51
|
Prasad AM, Morgan DA, Nuno DW, Ketsawatsomkron P, Bair TB, Venema AN, Dibbern ME, Kutschke WJ, Weiss RM, Lamping KG, Chapleau MW, Sigmund CD, Rahmouni K, Grumbach IM. Calcium/calmodulin-dependent kinase II inhibition in smooth muscle reduces angiotensin II-induced hypertension by controlling aortic remodeling and baroreceptor function. J Am Heart Assoc 2015; 4:e001949. [PMID: 26077587 PMCID: PMC4599535 DOI: 10.1161/jaha.115.001949] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Multifunctional calcium/calmodulin-dependent kinase II (CaMKII) is activated by angiotensin II (Ang II) in cultured vascular smooth muscle cells (VSMCs), but its function in experimental hypertension has not been explored. The aim of this study was to determine the impact of CaMKII inhibition selectively in VSMCs on Ang II hypertension. Methods and Results Transgenic expression of a CaMKII peptide inhibitor in VSMCs (TG SM-CaMKIIN model) reduced the blood pressure response to chronic Ang II infusion. The aortic depressor nerve activity was reset in hypertensive versus normotensive wild-type animals but not in TG SM-CaMKIIN mice, suggesting that changes in baroreceptor activity account for the blood pressure difference between genotypes. Accordingly, aortic pulse wave velocity, a measure of arterial wall stiffness and a determinant of baroreceptor activity, increased in hypertensive versus normotensive wild-type animals but did not change in TG SM-CaMKIIN mice. Moreover, examination of blood pressure and heart rate under ganglionic blockade revealed that VSMC CaMKII inhibition abolished the augmented efferent sympathetic outflow and renal and splanchnic nerve activity in Ang II hypertension. Consequently, we hypothesized that VSMC CaMKII controls baroreceptor activity by modifying arterial wall remodeling in Ang II hypertension. Gene expression analysis in aortas from normotensive and Ang II–infused mice revealed that TG SM-CaMKIIN aortas were protected from Ang II–induced upregulation of genes that control extracellular matrix production, including collagen. VSMC CaMKII inhibition also strongly altered the expression of muscle contractile genes under Ang II. Conclusions CaMKII in VSMCs regulates blood pressure under Ang II hypertension by controlling structural gene expression, wall stiffness, and baroreceptor activity.
Collapse
Affiliation(s)
- Anand M Prasad
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Donald A Morgan
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Daniel W Nuno
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Pimonrat Ketsawatsomkron
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Thomas B Bair
- The Iowa Institute for Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA (T.B.B.)
| | - Ashlee N Venema
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Megan E Dibbern
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - William J Kutschke
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Robert M Weiss
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.)
| | - Kathryn G Lamping
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Mark W Chapleau
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| | - Curt D Sigmund
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.) Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA (C.D.S.)
| | - Kamal Rahmouni
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA (D.A.M., D.W.N., P.K., K.G.L., C.D.S., K.R.)
| | - Isabella M Grumbach
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA (A.M.P., D.W.N., A.N.V., M.E.D., W.J.K., R.M.W., K.G.L., M.W.C., C.D.S., K.R., I.M.G.) The Iowa City VA Healthcare System, Iowa City, IA (A.N.V., K.G.L., M.W.C., I.M.G.)
| |
Collapse
|
52
|
Böhmer T, Manicam C, Steege A, Michel MC, Pfeiffer N, Gericke A. The α₁B -adrenoceptor subtype mediates adrenergic vasoconstriction in mouse retinal arterioles with damaged endothelium. Br J Pharmacol 2015; 171:3858-67. [PMID: 24749494 DOI: 10.1111/bph.12743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/22/2014] [Accepted: 04/15/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE The α₁-adrenoceptor family plays a critical role in regulating ocular perfusion by mediating responses to catecholamines. The purpose of the present study was to determine the contribution of individual α₁-adrenoceptor subtypes to adrenergic vasoconstriction of retinal arterioles using gene-targeted mice deficient in one of the three adrenoceptor subtypes (α₁A-AR(-/-), α₁B-AR(-/-) and α₁D-AR(-/-) respectively). EXPERIMENTAL APPROACH Using real-time PCR, mRNA expression for individual α₁-adrenoceptor subtypes was determined in murine retinal arterioles. To assess the functional relevance of the three α₁-adrenoceptor subtypes for mediating vascular responses, retinal vascular preparations from wild-type mice and mice deficient in individual α₁-adrenoceptor subtypes were studied in vitro using video microscopy. KEY RESULTS Retinal arterioles expressed mRNA for all three α₁-adrenoceptor subtypes. In functional studies, arterioles from wild-type mice with intact endothelium responded only negligibly to the α₁-adrenoceptor agonist phenylephrine. In endothelium-damaged arterioles from wild-type mice, phenylephrine evoked concentration-dependent constriction that was attenuated by the α₁-adrenoceptor blocker prazosin. Strikingly, phenylephrine only minimally constricted endothelium-damaged retinal arterioles from α₁B-AR(-/-) mice, whereas arterioles from α₁A -AR(-/-) and α₁D-AR(-/-) mice constricted similarly to arterioles from wild-type mice. Constriction to U46619 was similar in endothelium-damaged retinal arterioles from all four mouse genotypes. CONCLUSIONS AND IMPLICATIONS The present study is the first to demonstrate that α₁-adrenoceptor-mediated vasoconstriction in murine retinal arterioles is buffered by the endothelium. When the endothelium is damaged, a vasoconstricting role of the α₁B-adrenoceptor subtype is unveiled. Hence, the α₁B-adrenoceptor may represent a target to selectively modulate retinal blood flow in ocular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Tobias Böhmer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
53
|
Alpha-1-adrenergic receptors in heart failure: the adaptive arm of the cardiac response to chronic catecholamine stimulation. J Cardiovasc Pharmacol 2014; 63:291-301. [PMID: 24145181 DOI: 10.1097/fjc.0000000000000032] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1-adrenergic receptors (ARs) are G protein-coupled receptors activated by catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer alpha-1-ARs than beta-ARs in the nonfailing heart, but their abundance is maintained or increased in the setting of heart failure, which is characterized by pronounced chronic elevation of catecholamines and beta-AR dysfunction. Decades of evidence from gain and loss-of-function studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive functions for cardiac alpha-1-ARs to include physiological hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively, these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the treatment of heart failure.
Collapse
|
54
|
Yoshiki H, Uwada J, Anisuzzaman ASM, Umada H, Hayashi R, Kainoh M, Masuoka T, Nishio M, Muramatsu I. Pharmacologically distinct phenotypes of α1B -adrenoceptors: variation in binding and functional affinities for antagonists. Br J Pharmacol 2014; 171:4890-901. [PMID: 24923551 DOI: 10.1111/bph.12813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/23/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The pharmacological properties of particular receptors have recently been suggested to vary under different conditions. We compared the pharmacological properties of the α1B -adrenoceptor subtype in various tissue preparations and under various conditions. EXPERIMENTAL APPROACH [(3) H]-prazosin binding to α1B -adrenoceptors in rat liver (segments, dispersed hepatocytes and homogenates) was assessed and the pharmacological profiles were compared with the functional and binding profiles in rat carotid artery and recombinant α1B -adrenoceptors. KEY RESULTS In association and saturation-binding experiments with rat liver, binding affinity for [(3) H]-prazosin varied significantly between preparations (KD value approximately ten times higher in segments than in homogenates). The binding profile for various drugs in liver segments also deviated from the representative α1B -adrenoceptor profile observed in liver homogenates and recombinant receptors. L-765,314 and ALS-77, selective antagonists of α1B -adrenoceptors, showed high binding and antagonist affinities in liver homogenates and recombinant α1B -adrenoceptors. However, binding affinities for both ligands in the segments of rat liver and carotid artery were 10 times lower, and the antagonist potencies in α1B -adrenoceptor-mediated contractions of carotid artery were more than 100 times lower than the representative α1B -adrenoceptor profile. CONCLUSIONS AND IMPLICATIONS In contrast to the consistent profile of recombinant α1B -adrenoceptors, the pharmacological profile of native α1B -adrenoceptors of rat liver and carotid artery varied markedly under various receptor environments, showing significantly different binding properties between intact tissues and homogenates, and dissociation between functional and binding affinities. In addition to conventional 'subtype' characterization, 'phenotype' pharmacology must be considered in native receptor evaluations in vivo and in future pharmacotherapy.
Collapse
Affiliation(s)
- Hatsumi Yoshiki
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, Eiheiji, Fukui, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Jia LX, Qi GM, Liu O, Li TT, Yang M, Cui W, Zhang WM, Qi YF, Du J. Inhibition of platelet activation by clopidogrel prevents hypertension-induced cardiac inflammation and fibrosis. Cardiovasc Drugs Ther 2014; 27:521-30. [PMID: 23887740 PMCID: PMC3830206 DOI: 10.1007/s10557-013-6471-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose Platelets are essential for primary hemostasis; however, platelet activation also plays an important proinflammatory role. Inflammation promotes the development of cardiac fibrosis and heart failure induced by hypertension. In this study, we aimed to determine whether inhibiting platelet activation using clopidogrel could inhibit hypertension-induced cardiac inflammation and fibrosis. Methods Using a mouse model of angiotensin II (Ang II) infusion (1,500 ng/[kg·min] for 7 days), we determined the role of platelet activation in Ang II infusion-induced cardiac inflammation and fibrosis using a P2Y12 receptor inhibitor, clopidogrel (50 mg/[kg·day]). Results CD41 staining showed that platelets accumulated in Ang II-infused hearts. Clopidogrel treatment inhibited Ang II infusion-induced accumulation of α-SMA+ myofibroblasts and cardiac fibrosis (4.17 ± 1.26 vs. 1.46 ± 0.81, p < 0.05). Infiltration of inflammatory cells, including Mac-2+ macrophages and CD45+Ly6G+ neutrophils (30.38 ± 4.12 vs. 18.7 ± 2.38, p < 0.05), into Ang II-infused hearts was also suppressed by platelet inhibition. Real-time PCR and immunohistochemical staining showed that platelet inhibition significantly decreased the expression of interleukin-1β and transforming growth factor-β. Acute injection of Ang II or PE stimulated platelet activation and platelet-leukocyte conjugation, which were abolished by clopidogrel treatment. Conclusion Thus, inhibition of platelet activation by clopidogrel prevents cardiac inflammation and fibrosis in response to Ang II. Taken together, our results indicate Ang II infusion-induced hypertension stimulated platelet activation and platelet-leukocyte conjugation, which initiated inflammatory responses that contributed to cardiac fibrosis.
