolysis is not essential for peptide translocation but that TAP2-mediated ATP hydrolysis is critical, not only for translocation, but for peptide binding.
Collapse
Affiliation(s)
- J T Karttunen
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
60
|
Abstract
Our understanding of eukaryotic protein folding in the endoplasmic reticulum has increased enormously over the last 5 years. In this review, we summarize some of the major research themes that have captivated researchers in this field during the last years of the 20th century. We follow the path of a typical protein as it emerges from the ribosome and enters the reticular environment. While many of these events are shared between different polypeptide chains, we highlight some of the numerous differences between proteins, between cell types, and between the chaperones utilized by different ER glycoproteins. Finally, we consider the likely advances in this field as the new century unfolds and we address the prospect of a unified understanding of how protein folding, degradation, and translation are coordinated within a cell.
Collapse
Affiliation(s)
- A M Benham
- Department of Bio-Organic Chemistry, Utrecht University, The Netherlands
| | | |
Collapse
|
61
|
Abstract
An unconventional mechanism for retaining improperly folded glycoproteins and facilitating acquisition of their native tertiary and quaternary structures operates in the endoplasmic reticulum. Recognition of folding glycoproteins by two resident lectins, membrane-bound calnexin and its soluble homolog, calreticulin, is mediated by protein-linked monoglucosylated oligosaccharides. These oligosaccharides contain glucose (Glc), mannose (Man), and N-acetylglucosamine (GlcNAc) in the general form Glc1Man7-9GlcNAc2. They are formed by glucosidase I- and II-catalyzed partial deglucosylation of the oligosaccharide transferred from dolichol diphosphate derivatives to Asn residues in nascent polypeptide chains (Glc3Man9GlcNAc2). Further deglucosylation of the oligosaccharides by glucosidase II liberates glycoproteins from their calnexin/calreticulin anchors. Monoglucosylated glycans are then recreated by the UDP-Glc:glycoprotein glucosyltransferase (GT), and thus recognized again by the lectins, only when linked to improperly folded protein moieties, as GT behaves as a sensor of glycoprotein conformations. The deglucosylation-reglucosylation cycle continues until proper folding is achieved. The lectin-monoglucosylated oligosaccharide interaction is one of the alternative ways by which cells retain improperly folded glycoproteins in the endoplasmic reticulum. Although it decreases the folding rate, it increases folding efficiency, prevents premature glycoprotein oligomerization and degradation, and suppresses formation of non-native disulfide bonds by hindering aggregation and thus allowing interaction of protein moieties of folding glycoproteins with classical chaperones and other proteins that assist in folding.
Collapse
Affiliation(s)
- A J Parodi
- Instituto de Investigaciones Bioquímicas Fundación Campomar, Antonio Machado 151, 1405 Buenos Aires, Argentina.
| |
Collapse
|
62
|
Diedrich G, Bangia N, Pan M, Cresswell P. A role for calnexin in the assembly of the MHC class I loading complex in the endoplasmic reticulum. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1703-9. [PMID: 11160214 DOI: 10.4049/jimmunol.166.3.1703] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heterodimers of MHC class I glycoprotein and beta(2)-microglobulin (beta(2)m) bind short peptides in the endoplasmic reticulum (ER). Before peptide binding these molecules form part of a multisubunit loading complex that also contains the two subunits of the TAP, the transmembrane glycoprotein tapasin, the soluble chaperone calreticulin, and the thiol oxidoreductase ERp57. We have investigated the assembly of the loading complex and provide evidence that after TAP and tapasin associate with each other, the transmembrane chaperone calnexin and ERp57 bind to the TAP-tapasin complex to generate an intermediate. These interactions are independent of the N:-linked glycan of tapasin, but require its transmembrane and/or cytoplasmic domain. This intermediate complex binds MHC class I-beta(2)m dimers, an event accompanied by the loss of calnexin and the acquisition of calreticulin, generating the MHC class I loading complex. Peptide binding then induces the dissociation of MHC class I-beta(2)m dimers, which can be transported to the cell surface.
Collapse
Affiliation(s)
- G Diedrich
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | |
Collapse
|
63
|
Barr VA, Phillips SA, Taylor SI, Haft CR. Overexpression of a novel sorting nexin, SNX15, affects endosome morphology and protein trafficking. Traffic 2000; 1:904-16. [PMID: 11208079 DOI: 10.1034/j.1600-0854.2000.011109.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sorting nexin (SNX) 15 is a novel member of the SNX family of proteins. Although the functions of most SNXs have not yet been determined, several family members (e.g., SNX1, SNX2, SNX3, and SNX8) are orthologs of yeast proteins involved in protein trafficking. Overexpression of myc-tagged SNX15 in COS-7 cells altered the morphology of several endosomal compartments. In transient transfection experiments, myc-SNX15 was first seen in small punctate spots and small ring structures. Later, myc-SNX15 was found in larger rings. Finally, myc-SNX15 was observed in large, amorphous membrane-limited structures. These structures contained proteins from lysosomes, late endosomes, early endosomes, and the trans-Golgi network. However, the morphology of the endoplasmic reticulum and Golgi was not affected by overexpression of myc-SNX15. In myc-SNX15-overexpressing cells, the endocytosis of transferrin was severely inhibited and endocytosis of tac-trans-Golgi network (TGN) 38 and tac-furin was slowed. In addition, the recycling of internalized tac-TGN38 and tac-furin was also inhibited. Both the morphological and biochemical data indicate that SNX15 plays a crucial role in trafficking through the endocytic pathway. This is the first demonstration that a mammalian SNX protein is involved in protein trafficking.
Collapse
Affiliation(s)
- V A Barr
- Diabetes Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
64
|
DiColandrea T, Karashima T, Määttä A, Watt FM. Subcellular distribution of envoplakin and periplakin: insights into their role as precursors of the epidermal cornified envelope. J Cell Biol 2000; 151:573-86. [PMID: 11062259 PMCID: PMC2185584 DOI: 10.1083/jcb.151.3.573] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Envoplakin and periplakin are two plakins that are precursors of the epidermal cornified envelope. We studied their distribution and interactions by transfection of primary human keratinocytes and other cells. Full-length periplakin localized to desmosomes, the interdesmosomal plasma membrane and intermediate filaments. Full length envoplakin also localized to desmosomes, but mainly accumulated in nuclear and cytoplasmic aggregates with associated intermediate filaments. The envoplakin rod domain was required for aggregation and the periplakin rod domain was necessary and sufficient to redistribute envoplakin to desmosomes and the cytoskeleton, confirming earlier predictions that the proteins can heterodimerize. The linker domain of each protein was required for intermediate filament association. Like the NH(2) terminus of desmoplakin, that of periplakin localized to desmosomes; however, in addition, the periplakin NH(2) terminus accumulated at cell surface microvilli in association with cortical actin. Endogenous periplakin was redistributed from microvilli when keratinocytes were treated with the actin disrupting drug Latrunculin B. We propose that whereas envoplakin and periplakin can localize independently to desmosomes, the distribution of envoplakin at the interdesmosomal plasma membrane depends on heterodimerization with periplakin and that the NH(2) terminus of periplakin therefore plays a key role in forming the scaffold on which the cornified envelope is assembled.
Collapse
Affiliation(s)
- T DiColandrea
- Keratinocyte Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, England
| | | | | | | |
Collapse
|
65
|
Qian SB, Chen SS. Blocked transport of soluble K(b) molecules containing connecting peptide segment involved in calnexin association. Int Immunol 2000; 12:1409-16. [PMID: 11007758 DOI: 10.1093/intimm/12.10.1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The molecular event governing the assembly of the MHC class I heavy chain-beta(2)-microglobulin-peptide complex is still not fully understood. In order to characterize the transport properties of MHC class I molecules, several truncated H-2K(b) genes were constructed and expressed in COS7 cells. Surprisingly, the expressed soluble molecule containing connecting peptide (CP) segment (sK(b)(CP)) did not secrete as efficiently as the one without CP (sK(b)(CYT)). When the sK(b)(CP) gene was transfected into a calnexin-deficient cell line CEM.NK(R), the amount of soluble K(b) molecules in the supernatant was comparable with sK(b)(CYT)-transfected CEM.NK(R). To further demonstrate the different transport of sK(b)(CP) and sK(b)(CYT) within living cells, we attached green fluorescent protein (GFP) to the C-termini of both molecules and, as a comparison, to the full-length transmembrane counterpart (mK(b)-GFP). While the mK(b)-GFP-transfected cells showed the green fluorescence in the reticular network and the nuclear envelope, sK(b)(CP)-GFP showed obviously lump fluorescence of high intensity within cells. However, the distribution of sK(b)(CYT)-GFP was fairly uniform. Furthermore, GFP-tagged molecules allow us to analyze their interaction with other proteins in a direct, simple and quantitative method, designated immunofluorescence precipitation. The results showed that 60% of sK(b)(CP)-GFP molecules were associated with calnexin, while <10% with tapasin. Taken together with the results from sK(b)(CYT)-GFP and mK(b)-GFP, it is reasonable to deduce that the CP segment is involved in the association of class I molecules with calnexin and the transmembrane region might play a dynamic role in the dissociation from calnexin. The suggested kinetic association of class I molecules with calnexin is likely to contribute to the different maturation rate between several class I alleles.
