51
|
Lorenz T, Reinstein J. The influence of proline isomerization and off-pathway intermediates on the folding mechanism of eukaryotic UMP/CMP Kinase. J Mol Biol 2008; 381:443-55. [PMID: 18602116 DOI: 10.1016/j.jmb.2008.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 10/22/2022]
Abstract
The globular 22-kDa protein UMP/CMP from Dictyostelium discoideum (UmpK) belongs to the family of nucleoside monophosphate (NMP) kinases. These enzymes not only show high sequence and structure similarities but also share the alpha/beta-fold, a very common protein topology. We investigated the protein folding mechanism of UmpK as a representative for this ubiquitous enzyme class. Equilibrium stability towards urea and the unfolding and refolding kinetics were studied by means of fluorescence and far-UV CD spectroscopy. Although the unfolding can be described by a two-state process, folding kinetics are rather complex with four refolding phases that can be resolved and an additional burst phase. Moreover, two of these phases exhibit a pronounced rollover in the refolding limb that cannot be explained by aggregation. Whilst secondary structure formation is not observed in the burst phase reaction, folding to the native structure is strongly influenced by the slowest phase, since 30% of the alpha-helical CD signal is restored therein. This process can be assigned to proline isomerization and is strongly accelerated by the Escherichia coli peptidyl-prolyl isomerase trigger factor. The analysis of our single-mixing and double-mixing experiments suggests the occurrence of an off-pathway intermediate and an unproductive collapsed structure, which appear to be rate limiting for the folding of UmpK.
Collapse
Affiliation(s)
- Thorsten Lorenz
- Department of Biomolecular Mechanisms, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | | |
Collapse
|
52
|
Ivarsson Y, Travaglini-Allocatelli C, Brunori M, Gianni S. Folding and misfolding in a naturally occurring circularly permuted PDZ domain. J Biol Chem 2008; 283:8954-60. [PMID: 18263589 DOI: 10.1074/jbc.m707424200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
One of the most extreme and fascinating examples of naturally occurring mutagenesis is represented by circular permutation. Circular permutations involve the linking of two chain ends and cleavage at another site. Here we report the first description of the folding mechanism of a naturally occurring circularly permuted protein, a PDZ domain from the green alga Scenedesmus obliquus. Data reveal that the folding of the permuted protein is characterized by the presence of a low energy off-pathway kinetic trap. This finding contrasts with what was previously observed for canonical PDZ domains that, although displaying a similar primary structure when structurally re-aligned, fold via an on-pathway productive intermediate. Although circular permutation of PDZ domains may be necessary for a correct orientation of their functional sites in multi-domain protein scaffolds, such structural rearrangement may compromise their folding pathway. This study provides a straightforward example of the divergent demands of folding and function.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza-Università di Roma, Piazzale A. Moro 5, Rome, Italy
| | | | | | | |
Collapse
|
53
|
Eun YJ, Kurt N, Sekhar A, Cavagnero S. Thermodynamic and kinetic characterization of apoHmpH, a fast-folding bacterial globin. J Mol Biol 2007; 376:879-97. [PMID: 18187151 DOI: 10.1016/j.jmb.2007.11.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/02/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
Despite the widespread presence of the globin fold in most living organisms, only eukaryotic globins have been employed as model proteins in folding/stability studies so far. This work introduces the first thermodynamic and kinetic characterization of a prokaryotic globin, that is, the apo form of the heme-binding domain of flavohemoglobin (apoHmpH) from Escherichia coli. This bacterial globin has a widely different sequence but nearly identical structure to its eukaryotic analogues. We show that apoHmpH is a well-folded monomeric protein with moderate stability at room temperature [apparent Delta G degrees (UN(w))=-3.1+/-0.3 kcal mol(-1); m(UN)=-1.7 kcal mol(-1) M(-1)] and predominant alpha-helical structure. Remarkably, apoHmpH is the fastest-folding globin known to date, as it refolds about 4- to 16-fold more rapidly than its eukaryotic analogues (e.g., sperm whale apomyoglobin and soybean apoleghemoglobin), populating a compact kinetic intermediate (beta(I)=0.9+/-0.2) with significant helical content. Additionally, the single Trp120 (located in the native H helix) becomes locked into a fully native-like environment within 6 ms, suggesting that this residue and its closest spatial neighbors complete their folding at ultrafast (submillisecond) speed. In summary, apoHmpH is a bacterial globin that shares the general folding scheme (i.e., a rapid burst phase followed by slower rate-determining phases) of its eukaryotic analogues but displays an overall faster folding and a kinetic intermediate with some fully native-like traits. This study supports the view that the general folding features of bacterial and eukaryotic globins are preserved through evolution while kinetic details differ.
Collapse
Affiliation(s)
- Ye-Jin Eun
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
54
|
Multiple tryptophan probes reveal that ubiquitin folds via a late misfolded intermediate. J Mol Biol 2007; 374:791-805. [PMID: 17949746 DOI: 10.1016/j.jmb.2007.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 08/22/2007] [Accepted: 09/06/2007] [Indexed: 11/22/2022]
Abstract
Much of our understanding of protein folding mechanisms is derived from experiments using intrinsic fluorescence of natural or genetically inserted tryptophan (Trp) residues to monitor protein refolding and site-directed mutagenesis to determine the energetic role of amino acids in the native (N), intermediate (I) or transition (T) states. However, this strategy has limited use to study complex folding reactions because a single fluorescence probe may not detect all low-energy folding intermediates. To overcome this limitation, we suggest that protein refolding should be monitored with different solvent-exposed Trp probes. Here, we demonstrate the utility of this approach by investigating the controversial folding mechanism of ubiquitin (Ub) using Trp probes located at residue positions 1, 28, 45, 57, and 66. We first show that these Trp are structurally sensitive and minimally perturbing fluorescent probes for monitoring folding/unfolding of the protein. Using a conventional stopped-flow instrument, we show that ANS and Trp fluorescence detect two distinct transitions during the refolding of all five Trp mutants at low concentrations of denaturant: T(1), a denaturant-dependent transition and T(2), a slower transition, largely denaturant-independent. Surprisingly, some Trp mutants (Ub(M1W), Ub(S57W)) display Trp fluorescence changes during T(1) that are distinct from the expected U-->N transition suggesting that the denaturant-dependent refolding transition of Ub is not a U-->N transition but represents the formation of a structurally distinct I-state (U-->I). Alternatively, this U-->I transition could be also clearly distinguished by using a combination of two Trp mutations Ub(F45W-T66W) for which the two Trp probes that display fluorescence changes of opposite sign during T(1) and T(2) (Ub(F45W-T66W)). Global fitting of the folding/unfolding kinetic parameters and additional folding-unfolding double-jump experiments performed on Ub(M1W), a mutant with enhanced fluorescence in the I-state, demonstrate that the I-state is stable, compact, misfolded, and on-pathway. These results illustrate how transient low-energy I-states can be characterized efficiently in complex refolding reactions using multiple Trp probes.
Collapse
|
55
|
Kern S, Riester D, Hildmann C, Schwienhorst A, Meyer-Almes FJ. Inhibitor-mediated stabilization of the conformational structure of a histone deacetylase-like amidohydrolase. FEBS J 2007; 274:3578-3588. [PMID: 17627667 DOI: 10.1111/j.1742-4658.2007.05887.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Histone deacetylases are major regulators of eukaryotic gene expression. Not unexpectedly, histone deacetylases are among the most promising targets in cancer therapy. However, despite huge efforts in histone deacetylase inhibitor design, very little is known about the impact of histone deacetylase inhibitors on enzyme stability. In this study, the conformational stability of a well-established histone deacetylase homolog with high structural similarity (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes species FB188) was investigated using denaturation titrations and stopped-flow kinetics. Based on the results of these complementary approaches, we conclude that the interconversion of native histone deacetylase-like amidohydrolase into its denatured form involves several intermediates possessing different enzyme activities and conformational structures. The refolding kinetics has shown to be strongly dependent on Zn(2+) and to a lesser extent on K(+), which underlines their importance not only for catalytic function but also for maintaining the correct conformational structure of the enzyme. Two main unfolding processes of histone deacetylase-like amidohydrolase were differentiated. The unfolding occurring at submolar concentrations of the denaturant guanidine hydrochloride was not affected by inhibitor binding, whereas the unfolding at higher concentrations of guanidine hydrochloride was strongly affected. It was shown that the known inhibitors suberoylanilide hydroxamic acid and cyclopentylpropionyl hydroxamate are capable of stabilizing the conformational structure of histone deacetylase-like amidrohydrolase. Judging from the free energies of unfolding, the protein stability was increased by 9.4 and 5.4 kJ.mol(-1) upon binding of suberoylanilide hydroxamic acid and cyclopentylpropionyl hydroxamate, respectively.
