51
|
Abdel Aziz MT, Mostafa T, Atta H, Wassef MA, Fouad HH, Rashed LA, Sabry D. Putative role of carbon monoxide signaling pathway in penile erectile function. J Sex Med 2009; 6:49-60. [PMID: 19170836 DOI: 10.1111/j.1743-6109.2008.01050.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Erectile response depends on nitric oxide (NO) generated by NO synthase (NOS) enzyme of the nerves and vascular endothelium in the cavernous tissue. NO activates soluble guanylate cyclase (sGC), leading to the production of cyclic guanosine monophosphate (cGMP). cGMP activates cGMP-dependent protein kinase that activates Ca(2+)/ATPase pump that activates Ca(2+)/K efflux pump extruding Ca(2+) across the plasma membrane with consequent smooth muscle cell relaxation. A role similar to that of NOS/NO signaling has been postulated for carbon monoxide (CO) produced in mammals from heme catabolism by heme oxygenase (HO) enzyme. AIM To assess CO signaling pathway for erectile function by reviewing published studies. METHODS A systematic review of published studies on this affair based on Pubmed and Medical Subject Heading databases, with search for all concerned articles. MAIN OUTCOME MEASURES Documentation of positive as well as negative criteria of CO/HO signaling focused on penile tissue. RESULTS The concept that HO-derived CO could play a role in mediating erectile function acting in synergism with, or as a potentiator for, NOS/NO signaling pathway is gaining momentum. CO/HO signaling pathway has been shown to partially mediate the actions of oral phosphodiesterase type 5 inhibitors. In addition, it was shown that the use of CO releasing molecules potentiated cavernous cGMP levels. However, increased CO production or release was reported to be associated, in some studies, with vasoconstriction. CONCLUSION This review sheds a light on the significance of cavernous tissue CO signaling pathway that may pave the way for creation of therapeutic modalities based on this pathway.
Collapse
|
52
|
Cho YK, Yun JW, Park JH, Kim HJ, Park DI, Sohn CI, Jeon WK, Kim BI, Jin W, Kwon YH, Shin MK, Yoo TM, Kang JH, Park CS. Deleterious effects of silymarin on the expression of genes controlling endothelial nitric oxide synthase activity in carbon tetrachloride-treated rat livers. Life Sci 2009; 85:281-90. [PMID: 19527736 DOI: 10.1016/j.lfs.2009.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/18/2009] [Accepted: 06/03/2009] [Indexed: 01/09/2023]
Abstract
AIMS Defects in intrahepatic nitric oxide (NO) are attributed to reduced blood flow due to portal hypertension caused by diminished endothelial NO synthase (eNOS) activity. The aim of this study is to identify the therapeutic effects of silymarin on eNOS/NO-related enzymes and hepatic enzymes in carbon tetrachloride (CCl4)-induced cirrhotic rats. MAIN METHODS CCl4 treated for 12 weeks was discontinued and then administrated with silymarin daily for 4 weeks. Collagen concentrations were determined by measuring hydroxyproline content. Serum was assayed for hepatic enzymes like alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities. NOS activities were measured by oxyhemoglobin oxidation assay, and levels of enzyme expression and phosphorylation were detected by Western-blot analyses. KEY FINDINGS Silymarin treatment restored the values for collagen content and ALT and ALP activities when compared to the values with spontaneous resolution following discontinuation of CCl4. CCl4 treatment highly increased eNOS expression and NOS activity in livers, but the phosphorylation was markedly decreased. Silymarin decreased significantly eNOS expression and activity. Expression and/or phosphorylation of enzymes activating eNOS were unchanged (Akt and AMPK) or decreased (PKA) by silymarin. Especially, the expression of caveolin-1, an inhibitor of eNOS was unchanged by CCl4, but its phosphorylation was significantly increased. However, silymarin markedly increased caveolin-1 expression but decreased its phosphorylation to expression. SIGNIFICANCE These results suggest that chronic silymarin treatment can improve cirrhosis-induced liver enzyme activities and fibrosis, but may aggravate the hemodynamic eNOS activity, particularly by decreasing eNOS expression and increasing caveolin-1 expression.