Collapse
Affiliation(s)
- Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing Institutue of Heart Lung & Blood Vessel Disease, Beijing, 100029 China
| | - Guan-Ming Qi
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing Institutue of Heart Lung & Blood Vessel Disease, Beijing, 100029 China
| | - Ou Liu
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing Institutue of Heart Lung & Blood Vessel Disease, Beijing, 100029 China
| | - Tao-Tao Li
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing Institutue of Heart Lung & Blood Vessel Disease, Beijing, 100029 China
| | - Min Yang
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing Institutue of Heart Lung & Blood Vessel Disease, Beijing, 100029 China
| | - Wei Cui
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing Institutue of Heart Lung & Blood Vessel Disease, Beijing, 100029 China
| | - Wen-Mei Zhang
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing Institutue of Heart Lung & Blood Vessel Disease, Beijing, 100029 China
| | - Yong-Fen Qi
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing Institutue of Heart Lung & Blood Vessel Disease, Beijing, 100029 China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing Institutue of Heart Lung & Blood Vessel Disease, Beijing, 100029 China
| |
Collapse
|
56
|
Three commercial antibodies against α1-adrenergic receptor subtypes lack specificity in paraffin-embedded sections of murine tissues. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:703-6. [PMID: 24866500 DOI: 10.1007/s00210-014-0992-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
We tested the specificity of three commercially available antibodies (AB) against individual α1-adrenergic receptor subtypes (α1-ARST). We used these ABs to localize the α1-ARST proteins by immunohistochemistry in paraffin-embedded murine tissues. The specificity of the ABs was tested by comparing staining patterns in tissues from wild-type mice with those in corresponding tissues from mice with gene-targeted disruption of the respective α1-ARST, one of the most rigorous negative controls. None of the tested ABs proved to be specific for the indicated target antigen. We conclude that the tested ABs are unsuitable for immunohistochemistry in paraffin-embedded murine tissues.
Collapse
|
57
|
Kim YR, Kang WS, Kweon EY, Cho NC, Lee DW. Steroid-Induced Ocular Hypertension Model in the Mice. JOURNAL OF THE KOREAN OPHTHALMOLOGICAL SOCIETY 2014. [DOI: 10.3341/jkos.2014.55.8.1202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- You Ra Kim
- Department of Ophthalmology, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Wan Seok Kang
- Department of Ophthalmology, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Eui Yong Kweon
- Department of Ophthalmology, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Nam Chun Cho
- Department of Ophthalmology, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| | - Dong Wook Lee
- Department of Ophthalmology, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
58
|
O'Connell TD, Jensen BC, Baker AJ, Simpson PC. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 2013; 66:308-33. [PMID: 24368739 PMCID: PMC3880467 DOI: 10.1124/pr.112.007203] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Adrenergic receptors (AR) are G-protein-coupled receptors (GPCRs) that have a crucial role in cardiac physiology in health and disease. Alpha1-ARs signal through Gαq, and signaling through Gq, for example, by endothelin and angiotensin receptors, is thought to be detrimental to the heart. In contrast, cardiac alpha1-ARs mediate important protective and adaptive functions in the heart, although alpha1-ARs are only a minor fraction of total cardiac ARs. Cardiac alpha1-ARs activate pleiotropic downstream signaling to prevent pathologic remodeling in heart failure. Mechanisms defined in animal and cell models include activation of adaptive hypertrophy, prevention of cardiac myocyte death, augmentation of contractility, and induction of ischemic preconditioning. Surprisingly, at the molecular level, alpha1-ARs localize to and signal at the nucleus in cardiac myocytes, and, unlike most GPCRs, activate "inside-out" signaling to cause cardioprotection. Contrary to past opinion, human cardiac alpha1-AR expression is similar to that in the mouse, where alpha1-AR effects are seen most convincingly in knockout models. Human clinical studies show that alpha1-blockade worsens heart failure in hypertension and does not improve outcomes in heart failure, implying a cardioprotective role for human alpha1-ARs. In summary, these findings identify novel functional and mechanistic aspects of cardiac alpha1-AR function and suggest that activation of cardiac alpha1-AR might be a viable therapeutic strategy in heart failure.
Collapse
Affiliation(s)
- Timothy D O'Connell
- VA Medical Center (111-C-8), 4150 Clement St., San Francisco, CA 94121. ; or Dr. Timothy D. O'Connell, E-mail:
| | | | | | | |
Collapse
|
59
|
Flacco N, Parés J, Serna E, Segura V, Vicente D, Pérez-Aso M, Noguera MA, Ivorra MD, McGrath JC, D'Ocon P. α1D-Adrenoceptors are responsible for the high sensitivity and the slow time-course of noradrenaline-mediated contraction in conductance arteries. Pharmacol Res Perspect 2013; 1:e00001. [PMID: 25505555 PMCID: PMC4184566 DOI: 10.1002/prp2.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 05/08/2013] [Accepted: 05/17/2013] [Indexed: 12/30/2022] Open
Abstract
The objective of this study was to determine whether the different time-course characteristics of α1-adrenoceptor-mediated contraction in arteries can be related to the subtypes involved. Contractile responses to noradrenaline (NA) were compared with inositol phosphate accumulation and extracellular signal-regulated kinase (ERK)1/2 phosphorylation after α1-agonist stimuli in the same vessels in the presence or absence of α1-antagonists in rat or in α1-subtype knockout (KO) mice. Aorta, where α1D-AR is the main functional subtype, had higher sensitivity to NA (in respect of inositol phosphate [IP], pERK1/2, and contractile response) than tail artery, where the α1A-adrenoceptor subtype is predominant. Furthermore, the contraction in aorta exhibited a slower decay after agonist removal and this was consistent in all strains harboring α1D-adrenoceptors (from rat, α1B-KO, and wild-type [WT] mice) but was not observed in the absence of the α1D-adrenoceptor signal (α1D-adrenoceptor blocked rat aorta or aorta from α1D-KO). IP formation paralleled α1-adrenoceptor-mediated contraction (agonist present or postagonist) in aorta and tail artery. High sensitivity to agonist and persistence of response after agonist removal is a property of α1D-adrenoceptors. Therefore, the preponderance of this subtype in noninnervated conductance arteries such as aorta allows responsiveness to circulating catecholamines and prevents abrupt changes in vessel caliber when the stimulus fluctuates. Conversely, in innervated distributing arteries, high local concentrations of NA are required to activate α1A-adrenoceptors for a response that is rapid but short lived allowing fine adjustment of the contractile tone by perivascular sympathetic nerves.
Collapse
Affiliation(s)
- Nicla Flacco
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València Valencia, Spain
| | - Jaime Parés
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València Valencia, Spain
| | - Eva Serna
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València Valencia, Spain
| | - Vanessa Segura
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València Valencia, Spain
| | - Diana Vicente
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València Valencia, Spain
| | - Miguel Pérez-Aso
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València Valencia, Spain
| | - María Antonia Noguera
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València Valencia, Spain
| | - María Dolores Ivorra
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València Valencia, Spain
| | - John C McGrath
- Autonomic Physiology Unit, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, U.K
| | - Pilar D'Ocon
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València Valencia, Spain
| |
Collapse
|
60
|
Papay RS, Shi T, Piascik MT, Naga Prasad SV, Perez DM. α₁A-adrenergic receptors regulate cardiac hypertrophy in vivo through interleukin-6 secretion. Mol Pharmacol 2013; 83:939-48. [PMID: 23404509 PMCID: PMC3629827 DOI: 10.1124/mol.112.084483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/12/2013] [Indexed: 01/17/2023] Open
Abstract
The role of α₁-adrenergic receptors (ARs) in the regulation of cardiac hypertrophy is still unclear, because transgenic mice demonstrated hypertrophy or the lack of it despite high receptor overexpression. To further address the role of the α₁-ARs in cardiac hypertrophy, we analyzed unique transgenic mice that overexpress constitutively active mutation (CAM) α₁A-ARs or CAM α₁B-ARs under the regulation of large fragments of their native promoters. These constitutively active receptors are expressed in all tissues that endogenously express their wild-type counterparts as opposed to only myocyte-targeted transgenic mice. In this study, we discovered that CAM α₁A-AR mice in vivo have cardiac hypertrophy independent of changes in blood pressure, corroborating earlier studies, but in contrast to myocyte-targeted α₁A-AR mice. We also found cardiac hypertrophy in CAM α₁B-AR mice, in agreement with previous studies, but hypertrophy only developed in older mice. We also discovered unique α₁-AR-mediated hypertrophic signaling that was AR subtype-specific with CAM α₁A-AR mice secreting atrial naturietic factor and interleukin-6 (IL-6), whereas CAM α₁B-AR mice expressed activated nuclear factor-κB (NF-κB). These particular hypertrophic signals were blocked when the other AR subtype was coactivated. We also discovered that crossbreeding the two CAM models (double CAM α₁A/B-AR) inhibited the development of hypertrophy and was reversible with single receptor activation, suggesting that coactivation of the receptors can lead to novel antagonistic signal transduction. This was confirmed by demonstrating antagonistic signals that were even lower than normal controls in the double CAM α₁A/B-AR mice for p38, NF-κB, and the IL-6/glycoprotein 130/signal transducer and activator of transcription 3 pathway. Because α₁A/B double knockout mice fail to develop hypertrophy in response to IL-6, our results suggest that IL-6 is a major mediator of α₁A-AR cardiac hypertrophy.