Collapse
Affiliation(s)
- Stefanie Kern
- Department of Chemical Engineering and Biotechnology, Darmstadt University of Applied Sciences, Germany Institut für Molekulare Genetik und Praeparative Molekularbiologie, Institut fuer Mikrobiologie und Genetik, Goettingen, Germany
| | - Daniel Riester
- Department of Chemical Engineering and Biotechnology, Darmstadt University of Applied Sciences, Germany Institut für Molekulare Genetik und Praeparative Molekularbiologie, Institut fuer Mikrobiologie und Genetik, Goettingen, Germany
| | - Christian Hildmann
- Department of Chemical Engineering and Biotechnology, Darmstadt University of Applied Sciences, Germany Institut für Molekulare Genetik und Praeparative Molekularbiologie, Institut fuer Mikrobiologie und Genetik, Goettingen, Germany
| | - Andreas Schwienhorst
- Department of Chemical Engineering and Biotechnology, Darmstadt University of Applied Sciences, Germany Institut für Molekulare Genetik und Praeparative Molekularbiologie, Institut fuer Mikrobiologie und Genetik, Goettingen, Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, Darmstadt University of Applied Sciences, Germany Institut für Molekulare Genetik und Praeparative Molekularbiologie, Institut fuer Mikrobiologie und Genetik, Goettingen, Germany
| |
Collapse
|
56
|
Spinozzi F, Mariani P, Saturni L, Carsughi F, Bernstorff S, Cinelli S, Onori G. Met-myoglobin Association in Dilute Solution during Pressure-Induced Denaturation: an Analysis at pH 4.5 by High-Pressure Small-Angle X-ray Scattering. J Phys Chem B 2007; 111:3822-30. [PMID: 17388528 DOI: 10.1021/jp063427m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we report on the original global fit procedure of synchrotron small-angle X-ray scattering (SAXS) data applied to a model protein, met-myoglobin, in dilute solution during temperature- and pressure-induced denaturation processes at pH 4.5. Starting from the thermodynamic description of the protein unfolding pathway developed by Hawley (Hawley, S. A. Biochemistry 1971, 10, 2436), we have developed a new method for analyzing the set of SAXS curves using a global fitting procedure, which allows us to derive the form factor of all the met-myoglobin species present in the solution, their aggregation state, and the set of thermodynamic parameters, with their p and T dependence. This method also overcomes a reasonably poor quality of the experimental data, and it is found to be very powerful in analyzing SAXS data. SAXS experiments were performed at four different temperatures from hydrostatic pressures up to about 2000 bar. As a result, the presence of an intermediate, partially unfolded, dimeric state of met-myoglobin that forms during denaturation has been evidenced. The obtained parameters were then used to derive the met-myoglobin p, T phase diagram that fully agrees with the corresponding phase diagram obtained by spectroscopic measurements.
Collapse
Affiliation(s)
- F Spinozzi
- Dipartimento di Scienze applicate ai Sistemi Complessi, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | | | | | | | | | | | | |
Collapse
|
57
|
Krishna MMG, Englander SW. A unified mechanism for protein folding: predetermined pathways with optional errors. Protein Sci 2007; 16:449-64. [PMID: 17322530 PMCID: PMC2203325 DOI: 10.1110/ps.062655907] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 12/11/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
There is a fundamental conflict between two different views of how proteins fold. Kinetic experiments and theoretical calculations are often interpreted in terms of different population fractions folding through different intermediates in independent unrelated pathways (IUP model). However, detailed structural information indicates that all of the protein population folds through a sequence of intermediates predetermined by the foldon substructure of the target protein and a sequential stabilization principle. These contrary views can be resolved by a predetermined pathway--optional error (PPOE) hypothesis. The hypothesis is that any pathway intermediate can incorporate a chance misfolding error that blocks folding and must be reversed for productive folding to continue. Different fractions of the protein population will then block at different steps, populate different intermediates, and fold at different rates, giving the appearance of multiple unrelated pathways. A test of the hypothesis matches the two models against extensive kinetic folding results for hen lysozyme which have been widely cited in support of independent parallel pathways. The PPOE model succeeds with fewer fitting constants. The fitted PPOE reaction scheme leads to known folding behavior, whereas the IUP properties are contradicted by experiment. The appearance of a conflict with multipath theoretical models seems to be due to their different focus, namely on multitrack microscopic behavior versus cooperative macroscopic behavior. The integration of three well-documented principles in the PPOE model (cooperative foldons, sequential stabilization, optional errors) provides a unifying explanation for how proteins fold and why they fold in that way.
Collapse
Affiliation(s)
- Mallela M G Krishna
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6059, USA.
| | | |
Collapse
|
58
|
Watters AL, Deka P, Corrent C, Callender D, Varani G, Sosnick T, Baker D. The Highly Cooperative Folding of Small Naturally Occurring Proteins Is Likely the Result of Natural Selection. Cell 2007; 128:613-24. [PMID: 17289578 DOI: 10.1016/j.cell.2006.12.042] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/17/2006] [Accepted: 12/28/2006] [Indexed: 11/23/2022]
Abstract
To illuminate the evolutionary pressure acting on the folding free energy landscapes of naturally occurring proteins, we have systematically characterized the folding free energy landscape of Top7, a computationally designed protein lacking an evolutionary history. Stopped-flow kinetics, circular dichroism, and NMR experiments reveal that there are at least three distinct phases in the folding of Top7, that a nonnative conformation is stable at equilibrium, and that multiple fragments of Top7 are stable in isolation. These results indicate that the folding of Top7 is significantly less cooperative than the folding of similarly sized naturally occurring proteins, suggesting that the cooperative folding and smooth free energy landscapes observed for small naturally occurring proteins are not general properties of polypeptide chains that fold to unique stable structures but are instead a product of natural selection.
Collapse
Affiliation(s)
- Alexander L Watters
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Gianni S, Geierhaas CD, Calosci N, Jemth P, Vuister GW, Travaglini-Allocatelli C, Vendruscolo M, Brunori M. A PDZ domain recapitulates a unifying mechanism for protein folding. Proc Natl Acad Sci U S A 2006; 104:128-33. [PMID: 17179214 PMCID: PMC1765422 DOI: 10.1073/pnas.0602770104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A unifying view has been recently proposed according to which the classical diffusion-collision and nucleation-condensation models may represent two extreme manifestations of an underlying common mechanism for the folding of small globular proteins. We report here the characterization of the folding process of the PDZ domain, a protein that recapitulates the three canonical steps involved in this unifying mechanism, namely: (i) the early formation of a weak nucleus that determines the native-like topology of a large portion of the structure, (ii) a global collapse of the entire polypeptide chain, and (iii) the consolidation of the remaining partially structured regions to achieve the native state conformation. These steps, which are clearly detectable in the PDZ domain investigated here, may be difficult to distinguish experimentally in other proteins, which would thus appear to follow one of the two limiting mechanisms. The analysis of the (un)folding kinetics for other three-state proteins (when available) appears consistent with the predictions ensuing from this unifying mechanism, thus providing a powerful validation of its general nature.
Collapse
Affiliation(s)
- Stefano Gianni
- *Istituto Pasteur-Fondazione Cenci Bolognetti e Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
| | - Christian D. Geierhaas
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Nicoletta Calosci
- *Istituto Pasteur-Fondazione Cenci Bolognetti e Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden; and
| | - Geerten W. Vuister
- Department of Biophysical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Carlo Travaglini-Allocatelli
- *Istituto Pasteur-Fondazione Cenci Bolognetti e Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
| | - Michele Vendruscolo
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- To whom correspondence may be addressed. E-mail:
or
| | - Maurizio Brunori
- *Istituto Pasteur-Fondazione Cenci Bolognetti e Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche “A. Rossi Fanelli,” Università di Roma “La Sapienza,” Piazzale A. Moro 5, 00185 Rome, Italy
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
60
|
Kato H, Vu N, Feng H, Zhou Z, Bai Y. The folding pathway of T4 lysozyme: an on-pathway hidden folding intermediate. J Mol Biol 2006; 365:881-91. [PMID: 17097105 PMCID: PMC2494531 DOI: 10.1016/j.jmb.2006.10.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 10/10/2006] [Accepted: 10/16/2006] [Indexed: 11/15/2022]
Abstract
T4 lysozyme has two easily distinguishable but energetically coupled domains: the N and C-terminal domains. In earlier studies, an amide hydrogen/deuterium exchange pulse-labeling experiment detected a stable submillisecond intermediate that accumulates before the rate-limiting transition state. It involves the formation of structures in both the N and C-terminal regions. However, a native-state hydrogen exchange experiment subsequently detected an equilibrium intermediate that only involves the formation of the C-terminal domain. Here, using stopped-flow circular dichroism and fluorescence, amide hydrogen exchange-folding competition, and protein engineering methods, we re-examined the folding pathway of T4-lysozyme. We found no evidence for the existence of a stable folding intermediate before the rate-limiting transition state at neutral pH. In addition, using native-state hydrogen exchange-directed protein engineering, we created a mimic of the equilibrium intermediate. We found that the intermediate mimic folds with the same rate as the wild-type protein, suggesting that the equilibrium intermediate is an on-pathway intermediate that exists after the rate-limiting transition state.