Collapse
Affiliation(s)
- Yong Kyun Cho
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 110-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Tuning heavy metal compounds for anti-tumor activity: is diversity the key to ruthenium’s success? Future Med Chem 2009; 1:541-59. [DOI: 10.4155/fmc.09.25] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review aims to bring the reader up to date with the more recent ruthenium compounds that have been synthesized and tested for their cytotoxicity. The chemistry of these transition metal complexes will be introduced and the basic principles that govern their common behavior outlined. The recent history of established compounds within this field will be presented alongside those that now represent the cutting-edge. The inherent variety within this class of compounds will lead the reader to appreciate their diversity and pose questions as to their similarities aside from the presence of a shared metal ion. This review aims to discuss and contextualize the state-of-the-art research within the context of the speculative advancement of this developing field. There is an evident need to specify the molecular and cellular targets of these drug molecules in order to ultimately elucidate their mode or modes of action. The evidence presented herein suggests that new avenues of research require novel analytical probes and methods for tracing the fate of ruthenium complexes in cells in order to understand their very promising cytotoxic activity.
Collapse
|
54
|
Abstract
Nitric oxide is well established as a major signaling molecule. Evidence is accumulating that carbon monoxide and hydrogen sulfide also are physiologic mediators in the cardiovascular, immune, and nervous systems. This Review focuses on mechanisms whereby they signal by binding to metal centers in metalloproteins, such as in guanylyl cyclase, or modifying sulfhydryl groups in protein targets.
Collapse
Affiliation(s)
- Asif K. Mustafa
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Moataz M. Gadalla
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
55
|
Shamloul R. REVIEWS: The Potential Role of the Heme Oxygenase/Carbon Monoxide System in Male Sexual Dysfunctions. J Sex Med 2009; 6:324-33. [DOI: 10.1111/j.1743-6109.2008.01068.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
56
|
Huber Iii WJ, Scruggs BA, Backes WL. C-Terminal membrane spanning region of human heme oxygenase-1 mediates a time-dependent complex formation with cytochrome P450 reductase. Biochemistry 2009; 48:190-7. [PMID: 19123922 DOI: 10.1021/bi801912z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyzes the oxidative degradation of heme to biliverdin, carbon monoxide, and free iron in a reaction requiring the interaction of HO-1 with NADPH-cytochrome P450 reductase (CPR). HO-1 is bound to the endoplasmic reticulum by 23 C-terminal amino acids; however, a soluble HO-1 (sHO-1) lacking this membrane spanning region has been extensively studied. The goal of this project was to characterize the effect of the C-terminal hydrophobic domain on formation of the HO-1/CPR complex. Full-length HO-1 was shown to exhibit higher reaction rates than sHO-1, particularly at subsaturating CPR, indicating that the C-terminal region influences HO-1 binding to CPR. The increased activity of HO-1 was attributable to a time-dependent formation of a low K(m) HO-1/CPR complex that was not seen with sHO1. Gel filtration analysis confirmed the formation of multiple high molecular weight complexes in the presence and absence of the synthetic lipid dilauroylphosphatidylcholine (DLPC). However, the largest complex appeared following a 2 h incubation of HO-1 and CPR in DLPC, suggesting that the C-terminal region was required for the high-affinity HO-1/CPR complex formation and membrane incorporation. These data demonstrate that the C-terminal region of HO-1 influenced complex formation and ultimately its affinity for CPR.