Collapse
Affiliation(s)
- Robert S Papay
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
61
|
Li L, Wu Y, Deng M, Wu G, Ren L. P2X1 receptor-mediated pressor responses in the anesthetized mouse. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2012.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
62
|
Tatemichi S, Kobayashi K, Yokoi R, Kobayashi K, Maruyama K, Hoyano Y, Kobayashi M, Kuroda J, Kusama H. Comparison of the effects of four α1-adrenoceptor antagonists on ejaculatory function in rats. Urology 2012; 80:486.e9-16. [PMID: 22676952 DOI: 10.1016/j.urology.2012.01.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/29/2011] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To compare the effects of four α(1)-adrenoceptor (AR) subtype-selective antagonists on ejaculatory function in rats to investigate whether the differences in their modes of action-based on their selectivities for the α(1A)-AR subtype-would be related to the prevalence of ejaculation disorder (EjD). METHODS The effects of α(1)-AR antagonists on noradrenaline-induced contractions were studied in rat isolated seminal vesicles, vas deferens, bladder trigone, and prostate. Male rats were given α(1)-AR antagonists orally and, 1 hour after the drug administration they were cohoused in pairs for 1 hour with untreated female rats certified to be in estrus. The number of copulatory plugs (NP) present after mating was measured as a marker of EjD. Drug effects on ejaculatory function (ie, on NP) were compared with those on the prostatic urethra (ie, phenylephrine-induced increase in intraurethral pressure [IUP]). RESULTS All α(1)-AR antagonists concentration-dependently inhibited noradrenaline-induced contraction in all 4 tissues, and there were no differences in the rank order of potencies (tamsulosin > silodosin > alfuzosin > naftopidil) among the tissues. All α(1)-AR antagonists dose-dependently decreased NP and inhibited the phenylephrine-induced increase in IUP. There was little difference in the dose ratio ID(50) value (dose required to produce 50% inhibition) for NP/ID(50) value for IUP response among the four drugs. Drug potencies associated NP and IUP correlated closely with affinities for the human α(1A)-AR. CONCLUSION α(1)-AR antagonists cause EjD as a class effect that depends on affinity for α(1A)-AR. Differences in α(1A)-AR selectivity would be unlikely to be related to the incidence of EjD.
Collapse
Affiliation(s)
- Satoshi Tatemichi
- Development Research, R&D, Kissei Pharmaceutical, Co., Ltd., Nagano, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Martínez-Salas SG, Campos-Peralta JM, Pardo JP, Hernández-Muñoz R, Ibarra M, Tanoue A, Tsujimoto G, Villalobos-Molina R. α(1D)-Adrenoceptor regulates the vasopressor action of α(1A)-adrenoceptor in mesenteric vascular bed of α(1D)-adrenoceptor knockout mice. ACTA ACUST UNITED AC 2012; 31:64-71. [PMID: 21951586 DOI: 10.1111/j.1474-8673.2011.00468.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1 The pressor action of the α(1A)-adrenoceptor (α(1A)-AR) agonist A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl] methanesulfonamide) and the α(1)-ARs agonist phenylephrine and their blockade by selective α(1)-ARs antagonists in the isolated mesenteric vascular bed of wild-type (WT) mice and α(1D)-AR knockout (KO α(1D)-AR) mice were evaluated. 2 The apparent potency of A61603 to increase the perfusion pressure in the mesenteric vascular bed of WT and KO α(1D)-AR mice is 86 and 138 times the affinity of phenylephrine, respectively. 3 A61603 also enhanced the perfusion pressure by ≈1.7 fold in the mesenteric vascular bed of WT mice compared with KO α(1D)-AR mice. 4 Because of its high affinity, low concentrations of the α(1A)-AR selective antagonist RS100329 (5-methyl-3-[3-[4-[2-(2,2,2,-trifluoroethoxy) phenyl]-1-piperazinyl] propyl]-2,4-(1H)-pyrimidinedione) shifted the agonist concentration-response curves to the right in the mesenteric vascular bed of WT and KO α(1D)-AR mice. 5 The α(1D)-AR selective antagonist BMY7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5] decane-7,9-dione) did not modify the A61603 or the phenylephrine-induced pressor effect. 6 The α(1B/D)-ARs alkylating antagonist chloroethylclonidine (CEC) shifted the agonist concentration-response curves to the right and decreased the maximum phenylephrine-induced vascular contraction in KO α(1D)-AR mice when compared to WT mice; however, CEC only slightly modified the contraction induced by A61603. 7 The results indicate that the isolated mesenteric vascular bed of WT and KO α(1D)-AR mice expresses α(1A)-AR, that the pressor action of α(1A)-AR is up-regulated for α(1D)-AR in WT mice and suggest an important role of α(1B)-AR in the vascular pressure evoked by phenylephrine in KO α(1D)-AR mice.
Collapse
Affiliation(s)
- S G Martínez-Salas
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Korstanje C, Krauwinkel W, van Doesum-Wolters FLC. Tamsulosin shows a higher unbound drug fraction in human prostate than in plasma: a basis for uroselectivity? Br J Clin Pharmacol 2012; 72:218-25. [PMID: 21745239 DOI: 10.1111/j.1365-2125.2010.03870.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT The efficacy-tolerability profile of tamsulosin in patients with benign prostatic hyperplasia (BPH) is assumed to be associated both with the α1-adrenoceptor selectivity profile of the drug and a small peak : trough ratio in the plasma pharmacokinetic (PK) profile. Tamsulosin is highly bound to plasma proteins, notably α1-acid glycoprotein (AGP). This protein is a high-affinity binding protein and AGP plasma concentration was found to influence the therapeutic (unbound) plasma concentrations for high-AGP-binding drugs. WHAT THIS STUDY ADDS The study actually assessed unbound tamsulosin concentrations in both blood plasma and prostate tissue and reported that the unbound tamsulosin concentrations after multiple dosing in men with BPH, were much higher in prostate than in blood plasma. The assumption is put forward that differential free drug concentrations in prostate and blood plasma may contribute to the relative ‘uroselectivity’ of tamsulosin. AIM The aim of this small patient study was to investigate tamsulosin concentrations in prostate and plasma samples in order to identify potential differences in the pharmacokinetics (PK) in plasma and prostate contributing to its pharmacodynamic activity profile in patients. METHODS Forty-one patients with benign prostatic hyperplasia (BPH) scheduled for open prostatectomy were given tamsulosin 0.4 mg for 6-21 days in order to reach steady-state PK. Patients were randomized over four groups to allow collection of plasma and tissue samples at different time points after last dose administration. Samples were collected during surgery and assayed for tamsulosin HCl. The free fraction (f(u)) of tamsulosin was determined by ultracentrifugation of plasma and prostate tissue spiked with (14)C-tamsulosin. RESULTS C(max) in plasma at 4.4 h for total tamsulosin was 15.2 ng ml(-1) and AUC(0,24 h) was 282 ng ml(-1) h, while for prostate C(max) at 11.4 h post-dose was 5.4 ng ml(-1) and AUC(0,24 h) was 120 ng ml(-1) h. AUC(0,24 h) for total tamsulosin in prostate was 43% of the plasma AUC(0,24 h). f(u) was 0.4 % for plasma and 59.1% for prostate. Therefore calculated on unbound tamsulosin, a ratio of 63 resulted for prostate vs. plasma C(max) concentrations. CONCLUSIONS These data indicate that in patients with confirmed BPH the amount of tamsulosin freely available in the target tissue (prostate) is much higher than in plasma.