Collapse
Affiliation(s)
| | | | | | | | - Yawen Bai
- *corresponding author E-mail: , Tel: 301-594-2375, Fax: 301-402-3095
| |
Collapse
|
61
|
Liang X, Lee GI, Van Doren SR. Partially unfolded forms and non-two-state folding of a beta-sandwich: FHA domain from Arabidopsis receptor kinase-associated protein phosphatase. J Mol Biol 2006; 364:225-40. [PMID: 17007879 PMCID: PMC2020856 DOI: 10.1016/j.jmb.2006.08.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Accepted: 08/30/2006] [Indexed: 11/21/2022]
Abstract
FHA domains adopt a beta-sandwich fold with 11 strands. The first evidence of partially unfolded forms of a beta-sandwich is derived from native-state hydrogen exchange (NHX) of the forkhead-associated (FHA) domain from kinase-associated protein phosphatase from Arabidopsis. The folding kinetics of this FHA domain indicate that EX2 behavior prevails at pH 6.3. In the chevron plot, rollover in the folding arm and bends in the unfolding arm suggest folding intermediates. NHX of this FHA domain suggests a core of six most stable beta-strands and two loops, characterized by rare global unfolding events. Flanking this stable core are beta-strands and recognition loops with less stability, termed subglobal motifs. These suggest partially unfolded forms (near-native intermediates) with two levels of stability. The spatial separation of the subglobal motifs on the flanks suggests possible parallelism in their folding as additional beta-strands align with the stable core of six strands. Intermediates may contribute to differences in stabilities and m-values suggested by NHX or kinetics relative to chemical denaturation. Residual structure in the unfolded regime is suggested by superprotection of beta-strand 6 and by GdmCl-dependence of adjustments in amide NMR spectra and residual optical signal. The global folding stability depends strongly on pH, with at least 3 kcal/mol more stability at pH 7.3 than at pH 6.3. This FHA domain is hypothesized to fold progressively with initial hydrophobic collapse of its stable six-stranded core followed by addition of less stable flanking beta-strands and ordering of recognition loops.
Collapse
Affiliation(s)
| | | | - Steven R. Van Doren
- *To whom correspondence should be addressed. E-mail: ., Phone: 1 (573) 882-5113, FAX: 1 (573) 884-4812
| |
Collapse
|
62
|
Jang DS, Lee HJ, Lee B, Hong BH, Cha HJ, Yoon J, Lim K, Yoon YJ, Kim J, Ree M, Lee HC, Choi KY. Detection of an intermediate during the unfolding process of the dimeric ketosteroid isomerase. FEBS Lett 2006; 580:4166-71. [PMID: 16828747 DOI: 10.1016/j.febslet.2006.06.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 06/15/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Failure to detect the intermediate in spite of its existence often leads to the conclusion that two-state transition in the unfolding process of the protein can be justified. In contrast to the previous equilibrium unfolding experiment fitted to a two-state model by circular dichroism and fluorescence spectroscopies, an equilibrium unfolding intermediate of a dimeric ketosteroid isomerase (KSI) could be detected by small angle X-ray scattering (SAXS) and analytical ultracentrifugation. The sizes of KSI were determined to be 18.7A in 0M urea, 17.3A in 5.2M urea, and 25.1A in 7M urea by SAXS. The size of KSI in 5.2M urea was significantly decreased compared with those in 0M and 7M urea, suggesting the existence of a compact intermediate. Sedimentation velocity as obtained by ultracentrifugation confirmed that KSI in 5.2M urea is distinctly different from native and fully-unfolded forms. The sizes measured by pulse field gradient nuclear magnetic resonance (NMR) spectroscopy were consistent with those obtained by SAXS. Discrepancy of equilibrium unfolding studies between size measurement methods and optical spectroscopies might be due to the failure in detecting the intermediate by optical spectroscopic methods. Further characterization of the intermediate using (1)H NMR spectroscopy and Kratky plot supported the existence of a partially-folded form of KSI which is distinct from those of native and fully-unfolded KSIs. Taken together, our results suggest that the formation of a compact intermediate should precede the association of monomers prior to the dimerization process during the folding of KSI.
Collapse
Affiliation(s)
- Do Soo Jang
- National Research Laboratory of Protein Folding and Engineering, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Affiliation(s)
- Heinrich Roder
- Basic Science Division, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, Pennsylvania 19111, USA.
| | | | | |
Collapse
|
64
|
Abstract
For the past twenty years, the small, 76-residue protein ubiquitin has been used as a model system to study protein structure, stability, folding and dynamics. In this time, ubiquitin has become a paradigm for both the experimental and computational folding communities. The folding energy landscape is now uniquely characterised with a plethora of information available on not only the native and denatured states, but partially structured states, alternatively folded states and locally unfolded states, in addition to the transition state ensemble. This Perspective focuses on the experimental characterisation of ubiquitin using a comprehensive range of biophysical techniques.
Collapse
Affiliation(s)
- Sophie E Jackson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW.
| |
Collapse
|
65
|
Borgia A, Bonivento D, Travaglini-Allocatelli C, Di Matteo A, Brunori M. Unveiling a hidden folding intermediate in c-type cytochromes by protein engineering. J Biol Chem 2006; 281:9331-6. [PMID: 16452476 DOI: 10.1074/jbc.m512127200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several investigators have highlighted a correlation between the basic features of the folding process of a protein and its topology, which dictates the folding pathway. Within this conceptual framework we proposed that different members of the cytochrome c (cyt c) family share the same folding mechanism, involving a consensus partially structured state. Pseudomonas aeruginosa cyt c(551) (Pa cyt c(551)) folds via an apparent two-state mechanism through a high energy intermediate. Here we present kinetic evidence demonstrating that it is possible to switch its folding mechanism from two to three state, stabilizing the high energy intermediate by rational mutagenesis. Characterization of the folding kinetics of one single-site mutant of the Pa cyt c(551) (Phe(7) to Ala) indeed reveals an additional refolding phase and a fast unfolding process which are explained by the accumulation of a partially folded species. Further kinetic analysis highlights the presence of two parallel processes both leading to the native state, suggesting that the above mentioned species is a non obligatory on-pathway intermediate. Determination of the crystallographic structure of F7A shows the presence of an extended internal cavity, which hosts three "bound" water molecules and a H-bond in the N-terminal helix, which is shorter than in the wild type protein. These two features allow us to propose a detailed structural interpretation for the stabilization of the native and especially the intermediate states induced by a single crucial mutation. These results show how protein engineering, x-ray crystallography and state-of-the-art kinetics concur to unveil a folding intermediate and the structural determinants of its stability.
Collapse
Affiliation(s)
- Alessandro Borgia
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche, Università di Roma "La Sapienza," P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
66
|
Abstract
The free energy per monomer of a protein aggregate varies with the number of participating monomers n. The change of this free energy with aggregate size, DeltaDeltaG(n), is difficult to determine by sedimentation or concentration studies. We introduce a kinetic approach to quantitate the free energy of aggregates in the presence of tethers. By linking the protein U1A into dimers and trimers, a high effective concentration of the monomers is achieved, together with exact size control of the aggregates. We found that the free energy of the aggregate relative to the native monomer reached a maximum for n = 2, and decreased by DeltaDeltaG(2) = -3.1 kT between dimer and trimer.
Collapse
Affiliation(s)
- Wei Yuan Yang
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Champaign, 61801, USA
| | | |
Collapse
|
67
|
|
68
|
Gianni S, Calosci N, Aelen JMA, Vuister GW, Brunori M, Travaglini-Allocatelli C. Kinetic folding mechanism of PDZ2 from PTP-BL. Protein Eng Des Sel 2005; 18:389-95. [PMID: 16043447 DOI: 10.1093/protein/gzi047] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PDZ domains represent a large family of protein-interaction modules associated with a variety of unrelated proteins with different functions. We report a complete characterization of the kinetic folding mechanism of a fluorescent variant of PDZ2 from PTP-BL, investigated under a variety of different experimental conditions. For this purpose, we engineered a fluorescent variant of this protein Y43W (called pseudo-wild-type, pWT43). The results suggest the presence of a high-energy intermediate in the folding of PDZ2, as revealed by a pronounced non-linear dependence of the unfolding rate constant on denaturant concentration. Such an intermediate may or may not be detectable depending on the experimental conditions, giving rise to apparent two-state folding under stabilizing conditions (e.g. in the presence of sodium sulfate). Interestingly, even under these conditions, three-state folding can be restored by selectively destabilizing the native-like rate-limiting barrier by one specific mutation (V44A). Finally, we show that data taken on pWT43 under different experimental conditions (e.g. different pH values from 2.1 to 8.0 or in the presence of a stabilizing salt) and also data on a site-directed conservative mutant can be rationalized in terms of a simple reaction scheme involving a single set of intermediates and transition states.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti e Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università di Roma La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
69
|
Travaglini-Allocatelli C, Gianni S, Dubey VK, Borgia A, Di Matteo A, Bonivento D, Cutruzzolà F, Bren KL, Brunori M. An obligatory intermediate in the folding pathway of cytochrome c552 from Hydrogenobacter thermophilus. J Biol Chem 2005; 280:25729-34. [PMID: 15883159 DOI: 10.1074/jbc.m502628200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The folding mechanism of many proteins involves the population of partially organized structures en route to the native state. Identification and characterization of these intermediates is particularly difficult, as they are often only transiently populated and may play different mechanistic roles, being either on-pathway productive species or off-pathway kinetic traps. Following different spectroscopic probes, and employing state-of-the-art kinetic analysis, we present evidence that the folding mechanism of the thermostable cytochrome c552 from Hydrogenobacter thermophilus does involve the presence of an elusive, yet compact, on-pathway intermediate. Characterization of the folding mechanism of this cytochrome c is particularly interesting for the purpose of comparative folding studies, because H. thermophilus cytochrome c552 shares high sequence identity and structural homology with its homologue from the mesophilic bacterium Pseudomonas aeruginosa cytochrome c551, which refolds through a broad energy barrier without the accumulation of intermediates. Analysis of the folding kinetics and correlation with the three-dimensional structure add new evidence for the validity of a consensus folding mechanism in the cytochrome c family.