Collapse
Affiliation(s)
- S B Qian
- Department of Biochemistry & Molecular Biology, Shanghai Second Medical University, 280 South Chongqing Road, Shanghai 200025, PRC
| | | |
Collapse
|
66
|
Gardner TG, Franklin RA, Robinson PJ, Pederson NE, Howe C, Kearse KP. T cell receptor assembly and expression in the absence of calnexin. Arch Biochem Biophys 2000; 378:182-9. [PMID: 10871059 DOI: 10.1006/abbi.2000.1804] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most subunits of the alphabeta deltaepsilon gammaepsilon zetazeta T cell antigen receptor (TCR) complex associate with the molecular chaperone calnexin shortly after their synthesis in the endoplasmic reticulum, including clonotypic TCRalpha,beta molecules and invariant CD3gamma,delta,epsilon chains. While calnexin interaction is suggested to be important for the stability of newly synthesized TCRalpha subunits, the role of calnexin in the survival and assembly of remaining TCR components is unknown. Here we evaluated the expression of TCR proteins in CEM T cells and the calnexin-deficient CEM variant CEM.NK(R). We found that CEM and CEM.NK(R) cells constitutively synthesized all TCR subunits except for TCRalpha and that CD3gamma,delta,epsilon components and CD3-beta complexes were effectively assembled together in both cell types. The stability and folding of core CD3epsilon chains were similar in CEM and CEM.NK(R) cells. Interestingly, TCRalpha synthesis was differentially induced by phorbol myristate acetate treatment in CEM and CEM.NK(R) cells and TCRalpha proteins synthesized in CEM.NK(R) cells showed reduced survival compared to those made in CEM cells. Importantly, these data show that TCR complexes were inducibly expressed on CEM.NK(R) cells in the absence of calnexin synthesis. These results demonstrate that TCR complexes can be expressed in the absence of calnexin and suggest that the role of calnexin in the quality control of TCR assembly is primarily restricted to the stabilization of newly synthesized TCRalpha proteins.
Collapse
Affiliation(s)
- T G Gardner
- Department of Microbiology & Immunology, East Carolina University, School of Medicine, Greenville, North Carolina 27858-4354, USA
| | | | | | | | | | | |
Collapse
|
67
|
Penque D, Mendes F, Beck S, Farinha C, Pacheco P, Nogueira P, Lavinha J, Malhó R, Amaral MD. Cystic fibrosis F508del patients have apically localized CFTR in a reduced number of airway cells. J Transl Med 2000; 80:857-68. [PMID: 10879737 DOI: 10.1038/labinvest.3780090] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Present state of knowledge, mostly based on heterologous expression studies, indicates that the cystic fibrosis transmembrane conductance regulator (CFTR) protein bearing the F508del mutation is misprocessed and mislocalized in the cytoplasm, unable to reach the cell surface. Recently, however, it was described that protein levels and localization are similar between F508del and wild-type CFTR in airway and intestinal tissues, but not in the sweat glands. In this study, we used immunocytochemistry with three different anti-CFTR antibodies to investigate endogenous CFTR expression and localization in nasal epithelial cells from F508del homozygous patients, F508del carriers, and non-CF individuals. On average, 300 cells were observed per individual. No significant differences were observed for cell type distributions among CF, carrier, and non-CF samples; epithelial cells made up approximately 80% to 95% of all cells present. CFTR was detected mostly in the apical region (AR) of the tall columnar epithelial (TCE) cells, ciliated or nonciliated. By confocal microscopy analysis, we show that the CFTR apical region-staining does not overlap with either anti-calnexin (endoplasmic reticulum), anti-p58 (Golgi), or anti-tubulin (cilia) stainings. The median from results with three antibodies indicate that the apical localization of CFTR happens in 22% of TCE cells from F508del homozygous patients with CF (n = 12), in 42% of cells from F508del carriers (n = 20), and in 56% of cells from healthy individuals (n = 12). Statistical analysis indicates that differences are significant among all groups studied and for the three antibodies (p < 0.05). These results confirm the presence of CFTR in the apical region of airway cells from F508del homozygous patients; however, they also reveal that the number of cells in which this occurs is significantly lower than in F508del carriers and much lower than in healthy individuals. These findings may have an impact on the design of novel pharmacological strategies aimed at circumventing the CF defect caused by the F508del mutation.
Collapse
Affiliation(s)
- D Penque
- Centro de Genética Humana, Instituto Nacional Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Parodi AJ. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation. Biochem J 2000; 348 Pt 1:1-13. [PMID: 10794707 PMCID: PMC1221029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The endoplasmic reticulum (ER) is the subcellular site where proteins following the secretory pathway acquire their proper tertiary and, in certain cases, quaternary structures. Species that are not yet properly folded are prevented from exit to the Golgi apparatus and, if permanently misfolded, are transported to the cytosol, where they are degraded in the proteasomes. This review deals with a mechanism, applicable to proteins that are N-glycosylated in the ER, by which the quality control of folding is performed. Protein-linked monoglucosylated glycans, formed by glucosidase I- and glucosidase II-dependent partial deglucosylation of the oligosaccharides transferred from dolichol diphosphate derivatives in N-glycosylation (Glc(3)Man(9)GlcNAc(2)), mediate glycoprotein recognition by two ER-resident lectins, membrane-bound calnexin (CNX) and its soluble homologue, calreticulin (CRT). A still not yet fully confirmed interaction between the lectins and the protein moieties of folding glycoproteins may occur after lectin recognition of monoglucosylated structures. Further deglucosylation of glycans by glucosidase II, and perhaps also by a change in CNX/CRT and/or in the substrate glycoprotein conformation, liberates the glycoproteins from their CNX/CRT anchors. Glycans may be then reglucosylated by the UDP-Glc:glycoprotein glucosyltransferase (GT), and thus be recognized again by CNX/CRT, but only when linked to not yet properly folded protein moieties, as this enzyme behaves as a sensor of glycoprotein conformation. Deglucosylation/reglucosylation cycles catalysed by the opposing activities of glucosidase II and GT only stop when proper folding is achieved. The interaction between CNX/CRT and a monoglucosylated glycan is one of the alternative mechanisms by which cells retain not yet properly folded glycoproteins in the ER; in addition, it enhances folding efficiency by preventing protein aggregation and thus allowing intervention of classical chaperones and other folding-assisting proteins. There is evidence suggesting that both glycoprotein glucosylation and mannose removal, respectively mediated by GT and ER mannosidase I, might be involved in cell recognition of permanently misfolded glycoproteins bound for proteasome degradation.
Collapse
Affiliation(s)
- A J Parodi
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, San Martín, Pcia. de Buenos Aires, Argentina.
| |
Collapse
|
69
|
Ho SC, Chaudhuri S, Bachhawat A, McDonald K, Pillai S. Accelerated proteasomal degradation of membrane Ig heavy chains. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:4713-9. [PMID: 10779777 DOI: 10.4049/jimmunol.164.9.4713] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane IgG H chains turn over considerably more rapidly than secretory Ig H chains in the 18-81 A2 pre-B cell line. This rapid degradation occurs in proteasomes. N-Glycosylated membrane Ig H chains accumulate in the endoplasmic reticulum in the presence of proteasomal inhibitors, suggesting that retrotranslocation and proteasomal degradation of membrane Ig H chains may be closely coupled processes. Accelerated proteasomal degradation of membrane Ig H chains was also observed in transfected nonlymphoid cells. At steady state, the membrane form of the H chain associates more readily with Bip and calnexin than its secretory counterpart. The preferential recognition of membrane, as opposed to secretory, Ig H chains by some endoplasmic reticulum chaperones, may provide an explanation for the accelerated proteasomal degradation of the former.