Collapse
Affiliation(s)
- Cees Korstanje
- Translational & Development Pharmacology Department, Astellas Pharma Europe BV, Elisabethhof 1, 2353 EW Leiderdorp, the Netherlands.
| | | | | |
Collapse
|
65
|
Bergaya S, Faure S, Baudrie V, Rio M, Escoubet B, Bonnin P, Henrion D, Loirand G, Achard JM, Jeunemaitre X, Hadchouel J. WNK1 regulates vasoconstriction and blood pressure response to α 1-adrenergic stimulation in mice. Hypertension 2011; 58:439-45. [PMID: 21768522 DOI: 10.1161/hypertensionaha.111.172429] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Gain-of-function mutations in the human WNK1 (with-no-lysine[K]1) gene are responsible for a monogenic form of arterial hypertension, and WNK1 polymorphisms have been associated with common essential hypertension. The role of WNK1 in renal ionic reabsorption has been established, but no investigation of its possible influence on vascular tone, an essential determinant of blood pressure, has been performed until now. WNK1 complete inactivation in the mouse is embryonically lethal. We, thus, examined in Wnk1(+/-) haploinsufficient adult mice whether WNK1 could regulate in vivo vascular tone and whether this was correlated with blood pressure variation. Wnk1(+/-) mice displayed a pronounced decrease in blood pressure responses in vivo and in vascular contractions ex vivo following α(1)-adrenergic receptor activation with no change in basal blood pressure and renal function. We also observed a major loss of the pressure-induced contractile (myogenic) response in Wnk1(+/-) arteries associated with a specific alteration of the smooth muscle cell contractile function. These alterations in vascular tone were associated with a decreased phosphorylation level of the WNK1 substrate SPAK (STE20/SPS1-related proline/alanine-rich kinase) and its target NKCC1 (Na(+)-K(+)-2Cl(-) cotransporter 1) in Wnk1(+/-) arteries. Our study identifies a novel and major role for WNK1 in maintaining in vivo blood pressure and vasoconstriction responses specific to α(1)-adrenergic receptor activation. Our findings uncover a vascular signaling pathway linking α(1)-adrenergic receptors and pressure to WNK1, SPAK, and NKCC1 and may, thus, significantly broaden the comprehension of the regulatory mechanisms of vascular tone in arterial hypertension.
Collapse
Affiliation(s)
- Sonia Bergaya
- INSERM U970, Paris Cardiovascular Research Center PARCC, 56 rue Leblanc, 75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Steele SL, Yang X, Debiais-Thibaud M, Schwerte T, Pelster B, Ekker M, Tiberi M, Perry SF. In vivo and in vitro assessment of cardiac beta-adrenergic receptors in larval zebrafish (Danio rerio). J Exp Biol 2011; 214:1445-57. [PMID: 21490253 DOI: 10.1242/jeb.052803] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
β-Adrenergic receptors (βARs) are crucial for maintaining the rate and force of cardiac muscle contraction in vertebrates. Zebrafish (Danio rerio) have one β1AR gene and two β2AR genes (β2aAR and β2bAR). We examined the roles of these receptors in larval zebrafish in vivo by assessing the impact of translational gene knockdown on cardiac function. Zebrafish larvae lacking β1AR expression by morpholino knockdown displayed lower heart rates than control fish, whereas larvae deficient in both β2aAR and β2bAR expression exhibited significantly higher heart rates than controls. These results suggested a potential inhibitory role for one or both β2AR genes. By using cultured HEK293 cells transfected with zebrafish βARs, we demonstrated that stimulation with adrenaline or procaterol (a β2AR agonist) resulted in an increase in intracellular cAMP levels in cells expressing any of the three zebrafish βARs. In comparison with its human βAR counterpart, zebrafish β2aAR expressed in HEK293 cells appeared to exhibit a unique binding affinity profile for adrenergic ligands. Specifically, zebrafish β2aAR had a high binding affinity for phenylephrine, a classical α-adrenergic receptor agonist. The zebrafish receptors also had distinct ligand binding affinities for adrenergic agonists when compared with human βARs in culture, with zebrafish β2aAR being distinct from human β2AR and zebrafish β2bAR. Overall, this study provides insight into the function and evolution of both fish and mammalian β-adrenergic receptors.
Collapse
Affiliation(s)
- Shelby L Steele
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Perez DM, Doze VA. Cardiac and neuroprotection regulated by α(1)-adrenergic receptor subtypes. J Recept Signal Transduct Res 2011; 31:98-110. [PMID: 21338248 DOI: 10.3109/10799893.2010.550008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sympathetic nervous system regulation by the α(1)-adrenergic receptor (AR) subtypes (α(1A), α(1B), α(1D)) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α(1)-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.
Collapse
Affiliation(s)
- Dianne M Perez
- Department of Molecular Cardiology, NB50, The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
68
|
Xi BM, Jiang ZZ, Zou JW, Ni PZ, Chen WH. Drug metabolism-based design, synthesis, and bioactivities of 1-(2,6-dimethylphenoxy)-2-(3,4-dimethoxyphenylethylamino)propane hydrochloride (DDPH) analogs as α1-adrenoceptors antagonists. Bioorg Med Chem 2011; 19:783-8. [DOI: 10.1016/j.bmc.2010.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/06/2010] [Accepted: 12/06/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Bao-Min Xi
- Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
69
|
Jensen BC, O'Connell TD, Simpson PC. Alpha-1-adrenergic receptors: targets for agonist drugs to treat heart failure. J Mol Cell Cardiol 2010; 51:518-28. [PMID: 21118696 DOI: 10.1016/j.yjmcc.2010.11.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/12/2010] [Indexed: 12/19/2022]
Abstract
Evidence from cell, animal, and human studies demonstrates that α1-adrenergic receptors mediate adaptive and protective effects in the heart. These effects may be particularly important in chronic heart failure, when catecholamine levels are elevated and β-adrenergic receptors are down-regulated and dysfunctional. This review summarizes these data and proposes that selectively activating α1-adrenergic receptors in the heart might represent a novel and effective way to treat heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Division, VA Medical Center, San Francisco, CA, USA.
| | | | | |
Collapse
|
70
|
Abstract
The α1-adrenergic receptor (AR) subtypes (α1a, α1b, and α1d) mediate several physiological effects of epinephrineand norepinephrine. Despite several studies in recombinant systems and insightfrom genetically modified mice, our understanding of the physiological relevance and specificity of the α1-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that βarrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α1-AR subtypes in various organs.
Collapse
Affiliation(s)
- Susanna Cotecchia
- Dipartimento di Fisiologia Generale e Ambientale, Università di Bari, Italy.
| |
Collapse
|
71
|
Dorn GW. Adrenergic signaling polymorphisms and their impact on cardiovascular disease. Physiol Rev 2010; 90:1013-62. [PMID: 20664078 DOI: 10.1152/physrev.00001.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review examines the impact of recent discoveries defining personal genetics of adrenergic signaling polymorphisms on scientific discovery and medical practice related to cardiovascular diseases. The adrenergic system is the major regulator of minute-by-minute cardiovascular function. Inhibition of adrenergic signaling with pharmacological beta-adrenergic receptor antagonists (beta-blockers) is first-line therapy for heart failure and hypertension. Advances in pharmacology, molecular biology, and genetics of adrenergic signaling pathways have brought us to the point where personal genetic differences in adrenergic signaling factors are being assessed as determinants of risk or progression of cardiovascular disease. For a few polymorphisms, functional data generated in cell-based systems, genetic mouse models, and pharmacological provocation of human subjects are concordant with population studies that suggest altered risk of cardiovascular disease or therapeutic response to beta-blockers. For the majority of adrenergic pathway polymorphisms however, published data conflict, and the clinical relevance of individual genotyping remains uncertain. Here, the current state of laboratory and clinical evidence that adrenergic pathway polymorphisms can affect cardiovascular pathophysiology is comprehensively reviewed and compared, with a goal of placing these data in the broad context of potential clinical applicability.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
72
|
Wang HQ, Chen WZ, Chen WH, Xi BM. 2-(5-Bromo-pent-yl)-4-chloro-5-[2-(4-meth-oxy-phen-yl)ethyl-amino]-pyridazin-3(2H)-one. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o2215. [PMID: 21588586 PMCID: PMC3008024 DOI: 10.1107/s1600536810030102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 07/28/2010] [Indexed: 11/26/2022]
Abstract
The asymmetric unit of the title compound, C18H23BrClN3O2, consists of two molecules which exhibit different conformations of the pentyl chains [C—C—C—C torsion angles of −60.4 (4) and 175.8 (3)°]. The crysal packing exhibits a chain structure, generated through the O atom of the pyridazinone forming a hydrogen bond with the N—H group of an adjacent molecule.
Collapse
Affiliation(s)
- Hai-Quan Wang
- School of Pharmaceutical Science, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | | | | | | |
Collapse
|
73
|
Chen WQ, Cai H, Zhang C, Ji XP, Zhang Y. Is overall blockade superior to selective blockade of adrenergic receptor subtypes in suppressing left ventricular remodeling in spontaneously hypertensive rats? Hypertens Res 2010; 33:1071-81. [PMID: 20668454 DOI: 10.1038/hr.2010.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To test the hypothesis that nonselective blockade of adrenergic receptor (AR) subtypes is superior to selective blockade of AR subtypes in suppressing left ventricular (LV) remodeling induced by hypertension. Sixty-four spontaneously hypertensive rats (SHR) were randomly divided into four groups: bisoprolol-treated, propranolol-treated, carvedilol-treated and no treatment groups (n=16, each). Sixteen Wistar-Kyoto (WKY) rats served as a control group. Echocardiography and cardiac catheterization were carried out to record the mitral flow velocity ratio of E wave to A wave (E/A), LV mass index (LVMI), maximal rising (dp/dt(max)) and falling (-dp/dt(max)) rate of the LV pressure and LV relaxation time constant (τ). The mRNA and protein expression levels of AR, protein kinase(PK) and G-protein subtypes, intracellular free calcium (Ca) concentration and cardiocyte apoptoisis rate were determined. Three drug-treated groups showed higher velocity ratio of E wave to A wave (E/A) and -dp/dt(max) and lower systolic blood pressure (SBP), LVMI, τ, apoptosis rate and intracellular free Ca(2+) concentration than the no treatment group. The mRNA expression levels of AR-α(1B) in the carvedilol group were significantly lower than the other two drug-treated groups. The mRNA expression levels of AR-β(1), AR-β(2) and Gsα were significantly higher in the three drug-treated groups than in the no treatment group, with the expression levels of AR-β(2) being the highest in the carvedilol-treated group. The protein expression levels of PKA and PKC subtype α and δ were lower in the three drug-treated groups than in the no treatment group. Overall blockade of AR subtypes is not superior to selective blockade of AR subtypes in suppressing LV remodeling in SHR. Although carvedilol is the most effective in attenuating cardiocyte apoptosis, normalizing AR-α(1B) and Gsα expression and increasing AR-β(2) expression.