Collapse
Affiliation(s)
- Carlo Travaglini-Allocatelli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche, Università di Roma La Sapienza, P. le A. Moro 5, 00185, Roma Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Riechmann L, Lavenir I, de Bono S, Winter G. Folding and Stability of a Primitive Protein. J Mol Biol 2005; 348:1261-72. [PMID: 15854659 DOI: 10.1016/j.jmb.2005.03.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/26/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
We have previously attempted to simulate domain creation in early protein evolution by recombining polypeptide segments from non-homologous proteins, and we have described the structure of one such de novo protein, 1b11, a segment-swapped tetramer with novel architecture. Here, we have analyzed the thermodynamic stability and folding kinetics of the 1b11 tetramer and its monomeric and dimeric intermediates, and of 1b11 mutants with changes at the domain interface. Denatured 1b11 polypeptides fold into transient, folded monomers with marginal stability (DeltaG<1kcalmol(-1)) which convert rapidly ( approximately 6x10(4)M(-1)s(-1)) into dimers (DeltaG=9.8kcal/mol) and then more slowly ( approximately 3M(-1)s(-1)) into tetramers (DeltaG=28kcalmol(-1)). Segment swapping takes place during dimerization, as suggested by mass spectroscopic analysis of covalently linked peptides derived from proteolysis of a disulfide-linked dimer. Our results confirm that segment swapping and associated oligomerization are both powerful ways of stabilizing proteins, and we suggest that this may have been a feature of early protein evolution.
Collapse
Affiliation(s)
- Lutz Riechmann
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | |
Collapse
|
71
|
Bofill R, Simpson ER, Platt GW, Crespo MD, Searle MS. Extending the folding nucleus of ubiquitin with an independently folding beta-hairpin finger: hurdles to rapid folding arising from the stabilisation of local interactions. J Mol Biol 2005; 349:205-21. [PMID: 15876378 DOI: 10.1016/j.jmb.2005.03.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/17/2005] [Accepted: 03/18/2005] [Indexed: 11/24/2022]
Abstract
The N-terminal beta-hairpin sequence of ubiquitin has been implicated as a folding nucleation site. To extend and stabilise the ubiquitin folding nucleus, we have inserted an autonomously folding 14-residue peptide sequence beta4 which in isolation forms a highly populated beta-hairpin (>70%) stabilised by local interactions. NMR structural analysis of the ubiquitin mutant (Ubeta4) shows that the hairpin finger is fully structured and stabilises ubiquitin by approximately 8kJmol(-1). Protein engineering and kinetic (phi(F)-value) analysis of a series of Ubeta4 mutants shows that the hairpin extension of Ubeta4 is also significantly populated in the transition state (phi(F)-values >0.7) and has the effect of templating the formation of native contacts in the folding nucleus of ubiquitin. However, at low denaturant concentrations the chevron plot of Ubeta4 shows a small deviation from linearity (roll-over effect), indicative of the population of a compact collapsed state, which appears to arise from over-stabilisation of local interactions. Destabilising mutations within the native hairpin sequence and within the engineered hairpin extension, but not elsewhere, eliminate this non-linearity and restore apparent two-state behaviour. The pitfall to stabilising local interactions is to present hurdles to the rapid and efficient folding of small proteins down a smooth folding funnel by trapping partially folded or misfolded states that must unfold or rearrange before refolding.
Collapse
Affiliation(s)
- Roger Bofill
- Centre for Biomolecular Sciences, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
72
|
Feng H, Zhou Z, Bai Y. A protein folding pathway with multiple folding intermediates at atomic resolution. Proc Natl Acad Sci U S A 2005; 102:5026-31. [PMID: 15793003 PMCID: PMC555603 DOI: 10.1073/pnas.0501372102] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Indexed: 11/18/2022] Open
Abstract
Using native-state hydrogen-exchange-directed protein engineering and multidimensional NMR, we determined the high-resolution structure (rms deviation, 1.1 angstroms) for an intermediate of the four-helix bundle protein: Rd-apocytochrome b562. The intermediate has the N-terminal helix and a part of the C-terminal helix unfolded. In earlier studies, we also solved the structures of two other folding intermediates for the same protein: one with the N-terminal helix alone unfolded and the other with a reorganized hydrophobic core. Together, these structures provide a description of a protein folding pathway with multiple intermediates at atomic resolution. The two general features for the intermediates are (i) native-like backbone topology and (ii) nonnative side-chain interactions. These results have implications for important issues in protein folding studies, including large-scale conformation search, -value analysis, and computer simulations.
Collapse
Affiliation(s)
- Hanqiao Feng
- Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Building 37, Room 6114E, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
73
|
Sandberg A, Leckner J, Karlsson BG. Apo-azurin folds via an intermediate that resembles the molten-globule. Protein Sci 2005; 13:2628-38. [PMID: 15388858 PMCID: PMC2286560 DOI: 10.1110/ps.04848204] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The folding of Pseudomonas aeruginosa apo-azurin was investigated with the intent of identifying putative intermediates. Two apo-mutants were constructed by replacing the main metal-binding ligand C112 with a serine (C112S) and an alanine (C112A). The guanidinium-induced unfolding free energies (DeltaG(U-N)(H2O)) of the C112S and C112A mutants were measured to 36.8 +/- 1 kJ mole(-1) and 26.1 +/- 1 kJ mole(-1), respectively, and the m-value of the transition to 23.5 +/- 0.7 kJ mole(-1) M(-1). The difference in folding free energy (DeltaDeltaG(U-N)(H2O)) is largely attributed to the intramolecular hydrogen bonding properties of the serine Ogamma in the C112S mutant, which is lacking in the C112A structure. Furthermore, only the unfolding rates differ between the two mutants, thus pointing to the energy of the native state as the source of the observed Delta DeltaG(U-N)(H2O). This also indicates that the formation of the hydrogen bonds present in C112S but absent in C112A is a late event in the folding of the apo-protein, thus suggesting that formation of the metal-binding site occurs after the rate-limiting formation of the transition state. In both mutants we also noted a burst-phase intermediate. Because this intermediate was capable of binding 1-anilinonaphtalene-8-sulfonate (ANS), as were an acid-induced species at pH 2.6, we ascribe it molten globule-like status. However, despite the presence of an intermediate, the folding of apo-azurin C112S is well approximated by a two-state kinetic mechanism.
Collapse
Affiliation(s)
- Anders Sandberg
- Department of Chemistry, Göteborg University, Göteborg, Sweden
| | | | | |
Collapse
|
74
|
Wolynes PG. Energy landscapes and solved protein-folding problems. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2005; 363:453-467. [PMID: 15664893 DOI: 10.1098/rsta.2004.1502] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Energy-landscape theory has led to much progress in protein folding kinetics, protein structure prediction and protein design. Funnel landscapes describe protein folding and binding and explain how protein topology determines kinetics. Landscape-optimized energy functions based on bioinformatic input have been used to correctly predict low-resolution protein structures and also to design novel proteins automatically.