Collapse
Affiliation(s)
- S C Ho
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | |
Collapse
|
70
|
Berson JF, Frank DW, Calvo PA, Bieler BM, Marks MS. A common temperature-sensitive allelic form of human tyrosinase is retained in the endoplasmic reticulum at the nonpermissive temperature. J Biol Chem 2000; 275:12281-9. [PMID: 10766867 DOI: 10.1074/jbc.275.16.12281] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Oculocutaneous albinism type 1TS is caused by mutations that render the melanocyte-specific enzyme tyrosinase temperature-sensitive (ts); the enzyme is inactive in cells grown at 37 degrees C but displays full activity in cells grown at 31 degrees C. To distinguish whether the ts phenotype of the common R402Q variant of human tyrosinase is due to altered enzymatic activity or to misfolding and a defect in intracellular trafficking, we analyzed its localization and processing in transiently transfected HeLa cells. R402Q tyrosinase accumulates in the endoplasmic reticulum (ER) at 37 degrees C but exits the ER and accumulates in endosomal structures in cells grown at 31 degrees C. The inability of the R402Q variant to exit the ER is confirmed by the failure to acquire endoglycosidase H resistance at 37 degrees C and cannot be accounted for solely by enhanced proteasome-mediated degradation. ER retention at 37 degrees C is mediated by the lumenal domain of R402Q tyrosinase, is not dependent on tethering to the membrane, and is irreversible. Finally, a wild-type allelic form of tyrosinase is partially ts in transiently transfected HeLa cells. The data show that human tyrosinase expressed in non-melanogenic cells folds and exits the ER inefficiently and that R402Q tyrosinase exaggerates this defect, resulting in a failure to exit the ER at physiologic temperatures.
Collapse
Affiliation(s)
- J F Berson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6082, USA
| | | | | | | | | |
Collapse
|
71
|
Kee WJ, Li ER, Watt FM. beta1B integrin subunit contains a double lysine motif that can cause accumulation within the endoplasmic reticulum. J Cell Biochem 2000; 78:97-111. [PMID: 10797569 DOI: 10.1002/(sici)1097-4644(20000701)78:1<97::aid-jcb9>3.0.co;2-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human epidermal keratinocytes are one of the few cell types that express the beta1B splice variant of the beta1 integrin subunit. Although in transfection experiments beta1B acts as a dominant negative inhibitor of cell adhesion, we found that beta1B was expressed at very low levels in keratinocytes, both in vivo and in culture, and had a predominantly cytoplasmic distribution, concentrated within the endoplasmic reticulum. To examine why beta1B accumulated in the cytoplasm, we prepared chimeras between CD8alpha and the beta1A and beta1B integrin cytoplasmic domains. In transfected HeLa cells, both constructs reached the cell surface but the rate of maturation of the beta1B chimera was considerably retarded relative to beta1A. The beta1B cytoplasmic domain contains two lysine residues that resemble the double lysine motif characteristic of many proteins that are resident within the endoplasmic reticulum. Mutation of each lysine individually to serine had no effect on CD8beta1B maturation, but when both residues were mutated the rate of CD8beta1B maturation increased to that of CD8beta1A. Further analysis of beta1B function in keratinocytes must, therefore, take into account the low abundance of the isoform relative to beta1A and the potential for beta1B to accumulate in the endoplasmic reticulum.
Collapse
Affiliation(s)
- W J Kee
- Keratinocyte Laboratory, Imperial Cancer Research Fund, London, WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
72
|
Fu J, Kreibich G. Retention of subunits of the oligosaccharyltransferase complex in the endoplasmic reticulum. J Biol Chem 2000; 275:3984-90. [PMID: 10660554 DOI: 10.1074/jbc.275.6.3984] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Membrane proteins of the endoplasmic reticulum (ER) may be localized to this organelle by mechanisms that involve retention, retrieval, or a combination of both. For luminal ER proteins, which contain a KDEL domain, and for type I transmembrane proteins carrying a dilysine motif, specific retrieval mechanisms have been identified. However, most ER membrane proteins do not contain easily identifiable retrieval motifs. ER localization information has been found in cytoplasmic, transmembrane, or luminal domains. In this study, we have identified ER localization domains within the three type I transmembrane proteins, ribophorin I (RI), ribophorin II (RII), and OST48. Together with DAD1, these membrane proteins form an oligomeric complex that has oligosaccharyltransferase (OST) activity. We have previously shown that ER retention information is independently contained within the transmembrane and the cytoplasmic domain of RII, and in the case of RI, a truncated form consisting of the luminal domain was retained in the ER. To determine whether other domains of RI carry additional retention information, we have generated chimeras by exchanging individual domains of the Tac antigen with the corresponding ones of RI. We demonstrate here that only the luminal domain of RI contains ER retention information. We also show that the dilysine motif in OST48 functions as an ER localization motif because OST48 in which the two lysine residues are replaced by serine (OST48ss) is no longer retained in the ER and is found instead also at the plasma membrane. OST48ss is, however, retained in the ER when coexpressed with RI, RII, or chimeras, which by themselves do not exit from the ER, indicating that they may form partial oligomeric complexes by interacting with the luminal domain of OST48. In the case of the Tac chimera containing only the luminal domain of RII, which by itself exits from the ER and is rapidly degraded, it is retained in the ER and becomes stabilized when coexpressed with OST48.
Collapse
Affiliation(s)
- J Fu
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
73
|
Rubenstein RC, Zeitlin PL. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR. Am J Physiol Cell Physiol 2000; 278:C259-67. [PMID: 10666020 DOI: 10.1152/ajpcell.2000.278.2.c259] [Citation(s) in RCA: 226] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most common mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), DeltaF508, is a trafficking mutant that has prolonged associations with molecular chaperones and is rapidly degraded, at least in part by the ubiquitin-proteasome system. Sodium 4-phenylbutyrate (4PBA) improves DeltaF508-CFTR trafficking and function in vitro in cystic fibrosis epithelial cells and in vivo. To further understand the mechanism of action of 4PBA, we tested the hypothesis that 4PBA modulates the targeting of DeltaF508-CFTR for ubiquitination and degradation by reducing the expression of Hsc70 in cystic fibrosis epithelial cells. IB3-1 cells (genotype DeltaF508/W1282X) that were treated with 0.05-5 mM 4PBA for 2 days in culture demonstrated a dose-dependent reduction in Hsc70 protein immunoreactivity and mRNA levels. Immunoprecipitation with Hsc70-specific antiserum demonstrated that Hsc70 and CFTR associated under control conditions and that treatment with 4PBA reduced these complexes. Levels of immunoreactive Hsp40, Hdj2, Hsp70, Hsp90, and calnexin were unaffected by 4PBA treatment. These data suggest that 4PBA may improve DeltaF508-CFTR trafficking by allowing a greater proportion of mutant CFTR to escape association with Hsc70.
Collapse
Affiliation(s)
- R C Rubenstein
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
74
|
Fensome AC, Rodrigues-Lima F, Josephs M, Paterson HF, Katan M. A neutral magnesium-dependent sphingomyelinase isoform associated with intracellular membranes and reversibly inhibited by reactive oxygen species. J Biol Chem 2000; 275:1128-36. [PMID: 10625655 DOI: 10.1074/jbc.275.2.1128] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of neutral sphingomyelinase(s) and subsequent generation of ceramide has been implicated in a wide variety of cellular responses. Although this enzyme(s) has not been purified and cloned from higher organisms, one mammalian cDNA has been previously isolated based on its similarity to the bacterial enzyme. To further elucidate the function of this neutral sphingomyelinase, we studied its relationship with enzymes present in mammalian cells and tissues, its subcellular localization, and properties that could be important for the regulation of its activity. Using specific antibodies, it is suggested that the enzyme could represent one of several forms of neutral sphingomyelinases present in the extract from brain particulate fraction. In PC12 cells, the enzyme is localized in the endoplasmic reticulum and is not present in the plasma membrane. The same result has been obtained in several cell lines transfected or microinjected with plasmids encoding this enzyme. The molecular and enzymatic properties of the cloned neutral magnesium-dependent sphingomyelinase, produced using baculovirus or bacterial expression systems, have been analyzed, demonstrating the expected ion dependence and substrate specificity. The enzyme activity also has a strong requirement for reducing agents and is reversibly inhibited by reactive oxygen species and oxidized glutathione. The studies demonstrate that the cellular localization and some properties of this enzyme are distinct from properties previously associated with neutral magnesium-dependent sphingomyelinases in crude or partially purified preparations.