Collapse
Affiliation(s)
- Warren J Huber Iii
- Department of Pharmacology and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, Louisiana 70112
| | | | | |
Collapse
|
57
|
Kinobe RT, Dercho RA, Nakatsu K. Inhibitors of the heme oxygenase - carbon monoxide system: on the doorstep of the clinic? Can J Physiol Pharmacol 2008; 86:577-99. [PMID: 18758507 DOI: 10.1139/y08-066] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has seen substantial developments in our understanding of the physiology, pathology, and pharmacology of heme oxygenases (HO), to the point that investigators in the field are beginning to contemplate therapies based on administration of HO agonists or HO inhibitors. A significant amount of our current knowledge is based on the judicious application of metalloporphyrin inhibitors of HO, despite their limitations of selectivity. Recently, imidazole-based compounds have been identified as potent and more selective HO inhibitors. This 'next generation' of HO inhibitors offers a number of desirable characteristics, including isozyme selectivity, negligible effects on HO protein expression, and physicochemical properties favourable for in vivo distribution. Some of the applications of HO inhibitors that have been suggested are treatment of hyperbilirubinemia, neurodegenerative disorders, certain types of cancer, and bacterial and fungal infections. In this review, we address various approaches to altering HO activity with a focus on the potential applications of second-generation inhibitors of HO.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology and Toxicology, Queen's University, Kingston, ON Canada
| | | | | |
Collapse
|
58
|
Cui L, Yoshioka Y, Suyari O, Kohno Y, Zhang X, Adachi Y, Ikehara S, Yoshida T, Yamaguchi M, Taketani S. Relevant expression of Drosophila heme oxygenase is necessary for the normal development of insect tissues. Biochem Biophys Res Commun 2008; 377:1156-61. [PMID: 18983822 DOI: 10.1016/j.bbrc.2008.10.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 10/22/2008] [Indexed: 11/17/2022]
Abstract
Heme oxygenase (HO) is a rate-limiting step of heme degradation, which catalyzes the conversion of heme into biliverdin, iron, and CO. HO has been characterized in micro-organisms, insects, plants, and mammals. The mammalian enzyme participates in adaptive and protective responses to oxidative stress and various inflammatory stimuli. The present study reports the use of RNA-interference (RNAi) to suppress HO in the multicellular eukaryote Drosophila. Eye imaginal disc-specific suppression of the Drosophila HO homolog (dHO) conferred serious abnormal eye morphology in adults. Deficiency of the dHO protein resulted in increased levels of iron and heme in larvae. The accumulation of iron was also observed in the compound eyes of dHO-knockdown adult flies. In parallel with the decrease of dHO, the expression of delta-aminolevulinic acid synthase, the first enzyme of the heme-biosynthetic pathway, in larvae was decreased markedly, suggesting that heme biosynthesis was totally suppressed by dHO-deficiency. The activation of caspase-3 occurred in eye imaginal discs of dHO-knockdown flies, indicating the occurrence of apoptosis in the discs. On the other hand, the overexpression of dHO resulted in a weak but significant rough eye phenotype in adults. Taken together, considering that dHO is not a stress-inducible protein, the expression of dHO can be tightly regulated at developmental stages and the relevant expression is necessary for the normal development of tissues in Drosophila.
Collapse
Affiliation(s)
- Lihua Cui
- Department of Biotechnology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Piepoli AL, de Salvatore G, Lemoli M, de Benedictis L, Mitolo-Chieppa D, de Salvia MA. Modulation of heme oxygenase/carbon monoxide system affects the inhibitory neurotransmission involved in gastrointestinal motility of streptozotocin-treated diabetic rats. Neurogastroenterol Motil 2008; 20:1251-62. [PMID: 19019021 DOI: 10.1111/j.1365-2982.2008.01193.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alterations in gastrointestinal motility of diabetic patients have been linked to degenerative changes induced by glucose abnormalities in the peripheral nervous system. The heme oxygenase/carbon monoxide (HO/CO) signalling represents one of the non-adrenergic/non-cholinergic (NANC) neurotransmission pathways involved in regulation of physiological peristalsis. To investigate the role of HO/CO system in intestinal motility under diabetic conditions, the response to electrical field stimulation (EFS) and western blot analysis of HO/CO pathway components were studied on duodenum longitudinal smooth muscle strips isolated from streptozotocin (STZ)-treated diabetic rats (65 mg kg(-1), i.p.) and respective controls (CTRL), 6 weeks after the onset of diabetes. When compared to CTRL, the ability of CO releasing molecule (CORM-3) (100-400 micromol L(-1)) to enhance NANC relaxation was significantly impaired in STZ-treated rats (P < 0.05). Conversely, in vitro incubation with the HO inhibitor ZnPPIX (10 micromol L(-1), 60 min) significantly reduced EFS-induced relaxation in CTRL (P < 0.05), but not in STZ-treated rats. Interestingly, the ability of ZnPPIX to inhibit EFS-induced relaxation was partially restored in STZ-treated rats co-administered in vivo with the HO-1 inducer cobalt protoporphyrin IX (CoPPIX) (0.5 mg per 100 g body weight weekly). Expression of inducible HO-1 protein was increased in homogenates from STZ-treated rats (vs CTRL, P < 0.01), and further increased in STZ-treated rats receiving CoPPIX (P < 0.05). Taken together, our data underline the essential role of HO/CO system in regulation of inhibitory NANC neurotransmission in the duodenum and suggest that dysregulation of HO/CO activity may represent one mechanism by which gastrointestinal motility is altered in diabetes.