Collapse
Affiliation(s)
- Peter G Wolynes
- Department of Chemistry and Biochemistry, Center for Theoretical Biological Physics, University of California, San Diego, 6202 Urey Hall 0371, 9500 Gilman Drive, La Jolla, California, USA.
| |
Collapse
|
75
|
Maxwell KL, Wildes D, Zarrine-Afsar A, De Los Rios MA, Brown AG, Friel CT, Hedberg L, Horng JC, Bona D, Miller EJ, Vallée-Bélisle A, Main ERG, Bemporad F, Qiu L, Teilum K, Vu ND, Edwards AM, Ruczinski I, Poulsen FM, Kragelund BB, Michnick SW, Chiti F, Bai Y, Hagen SJ, Serrano L, Oliveberg M, Raleigh DP, Wittung-Stafshede P, Radford SE, Jackson SE, Sosnick TR, Marqusee S, Davidson AR, Plaxco KW. Protein folding: defining a "standard" set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci 2005; 14:602-16. [PMID: 15689503 PMCID: PMC2279278 DOI: 10.1110/ps.041205405] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent years have seen the publication of both empirical and theoretical relationships predicting the rates with which proteins fold. Our ability to test and refine these relationships has been limited, however, by a variety of difficulties associated with the comparison of folding and unfolding rates, thermodynamics, and structure across diverse sets of proteins. These difficulties include the wide, potentially confounding range of experimental conditions and methods employed to date and the difficulty of obtaining correct and complete sequence and structural details for the characterized constructs. The lack of a single approach to data analysis and error estimation, or even of a common set of units and reporting standards, further hinders comparative studies of folding. In an effort to overcome these problems, we define here a "consensus" set of experimental conditions (25 degrees C at pH 7.0, 50 mM buffer), data analysis methods, and data reporting standards that we hope will provide a benchmark for experimental studies. We take the first step in this initiative by describing the folding kinetics of 30 apparently two-state proteins or protein domains under the consensus conditions. The goal of our efforts is to set uniform standards for the experimental community and to initiate an accumulating, self-consistent data set that will aid ongoing efforts to understand the folding process.
Collapse
Affiliation(s)
- Karen L Maxwell
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Protein misfolding: optional barriers, misfolded intermediates, and pathway heterogeneity. J Mol Biol 2004; 343:1095-109. [PMID: 15476824 DOI: 10.1016/j.jmb.2004.08.098] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/20/2004] [Accepted: 08/26/2004] [Indexed: 10/26/2022]
Abstract
To investigate the character and role of misfolded intermediates in protein folding, a recombinant cytochrome c without the normally blocking histidine to heme misligation was studied. Folding remains heterogeneous as in the wild-type protein. Half of the population folds relatively rapidly to the native state in a two-state manner. The other half collapses (fluorescence quenching) and forms a full complement of helix (CD) with the same rate and denaturant dependence as the fast folding fraction but then is blocked and reaches the native structure (695nm absorbance) much more slowly. The factors that transiently block folding are not intrinsic to the folding process but depend on ambient conditions, including protein aggregation (f(concentration)), N terminus to heme misligation (f(pH)), and proline mis-isomerization (f(U state equilibration time)). The misfolded intermediate populated by the slowly folding fraction was characterized by hydrogen exchange pulse labeling. It is very advanced with all of the native-like elements fairly stably formed but not the final Met80-S to heme iron ligation, similar to a previously studied molten globule form induced by low pH. To complete final native state acquisition, some small back unfolding is required (error repair) but the misfolded intermediate does not revisit the U state before proceeding to N. These properties show that the intermediate is a normal on-pathway form that contains, in addition, adventitious misfolding errors that transiently block its forward progress. Related observations for other proteins (partially misfolded intermediates, pathway heterogeneity) might be similarly explained in terms of the optional insertion of error-dependent barriers into a classical folding pathway.
Collapse
|
77
|
Lindberg MJ, Normark J, Holmgren A, Oliveberg M. Folding of human superoxide dismutase: disulfide reduction prevents dimerization and produces marginally stable monomers. Proc Natl Acad Sci U S A 2004; 101:15893-8. [PMID: 15522970 PMCID: PMC528748 DOI: 10.1073/pnas.0403979101] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Indexed: 01/27/2023] Open
Abstract
The molecular mechanism by which the homodimeric enzyme Cu/Zn superoxide dismutase (SOD) causes neural damage in amytrophic lateral sclerosis is yet poorly understood. A striking, as well as an unusual, feature of SOD is that it maintains intrasubunit disulfide bonds in the reducing environment of the cytosol. Here, we investigate the role of these disulfide bonds in folding and assembly of the SOD apo protein (apoSOD) homodimer through extensive protein engineering. The results show that apoSOD folds in a simple three-state process by means of two kinetic barriers: 2D<==>2M<==>M(2). The early predominant barrier represents folding of the monomers (M), and the late barrier the assembly of the dimer (M(2)). Unique for this mechanism is a dependence of protein concentration on the unfolding rate constant under physiological conditions, which disappears above 6 M Urea where the transition state for unfolding shifts to first-order dissociation of the dimer in accordance with Hammond-postulate behavior. Although reduction of the intrasubunit disulfide bond C57-C146 is not critical for folding of the apoSOD monomer, it has a pronounced effect on its stability and abolishes subsequent dimerization. Thus, impaired ability to form, or retain, the C57-C146 bond in vivo is predicted to increase the cellular load of marginally stable apoSOD monomers, which may have implications for the amytrophic lateral sclerosis neuropathology.
Collapse
|
78
|
Lin Z, Rye HS. Expansion and compression of a protein folding intermediate by GroEL. Mol Cell 2004; 16:23-34. [PMID: 15469819 PMCID: PMC3759401 DOI: 10.1016/j.molcel.2004.09.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 07/20/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
The GroEL-GroES chaperonin system is required for the assisted folding of many essential proteins. The precise nature of this assistance remains unclear, however. Here we show that denatured RuBisCO from Rhodospirillum rubrum populates a stable, nonaggregating, and kinetically trapped monomeric state at low temperature. Productive folding of this nonnative intermediate is fully dependent on GroEL, GroES, and ATP. Reactivation of the trapped RuBisCO monomer proceeds through a series of GroEL-induced structural rearrangements, as judged by resonance energy transfer measurements between the amino- and carboxy-terminal domains of RuBisCO. A general mechanism used by GroEL to push large, recalcitrant proteins like RuBisCO toward their native states thus appears to involve two steps: partial unfolding or rearrangement of a nonnative protein upon capture by a GroEL ring, followed by spatial constriction within the GroEL-GroES cavity that favors or enforces compact, folding-competent intermediate states.
Collapse
|
79
|
Crespo MD, Platt GW, Bofill R, Searle MS. Context-dependent effects of proline residues on the stability and folding pathway of ubiquitin. ACTA ACUST UNITED AC 2004; 271:4474-84. [PMID: 15560788 DOI: 10.1111/j.1432-1033.2004.04392.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substitution of trans-proline at three positions in ubiquitin (residues 19, 37 and 38) produces significant context-dependent effects on protein stability (both stabilizing and destabilizing) that reflect changes to a combination of parameters including backbone flexibility, hydrophobic interactions, solvent accessibility to polar groups and intrinsic backbone conformational preferences. Kinetic analysis of the wild-type yeast protein reveals a predominant fast-folding phase which conforms to an apparent two-state folding model. Temperature-dependent studies of the refolding rate reveal thermodynamic details of the nature of the transition state for folding consistent with hydrophobic collapse providing the overall driving force. Brønsted analysis of the refolding and unfolding rates of a family of mutants with a variety of side chain substitutions for P37 and P38 reveals that the two prolines, which are located in a surface loop adjacent to the C terminus of the main alpha-helix (residues 24-33), are not significantly structured in the transition state for folding and appear to be consolidated into the native structure only late in the folding process. We draw a similar conclusion regarding position 19 in the loop connecting the N-terminal beta-hairpin to the main alpha-helix. The proline residues of ubiquitin are passive spectators in the folding process, but influence protein stability in a variety of ways.
Collapse
Affiliation(s)
- Maria D Crespo
- School of Chemistry, Centre for Biomolecular Sciences, University Park, Nottingham, UK
| | | | | | | |
Collapse
|
80
|
Leonhard K, Prausnitz JM, Radke CJ. Solvent-amino acid interaction energies in three-dimensional-lattice Monte Carlo simulations of a model 27-mer protein: Folding thermodynamics and kinetics. Protein Sci 2004; 13:358-69. [PMID: 14739322 PMCID: PMC2286699 DOI: 10.1110/ps.03198204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Amino acid residue-solvent interactions are required for lattice Monte Carlo simulations of model proteins in water. In this study, we propose an interaction-energy scale that is based on the interaction scale by Miyazawa and Jernigan. It permits systematic variation of the amino acid-solvent interactions by introducing a contrast parameter for the hydrophobicity, C(s), and a mean attraction parameter for the amino acids, omega. Changes in the interaction energies strongly affect many protein properties. We present an optimized energy parameter set for best representing realistic behavior typical for many proteins (fast folding and high cooperativity for single chains). Our optimal parameters feature a much weaker hydrophobicity contrast and mean attraction than does the original interaction scale. The proposed interaction scale is designed for calculating the behavior of proteins in bulk and at interfaces as a function of solvent characteristics, as well as protein size and sequence.