Collapse
Affiliation(s)
- Wen Qiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Shandong, PR China
| | | | | | | | | |
Collapse
|
74
|
Docherty JR. Subtypes of functional alpha1-adrenoceptor. Cell Mol Life Sci 2010; 67:405-17. [PMID: 19862476 PMCID: PMC11115521 DOI: 10.1007/s00018-009-0174-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/11/2009] [Accepted: 10/05/2009] [Indexed: 11/29/2022]
Abstract
In this review, subtypes of functional alpha1-adrenoceptor are discussed. These are cell membrane receptors, belonging to the seven-transmembrane-spanning G-protein-linked family of receptors, which respond to the physiological agonist noradrenaline. alpha1-Adrenoceptors can be divided into alpha1A-, alpha1B- and alpha1D-adrenoceptors, all of which mediate contractile responses involving Gq/11 and inositol phosphate turnover. A fourth alpha1-adrenoceptor, the alpha1L-, represents a functional phenotype of the alpha1A-adrenoceptor. alpha1-Adrenoceptor subtype knock-out mice have refined our knowledge of the functions of alpha-adrenoceptor subtypes, particuarly as subtype-selective agonists and antagonists are not available for all subtypes. alpha1-Adrenoceptors function as stimulatory receptors involved particularly in smooth muscle contraction, especially contraction of vascular smooth muscle, both in local vasoconstriction and in the control of blood pressure and temperature, and contraction of the prostate and bladder neck. Central actions are now being elucidated.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Body Temperature Regulation
- Drug Inverse Agonism
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- Inositol Phosphates/metabolism
- Mice
- Mice, Knockout
- Muscle, Smooth/physiology
- Muscle, Smooth, Vascular/physiology
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/physiology
- Second Messenger Systems/physiology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123, St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
75
|
Liu P, Bai X, Wang H, Karaplis A, Goltzman D, Miao D. Hypophosphatemia-mediated hypotension in transgenic mice overexpressing human FGF-23. Am J Physiol Heart Circ Physiol 2009; 297:H1514-20. [DOI: 10.1152/ajpheart.00581.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor-23 (FGF-23) is a potent circulating phosphaturic factor associated with renal phosphate wasting. The effects of FGF-23 on skeletal and phosphate homeostasis have been investigated widely; however, the effect of FGF-23 on the cardiovascular system (CVS) is unknown. To assess whether FGF-23 influences the function and structure of the CVS and whether the effect of FGF-23 on the CVS is mediated by FGF receptors directly or indirectly by hypophosphatemia, FGF-23 transgenic mice and their wild-type littermates were fed a normal diet or a high-phosphate diet comprising a normal diet plus 1.25% phosphate in drinking water from weaning for 5 wk, and the phenotypes of the CVS were compared between FGF-23 transgenic mice and their wild-type littermates on the same diet. At the end of this time period, transgenic animals on the normal diet developed hypotension. The left ventricle was appropriately hypertrophic, and plasma catecholamine and renin-angiotensin system components were upregulated, indicating compensatory mechanisms in response to the hypotension. Transgenic mice also exhibited an impaired vascular reactivity and a downregulation of vasoconstrictor receptor gene expression, possibly as pathogenetic factors contributing to the hypotension. The high-phosphate diet improved the hypophosphatemia, resulting in a rescue of the cardiovascular phenotype. This study demonstrates that FGF-23 overexpression can result in abnormalities in the CVS and that the effect of FGF-23 overexpression on the CVS is mediated by the secondary severe hypophosphatemia.
Collapse
Affiliation(s)
- Peidang Liu
- Laboratory of Reproductive Medicine and The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
- Department of Anatomy, Histology and Embryology, Southeast University, Nanjing, China; and
| | - Xiuying Bai
- Department of Medicine, McGill University, Montreal, Canada
| | - Heming Wang
- Laboratory of Reproductive Medicine and The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | | | - David Goltzman
- Department of Medicine, McGill University, Montreal, Canada
| | - Dengshun Miao
- Laboratory of Reproductive Medicine and The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
76
|
Methven L, McBride M, Wallace GA, McGrath JC. The alpha 1B/D-adrenoceptor knockout mouse permits isolation of the vascular alpha 1A-adrenoceptor and elucidates its relationship to the other subtypes. Br J Pharmacol 2009; 158:209-24. [PMID: 19572943 PMCID: PMC2795267 DOI: 10.1111/j.1476-5381.2009.00269.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/30/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Mesenteric and carotid arteries from the alpha(1B/D)-adrenoceptor knockout (alpha(1B/D)-KO) were employed to isolate alpha(1A)-adrenoceptor pharmacology and location and to reveal these features in the wild-type (WT) mouse. EXPERIMENTAL APPROACH Functional pharmacology by wire myography and receptor localization by confocal microscopy, using the fluorescent alpha(1)-adrenoceptor ligand BODIPY FL-Prazosin (QAPB), on mesenteric (an 'alpha(1A)-adrenoceptor' tissue) and carotid (an 'alpha(1D)-adrenoceptor' tissue) arteries. KEY RESULTS Alpha(1B/D)-KO mesenteric arteries showed straightforward alpha(1A)-adrenoceptor agonist/antagonist pharmacology. WT had complex pharmacology with alpha(1A)- and alpha(1D)-adrenoceptor components. alpha(1B/D)-KO had a larger alpha(1A)-adrenoceptor response suggesting compensatory up-regulation: no increase in fluorescent ligand binding suggests up-regulation of signalling. alpha(1B/D)-KO carotid arteries had low efficacy alpha(1A)-adrenoceptor responses. WT had complex pharmacology consistent with co-activation of all three subtypes. Fluorescent binding had straightforward alpha(1A)-adrenoceptor characteristics in both arteries of alpha(1B/D)-KO. Fluorescent binding varied between cells in relative intracellular and surface distribution. Total fluorescence was reduced in the alpha(1B/D)-KO due to fewer smooth muscle cells showing fluorescent binding. WT binding was greater and sensitive to alpha(1A)- and alpha(1D)-adrenoceptor antagonists. CONCLUSIONS AND IMPLICATIONS The straightforward pharmacology and fluorescent binding in the alpha(1B/D)-KO was used to interpret the properties of the alpha(1A)-adrenoceptor in the WT. Reduced total fluorescence in alpha(1B/D)-KO arteries, despite a clear difference in the functionally dominant subtype, indicates that measurement of receptor protein is unlikely to correlate with function. Fewer cells bound QAPB in the alpha(1B/D)-KO suggesting different cellular phenotypes of alpha(1A)-adrenoceptor exist. The alpha(1B/D)-KO provides robust assays for the alpha(1A)-adrenoceptor and takes us closer to understanding multi-receptor subtype interactions.
Collapse
MESH Headings
- Adrenergic Agonists/pharmacology
- Adrenergic Antagonists/pharmacology
- Adrenergic alpha-1 Receptor Agonists
- Animals
- Carotid Arteries/drug effects
- Carotid Arteries/physiology
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Protein Subunits/classification
- Protein Subunits/physiology
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/deficiency
- Receptors, Adrenergic, alpha-1/physiology
Collapse
Affiliation(s)
- L Methven
- Integrative and Systems Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
77
|
Sorbi C, Franchini S, Tait A, Prandi A, Gallesi R, Angeli P, Marucci G, Pirona L, Poggesi E, Brasili L. 1,3-Dioxolane-based ligands as rigid analogues of naftopidil: structure-affinity/activity relationships at alpha1 and 5-HT1A receptors. ChemMedChem 2009; 4:393-9. [PMID: 19152363 DOI: 10.1002/cmdc.200800277] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Conformational restriction of naftopidil proved to be compatible with binding at alpha(1) adrenoceptor subtypes and 5-HT receptor 1A (5-HT(1A)), and led to the discovery of a new class of ligands with a 1,3-dioxolane (1,3-oxathiolane, 1,3-dithiolane) structure. Compound 7 shows the highest affinity toward alpha(1a) and alpha(1d) adrenoceptor subtypes (pK(i) alpha(1a) = 9.58, pK(i) alpha(1d) = 9.09) and selectivity over 5-HT(1A) receptors (alpha(1a)/5-HT(1A) = 100, alpha(1d)/5-HT(1A) = 26). In functional experiments it behaves as a potent competitive alpha(1a) and alpha(1d) adrenoceptor antagonist (pK(b) alpha(1A) = 8.24, pK(b) alpha(1D) = 8.14), whereas at 5-HT(1A) receptors it is a potent partial agonist (pD(2) = 8.30). Compounds 8 and 10 display high affinity (pK(i) = 8.29 and 8.26, respectively) and selectivity for 5-HT(1A) (5-HT(1A)/alpha(1) = 18 and 10). In functional experiments at the 5-HT(1A) receptor, compound 8 appears to be neutral antagonist (pK(b) = 7.29), whereas compound 10 is a partial agonist (pD(2) = 6.27). Therefore, 1,3-dioxolane-based ligands are a versatile class of compounds useful for the development of more selective ligands for one (alpha(1)) or the other (5-HT(1A)) receptor system.