Collapse
Affiliation(s)
- A C Fensome
- Cancer Research Campaign Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | |
Collapse
|
75
|
Taguchi T, Kiyokawa N, Sato N, Saito M, Fujimoto J. Characteristic expression of Hck in human B-cell precursors. Exp Hematol 2000; 28:55-64. [PMID: 10658677 DOI: 10.1016/s0301-472x(99)00127-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To identify molecules involved in signaling for early B-cell development, we investigated the expression of signal transduction-related proteins in B-cell progenitors. MATERIALS AND METHODS [corrected] Normal as well as leukemic B-cell progenitors were examined by immunoblotting and immunofluorescence study. RESULTS [corrected] In a survey of the expression of a broad range of signal transduction molecules, the Src-family protein tyrosine kinases were found to be differentially expressed in early B-cell differentiation. [corrected] Analysis of freshly prepared precursor-B acute lymphoblastic leukemia cells and B-lineage cell lines showed Hck and Lyn are major Src-family protein tyrosine kinases expressed in this type of leukemic blasts. [corrected] However, heterogeneity of Hck and Lyn expression was found in these cells, and precursor-B acute lymphoblastic leukemia cells subsequently were classified according to the expression pattern of Hck and Lyn as Hck/Lyn dual-negative, Hck-predominant, Hck/Lyn dual-positive, and Lyn-predominant. Further studies on normal B-lineage cells indicated that the Src-family protein tyrosine kinases are expressed sequentially in a differentiation-dependent fashion during B-cell ontogeny and that the predominant expression of Hck is a common feature in B-cell progenitors, whereas Lyn expression is more significant in mature B cells. CONCLUSIONS Although the biologic significance remains unknown, sequential expression of Src-family protein tyrosine kinases should play a role in regulation of early B-cell differentiation.
Collapse
Affiliation(s)
- T Taguchi
- Department of Pathology, National Children's Medical Research Center, Tokyo, Japan
| | | | | | | | | |
Collapse
|
76
|
Abstract
Peptide binding to major histocompatibility complex (MHC) class I molecules occurs in the endoplasmic reticulum (ER). Efficient peptide binding requires a number of components in addition to the MHC class I-beta 2 microglobulin dimer (beta 2m). These include the two subunits of the transporter associated with antigen presentation (TAP1 and TAP2), which are essential for introducing peptides into the ER from the cytosol, and tapasin, an MHC-encoded membrane protein. Prior to peptide binding, MHC class I-beta 2m dimers form part of a large multisubunit ER complex which includes TAP and tapasin. In addition to these specialized components two soluble 'house-keeping' proteins, the chaperone calreticulin and the thiol oxidoreductase ERp57, are also components of this complex. Our current understanding of the nature and function of the MHC class I peptide loading complex is the topic of this review.
Collapse
Affiliation(s)
- P Cresswell
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | | | | | |
Collapse
|
77
|
Lauvau G, Gubler B, Cohen H, Daniel S, Caillat-Zucman S, van Endert PM. Tapasin enhances assembly of transporters associated with antigen processing-dependent and -independent peptides with HLA-A2 and HLA-B27 expressed in insect cells. J Biol Chem 1999; 274:31349-58. [PMID: 10531335 DOI: 10.1074/jbc.274.44.31349] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Assembly of HLA class I-peptide complexes is assisted by multiple proteins that associate with HLA molecules in loading complexes. These include the housekeeping chaperones calnexin and calreticulin and two essential proteins, the transporters associated with antigen processing (TAP) for peptide supply, and the protein tapasin which is thought to act as a specialized chaperone. We dissected functional effects of processing cofactors by co-expressing in insect cells various combinations of the human proteins HLA-A2, HLA-B27, beta(2)-microglobulin, TAP, calnexin, calreticulin, and tapasin. Stability at 37 degrees C and surface expression of class I dimers correlated closely in baculovirus-infected Sf9 cells, suggesting that these cells retain empty dimers in the endoplasmic reticulum. Both HLA molecules form substantial quantities of stable complexes with insect cell-produced peptide pools. These pools are TAP-selected cytosolic peptides for HLA-B27 but endoplasmic reticulum-derived, i.e. TAP-independent peptides for HLA-A2. This discrepancy may be due to peptide selection by human TAP which is much better adapted to the HLA-B27 than to the HLA-A2 ligand preferences. HLA class I assembly with peptides from TAP-dependent and -independent pools was enhanced strongly by tapasin. Thus, tapasin acts as a chaperone and/or peptide editor that facilitates assembly of peptides with HLA class I molecules independently of mediating their interaction with TAP and/or retention in the endoplasmic reticulum.
Collapse
Affiliation(s)
- G Lauvau
- INSERM Unité 25, Hôpital Necker, 161 rue de Sèvres, 75743 Paris, France
| | | | | | | | | | | |
Collapse
|
78
|
Nohturfft A, DeBose-Boyd RA, Scheek S, Goldstein JL, Brown MS. Sterols regulate cycling of SREBP cleavage-activating protein (SCAP) between endoplasmic reticulum and Golgi. Proc Natl Acad Sci U S A 1999; 96:11235-40. [PMID: 10500160 PMCID: PMC18017 DOI: 10.1073/pnas.96.20.11235] [Citation(s) in RCA: 192] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The proteolytic cleavage of sterol regulatory element-binding proteins (SREBPs) is regulated by SREBP cleavage-activating protein (SCAP), which forms complexes with SREBPs in membranes of the endoplasmic reticulum (ER). In sterol-depleted cells, SCAP facilitates cleavage of SREBPs by Site-1 protease, thereby initiating release of active NH(2)-terminal fragments from the ER membrane so that they can enter the nucleus and activate gene expression. In sterol-overloaded cells, the activity of SCAP is blocked, SREBPs remain bound to membranes, and transcription of sterol-regulated genes declines. Here, we provide evidence that sterols act by inhibiting the cycling of SCAP between the ER and Golgi. We use glycosidases, glycosidase inhibitors, and a glycosylation-defective mutant cell line to demonstrate that the N-linked carbohydrates of SCAP are modified by Golgi enzymes in sterol-depleted cells. After modification, SCAP returns to the ER, as indicated by experiments that show that the Golgi-modified forms of SCAP cofractionate with ER membranes on density gradients. In sterol-overloaded cells, the Golgi modifications of SCAP do not occur, apparently because SCAP fails to leave the ER. Golgi modifications of SCAP are restored when sterol-overloaded cells are treated with brefeldin A, which causes Golgi enzymes to translocate to the ER. These studies suggest that sterols regulate the cleavage of SREBPs by modulating the ability of SCAP to transport SREBPs to a post-ER compartment that houses active Site-1 protease.
Collapse
Affiliation(s)
- A Nohturfft
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235, USA
| | | | | | | | | |
Collapse
|
79
|
Shieh CC, Sadasivan BK, Russell GJ, Schön MP, Parker CM, Brenner MB. Lymphocyte Adhesion to Epithelia and Endothelia Mediated by the Lymphocyte Endothelial-Epithelial Cell Adhesion Molecule Glycoprotein. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.3.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Upon encountering the relevant vascular bed, lymphocytes attach to endothelial adhesion molecules, transmigrate out of circulation, and localize within tissues. Lymphocytes may then be retained at microanatomic sites, as in tissues, or they may continue to migrate to the lymphatics and recirculate in the blood. Lymphocytes also interact transiently, but with high avidity, with target cells or APC that are infected with microbes or have taken up exogenous foreign Ags. This array of adhesive capabilities is mediated by the selective expression of lymphocyte adhesion molecules. Here, we developed the 6F10 mAb, which recognizes a cell surface glycoprotein designated lymphocyte endothelial-epithelial cell adhesion molecule (LEEP-CAM), that is distinct in biochemical characteristics and distribution of expression from other molecules known to play a role in lymphocyte adhesion. LEEP-CAM is expressed on particular epithelia, including the suprabasal region of the epidermis, the basal layer of bronchial and breast epithelia, and throughout the tonsillar and vaginal epithelia. Yet, it is absent from intestinal and renal epithelia. Interestingly, it is expressed also on vascular endothelium, especially high endothelial venules (HEV) in lymphoid organs, such as tonsil and appendix. The anti-LEEP-CAM mAb specifically blocked T and B lymphocyte adhesion to monolayers of epithelial cells and to vascular endothelial cells in static cell-to-cell binding assays by ∼40–60% when compared with control mAbs. These data suggest a role for this newly identified molecule in lymphocyte binding to endothelium, as well as adhesive interactions within selected epithelia.