Collapse
Affiliation(s)
- Kai Leonhard
- Department of Chemical Engineering, University of California, Berkeley, CA 94720-1462, USA
| | | | | |
Collapse
|
81
|
Spence GR, Capaldi AP, Radford SE. Trapping the on-pathway folding intermediate of Im7 at equilibrium. J Mol Biol 2004; 341:215-26. [PMID: 15312774 DOI: 10.1016/j.jmb.2004.05.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 05/20/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
The four-helical protein Im7 folds via a rapidly formed on-pathway intermediate (k(UI)=3000 s(-1) at pH 7.0, 10 degrees C) that contains three (helices I, II and IV) of the four native alpha-helices. The relatively slow (k(IN)=300 s(-1)) conversion of this intermediate into the native structure is driven by the folding and docking of the six residue helix III onto the developing hydrophobic core. Here, we describe the structural properties of four Im7* variants designed to trap the protein in the intermediate state by disrupting the stabilising interactions formed between helix III and the rest of the protein structure. In two of these variants (I54A and L53AI54A), hydrophobic residues within helix III have been mutated to alanine, whilst in the other two mutants the sequence encompassing the native helix III was replaced by a glycine linker, three (H3G3) or six (H3G6) residues in length. All four variants were shown to be monomeric, as judged by analytical ultracentrifugation, and highly helical as measured by far-UV CD. In addition, all the variants denature co-operatively and have a stability (DeltaG(UF)) and buried hydrophobic surface area (M(UF)) similar to those of the on-pathway kinetic intermediate. Structural characterisation of these variants using 1-anilino-8-napthalene sulphonic acid (ANS) binding, near-UV CD and 1D (1)H NMR demonstrate further that the trapped intermediate ensemble is highly structured with little exposed hydrophobic surface area. Interestingly, however, the structural properties of the variants I54A and L53AI54A differ in detail from those of H3G3 and H3G6. In particular, the single tryptophan residue, located near the end of helix IV, and distant from helix III, is in a distinct environment in the two sets of mutants as judged by fluorescence, near-UV CD and the sensitivity of tryptophan fluorescence to iodide quenching. Overall, the results confirm previous kinetic analysis that demonstrated the hierarchical folding of Im7 via an on-pathway intermediate, and show that this species is a highly helical ensemble with a well-formed hydrophobic core. By contrast with the native state, however, the intermediate ensemble is flexible enough to change in response to mutation, its structural properties being tailored by residues in the sequence encompassing the native helix III.
Collapse
Affiliation(s)
- Graham R Spence
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
82
|
Engman KC, Sandberg A, Leckner J, Karlsson BG. Probing the influence on folding behavior of structurally conserved core residues in P. aeruginosa apo-azurin. Protein Sci 2004; 13:2706-15. [PMID: 15340166 PMCID: PMC2286540 DOI: 10.1110/ps.04849004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effects on folding kinetics and equilibrium stability of core mutations in the apo-mutant C112S of azurin from Pseudomonas aeruginosa were studied. A number of conserved residues within the cupredoxin family were recognized by sequential alignment as constituting a common hydrophobic core: I7, F15, L33, W48, F110, L50, V95, and V31. Of these, I7, V31, L33, and L50 were mutated for the purpose of obtaining information on the transition state and a potential folding nucleus. In addition, residue V5 in the immediate vicinity of the common core, as well as T52, separate from the core, were mutated as controls. All mutants exhibited a nonlinear dependence of activation free energy of folding on denaturant concentration, although the refolding kinetics of the V31A/C112S mutant indicated that the V31A mutation destabilizes the transition state enough to allow folding via a parallel transition state ensemble. Phi-values could be calculated for three of the six mutants, V31A/C112S, L33A/C112S, and L50A/C112S, and the fractional values of 0.63, 0.33, and 0.50 (respectively) obtained at 0.5 M GdmCl suggest that these residues are important for stabilizing the transition state. Furthermore, a linear dependence of ln k(obs)(H2O) on DeltaG(U-N)(H2O) of the core mutations and the putative involvement of ground-state effects suggest the presence of native-like residual interactions in the denatured state that bias this ensemble toward a folding-competent state.
Collapse
Affiliation(s)
- K Cecilia Engman
- Department of Chemistry, Göteborg University, Box 465, SE 405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
83
|
Went HM, Benitez-Cardoza CG, Jackson SE. Is an intermediate state populated on the folding pathway of ubiquitin? FEBS Lett 2004; 567:333-8. [PMID: 15178347 DOI: 10.1016/j.febslet.2004.04.089] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 04/16/2004] [Accepted: 04/16/2004] [Indexed: 11/23/2022]
Abstract
In the last couple of years, there has been increasing debate as to the presence and role of intermediate states on the folding pathways of several small proteins, including the 76-residue protein ubiquitin. Here, we present detailed kinetic studies to establish whether an intermediate state is ever populated during the folding of this protein. We show that the differences observed in previous studies are attributable to the transient aggregation of the protein during folding. Using a highly soluble construct of ubiquitin, which does not aggregate during folding, we establish the conditions in which an intermediate state is sufficiently stable to be observed by kinetic measurements.
Collapse
Affiliation(s)
- Heather M Went
- Chemistry Department, Centre for Protein Engineering, Lensfield Road, Cambridge CB2 1EW, UK
| | | | | |
Collapse
|
84
|
Gu Z, Zhu X, Ni S, Su Z, Zhou HM. Conformational changes of lysozyme refolding intermediates and implications for aggregation and renaturation. Int J Biochem Cell Biol 2004; 36:795-805. [PMID: 15006632 DOI: 10.1016/j.biocel.2003.08.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 08/06/2003] [Accepted: 08/12/2003] [Indexed: 11/26/2022]
Abstract
It is believed that denatured-reduced lysozyme rapidly forms aggregates during refolding process, which is often worked around by operating at low protein concentrations or in the presence of aggregation inhibitors. However, we found that low concentration buffer alone could efficiently suppress aggregation. Based on this finding, stable equilibrium intermediate states of denatured-reduced lysozyme containing eight free SH groups were obtained in the absence of redox reagents in buffer of low concentrations alone at neutral or mildly alkaline pH. Transition in the secondary structure of the intermediate from native-like to beta-sheet was observed by circular dichroism (CD) as conditions were varied. Dynamic light scattering and ANS-binding studies showed that the self-association accompanied the conformational change and the structure rich in beta-sheet was the intermediate state for aggregation, which could form either amyloid protofibril or amorphous aggregates under different conditions as detected by Electron Microscopy. Combining the results obtained from activity analysis, RP-HPLC and CD, we show that the activity recovery was closely related to the conformation of the refolding intermediate, and buffer of very low concentration (e.g. 10mM) alone could efficiently promote correct refolding by maintaining the native-like secondary structure of the intermediate state. This study reveals reasons for lysozyme aggregation and puts new insights into protein and inclusion body refolding.
Collapse
Affiliation(s)
- Zhenyu Gu
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
85
|
Gorski SA, Le Duff CS, Capaldi AP, Kalverda AP, Beddard GS, Moore GR, Radford SE. Equilibrium hydrogen exchange reveals extensive hydrogen bonded secondary structure in the on-pathway intermediate of Im7. J Mol Biol 2004; 337:183-93. [PMID: 15001361 DOI: 10.1016/j.jmb.2004.01.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 12/12/2003] [Accepted: 01/12/2004] [Indexed: 11/17/2022]
Abstract
The four-helical immunity protein Im7 folds through an on-pathway intermediate that has a specific, but partially misfolded, hydrophobic core. In order to gain further insight into the structure of this species, we have identified the backbone hydrogen bonds formed in the ensemble by measuring the amide exchange rates (under EX2 conditions) of the wild-type protein and a variant, I72V. In this mutant the intermediate is significantly destabilised relative to the unfolded state (deltadeltaG(ui) = 4.4 kJ/mol) but the native state is only slightly destabilised (deltadeltaG(nu) = 1.8 kJ/mol) at 10 degrees C in 2H2O, pH* 7.0 containing 0.4 M Na2SO4, consistent with the view that this residue forms significant non-native stabilising interactions in the intermediate state. Comparison of the hydrogen exchange rates of the two proteins, therefore, enables the state from which hydrogen exchange occurs to be identified. The data show that amides in helices I, II and IV in both proteins exchange slowly with a free energy similar to that associated with global unfolding, suggesting that these helices form highly protected hydrogen-bonded helical structure in the intermediate. By contrast, amides in helix III exchange rapidly in both proteins. Importantly, the rate of exchange of amides in helix III are slowed substantially in the Im7* variant, I72V, compared with the wild-type protein, whilst other amides exchange more rapidly in the mutant protein, in accord with the kinetics of folding/unfolding measured using chevron analysis. These data demonstrate, therefore, that local fluctuations do not dominate the exchange mechanism and confirm that helix III does not form stable secondary structure in the intermediate. By combining these results with previously obtained Phi-values, we show that the on-pathway folding intermediate of Im7 contains extensive, stable hydrogen-bonded structure in helices I, II and IV, and that this structure is stabilised by both native and non-native interactions involving amino acid side-chains in these helices.