Collapse
Affiliation(s)
- A L Piepoli
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
60
|
Bellner L, Vitto M, Patil KA, Dunn MW, Regan R, Laniado-Schwartzman M. Exacerbated corneal inflammation and neovascularization in the HO-2 null mice is ameliorated by biliverdin. Exp Eye Res 2008; 87:268-78. [PMID: 18602389 DOI: 10.1016/j.exer.2008.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/16/2022]
Abstract
Heme oxygenase (HO-1 and HO-2) represents an intrinsic cytoprotective and anti-inflammatory system based on its ability to modulate leukocyte migration and to inhibit expression of inflammatory cytokines and proteins. HO-2 deletion leads to unresolved corneal inflammation and chronic inflammatory complications including ulceration, perforation and neovascularization. We examined the consequences of HO-2 deletion on hemangiogenesis and lymphangiogenesis in the model of suture-induced inflammatory neovascularization. An 8.0 silk suture was placed at the corneal apex of wild type and HO-2 null mice. Neovascularization was assessed by vital microscopy and quantified by image analysis. Hemangiogenesis and lymphangiogenesis were determined by immunofluorescence staining using anti-CD31 and anti-LYVE-1 antibodies, respectively. Inflammation was quantified by histology and myeloperoxidase activity. The levels of HO-1 expression and inflammatory cytokines were determined by real time PCR and ELISA, respectively. Corneal sutures produced a consistent inflammatory response and a time-dependent neovascularization. The response in HO-2 null mice was associated with a greater increase compared to the wild type in the number of leukocytes (827,600+/-129,000 vs. 294,500+/-57,510; p<0.05), neovessels measured by vital microscopy (21.91+/-1.05 vs. 12.77+/-1.55 mm; p<0.001) 4 days after suture placement. Hemangiogenesis but not lymphangiogenesis was more pronounced in HO-2 null mice compared to wild type mice. Induction of HO-1 in sutured corneas was greatly attenuated in HO-2 null corneas and treatment with biliverdin diminished the exaggerated inflammatory and neovascular response in HO-2 null mice. The demonstration that the inflammatory responses, including expression of proinflammatory proteins, inflammatory cell influx and hemangiogenesis are exaggerated in HO-2 knockout mice strongly supports the notion that the HO system is critical for controlling the inflammatory and neovascular response in the cornea. Hence, pharmacological amplification of this system may constitute a novel therapeutic strategy for the treatment of corneal disorders associated with excessive inflammation and neovascularization.