Collapse
Affiliation(s)
- Chi-Chang Shieh
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, and
- ‡Department of Pediatrics, National Cheng Kung University, Tainan, Taiwan
| | - Bhanu K. Sadasivan
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, and
| | - Gary J. Russell
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, and
- †Combined Program in Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Michael P. Schön
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, and
| | - Christina M. Parker
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, and
| | - Michael B. Brenner
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, and
| |
Collapse
|
80
|
Archibald K, Molnár E, Henley JM. Differential changes in the subcellular distribution of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate and N-methyl-D-aspartate receptors in neonate and adult rat cortex. Neurosci Lett 1999; 270:49-52. [PMID: 10454143 DOI: 10.1016/s0304-3940(99)00466-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We compared the distribution of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors and their individual subunits in synaptosomal and microsomal fractions prepared from 2-day-old (P2) and adult rat cortex. In P2 cortex more [3H]-(S)-fluorowillardiine ([3H]FW) binding to AMPA receptors was in the intracellular microsomal fraction than in the synaptosomal fraction whereas in adult rats the reverse was observed. Immunoblots with GluR1, GluR2/3, GluR4 and pan-AMPA antibodies showed the same profile. In contrast, the majority of [3H]MK-801 binding to the N-methyl-D-aspartate (NMDA) receptor and NR1 subunit immunoreactivity was present in the synaptosomal fraction at both developmental time points. These results suggest a developmental rearrangement of the distribution of AMPA receptors within neurons, a process which is likely to be important in synaptic stabilization and plasticity.
Collapse
Affiliation(s)
- K Archibald
- Department of Anatomy, University of Bristol, Medical School, UK
| | | | | |
Collapse
|
81
|
Martin EP, Arnaud J, Alibaud L, Gouaillard C, Llobera R, Huchenq-Champagne A, Rubin B. Molecular mechanisms in the TCR (TCR alpha beta-CD3 delta epsilon, gamma epsilon) interaction with zeta 2 homodimers: clues from a 'phenotypic revertant' clone. Int Immunol 1999; 11:1005-15. [PMID: 10383932 DOI: 10.1093/intimm/11.7.1005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The association between the TCRalphabeta-CD3gammaepsilondeltaepsilon hexamers and zeta2 homodimers in the endoplasmic reticulum (ER) constitutes a key step in TCR assembly and export to the T cell surface. Incompletely assembled TCR-CD3 complexes are degraded in the ER or the lysosomes. A previously described Jurkat variant (J79) has a mutation at position 195 on the TCR Calpha domain causing a phenylalanine to valine exchange. This results in a lack of association between TCRalphabeta-CD3gammaepsilondeltaepsilon hexamers and zeta2 homodimers. Two main hypotheses could explain this phenomenon in J79 cells: TCR-CD3 hexamers may be incapable of interacting with zeta2 due to a structural change in the TCR Calpha region; alternatively, TCR-CD3 hexamers may be incapable of interacting with zeta2 due to factors unrelated to either molecular complex. In order to assess these two possibilities, the TCR-CD3 membrane-negative J79 cells were treated with ethylmethylsulfonate and clones positive for TCR membrane expression were isolated. The characterization of the J79r58 phenotypic revertant cell line is the subject of this study. The main question was to assess the reason for the TCR re-expression. The TCR on J79r58 cells appears qualitatively and functionally equivalent to wild-type TCR complexes. Nucleotide sequence analysis confirmed the presence of the original mutation in the TCR Calpha region but failed to detect compensatory mutations in alpha, beta, gamma, delta, epsilon or zeta chains. Thus, mutated J79-TCR-CD3 complexes can interact with zeta2 homodimers. Possible mechanisms for the unsuccessful TCR-CD3 interaction with zeta2 homodimers are presented and discussed.
Collapse
MESH Headings
- Cell Membrane/metabolism
- Clone Cells
- Dimerization
- Flow Cytometry
- Humans
- Jurkat Cells
- Macromolecular Substances
- Molecular Chaperones/metabolism
- Molecular Chaperones/physiology
- Mutation
- Phenotype
- Receptor-CD3 Complex, Antigen, T-Cell/biosynthesis
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/immunology
Collapse
Affiliation(s)
- E P Martin
- Unité de Physiopathologie Cellulaire et Moléculaire, CNRS, ERS 1590, IFR 30 d'Immunologie Cellulaire et Moléculaire, CHU de Purpan, 31059 cedex 03 Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
82
|
Bangia N, Lehner PJ, Hughes EA, Surman M, Cresswell P. The N-terminal region of tapasin is required to stabilize the MHC class I loading complex. Eur J Immunol 1999; 29:1858-70. [PMID: 10382748 DOI: 10.1002/(sici)1521-4141(199906)29:06<1858::aid-immu1858>3.0.co;2-c] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tapasin mediates the binding of MHC class I molecules to the transporter associated with antigen processing (TAP). Deletion mutants of tapasin were used to examine the effect of tapasin on interactions within the MHC class I complex. Binding to TAP is mediated by the C-terminal region of tapasin. Michaelis-Menten analysis of peptide transport shows that this interaction is sufficient to increase TAP levels without significantly affecting the intrinsic translocation rate. Weak interactions exist between MHC class I molecules and TAP in the absence of tapasin, and between free heavy chains and TAP-tapasin complexes in the absence of beta2-microglobulin. The N-terminal 50 residues of tapasin constitute the key element which converts the sum of these weak interactions into a stable complex.
Collapse
Affiliation(s)
- N Bangia
- Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, USA
| | | | | | | | | |
Collapse
|
83
|
Grassi F, Barbier E, Porcellini S, von Boehmer H, Cazenave PA. Surface Expression and Functional Competence of CD3-Independent TCR ζ-Chains in Immature Thymocytes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.2589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In recombinase-deficient (RAG-2−/−) mice, double-negative thymocytes can be stimulated to proliferate and differentiate by anti-CD3 Abs. CD3 molecules are expressed on the surface of these cells in association with calnexin. In this study, we show that ζ-chains can be recovered as phosphorylated proteins in association with phosphorylated ZAP-70 from anti-CD3-stimulated RAG-2−/− thymocytes, even though they are not demonstrably associated with the CD3/calnexin complex. The lack of a physical association of ζ dimers with the CD3 complex in RAG-2−/− thymocytes and also in a pre-TCR-expressing cell line, as well as the efficient association of ζ dimers with ZAP-70 in the RAG-2−/− thymocytes, suggest that these ζ-chain dimers could contribute to pre-TCR signaling. This idea is supported by the finding that in RAG-2−/− ζ-deficient thymocytes, ZAP-70 and p120cbl were only weakly phosphorylated.