Collapse
Affiliation(s)
- Stanislaw A Gorski
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
86
|
Apetri AC, Surewicz K, Surewicz WK. The Effect of Disease-associated Mutations on the Folding Pathway of Human Prion Protein. J Biol Chem 2004; 279:18008-14. [PMID: 14761942 DOI: 10.1074/jbc.m313581200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Propagation of transmissible spongiform encephalopathies is believed to involve the conversion of cellular prion protein, PrP(C), into a misfolded oligomeric form, PrP(Sc). An important step toward understanding the mechanism of this conversion is to elucidate the folding pathway(s) of the prion protein. We reported recently (Apetri, A. C., and Surewicz, W. K. (2002) J. Biol. Chem. 277, 44589-44592) that the folding of wild-type prion protein can best be described by a three-state sequential model involving a partially folded intermediate. Here we have performed kinetic stopped-flow studies for a number of recombinant prion protein variants carrying mutations associated with familial forms of prion disease. Analysis of kinetic data clearly demonstrates the presence of partially structured intermediates on the refolding pathway of each PrP variant studied. In each case, the partially folded state is at least one order of magnitude more populated than the fully unfolded state. The present study also reveals that, for the majority of PrP variants tested, mutations linked to familial prion diseases result in a pronounced increase in the thermodynamic stability, and thus the population, of the folding intermediate. These data strongly suggest that partially structured intermediates of PrP may play a crucial role in prion protein conversion, serving as direct precursors of the pathogenic PrP(Sc) isoform.
Collapse
Affiliation(s)
- Adrian C Apetri
- Department of Physiology and Biophysics and Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
87
|
Rousseau F, Schymkowitz JWH, Wilkinson HR, Itzhaki LS. Intermediates Control Domain Swapping during Folding of p13. J Biol Chem 2004; 279:8368-77. [PMID: 14662764 DOI: 10.1074/jbc.m310640200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 13-kDa protein p13(suc1) has two folded states, a monomer and a structurally similar domain-swapped dimer formed by exchange of a beta-strand. The refolding reaction of p13(suc1) is multiphasic, and in this paper we analyze the kinetics as a function of denaturant and protein concentration and compare the behavior of wild type and a set of mutants previously designed with dimerization propensities that span 9 orders of magnitude. We show that the folding reactions of wild type and all mutants produce the monomer predominantly despite their very different equilibrium behavior. However, the addition of low concentrations of denaturant in the refolding buffer leads to thermodynamic control of the folding reaction with products that correspond to the wild type and mutant equilibrium dimerization propensities. We present evidence that the kinetic control in the absence of urea arises because of the population of the folding intermediates. Intermediates are usually considered to be detrimental to folding because they slow down the reaction; however, our work shows that intermediates buffer the monomeric folding pathway against the effect of mutations that favor the nonfunctional, dimeric state at equilibrium.
Collapse
Affiliation(s)
- Frederic Rousseau
- Medical Research Council Centre for Protein Engineering, Cambridge University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | | | |
Collapse
|
88
|
Brunori M, Bigotti MG, Cutruzzolà F, Gianni S, Travaglini-Allocatelli C. Cytochrome c(551) as a model system for protein folding. Biophys Chem 2003; 100:409-19. [PMID: 12646380 DOI: 10.1016/s0301-4622(02)00295-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable progress was made over the last few years in understanding the mechanism of folding of cytochrome c(551), a small acidic hemeprotein from Pseudomonas aeruginosa. Comparison of our results with those obtained by others on horse heart cytochrome c allows to draw some general conclusions on the structural features that are common determinants in the folding of members of the cytochrome c family.
Collapse
Affiliation(s)
- Maurizio Brunori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Università di Roma La Sapienza, P. le A. Moro 5, 00185 Roma, Italy.
| | | | | | | | | |
Collapse
|
89
|
Baumketner A, Jewett A, Shea JE. Effects of confinement in chaperonin assisted protein folding: rate enhancement by decreasing the roughness of the folding energy landscape. J Mol Biol 2003; 332:701-13. [PMID: 12963377 DOI: 10.1016/s0022-2836(03)00929-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chaperonins, such as the GroE complex of the bacteria Escherichia coli, assist the folding of proteins under non-permissive folding conditions by providing a cavity in which the newly translated or translocated protein can be encapsulated. Whether the chaperonin cage plays a passive role in protecting the protein from aggregation, or an active role in accelerating folding rates, remains a matter of debate. Here, we investigate the role of confinement in chaperonin mediated folding through molecular dynamics simulations. We designed a substrate protein with an alpha/beta sandwich fold, a common structural motif found in GroE substrate proteins and confined it to a spherical hydrophilic cage which mimicked the interior of the GroEL/ES cavity. The thermodynamics and kinetics of folding were studied over a wide range of temperature and cage radii. Confinement was seen to significantly raise the collapse temperature, T(c), as a result of the associated entropy loss of the unfolded state. The folding temperature, T(f), on the other hand, remained unaffected by encapsulation, a consequence of the folding mechanism of this protein that involves an initial collapse to a compact misfolded state prior to rearranging to the native state. Folding rates were observed to be either accelerated or retarded compared to bulk folding rates, depending on the temperature of the simulation. Rate enhancements due to confinement were observed only at temperatures above the temperature T(m), which corresponds to the temperature at which the protein folds fastest. For this protein, T(m) lies above the folding temperature, T(f), implying that encapsulation alone will not lead to a rate enhancement under conditions where the native state is stable (T<T(f)). For confinement to positively impact folding rates under physiological conditions, it is hence necessary for the protein to exhibit a folding transition above the temperature at which it exhibits its fastest folding rate (T(m)<T(f)). We designed a protein with this property by reducing the energetic frustration in the original alpha/beta sandwich substrate protein. The modified protein exhibited a twofold acceleration in folding rates upon encapsulation. This rate enhancement is due to a mechanistic change in folding involving the elimination, upon encapsulation, of accessible local energy minima corresponding to structures with large radii of gyration. For this protein, confinement hence plays more than the role of a passive cage, but rather adopts an active role, accelerating folding rates by decreasing the roughness of the energy landscape of the protein.
Collapse
Affiliation(s)
- A Baumketner
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | |
Collapse
|
90
|
Gianni S, Travaglini-Allocatelli C, Cutruzzolà F, Brunori M, Shastry MCR, Roder H. Parallel pathways in cytochrome c(551) folding. J Mol Biol 2003; 330:1145-52. [PMID: 12860134 DOI: 10.1016/s0022-2836(03)00689-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The folding of cytochrome c(551) from Pseudomonas aeruginosa was previously thought to follow a simple sequential mechanism, consistent with the lack of histidine residues, other than the native His16 heme ligand, that can give rise to mis-coordinated species. However, further kinetic analysis reveals complexities indicative of a folding mechanism involving parallel pathways. Double-jump interrupted refolding experiments at low pH indicate that approximately 50% of the unfolded cytochrome c(551) population can reach the native state via a fast (10 ms) folding track, while the rest follows a slower folding path with populated intermediates. Stopped-flow experiments using absorbance at 695 nm to monitor refolding confirm the presence of a rapidly folding species containing the native methionine-iron bond while measurements on carboxymethylated cytochrome c(551) (which lacks the Met-Fe coordination bond) indicate that methionine ligation occurs late during folding along the fast folding track, which appears to be dominant at physiological pH. Continuous-flow measurements of tryptophan-heme energy transfer, using a capillary mixer with a dead time of about 60 micros, show evidence for a rapid chain collapse within 100 micros preceding the rate-limiting folding phase on the milliseconds time scale. A third process with a time constant in the 10-50 ms time range is consistent with a minor population of molecules folding along a parallel channel, as confirmed by quantitative kinetic modeling. These findings indicate the presence of two or more slowly inter-converting ensembles of denatured states that give rise to pH-dependent partitioning among fast and slow-folding pathways.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche e Istituto di Biologia e Patologia Molecolari del CNR, Università di Roma La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
91
|
Calloni G, Taddei N, Plaxco KW, Ramponi G, Stefani M, Chiti F. Comparison of the folding processes of distantly related proteins. Importance of hydrophobic content in folding. J Mol Biol 2003; 330:577-91. [PMID: 12842473 DOI: 10.1016/s0022-2836(03)00627-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The N-terminal domain of HypF from Escherichia coli (HypF-N) is a 91 residue protein module sharing the same folding topology and a significant sequence identity with two extensively studied human proteins, muscle and common-type acylphosphatases (mAcP and ctAcP). With the aim of learning fundamental aspects of protein folding from the close comparison of so similar proteins, the folding process of HypF-N has been studied using stopped-flow fluorescence. While mAcP and ctAcP fold in a two-state fashion, HypF-N was found to collapse into a partially folded intermediate before reaching the fully folded conformation. Formation of a burst-phase intermediate is indicated by the roll over in the Chevron plot at low urea concentrations and by the large jump of intrinsic and 8-anilino-1-naphtalenesulphonic acid-derived fluorescence immediately after removal of denaturant. Furthermore, HypF-N was found to fold rapidly with a rate constant that is approximately two and three orders of magnitudes faster than ctAcP and mAcP, respectively. Differences between the bacterial protein and the two human counterparts were also found as to the involvement of proline isomerism in their respective folding processes. The results clearly indicate that features that are often thought to be relevant in protein folding are not highly conserved in the evolution of the acylphosphatase superfamily. The large difference in folding rate between mAcP and HypF-N cannot be entirely accounted for by the difference in relative contact order or related topological metrics. The analysis shows that the higher folding rate of HypF-N is in part due to the relatively high hydrophobic content of this protein. This conclusion, which is also supported by the highly significant correlation found between folding rate and hydrophobic content within a group of proteins displaying the topology of HypF-N and AcPs, suggests that the average hydrophobicity of a protein sequence is an important determinant of its folding rate.