Collapse
Affiliation(s)
- Claudia Sorbi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Effects of silodosin and tamsulosin on the urethra and cardiovascular system in young and old dogs with benign prostatic hyperplasia. Eur J Pharmacol 2009; 613:135-40. [DOI: 10.1016/j.ejphar.2009.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 03/30/2009] [Accepted: 04/14/2009] [Indexed: 11/17/2022]
|
79
|
Sanbe A, Tanaka Y, Fujiwara Y, Miyauchi N, Mizutani R, Yamauchi J, Cotecchia S, Koike K, Tsujimoto G, Tanoue A. Enhanced vascular contractility in alpha1-adrenergic receptor-deficient mice. Life Sci 2009; 84:713-8. [DOI: 10.1016/j.lfs.2009.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 01/28/2009] [Accepted: 02/12/2009] [Indexed: 11/24/2022]
|
80
|
Subtypes of alpha1-adrenoceptors in BPH: future prospects for personalized medicine. ACTA ACUST UNITED AC 2009; 6:44-53. [PMID: 19132005 DOI: 10.1038/ncpuro1276] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/14/2008] [Indexed: 12/18/2022]
Abstract
The alpha(1)-adrenoceptors (alpha(1)-ARs) are involved in regulation of prostatic smooth muscle tone, and are a critical mediator of lower urinary tract symptoms and pathophysiology in benign prostatic hyperplasia (BPH). As a result, alpha(1)-AR antagonists are now used as first-line medical treatment for BPH. Three alpha(1)-AR subtypes (alpha(1a)-AR, alpha(1b)-AR, alpha(1d)-AR) have been identified on the basis of results of pharmacological and molecular cloning studies; however, the precise physiological role of individual alpha(1)-AR subtypes remains elusive. The expression levels of alpha(1)-AR subtypes in the prostate differ between patients, and individual differences in the genetic background of patients with BPH might be associated with variation in responses to subtype-selective alpha(1)-AR antagonists. In addition, single nucleotide polymorphism and microarray-based gene expression profiling studies might provide an opportunity to identify markers that predict clinical response and therapeutic tolerance to alpha(1)-AR antagonists. Further genomic studies will refine our knowledge of the functions of alpha(1)-AR subtypes, lead to new strategies for the clinical management of BPH and, perhaps, enable personalized treatment of BPH in the future.
Collapse
|
81
|
Pizzanelli C, Lazzeri G, Fulceri F, Giorgi FS, Pasquali L, Cifelli G, Murri L, Fornai F. Lack of α1b-adrenergic receptor protects against epileptic seizures. Epilepsia 2009; 50 Suppl 1:59-64. [DOI: 10.1111/j.1528-1167.2008.01972.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
82
|
Rivard K, Trépanier-Boulay V, Rindt H, Fiset C. Electrical remodeling in a transgenic mouse model of alpha1B-adrenergic receptor overexpression. Am J Physiol Heart Circ Physiol 2008; 296:H704-18. [PMID: 19112097 DOI: 10.1152/ajpheart.00337.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac-specific overexpression of wild-type alpha(1B)-adrenergic receptors (alpha(1B)-AR) in mice predisposes to dilated cardiomyopathy and sudden death. Although alpha-adrenergic stimulation is thought to contribute to induction of arrhythmias in heart failure, the electrophysiological consequences of chronic alpha(1)-adrenergic activation have not been clearly defined. Thus we characterized ventricular repolarization and monitored incidence of spontaneous arrhythmias in end-stage heart failure alpha(1B)-AR mice (9-12 mo) and younger alpha(1B)-AR mice (2-3 mo) that do not present signs of heart failure. Compared with aged-matched controls, the corrected QT interval was 34% longer in the 9- to 12-mo alpha(1B)-AR mice, and the action potential durations were also significantly prolonged in these mice. These changes were associated with a decrease in the density of the outward K(+) currents, Ca(2+)-independent transient, ultrarapid delayed rectifier, and steady state (at +30 mV, reduction of 68, 64, and 41%, respectively), and underlying K(+) channel expression. Electrocardiogram (ECG) recordings revealed that older alpha(1B)-AR mice exhibited spontaneous ventricular arrhythmias. The alterations in repolarization can contribute to these rhythm abnormalities and are likely caused by chronic alpha(1B)-AR activity. Additional data obtained in 2- to 3-mo alpha(1B)-AR mice clearly showed that electrical remodeling was already observed in younger transgenic animals. However, it appeared to be slightly less pronounced than in older mice. These results suggest that there are two waves of remodeling: one due to chronic alpha(1B)-AR activity, and a second due to heart failure. Taken together, these data provide strong evidence for a pathological role of chronic alpha(1B)-AR activity in the development of repolarization defects and ventricular arrhythmias.
Collapse
Affiliation(s)
- Katy Rivard
- Research Center, Montreal Heart Institute, 5000 Bélanger, Montréal, Québec, Canada H1T 1C8
| | | | | | | |
Collapse
|
83
|
Chiu G, Connolly PJ, Middleton SA, Li S, Pulito V, Liu J, Baxter EW, Reitz AB. α1a/1d-selective adrenergic receptor antagonists for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543770802571659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
84
|
Jensen BC, Swigart PM, Simpson PC. Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:409-12. [PMID: 18989658 DOI: 10.1007/s00210-008-0368-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 10/17/2008] [Indexed: 12/25/2022]
Abstract
Commercial antibodies are used widely to quantify and localize the alpha1-adrenergic receptor (AR) subtypes, alpha1A, alpha1B, and alpha1D. We tested ten antibodies, from abcam and Santa Cruz, using western blot with heart and brain tissue from wild-type (WT) mice and mice with systemic knockout (KO) of one or all three subtypes. We found that none of the antibodies detected a band in WT that was absent in the appropriate KO or in the KO that was null for all alpha1-ARs (ABDKO). We conclude that the antibodies we tested are not specific for alpha1-ARs. These results raise caution with prior studies using these reagents. For now, competition radioligand binding is the only reliable approach to quantify the alpha1-AR subtype proteins. Receptor protein localization remains a challenge.
Collapse
Affiliation(s)
- Brian C Jensen
- Cardiology Section and Research Service, San Francisco VA Medical Center (111-C-8), 4150 Clement St., San Francisco, CA 94121, USA
| | | | | |
Collapse
|
85
|
Muramatsu I, Morishima S, Suzuki F, Yoshiki H, Anisuzzaman ASM, Tanaka T, Rodrigo MC, Myagmar BE, Simpson PC. Identification of alpha 1L-adrenoceptor in mice and its abolition by alpha 1A-adrenoceptor gene knockout. Br J Pharmacol 2008; 155:1224-34. [PMID: 18806813 DOI: 10.1038/bjp.2008.360] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The alpha(1L)-adrenoceptor has pharmacological properties that distinguish it from three classical alpha(1)-adrenoceptors (alpha(1A), alpha(1B) and alpha(1D)). The purpose of this was to identify alpha(1L)-adrenoceptors in mice and to examine their relationship to classical alpha(1)-adrenoceptors. EXPERIMENTAL APPROACH Radioligand binding and functional bioassay experiments were performed on the cerebral cortex, vas deferens and prostate of wild-type (WT) and alpha(1A)-, alpha(1B)- and alpha(1D)-adrenoceptor gene knockout (AKO, BKO and DKO) mice. KEY RESULTS The radioligand [(3)H]-silodosin bound to intact segments of the cerebral cortex, vas deferens and prostate of WT, BKO and DKO but not of AKO mice. The binding sites were composed of two components with high and low affinities for prazosin or RS-17053, indicating the pharmacological profiles of alpha(1A)-adrenoceptors and alpha(1L)-adrenoceptors. In membrane preparations of WT mouse cortex, however, [(3)H]-silodosin bound to a single population of prazosin high-affinity sites, suggesting the presence of alpha(1A)-adrenoceptors alone. In contrast, [(3)H]-prazosin bound to two components having alpha(1A)-adrenoceptor and alpha(1B)-adrenoceptor profiles in intact segments of WT and DKO mouse cortices, but AKO mice lacked alpha(1A)-adrenoceptor profiles and BKO mice lacked alpha(1B)-adrenoceptor profiles. Noradrenaline produced contractions through alpha(1L)-adrenoceptors with low affinity for prazosin in the vas deferens and prostate of WT, BKO and DKO mice. However, the contractions were abolished or markedly attenuated in AKO mice. CONCLUSIONS AND IMPLICATIONS alpha(1L)-Adrenoceptors were identified as binding and functional entities in WT, BKO and DKO mice but not in AKO mice, suggesting that the alpha(1L)-adrenoceptor is one phenotype derived from the alpha(1A)-adrenoceptor gene.
Collapse
Affiliation(s)
- I Muramatsu
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, University of Fukui School of Medicine, Eiheiji, Fukui, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Lyssand JS, DeFino MC, Tang XB, Hertz AL, Feller DB, Wacker JL, Adams ME, Hague C. Blood pressure is regulated by an alpha1D-adrenergic receptor/dystrophin signalosome. J Biol Chem 2008; 283:18792-800. [PMID: 18468998 DOI: 10.1074/jbc.m801860200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypertension is a cardiovascular disease associated with increased plasma catecholamines, overactivation of the sympathetic nervous system, and increased vascular tone and total peripheral resistance. A key regulator of sympathetic nervous system function is the alpha(1D)-adrenergic receptor (AR), which belongs to the adrenergic family of G-protein-coupled receptors (GPCRs). Endogenous catecholamines norepinephrine and epinephrine activate alpha(1D)-ARs on vascular smooth muscle to stimulate vasoconstriction, which increases total peripheral resistance and mean arterial pressure. Indeed, alpha(1D)-AR KO mice display a hypotensive phenotype and are resistant to salt-induced hypertension. Unfortunately, little information exists about how this important GPCR functions because of an inability to obtain functional expression in vitro. Here, we identified the dystrophin proteins, syntrophin, dystrobrevin, and utrophin as essential GPCR-interacting proteins for alpha(1D)-ARs. We found that dystrophins complex with alpha(1D)-AR both in vitro and in vivo to ensure proper functional expression. More importantly, we demonstrate that knock-out of multiple syntrophin isoforms results in the complete loss of alpha(1D)-AR function in mouse aortic smooth muscle cells and abrogation of alpha(1D)-AR-mediated increases in blood pressure. Our findings demonstrate that syntrophin and utrophin associate with alpha(1D)-ARs to create a functional signalosome, which is essential for alpha(1D)-AR regulation of vascular tone and blood pressure.