Collapse
Affiliation(s)
- Fabio Grassi
- *Dipartimento di Biologia e Genetica per le Scienze Mediche, Università di Milano at Department of Biological and Technological Research, San Raffaele Scientific Institute (HSR), Milan, Italy
- †Unité d’Immunochimie Analytique, Département d’Immunologie, Institut Pasteur, Unité de Recherche Associée, Centre National de la Recherche Scientifique D1961, and Université Pierre et Marie Curie, Paris, France; and
| | - Eliane Barbier
- †Unité d’Immunochimie Analytique, Département d’Immunologie, Institut Pasteur, Unité de Recherche Associée, Centre National de la Recherche Scientifique D1961, and Université Pierre et Marie Curie, Paris, France; and
| | - Simona Porcellini
- *Dipartimento di Biologia e Genetica per le Scienze Mediche, Università di Milano at Department of Biological and Technological Research, San Raffaele Scientific Institute (HSR), Milan, Italy
| | - Harald von Boehmer
- ‡Institut Necker, Institut National de la Santé et Recherche Medicale, U373, Paris, France
| | - Pierre-André Cazenave
- †Unité d’Immunochimie Analytique, Département d’Immunologie, Institut Pasteur, Unité de Recherche Associée, Centre National de la Recherche Scientifique D1961, and Université Pierre et Marie Curie, Paris, France; and
| |
Collapse
|
84
|
Abstract
The E-prM proteins of flaviviruses are unusual complexes which play important roles in virus assembly and fusion modulation and in potential immunity-inducing vaccines. Despite their importance, little is known about the biogenesis and structural organization of E-prM complexes. Pulse-chase radiolabeling of dengue virus-infected Vero cells demonstrated a rapid interassociation of E and prM proteins, and sucrose gradient sedimentation analysis suggested that E-prM complexes progressed from simple heteromers to more densely sedimenting structures indicating increased multimerization. E-prM heteromers of even higher complexity were observed in virus particles, suggesting an intracellular assembly process which results in the networking of E-prM subunits into a lattice-like structure found in virus particles. Trypsin cleavage of E-prM-containing virus particles resulted in the release of a soluble 45-kDa fragment of the E protein which retained cell-binding activity. The results suggest that E-prM interactions in dengue virus particles are largely mediated by domains in the carboxy-terminal anchoring domain of E, while cell-binding activity is retained in a trypsin-releasable ectodomain of the E protein.
Collapse
Affiliation(s)
- S Wang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | |
Collapse
|
85
|
Wickham L, Duchaîne T, Luo M, Nabi IR, DesGroseillers L. Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol Cell Biol 1999; 19:2220-30. [PMID: 10022909 PMCID: PMC84015 DOI: 10.1128/mcb.19.3.2220] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staufen (Stau) is a double-stranded RNA (dsRNA)-binding protein involved in mRNA transport and localization in Drosophila. To understand the molecular mechanisms of mRNA transport in mammals, we cloned human (hStau) and mouse (mStau) staufen cDNAs. In humans, four transcripts arise by differential splicing of the Stau gene and code for two proteins with different N-terminal extremities. In vitro, hStau and mStau bind dsRNA via each of two full-length dsRNA-binding domains and tubulin via a region similar to the microtubule-binding domain of MAP-1B, suggesting that Stau cross-links cytoskeletal and RNA components. Immunofluorescent double labeling of transfected mammalian cells revealed that Stau is localized to the rough endoplasmic reticulum (RER), implicating this RNA-binding protein in mRNA targeting to the RER, perhaps via a multistep process involving microtubules. These results are the first demonstration of the association of an RNA-binding protein in addition to ribosomal proteins, with the RER, implicating this class of proteins in the transport of RNA to its site of translation.
Collapse
Affiliation(s)
- L Wickham
- Departments of Biochemistry, University of Montreal, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
86
|
Gao YS, Alvarez C, Nelson DS, Sztul E. Molecular cloning, characterization, and dynamics of rat formiminotransferase cyclodeaminase, a Golgi-associated 58-kDa protein. J Biol Chem 1998; 273:33825-34. [PMID: 9837973 DOI: 10.1074/jbc.273.50.33825] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A peripherally associated 58-kDa Golgi protein (58K) of unknown function has been previously described (Bloom, G. S., and Brashear, T. A. (1989) J. Biol. Chem. 264, 16083-16092). To molecularly characterize 58K, we used a monoclonal anti-58K antibody (monoclonal antibody 58K-9) to screen a rat liver cDNA expression library. Positive clones were isolated, characterized, and partially sequenced. The obtained sequences show a high level of identity with sequences of porcine formiminotransferase cyclodeaminase (FTCD), suggesting that 58K is rat FTCD. Rat FTCD is structurally similar to porcine FTCD, a metabolic enzyme involved in conversion of histidine to glutamic acid, and exists in dimeric, tetrameric, and octameric complexes resistant to proteolysis. To define parameters of FTCD association with the Golgi, comparison of its behavior with various Golgi and ER-to-Golgi intermediate compartment marker proteins was examined under specific conditions. The results show that extraction parameters of FTCD are similar to those of GM130, a tightly associated Golgi matrix protein. FTCD appears to be a dynamic component of the Golgi, and a proportion of FTCD molecules cycle between the Golgi and earlier compartments of the secretory pathway. FTCD remains associated with Golgi fragments during microtubule disruption and is not released into cytosol during brefeldin A treatment. Instead, FTCD relocates from the Golgi, but the time course of its redistribution is distinct from that of mannosidase II relocation. FTCD is already dispersed into small punctate structures at a time when mannosidase II is still largely localized to Golgi structures. FTCD is not observed in tubules originating from the Golgi and containing mannosidase II. Instead, it appears to redistribute in small vesicles arranged in a linear "pearls on a string" pattern. These results suggest that FTCD relocation is temporally and spatially distinct from mannosidase II relocation and that FTCD provides a novel marker to study Golgi dynamics.
Collapse
Affiliation(s)
- Y S Gao
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
87
|
Cowling RT, Birnboim HC. Preliminary characterization of the protein encoded by human testis-enhanced gene transcript (TEGT). Mol Membr Biol 1998; 15:177-87. [PMID: 10087504 DOI: 10.3109/09687689709044319] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
TEGT is a conserved, widely expressed gene transcript of unknown function that has been studied previously only at the nucleic acid level. The deduced amino acid sequence predicts a highly hydrophobic, 26.5 kDa integral membrane protein with seven potential transmembrane domains. Little else is known about TEGT protein because of the lack of definitive homology to other known sequences and the absence of informative consensus motifs. The present report details a preliminary study of human TEGT (hTEGT) protein. (i) In vitro translation of hTEGT in reticulocyte lysates required the presence of microsomes for efficient synthesis, suggesting that hTEGT must target to the endoplasmic reticulum to be translated. Immunofluorescence of cells transiently expressing haemagglutinin-tagged hTEGT localized the protein mainly to the endoplasmic reticulum. The protein demonstrated no obvious post-translational modifications such as signal-peptide cleavage, N-linked glycosylation or O-linked glycosylation. (ii) Both hTEGT and haemagglutinin-tagged hTEGT appeared to retain partial secondary and tertiary structure in the presence of SDS. Both electrophoresed as a broad band or doublet with apparent molecular weights of 22-24.5 kDa on SDS-PAGE, aggregated either homotypically or heterotypically when boiled in SDS, and were toxic after 24 h when highly overexpressed in 293 T cells. These properties are believed to be caused by the protein's hydrophobicity. (iii) The protein appeared to associate strongly with other intracellular molecules since haemagglutinin-tagged hTEGT was extracted poorly from transiently transfected HeLa cells. Further study will be required to determine the cellular function of TEGT.
Collapse
Affiliation(s)
- R T Cowling
- Cancer Research Group, Ottawa Regional Cancer Centre, Ontario, Canada
| | | |
Collapse
|
88
|
Deng Y, Gibbs J, Bačík I, Porgador A, Copeman J, Lehner P, Ortmann B, Cresswell P, Bennink JR, Yewdell JW. Assembly of MHC Class I Molecules with Biosynthesized Endoplasmic Reticulum-Targeted Peptides Is Inefficient in Insect Cells and Can Be Enhanced by Protease Inhibitors. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
To study the requirements for assembly of MHC class I molecules with antigenic peptides in the endoplasmic reticulum (ER), we studied Ag processing in insect cells. Insects lack a class I recognition system, and their cells therefore provide a “blank slate” for identifying the proteins that have evolved to facilitate assembly of class I molecules in vertebrate cells. H-2Kb heavy chain, mouse β2-microglobulin, and an ER-targeted version of a peptide corresponding to Ova257–264 were expressed in insect cells using recombinant vaccinia viruses. Cell surface expression of Kb-OVA257–264 complexes was quantitated using a recently described complex-specific mAb (25-D1.16). Relative to TAP-deficient human cells, insect cells expressed comparable levels of native, peptide-receptive cell surface Kb molecules, but generated cell surface Kb-OVA257–264 complexes at least 20-fold less efficiently from ER-targeted peptides. The inefficient assembly of Kb-OVA257–264 complexes in the ER of insect cells cannot be attributed solely to a requirement for human tapasin, since first, human cells lacking tapasin expressed endogenously synthesized Kb-OVA257–264 complexes at levels comparable to tapasin-expressing cells, and second, vaccinia virus-mediated expression of human tapasin in insect cells did not detectably enhance the expression of Kb-OVA257–264 complexes. The assembly of Kb-OVA257–264 complexes could be greatly enhanced in insect but not human cells by a nonproteasomal protease inhibitor. These findings indicate that insect cells lack one or more factors required for the efficient assembly of class I-peptide complexes in vertebrate cells and are consistent with the idea that the missing component acts to protect antigenic peptides or their immediate precursors from degradation.