Collapse
Affiliation(s)
- Lars Bellner
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
61
|
De Backer O, Lefebvre RA. Investigation of a possible interaction between the heme oxygenase/biliverdin reductase and nitric oxide synthase pathway in murine gastric fundus and jejunum. Eur J Pharmacol 2008; 590:369-76. [PMID: 18603239 DOI: 10.1016/j.ejphar.2008.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/16/2008] [Accepted: 06/02/2008] [Indexed: 11/25/2022]
Abstract
This study investigated the possible interaction between the heme oxygenase (HO)/biliverdin reductase (BVR) and nitric oxide synthase (NOS) pathway in murine gastric fundus and jejunum, since previous studies have shown that both HO-2 and BVR are expressed in interstitial cells of Cajal (ICCs) and co-localized with neuronal NOS in a large proportion of myenteric neurons along the gastrointestinal tract. Neither HO inhibition by chromium mesoporphyrin (CrMP) nor co-incubation with CO or biliverdin/bilirubin affected nitrergic neurotransmission - i.e. relaxations induced by non-adrenergic non-cholinergic (NANC) nerve stimulation or exogenous NO - under normal physiological conditions. However, biliverdin/bilirubin reversed the inhibitory effect of the superoxide generator LY83583 on exogenous NO-induced relaxations in both tissues. When gastric fundus muscle strips were depleted of the endogenous antioxidant Cu/Zn superoxide dismutase (SOD) by the Cu-chelator DETCA, electrically induced NANC relaxations were also affected by LY82583; however, biliverdin/bilirubin could not substitute for the loss of Cu/Zn SOD when this specific antioxidant enzyme was depleted. In jejunal muscle strips, the combination DETCA plus LY83583 nearly abolished contractile phasic activity and, hence, did not allow studying nitrergic relaxation in these experimental conditions. In conclusion, this study does not establish a role for HO/CO in inhibitory NANC neurotransmission in murine gastric fundus and jejunum under normal physiological conditions. However, the antioxidants biliverdin/bilirubin might play an important role in the protection of the nitrergic neurotransmitter against oxidative stress.
Collapse
Affiliation(s)
- Ole De Backer
- Heymans Institute of Pharmacology, Ghent University, Ghent, Belgium
| | | |
Collapse
|
62
|
de Backer O, Blanckaert B, Leybaert L, Lefebvre RA. A novel method for the evaluation of intestinal transit and contractility in mice using fluorescence imaging and spatiotemporal motility mapping. Neurogastroenterol Motil 2008; 20:700-7. [PMID: 18248582 DOI: 10.1111/j.1365-2982.2007.01073.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study introduces a novel, simplified method for the evaluation of murine intestinal transit and contractility using fluorescence and video imaging. Intestinal transit was measured by evaluating the intestinal distribution of non-absorbable fluorescein-labelled dextran (70 kDa, FD70) along the gastrointestinal (GI) tract. After excision of the GI tract, two full-field images--one in normal illumination mode and another in fluorescent mode--were taken with a charge coupled device (CCD) camera and subsequently matched for calculation of fluorescence distribution along the GI tract. Immediately after, intestinal contractility was evaluated in different regions of the intact intestine by spatiotemporal motility mapping (i.e. video imaging). In control mice, the small intestine showed vigorous oscillatory contractions and FD70 was primarily distributed within the terminal ileum/caecum at 90 min postgavage. As validation step, the effect of intestinal manipulation (IM, surgical procedure) and two pharmacological agents--known to alter GI motility--was tested. At 24 h postoperatively, spontaneous contractile activity of the small intestine was nearly abolished in IM mice, leaving the small intestine distended and resulting in a significantly delayed intestinal transit. In accordance, spontaneous mechanical activity of circular muscle strips in standard organ baths was significantly reduced in IM mice compared to control mice. Administration of atropine (1-3 mg kg(-1), i.p.) suppressed spontaneous contractile activity along the entire intestinal tract and induced a dose-related delay in intestinal transit. In contrast, metoclopramide (3-10 mg kg(-1), i.p.) markedly increased contractile activity--however only in the upper GI tract--and accelerated intestinal transit in a dose-dependent manner.