Collapse
Affiliation(s)
- Giulia Calloni
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Florence, Italy
| | | | | | | | | | | |
Collapse
|
92
|
Kaya H, Chan HS. Origins of chevron rollovers in non-two-state protein folding kinetics. PHYSICAL REVIEW LETTERS 2003; 90:258104. [PMID: 12857173 DOI: 10.1103/physrevlett.90.258104] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2002] [Indexed: 05/24/2023]
Abstract
Chevron rollovers of some proteins imply that their logarithmic folding rates are nonlinear in native stability. This is predicted by lattice and continuum Gō models to arise from diminished accessibilities of the ground state from transiently populated compact conformations under strongly native conditions. Despite these models' native-centric interactions, the slowdown is due partly to kinetic trapping caused by some of the folding intermediates' non-native topologies. Notably, simple two-state folding kinetics of small single-domain proteins are not reproduced by common Gō-like schemes.
Collapse
Affiliation(s)
- Hüseyin Kaya
- Protein Engineering Network of Centres of Excellence, Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
93
|
Abstract
Many small proteins seem to fold by a simple process explicable by conventional chemical kinetics and transition-state theory. This assumes an instant equilibrium between reactants and a high-energy activated state. In reality, equilibration occurs on timescales dependent on the molecules involved, below which such analyses break down. The molecular timescale, normally too short to be seen in experiments, can be of a significant length for proteins. To probe it directly, we studied very rapidly folding mutants of the five-helix bundle protein lambda(6-85), whose activated state is significantly populated during folding. A time-dependent rate coefficient below 2 micro s signals the onset of the molecular timescale, and hence the ultimate speed limit for folding. A simple model shows that the molecular timescale represents the natural pre-factor for transition state models of folding.
Collapse
Affiliation(s)
- Wei Yuan Yang
- Center for Biophysics and Computational Biology, University of Illinois, Urbana Illinois 61801, USA
| | | |
Collapse
|
94
|
Abstract
Three-dimensional domain swapping is the event by which a monomer exchanges part of its structure with identical monomers to form an oligomer where each subunit has a similar structure to the monomer. The accumulating number of observations of this phenomenon in crystal structures has prompted speculation as to its biological relevance. Domain swapping was originally proposed to be a mechanism for the emergence of oligomeric proteins and as a means for functional regulation, but also to be a potentially harmful process leading to misfolding and aggregation. We highlight experimental studies carried out within the last few years that have led to a much greater understanding of the mechanism of domain swapping and of the residue- and structure-specific features that facilitate the process. We discuss the potential biological implications of domain swapping in light of these findings.
Collapse
Affiliation(s)
- Frederic Rousseau
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | | | |
Collapse
|
95
|
Silow M, Oliveberg M. High concentrations of viscogens decrease the protein folding rate constant by prematurely collapsing the coil. J Mol Biol 2003; 326:263-71. [PMID: 12547208 DOI: 10.1016/s0022-2836(02)01331-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In several studies, viscogenic osmolytes have been suggested to decrease the folding rate constant of polypeptides by slowing their motion through the solvent. Here, we show that osmolytes may slow protein folding by prematurely collapsing the coil. At low or moderate concentrations of osmolytes (<30%), folding of the two-state protein CI2 becomes faster with increasing osmolyte concentrations, suggesting that the kinetics are governed by protein stability. However, at higher concentrations of osmolyte, the coil collapses in the dead-time of the refolding experiment, causing a dramatic drop in the folding rate. The collapsed state is non-native and appears to be different for different osmolytes.
Collapse
Affiliation(s)
- Maria Silow
- Department of Biochemistry, Umeå University, S-901 87, Umeå, Sweden
| | | |
Collapse
|
96
|
Leonhard K, Prausnitz JM, Radke CJ. Solvent–amino acid interaction energies in 3-D-lattice MC simulations of model proteins. Aggregation thermodynamics and kinetics. Phys Chem Chem Phys 2003. [DOI: 10.1039/b305414d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
97
|
Sasahara K, Demura M, Nitta K. Equilibrium and kinetic folding of hen egg-white lysozyme under acidic conditions. Proteins 2002; 49:472-82. [PMID: 12402357 DOI: 10.1002/prot.10215] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The equilibrium and kinetic folding of hen egg-white lysozyme was studied by means of circular dichroism spectra in the far- and near-ultraviolet (UV) regions at 25 degrees C under the acidic pH conditions. In equilibrium condition at pH 2.2, hen lysozyme shows a single cooperative transition in the GdnCl-induced unfolding experiment. However, in the GdnCl-induced unfolding process at lower pH 0.9, a distinct intermediate state with molten globule characteristics was observed. The time-dependent unfolding and refolding of the protein were induced by concentration jumps of the denaturant and measured by using stopped-flow circular dichroism at pH 2.2. Immediately after the dilution of denaturant, the kinetics of refolding shows evidence of a major unresolved far-UV CD change during the dead time (<10 ms) of the stopped-flow experiment (burst phase). The observed refolding and unfolding curves were both fitted well to a single-exponential function, and the rate constants obtained in the far- and near-UV regions coincided with each other. The dependence on denaturant concentration of amplitudes of burst phase and both rate constants was modeled quantitatively by a sequential three-state mechanism, U<-->I<-->N, in which the burst-phase intermediate (I) in rapid equilibrium with the unfolded state (U) precedes the rate-determining formation of the native state (N). The role of folding intermediate state of hen lysozyme was discussed.
Collapse
Affiliation(s)
- Kenji Sasahara
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, Hokkaido, Japan.
| | | | | |
Collapse
|
98
|
Krantz BA, Mayne L, Rumbley J, Englander SW, Sosnick TR. Fast and slow intermediate accumulation and the initial barrier mechanism in protein folding. J Mol Biol 2002; 324:359-71. [PMID: 12441113 DOI: 10.1016/s0022-2836(02)01029-x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Do stable intermediates form very early in the protein folding process? New results and a quantity of literature that bear on this issue are examined here. Results available provide little support for early intermediate accumulation before an initial search-dependent nucleation barrier.
Collapse
Affiliation(s)
- Bryan A Krantz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
99
|
Abstract
Transmissible spongiform encephalopathies are associated with the conversion of cellular prion protein, PrP(C), into a misfolded oligomeric form, PrP(Sc). Here we have examined the kinetics of folding and unfolding reactions for the recombinant human prion protein C-terminal fragment 90-231 at pH 4.8 and 7.0. The stopped-flow data provide clear evidence for the population of an intermediate on the refolding pathway of the prion protein as indicated by a pronounced curvature in chevron plots and the presence of significant burst phase amplitude in the refolding kinetics. In addition to its role in the normal prion protein folding, this intermediate likely represents a crucial monomeric precursor of the pathogenic PrP(Sc) isoform.
Collapse
Affiliation(s)
- Adrian C Apetri
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
100
|
Yan S, Kennedy SD, Koide S. Thermodynamic and kinetic exploration of the energy landscape of Borrelia burgdorferi OspA by native-state hydrogen exchange. J Mol Biol 2002; 323:363-75. [PMID: 12381326 DOI: 10.1016/s0022-2836(02)00882-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report a native-state hydrogen-exchange (HX) method to simultaneously obtain both thermodynamic and kinetic information on the formation of multiple excited states in a folding energy landscape. Our method exploits the inherent dispersion and pH dependence of the intrinsic HX rates to cover both the EX2 (thermodynamic) and EX1 (kinetic) regimes. At each concentration of denaturant, HX measurements are performed over a range of pH values. Using this strategy, we dissected Borrelia burgdorferi OspA, a predominantly beta-sheet protein containing a unique single-layer beta-sheet, into five cooperative units and postulated excited states predominantly responsible for HX. More importantly, we determined the interconversion rates between these excited states and the native state. The use of both thermodynamic and kinetic information from native-state HX enabled us to construct a folding landscape of this 28kDa protein, including local minima and maxima, and to discriminate on-pathway and off-pathway intermediates. This method, which we term EX2/EX1 HX, should be a powerful tool for characterizing the complex folding mechanisms exhibited by the majority of proteins.
Collapse
Affiliation(s)
- Shude Yan
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|