Collapse
Affiliation(s)
| | | | | | - Angel Porgador
- †Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
- Laboratories of
| | - James Copeman
- ‡Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Laboratories of
| | - Paul Lehner
- ‡Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Laboratories of
| | - Bodo Ortmann
- ‡Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Laboratories of
| | - Peter Cresswell
- ‡Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510
- Laboratories of
| | | | | |
Collapse
|
89
|
Dusseljee S, Wubbolts R, Verwoerd D, Tulp A, Janssen H, Calafat J, Neefjes J. Removal and degradation of the free MHC class II beta chain in the endoplasmic reticulum requires proteasomes and is accelerated by BFA. J Cell Sci 1998; 111 ( Pt 15):2217-26. [PMID: 9664043 DOI: 10.1242/jcs.111.15.2217] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have studied the degradation of the free major histocompatibility complex (MHC) class II beta subunit in the ER. Domain swapping experiments demonstrate that both the intra- and extracellular domain determine the rate of degradation. Recently, it has been shown that some ER-retained proteins are exported from the ER by the translocon followed by deglycosylation and degradation in the cytosol by proteasomes. Degradation of the beta chain follows a different route. The proteasome is involved but inhibition of the proteasome by lactacystin does not result in deglycosylation and export to the cytosol. Instead, the beta chain is retained in the ER implying that extraction of the beta chain from the ER membrane requires proteasome activity. Surprisingly, brefeldin A accelerates the degradation of the beta chain by the proteasome. This suggests that various processes outside the ER are involved in ER-degradation. The ER is the site from where misfolded class II beta chains enter a proteasome-dependent degradation pathway.
Collapse
Affiliation(s)
- S Dusseljee
- Divisions of Tumor Biology and Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
90
|
Kearse KP. Calnexin associates with monomeric and oligomeric (disulfide-linked) CD3delta proteins in murine T lymphocytes. J Biol Chem 1998; 273:14152-7. [PMID: 9603915 DOI: 10.1074/jbc.273.23.14152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antigen-binding receptor expressed on most T lymphocytes consists of disulfide-linked clonotypic alphabeta heterodimers noncovalently associated with monomeric CD3gamma,delta,epsilon proteins and disulfide-linked zeta zeta homodimers, collectively referred to as the T cell antigen receptor (TCR) complex. Here, we examined and compared the disulfide linkage status of newly synthesized TCR proteins in murine CD4(+)CD8(+) thymocytes and splenic T cells. These studies demonstrate that CD3delta proteins exist as both monomeric and oligomeric (disulfide-linked) species that differentially assemble with CD3epsilon subunits in CD4(+)CD8(+) thymocytes and splenic T cells. Interestingly, unlike previous results on glucose trimming and TCR assembly of CD3delta proteins in splenic T cells (Van Leeuwen, J. E. M., and K. P. Kearse (1996) J. Biol. Chem. 271, 9660-9665), we found that glucose residues were not invariably removed from CD3delta glycoproteins prior to their assembly with CD3epsilon subunits in CD4(+)CD8(+) thymocytes. Finally, these studies show that calnexin associates with both monomeric and disulfide-linked CD3delta proteins in murine T cells. The data in the current report demonstrate that CD3delta proteins exist as both monomeric and disulfide-linked molecules in murine T cells that differentially associate with partner TCR chains in CD4(+)CD8(+) thymocytes and splenic T cells. These results are consistent with the concept that folding and assembly of CD3delta proteins is a function of their oxidation state.
Collapse
Affiliation(s)
- K P Kearse
- Department of Microbiology & Immunology, East Carolina University, School of Medicine, Greenville, North Carolina 27858-4353, USA.
| |
Collapse
|
91
|
Stang E, Guerra CB, Amaya M, Paterson Y, Bakke O, Mellins ED. DR/CLIP (Class II-Associated Invariant Chain Peptides) and DR/Peptide Complexes Colocalize in Prelysosomes in Human B Lymphoblastoid Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.10.4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
In APCs, MHC class II molecules (MHC class II) bind antigenic peptides after HLA-DM mediated removal of CLIP. To characterize intracellular sites of peptide loading in human B lymphoblastoid cell lines, we conducted immunoelectron microscopy studies with Abs recognizing MHC class II associated with CLIP or bound peptide, respectively, together with Abs to HLA-DM and endocytic markers. The distribution of these molecules indicates that peptide binding occurs in compartments with characteristics of normal late endosomes, and in compartments that show characteristics of late endosomes, but are not detectably accessed by endocytosed BSA-gold. The latter compartments may represent or give rise to recycling vesicles that deliver peptide-loaded class II molecules to the cell surface. In addition, we have compared cells in which HLA-DM and HLA-DR interaction is defective with cells in which this interaction is intact, and find that DM/DR interaction is not required for the proper localization of either molecule to peptide-loading compartments.
Collapse
Affiliation(s)
- Espen Stang
- *Department of Biology, University of Oslo, Oslo, Norway
| | | | - Miguel Amaya
- †Department of Pediatrics, School of Medicine, and
| | - Yvonne Paterson
- ‡Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104; and
| | - Oddmund Bakke
- *Department of Biology, University of Oslo, Oslo, Norway
| | - Elizabeth D. Mellins
- §Department of Pediatrics, Stanford University Medical Center, Stanford, CA 94305
| |
Collapse
|
92
|
Guerra CB, Busch R, Doebele RC, Liu W, Sawada T, Kwok WW, Chang MDY, Mellins ED. Novel Glycosylation of HLA-DRα Disrupts Antigen Presentation Without Altering Endosomal Localization. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.9.4289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The HLA-DR hemizygous B lymphoblastoid cell line, 10.24.6, has a DRA mutation (Pro96→Ser) that creates a novel glycosylation site at Asn94. The mutant DR molecules are primarily associated with nested fragments of invariant chain (class II-associated invariant chain peptides), and their interaction with HLA-DM is impaired. Here we further analyzed the defect in 10.24.6 cells. Expressing Ser96 mutant DRA cDNA in DRA-null cells recapitulated the 10.24.6 phenotype, indicating that the mutation causes the Ag presentation defect. A mutation to Ala96α, which does not introduce an extra glycan, generated a normal phenotype; the critical role of the glycan was further supported by experiments in which N-glycosylation was blocked by tunicamycin. We also evaluated whether the 10.24.6 mutation affected DR3 maturation or trafficking. Metabolic labeling and subcellular fractionation showed that assembly, endosomal transport, and invariant chain proteolysis of mutant DR3 molecules were similar to wild-type. A slight delay in export from the endoplasmic reticulum to the Golgi apparatus in 10.24.6 cells probably did not contribute significantly to the Ag presentation defect, because the abundance of DM and mutant DR in peptide-loading compartments was normal at steady state. Our results indicate that proper localization of these molecules does not depend on their interaction.