Collapse
Affiliation(s)
- O de Backer
- Heymans Institute of Pharmacology, Faculty of Medicine, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
63
|
Qin X, Kwansa H, Bucci E, Doré S, Boehning D, Shugar D, Koehler RC. Role of heme oxygenase-2 in pial arteriolar response to acetylcholine in mice with and without transfusion of cell-free hemoglobin polymers. Am J Physiol Regul Integr Comp Physiol 2008; 295:R498-504. [PMID: 18495834 DOI: 10.1152/ajpregu.00188.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon monoxide derived from heme oxygenase (HO) may participate in cerebrovascular regulation under specific circumstances. Previous work has shown that HO contributes to feline pial arteriolar dilation to acetylcholine after transfusion of a cell-free polymeric hemoglobin oxygen carrier. The role of constitutive HO2 in the pial arteriolar dilatory response to acetylcholine was determined by using 1) HO2-null mice (HO2-/-), 2) the HO inhibitor tin protoporphyrin IX (SnPPIX), and 3) 4,5,6,7-tetrabromobenzotriazole (TBB), an inhibitor of casein kinase-2 (CK2)-dependent phosphorylation of HO2. In anesthetized mice, superfusion of a cranial window with SnPPIX decreased arteriolar dilation produced by 10 microM acetylcholine by 51%. After partial polymeric hemoglobin exchange transfusion, the acetylcholine response was normal but was reduced 72% by SnPPIX and 95% by TBB. In HO2-/- mice, the acetylcholine response was modestly reduced by 14% compared with control mice and was unaffected by SnPPIX. After hemoglobin transfusion in HO2-/- mice, acetylcholine responses were also unaffected by SnPPIX and TBB. In contrast, nitric oxide synthase inhibition completely blocked the acetylcholine responses in hemoglobin-transfused HO2-/- mice. We conclude 1) that HO2 activity partially contributes to acetylcholine-induced pial arteriolar dilation in mice, 2) that this contribution is augmented in the presence of a plasma-based hemoglobin polymer and appears to depend on a CK2 kinase mechanism, 3) that nitric oxide synthase activity rather than HO1 activity contributes to the acetylcholine reactivity in HO2-/- mice, and 4) that plasma-based polymeric hemoglobin does not scavenge all of the nitric oxide generated by cerebrovascular acetylcholine stimulation.
Collapse
Affiliation(s)
- Xinyue Qin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, 600 North Wolfe St., Blalock 1404, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
64
|
Affiliation(s)
- David E Stec
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | | | |
Collapse
|
65
|
Abstract
The constitutive isoform of heme oxygenase, HO-2, is highly expressed in the brain and in cerebral vessels. HO-2 functions in the brain have been evaluated using pharmacological inhibitors of the enzyme and HO-2 gene deletion in in vivo animal models and in cultured cells (neurons, astrocytes, cerebral vascular endothelial cells). Rapid activation of HO-2 via post-translational modifications without upregulation of HO-2 expression or HO-1 induction coincides with the increase in cerebral blood flow aimed at maintaining brain homeostasis and neuronal survival during seizures, hypoxia, and hypotension. Pharmacological inhibition or gene deletion of brain HO-2 exacerbates oxidative stress induced by seizures, glutamate, and inflammatory cytokines, and causes cerebral vascular injury. Carbon monoxide (CO) and bilirubin, the end products of HO-catalyzed heme degradation, have distinct cytoprotective functions. CO, by binding to a heme prosthetic group, regulates the key components of cell signaling, including BK(Ca) channels, guanylyl cyclase, NADPH oxidase, and the mitochondria respiratory chain. Cerebral vasodilator effects of CO are mediated via activation of BK(Ca) channels and guanylyl cyclase. CO, by inhibiting the major components of endogenous oxidant-generating machinery, NADPH oxidase and the cytochrome C oxidase of the mitochondrial respiratory chain, blocks formation of reactive oxygen species. Bilirubin, via redox cycling with biliverdin, is a potent oxidant scavenger that removes preformed oxidants. Overall, HO-2 has dual housekeeping cerebroprotective functions by maintaining autoregulation of cerebral blood flow aimed at improving neuronal survival in a changing environment, and by providing an effective defense mechanism that blocks oxidant formation and prevents cell death caused by oxidative stress.