Collapse
Affiliation(s)
- John S Lyssand
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Du XJ. DISTINCT ROLE OF ADRENOCEPTOR SUBTYPES IN CARDIAC ADAPTATION TO CHRONIC PRESSURE OVERLOAD. Clin Exp Pharmacol Physiol 2008; 35:355-60. [DOI: 10.1111/j.1440-1681.2007.04871.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
88
|
Expression of α
1
-Adrenoceptor Subtype mRNA as a Predictor of the Efficacy of Subtype Selective α
1
-Adrenoceptor Antagonists in the Management of Benign Prostatic Hyperplasia. J Urol 2008; 179:1040-6. [DOI: 10.1016/j.juro.2007.10.082] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Indexed: 11/22/2022]
|
89
|
|
90
|
Gilsbach R, Hein L. Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol 2008:261-88. [PMID: 18064417 DOI: 10.1007/978-3-540-74805-2_9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline were first described more than three decades ago. Molecular cloning has resulted in the identification of five G protein-coupled muscarinic receptors (M(1) - M(5)) which mediate the biological effects of acetylcholine. Nine adrenoceptors (alpha(1ABD),alpha(2ABC),beta(123)) transmit adrenaline/noradrenaline signals between cells. The lack of sufficiently subtype-selective ligands has prevented identification of the physiological role and therapeutic potential of these receptor subtypes for a long time. Recently, mouse lines with targeted deletions for all muscarinic and adrenoceptor genes have been generated. This review summarizes the results from these gene-targeting studies with particular emphasis on presynaptic auto- and heteroreceptor functions of muscarinic and adrenergic receptors. Specific knowledge about the function of receptor subtypes will enhance our understanding of the physiological role of the cholinergic and adrenergic nervous system and open new avenues for subtype-selective therapeutic strategies.
Collapse
Affiliation(s)
- Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | | |
Collapse
|
91
|
Tassin JP. Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse. Biochem Pharmacol 2008; 75:85-97. [PMID: 17686465 DOI: 10.1016/j.bcp.2007.06.038] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
A challenge in drug dependence is to delineate long-term behavioral and neurochemical modifications induced by drugs of abuse. In rodents, drugs of abuse induce locomotor hyperactivity, and repeating injections enhance this response. This effect, called behavioral sensitization, persists many months after the last administration, thus mimicking long-term sensitivity to drugs observed in human addicts. Although addictive properties of drugs of abuse are generally considered to be mediated by an increased release of dopamine in the ventral striatum, recent pharmacological and genetic experiments indicate an implication of alpha1b-adrenergic receptors in behavioral and rewarding responses to psychostimulants and opiates. Later on, it was shown that not only noradrenergic but also serotonergic systems, through 5-HT(2A) receptors, were controlling behavioral effects of drugs of abuse. More recently, experiments performed in animals knockout for alpha1b-adrenergic or 5-HT(2A) receptors indicated that noradrenergic and serotonergic neurons, besides their activating effects, inhibit each other by means of the stimulation of alpha1b-adrenergic and 5-HT(2A) receptors and that this mutual inhibition vanishes in wild type mice with repeated injections of psychostimulants, opiates or alcohol. Uncoupling induced by repeated treatments with drugs of abuse installs a stable sensitization of noradrenergic and serotonergic neurons, thus explaining an increased reactivity of dopaminergic neurons and behavioral sensitization. We propose that noradrenergic/serotonergic uncoupling is a common stable neurochemical consequence of repeated drugs of abuse which may also occur during chronic stressful situations and facilitate the onset of mental illness. Drug consumption would facilitate an artificial re-coupling of these neurons, thus bringing a temporary relief.
Collapse
Affiliation(s)
- Jean-Pol Tassin
- Institut National de la Santé et de la Recherche Médicale Unité 114, Centre National de la Recherche Scientifique UMR 7148, Collège de France 11, Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| |
Collapse
|
92
|
|
93
|
Chiu G, Li S, Connolly PJ, Pulito V, Liu J, Middleton SA. (Phenylpiperazinyl)cyclohexylureas: Discovery of α1a/1d-selective adrenergic receptor antagonists for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms (BPH/LUTS). Bioorg Med Chem Lett 2008; 18:640-4. [DOI: 10.1016/j.bmcl.2007.11.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 11/15/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
|
94
|
alpha(1)-Adrenoceptor antagonists prevent paracetamol-induced hepatotoxicity in mice. Br J Pharmacol 2007; 153:820-30. [PMID: 18071297 DOI: 10.1038/sj.bjp.0707620] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Paracetamol, a major cause of acute liver failure (ALF) represents a significant clinical problem. Adrenoceptor stimulation or antagonism can modulate chemical-induced hepatotoxicity. We investigated the role of endogenous catecholamines and alpha(1)-adrenoceptors in the development of paracetamol- induced hepatotoxicity. EXPERIMENTAL APPROACH Paracetamol (3.5 mmol kg(-1)) was administered to male CD-1 mice, with and without alpha(1)-adrenoceptor antagonists (prazosin, doxazosin, terazosin and tamsulosin; 35.7 micromol kg(-1)). Serum transaminases and hepatic glutathione (GSH) levels were assessed as markers of hepatic damage. Paracetamol bioactivation was assessed by covalent binding, hepatic and urinary conjugate formation and uridine glucuronosyltransferase activity. Plasma catecholamines levels and hepatic congestion were also analysed. KEY RESULTS Plasma catecholamine levels were significantly elevated 5 h post paracetamol administration. Prazosin prevented hepatotoxicity when administered 1 h before a toxic paracetamol insult and importantly, when administered up to 1 h post paracetamol injection. Prazosin had no effect on paracetamol-induced depletion of hepatic GSH, paracetamol bioactivation or paracetamol-induced transcription of defence genes. Paracetamol toxicity is associated with marked accumulation of erythrocytes within hepatic sinusoids and prazosin completely prevented this accumulation. CONCLUSION AND IMPLICATIONS Paracetamol-induced hepatocellular damage is associated with increased circulating catecholamines. alpha(1)-Adrenoceptor antagonists conferred complete protection from paracetamol -induced hepatotoxicity. Protection was associated with absence of hepatic erythrocyte accumulation. Increased catecholamine levels may contribute to the pathophysiology of paracetamol-induced hepatotoxicity by compromising hepatic perfusion. Protection against paracetamol toxicity by alpha(1) antagonists in mice has implications for therapeutic management of patients presenting with paracetamol overdose and ALF.
Collapse
|
95
|
Chiu G, Li S, Cai H, Connolly PJ, Peng S, Stauber K, Pulito V, Liu J, Middleton SA. Aminocyclohexylsulfonamides: Discovery of metabolically stable α1a/1d-selective adrenergic receptor antagonists for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms (BPH/LUTS). Bioorg Med Chem Lett 2007; 17:6123-8. [PMID: 17904840 DOI: 10.1016/j.bmcl.2007.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 09/09/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
Benign prostatic hyperplasia/lower urinary tract symptoms (BPH/LUTS) can be effectively treated by alpha(1) adrenergic receptor antagonists, but these drugs also produce side effects that are related to their subtype non-selective nature. To overcome this limitation, it was hypothesized that an alpha(1a/1d) subtype-selective antagonist would be efficacious while keeping side effects to a minimum. To discover alpha(1a/1d)-selective antagonists and improve metabolic stability of our previously reported compounds, we have designed and synthesized a series of (phenylpiperazinyl)- or (phenylpiperidinyl)-cyclohexylsulfonamides. By incorporating the information obtained from metabolism studies, we were able to discover several compounds that are both alpha(1a/1d) adrenoceptor subtype selective and show increased stability toward human liver microsomal metabolism. The selectivity profile of these compounds provides great improvement over the commercial drug tamsulosin, hence may pave the way to the development of new and efficacious therapeutic agents with reduced side effects.
Collapse
Affiliation(s)
- George Chiu
- Johnson & Johnson Pharmaceutical Research and Development L.L.C., PO Box 300, 1000 Route 202 South, Raritan, NJ 08869, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Martínez-Salas SG, Campos-Peralta JM, Pares-Hipolito J, Gallardo-Ortíz IA, Ibarra M, Villalobos-Molina R. Alpha1A-adrenoceptors predominate in the control of blood pressure in mouse mesenteric vascular bed. ACTA ACUST UNITED AC 2007; 27:137-42. [PMID: 17584443 DOI: 10.1111/j.1474-8673.2007.00403.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1 The pressor action of the alpha1A-adrenoceptor agonist, A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl] methanesulfonamide) or the alpha1-adrenoceptor agonist phenylephrine, and their blockade by selective alpha1-adrenoceptor antagonists in the mouse isolated mesenteric vascular bed were evaluated. 2 A61603 showed a approximately 235-fold higher potency in elevating perfusion pressure in mesenteric bed compared to phenylephrine. 3 The alpha1A-adrenoceptor selective antagonist RS 100329 (5-methyl-3-[3-[4-[2-(2,2,2,-trifluoroethoxy) phenyl]-1-piperazinyl] propyl]-2,4-(1H)-pyrimidinedione), displaced with high affinity agonist concentration-response curves to the right in a concentration-dependent manner. 4 The alpha1D-adrenoceptor selective antagonist BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5] decane-7,9-dione), did not displace A61603 nor did it block the phenylephrine-induced pressor response. 5 The alpha1B/D-adrenoceptor alkylating antagonist chloroethylclonidine (CEC), caused a rightward shift of the phenylephrine concentration-response curve and reduced its maximum response; however, CEC only slightly modified A61603 evoked contraction. 6 The results indicate that the isolated mouse mesenteric vascular bed expresses alpha1A-adrenoceptors and suggest a very discrete role for 1B-adrenoceptors.