Collapse
Affiliation(s)
- Carolyn B. Guerra
- *School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert Busch
- †Department of Pediatrics, Stanford University Medical Center, Stanford, CA 94305
| | - Robert C. Doebele
- *School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- †Department of Pediatrics, Stanford University Medical Center, Stanford, CA 94305
| | - Wendy Liu
- †Department of Pediatrics, Stanford University Medical Center, Stanford, CA 94305
| | - Tetsuji Sawada
- ‡Department of Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, NY 11030; and
| | | | - Ming-der Y. Chang
- ‡Department of Medicine, North Shore University Hospital-New York University School of Medicine, Manhasset, NY 11030; and
| | - Elizabeth D. Mellins
- †Department of Pediatrics, Stanford University Medical Center, Stanford, CA 94305
| |
Collapse
|
93
|
Nordeng TW, Gorvel JP, Bakke O. Intracellular transport of molecules engaged in the presentation of exogenous antigens. Curr Top Microbiol Immunol 1998; 232:179-215. [PMID: 9557399 DOI: 10.1007/978-3-642-72045-1_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- T W Nordeng
- Department of Biology, University of Oslo, Norway
| | | | | |
Collapse
|
94
|
Momburg F, Hämmerling GJ. Generation and TAP-mediated transport of peptides for major histocompatibility complex class I molecules. Adv Immunol 1998; 68:191-256. [PMID: 9505090 DOI: 10.1016/s0065-2776(08)60560-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- F Momburg
- Department of Molecular Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
95
|
Bergeron JJ, Zapun A, Ou WJ, Hemming R, Parlati F, Cameron PH, Thomas DY. The role of the lectin calnexin in conformation independent binding to N-linked glycoproteins and quality control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 435:105-16. [PMID: 9498070 DOI: 10.1007/978-1-4615-5383-0_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- J J Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
96
|
Lehner PJ, Surman MJ, Cresswell P. Soluble tapasin restores MHC class I expression and function in the tapasin-negative cell line .220. Immunity 1998; 8:221-31. [PMID: 9492003 DOI: 10.1016/s1074-7613(00)80474-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tapasin forms a bridge between TAP (transporters associated with antigen processing) and MHC class I molecules and plays a critical role in class I assembly. In its absence, TAP and class I do not associate, and class I cell surface expression is reduced. We now identify two independent functions for tapasin. Tapasin increases TAP levels and allows more peptide to be translocated to the endoplasmic reticulum. Furthermore, when expressed in the tapasin-negative .220 cell line, recombinant soluble tapasin retains its association with class I and restores class I cell surface expression and function, even though it no longer binds TAP or increases TAP levels. This finding suggests that the association of tapasin with class I is sufficient to facilitate loading and assembly of class I molecules.
Collapse
Affiliation(s)
- P J Lehner
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
97
|
Zhang Q, Salter RD. Distinct Patterns of Folding and Interactions with Calnexin and Calreticulin in Human Class I MHC Proteins with Altered N-Glycosylation. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.2.831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Calnexin is a lectin-like chaperone that binds to class I MHC molecules soon after their synthesis, retaining unassembled heavy chains and also assisting their folding. Following association with β2-microglobulin (β2m) in the endoplasmic reticulum, a large proportion of human class I molecules release from calnexin, whereas mouse class I molecules do not. We asked whether addition of a second N-glycan to the human class I molecule A*0201 at position 176, a site present in mouse, would affect its binding to calnexin. The 176dg mutant with N-glycans at positions 86 and 176, when transfected into CIR cells, demonstrated increased binding to calnexin, detectable both before and after association with β2m, and reduced interaction with calreticulin and TAP relative to wild-type protein bearing a single N-glycan at position 86. Cell surface levels of the mutant were decreased only slightly relative to the wild type, suggesting that the protein is not misfolded or grossly altered structurally. A subpopulation of mutant molecules was retained in the endoplasmic reticulum, and surprisingly, these molecules reacted with w6/32, which recognizes an epitope present on transport-competent class I HLA complexes. Transfection into Daudi cells demonstrated that 176dg reacts with w6/32 in the absence of β2m, suggesting that the Ab epitope can be induced by binding of calnexin. These data may explain previously noted differences between mouse and human class I MHC proteins and demonstrate that the location of N-oligosaccharides within proteins can influence their folding and interactions with chaperones such as calnexin and calreticulin.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Pathology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Russell D. Salter
- Department of Pathology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| |
Collapse
|
98
|
Nagata K, Nakamura T, Kitamura F, Kuramochi S, Taki S, Campbell KS, Karasuyama H. The Ig alpha/Igbeta heterodimer on mu-negative proB cells is competent for transducing signals to induce early B cell differentiation. Immunity 1997; 7:559-70. [PMID: 9354476 DOI: 10.1016/s1074-7613(00)80377-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The immunoglobulin alpha (Ig alpha)/Ig beta heterodimer was detected on the surface of mu-negative proB cell lines in association with calnexin. The cross-linking of Ig beta on proB cells freshly isolated from bone marrow of recombination activating gene (RAG)-2-deficient mice induced a rapid and transient tyrosine-phosphorylation of Ig alpha as well as an array of intracellular proteins including Syk, PI3-kinase, Vav, and SLP-76. It also elicited the phosphorylation and activation of a MAP kinase ERK but not JNK/SAPK or p38. When RAG-2-deficient mice were treated with anti-Ig beta monoclonal antibody, developmentally arrested proB cells were induced to differentiate to the small preB cell stage as observed when the mu transgene was expressed in RAG-2-deficient mice. Thus, the cross-linking of Ig beta on proB cells appears to elicit differentiation signals analogous to those delivered by the preB cell receptor in normal B cell development.
Collapse
Affiliation(s)
- K Nagata
- Department of Immunology, The Tokyo Metropolitan Institute of Medical Science, Japan
| | | | | | | | | | | | | |
Collapse
|
99
|
Barr VA, Malide D, Zarnowski MJ, Taylor SI, Cushman SW. Insulin stimulates both leptin secretion and production by rat white adipose tissue. Endocrinology 1997; 138:4463-72. [PMID: 9322964 DOI: 10.1210/endo.138.10.5451] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Leptin, the peptide encoded by the obese gene, is secreted by adipose cells and plays a role in regulating food intake, energy expenditure, and adiposity. Because earlier studies suggested that insulin increases the expression of leptin, we investigated the effect of insulin on leptin secretion by adipose tissue. Epididymal fat pads were incubated in vitro in the presence or absence of insulin over a 4-h time course. Insulin increased leptin secretion by about 80% at all time points studied. After 10 min of insulin treatment, the amount of tissue-associated leptin was lower in insulin-stimulated tissue, presumably due to the increased secretion. At later times, both tissue-associated leptin and total leptin production were higher in insulin-treated tissue. In untreated, isolated adipose cells, immunostaining of leptin was detected in the endoplasmic reticulum by confocal microscopy. After insulin treatment, there were two populations of cells. In many cells, leptin staining became fainter and was restricted to a narrow band near the plasma membrane. However, in other cells the leptin-staining pattern was unchanged. Leptin did not colocalize with GLUT4, the glucose transporter isoform found primarily in insulin-responsive cells, in either basal or insulin-stimulated adipose cells. In this study, insulin increased both secretion and production of leptin by adipose tissue fragments. Interestingly, insulin appeared to stimulate the transport of leptin from the endoplasmic reticulum rather than acting on a pool of regulated secretory vesicles. (Endocrinology 138: 4463-4472, 1997)
Collapse
Affiliation(s)
- V A Barr
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892-1829, USA
| | | | | | | | | |
Collapse
|
100
|
Nabi IR, Guay G, Simard D. AMF-R tubules concentrate in a pericentriolar microtubule domain after MSV transformation of epithelial MDCK cells. J Histochem Cytochem 1997; 45:1351-63. [PMID: 9313797 DOI: 10.1177/002215549704501004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Autocrine motility factor receptor (AMF-R) is localized to an intracellular microtubule-associated membranous organelle, the AMF-R tubule. In well-spread untransformed MDCK epithelial cells, the microtubules originate from a broad perinuclear region and AMF-R tubules extend throughout the cytoplasm of the cells. In Moloney sarcoma virus (mos)-transformed MDCK (MSV-MDCK) cells, microtubules accumulate around the centrosome, forming a microtubule domain rich in stabilized detyrosinated microtubules. AMF-R tubules are quantitatively associated with this pericentriolar microtubule domain and the rough endoplasmic reticulum and lysosomes also co-distribute with the pericentriolar mass of microtubules. The Golgi apparatus is closely associated with the microtubule organizing center (MTOC) within the juxtanuclear mass of AMF-R tubules, and no co-localization of AMF-R tubules with the Golgi marker beta-COP could be detected by confocal microscopy. After nocodazole treatment and washout, microtubule nucleation occurs exclusively at the centrosome of MSV-MDCK cells, and only after microtubule extension to the cell periphery does the microtubule cytoskeleton reorganize to generate the pericentriolar microtubule domain after 30-60 min. AMF-R tubules dispersed by nocodazole treatment concentrate in the pericentriolar region in parallel with the reorganization of the microtubule cytoskeleton. MSV transformation of epithelial MDCK cells results in the stabilization of a pericentriolar microtubule domain responsible for the concentration and polarized distribution of AMF-R tubules.
Collapse
Affiliation(s)
- I R Nabi
- Département d'Anatomie, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|