Collapse
Affiliation(s)
- S G Martínez-Salas
- Escuela Militar de Graduados de Sanidad, Universidad del Ejército y Fuerza Aérea, Secretaría de la Defensa Nacional, México, D.F
| | | | | | | | | | | |
Collapse
|
97
|
Salomon L, Lanteri C, Godeheu G, Blanc G, Gingrich J, Tassin JP. Paradoxical constitutive behavioral sensitization to amphetamine in mice lacking 5-HT2A receptors. Psychopharmacology (Berl) 2007; 194:11-20. [PMID: 17510759 DOI: 10.1007/s00213-007-0810-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Although locomotor response to d-amphetamine is considered as mediated by an increased release of dopamine in the ventral striatum, blockade of either alpha1b-adrenergic or 5-HT2A receptors almost completely inhibits d-amphetamine-induced locomotor response in mice. In agreement with this finding, mice lacking alpha1b-adrenergic receptors hardly respond to d-amphetamine. However, we show here that, paradoxically, mice lacking 5-HT2A receptors (5-HT2A-R KO) exhibit a twofold higher locomotor response to d-amphetamine than wild-type (WT) littermates. OBJECTIVES To explore why there is a discrepancy between pharmacological and genetic 5-HT2A receptor blockade. MATERIALS AND METHODS Locomotor response and behavioral sensitization to d-amphetamine were measured in presence of prazosin and/or SR46349B, alpha1b-adrenergic, and 5-HT2A receptor antagonists, respectively. RESULTS Repeating amphetamine injections still increases 5-HT2A-R KO mice locomotor response to d-amphetamine at a level similar to that of sensitized WT mice. SR46349B (1 mg/kg) has, as expected, no effect in 5-HT2A-R KO mice. One milligrams per kilogram of prazosin completely blocks d-amphetamine-induced locomotor response in 5-HT2A-R KO naïve animals but 3 mg/kg is necessary in sensitized 5-HT2A-R KO mice. CONCLUSIONS Because naïve 5-HT2A-R KO mice exhibit an increased cortical noradrenergic response to d-amphetamine, our data suggest that repeated d-amphetamine modifies noradrenergic transmission in 5-HT2A-R KO mice. Stimulation of specific 5-HT2A receptors would inhibit noradrenergic neurons. Dramatic decrease in SR46349B efficiency in sensitized WT mice indicates that a disruption of the regulating role of 5-HT2A receptors on noradrenergic transmission occurs during sensitization and thus represents the physiological basis of behavioral sensitization to d-amphetamine.
Collapse
MESH Headings
- Adrenergic alpha-1 Receptor Antagonists
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Central Nervous System Stimulants/pharmacology
- Dextroamphetamine/pharmacology
- Dose-Response Relationship, Drug
- Fluorobenzenes/pharmacology
- Histamine H2 Antagonists/pharmacology
- Mice
- Mice, Knockout
- Motor Activity/drug effects
- Motor Activity/physiology
- Phenols/pharmacology
- Prazosin/pharmacology
- Receptor, Serotonin, 5-HT2A/deficiency
- Receptor, Serotonin, 5-HT2A/genetics
- Receptor, Serotonin, 5-HT2A/physiology
Collapse
Affiliation(s)
- Lucas Salomon
- CNRS UMR 7148, Collège de France, 11, Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
98
|
Tassin JP, Torrens Y, Salomon L, Lanteri C, Seeman P. Elevated dopamine D2High receptors in alpha-1b-adrenoceptor knockout supersensitive mice. Synapse 2007; 61:569-72. [PMID: 17447259 DOI: 10.1002/syn.20401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although amphetamine induces hyperactivity by releasing dopamine (DA), mice that lack alpha1b-adrenoceptors do not release DA in response to amphetamine and do not, therefore, exhibit locomotor supersensitivity to amphetamine. However, such mice reveal hyperlocomotion to p-chloroamphetamine (PCA). Because these alpha1b-adrenoceptor knockout mice have no alterations in the striatal densities of DA D1 or D2 receptors, the basis for any possible dopaminergic contribution to the PCA-induced hyperlocomotion to PCA is unclear. Therefore, because supersensitive animals are generally known to have a higher proportion of DA D2 receptors in the high-affinity state for DA D2(High), we investigated whether there was any change in the alpha1b-adrenoceptor knockout striata in the proportion of DA D2(High) receptors to determine whether there could be a DA-based contribution to the PCA-induced hyperlocomotion. We found that the proportion of D2(High) in the wild type striata was 23 +/- 3.3%, whereas that in the alpha1b-adrenoceptor knockout striata was 52 +/- 2.9%, an increase of 2.3-fold. This elevation agrees with other types of DA-supersensitive animal striata and could assist in eliciting a supersensitive response in these alpha1b-adrenoceptor knockout mice.
Collapse
Affiliation(s)
- Jean-Pol Tassin
- Institut National de la Santé et de la Recherche Médicale Unité 114 et Centre National de la Recherche Scientifique UMR7148, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
99
|
Sanbe A, Tanaka Y, Fujiwara Y, Tsumura H, Yamauchi J, Cotecchia S, Koike K, Tsujimoto G, Tanoue A. Alpha1-adrenoceptors are required for normal male sexual function. Br J Pharmacol 2007; 152:332-40. [PMID: 17603545 PMCID: PMC2042949 DOI: 10.1038/sj.bjp.0707366] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Alpha(1)-adrenoceptor antagonists are extensively used in the treatment of hypertension and lower urinary tract symptoms associated with benign prostatic hyperplasia. Among the side effects, ejaculatory dysfunction occurs more frequently with drugs that are relatively selective for alpha(1A)-adrenoceptors compared with other drugs of this class. This suggests that alpha(1A)-adrenoceptors may contribute to ejaculation. However, this has not been studied at the molecular level. EXPERIMENTAL APPROACH The physiological contribution of each alpha(1)-adrenoceptor subtype was characterized using alpha(1)-adrenoceptor subtype-selective knockout (KO) mice (alpha(1A)-, alpha(1B)- and alpha(1D)-AR KO mice) since the subtype-specific drugs available are only moderately selective. We analysed the role of alpha(1)-adrenoceptors in the blood pressure and vascular response as well as ejaculation by determining these variables in alpha(1)-adrenoceptor subtype-selective KO mice and in mice with all their alpha(1)-adrenoceptor subtypes deleted (alpha(1)-AR triple-KO mice). KEY RESULTS The pregnancy rate was reduced by 50% in alpha(1A)-adrenoceptor KO mice, and this reduction was dramatically enhanced in alpha(1)-adrenoceptor triple-KO mice. Contractile tension of the vas deferens in response to noradrenaline was markedly decreased in alpha(1A)-adrenoceptor KO mice, and this contraction was completely abolished in alpha(1)-adrenoceptor triple-KO mice. This attenuation of contractility was also observed in the electrically stimulated vas deferens. CONCLUSIONS AND IMPLICATIONS These results demonstrate that alpha(1)-adrenoceptors, particularly alpha(1A)-adrenoceptors, are required for normal contractility of the vas deferens and consequent sperm ejaculation as well as having a function in fertility.
Collapse
Affiliation(s)
- A Sanbe
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Chiu G, Li S, Connolly PJ, Pulito V, Liu J, Middleton SA. (Phenylpiperidinyl)cyclohexylsulfonamides: Development of α1a/1d-selective adrenergic receptor antagonists for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms (BPH/LUTS). Bioorg Med Chem Lett 2007; 17:3930-4. [PMID: 17517507 DOI: 10.1016/j.bmcl.2007.04.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/27/2007] [Accepted: 04/30/2007] [Indexed: 11/28/2022]
Abstract
Although alpha(1) adrenergic receptor blockers can be very effective for the treatment of benign prostatic hyperplasia/lower urinary tract symptoms (BPH/LUTS), their usage is limited by CV-related side-effects that are caused by the subtype non-selective nature of the current drugs. To overcome this problem, it was hypothesized that a alpha(1a/1d) subtype selective antagonist would bring more benefit for the therapy of BPH/LUTS. In developing such selective alpha(1a/1d) ligands, a series of (phenylpiperidinyl)cyclohexylsulfonamides has been synthesized and evaluated for binding to three cloned human alpha(1)-adrenergic receptor subtypes. Many compounds showed equal affinity for both alpha(1a) and alpha(1d) subtypes with good selectivity versus the alpha(1b) subtype.
Collapse
Affiliation(s)
- George Chiu
- Johnson & Johnson Pharmaceutical Research and Development L.L.C., PO Box 300, 1000 Route 202 South, Raritan, NJ 08869, USA.
| | | | | | | | | | | |
Collapse
|