Collapse
Affiliation(s)
- Helena Parfenova
- Laboratory for Research in Neonatal Physiology, Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| | | |
Collapse
|
66
|
Abdel Aziz MT, El-Asmar MF, Mostafa T, Atta H, Fouad HH, Roshdy NK, Rashed LA, Obaia EA, Sabry DA, Abdel Aziz AT, Drummond G, Olszanecki R. Effect of hemin and carbon monoxide releasing molecule (CORM-3) on cGMP in rat penile tissue. J Sex Med 2007; 5:336-43. [PMID: 18179459 DOI: 10.1111/j.1743-6109.2007.00695.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Cyclic guanosine monophosphate (cGMP) levels can be regulated by heme oxygenase-1 and 2 (HO-1 and HO-2)-derived carbon monoxide (CO). AIMS Assessment of the effect of upregulating CO in rat corpora cavernosa (CC) on cavernous cGMP. METHODS Three experimental groups were studied: first group (N = 40), short-term HO induction over 2 weeks by injection of intraperitoneal increasing doses of hemin; the second group (N = 40) was subjected to intracavernosal injection of CO donor, CORM-3, or its inactive form (iCORM-3) over 2 weeks; the third group (N = 60) was subdivided into three subgroups: the first one received a combined hemin and CORM-3, the second one received hemin and its inhibitor stannus mesoporphyrin (SnMP), and third one received a combined hemin, CORM-3, and SnMP. MAIN OUTCOME MEASURES In CC, HO-1 and HO-2 gene expression, Northern blot and Western blot, cGMP levels, and HO enzyme activity. RESULTS In the first group, maximum induction of HO-1 gene expression, HO enzyme activity, and cGMP occurred with 4-mg hemin dose with a successive increase over 2 weeks. In the second group, CORM-3 increased cGMP by twofold compared with iCORM-3, and also increased HO-1 protein. In the third group, SnMP inhibited the enhancing effect of CORM-3 and HO on erectile signaling molecules; i.e., HO-1 gene, enzyme activity, and cGMP. CONCLUSIONS CORM-3- or hemin-mediated CO release could increase cavernous tissue cGMP.
Collapse
Affiliation(s)
- M Talaat Abdel Aziz
- Molecular Biology Unit, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Shibahara S, Han F, Li B, Takeda K. Hypoxia and heme oxygenases: oxygen sensing and regulation of expression. Antioxid Redox Signal 2007; 9:2209-25. [PMID: 17887916 DOI: 10.1089/ars.2007.1784] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heme is an essential molecule for life, as it is involved in sensing and using oxygen. Heme must be synthesized and degraded within an individual nucleated cell. Physiologic heme degradation is catalyzed by two functional isozymes of heme oxygenase, heme oxygenase-1 (HO-1) and HO-2, yielding carbon monoxide, iron, and biliverdin, an immediate precursor to bilirubin. HO-1 is an inducible enzyme, but the expression level of HO-2 is maintained in a narrow range. Characteristically, human HO-1 contains no Cys residue, whereas human HO-2 contains three Cys residues, each of which might be involved in heme binding. These features suggest separate physiologic roles of HO-1 and HO-2. Recent studies have shown that the expression levels of HO-1 and HO-2 are reduced under hypoxia, depending on the cell types. Moreover, we have proposed HO-2 as a potential O(2) sensor, because HO-2-deficient mice show hypoxemia and a blunted hypoxic ventilatory response with normal hypercapnic ventilatory response. HO-2-deficient mice also show hypertrophy of the pulmonary venous myocardium and enlargement of the carotid body. These morphometric changes are attributable to chronic hypoxemia. Here, we update the understanding of the regulation of HO-1 and HO-2 expression and summarize the regulatory role of HO-2 in the intercellular communication.
Collapse
Affiliation(s)
- Shigeki Shibahara
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | |
Collapse
|
68
|
Abdel Aziz MT, El-Asmer MF, Mostafa T, Mostafa S, Atta H, Aziz Wassef MA, Fouad H, Rashed L, Sabry D, Mahfouz S. Heme oxygenase vs. nitric oxide synthase in signaling mediating sildenafil citrate action. J Sex Med 2007; 4:1098-107. [PMID: 17627722 DOI: 10.1111/j.1743-6109.2007.00533.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Heme oxygenase (HO) enzyme catalyzes the rate limiting step in oxidative degradation of heme to biliverdin and carbon monoxide (CO). CO has been shown to share many properties with nitric oxide (NO), including activation of guanyl cyclase, signal transduction, and gene regulation. AIM To assess the signaling pathways mediating cavernous tissues response to sildenafil citrate intake experimentally. MAIN OUTCOME MEASURES In dissected cavernous tissues; detection of HO-1, HO-2 and nueronal nitric oxide synthase (nNOS) gene expressions by reverse transcriptase polymerase chain reaction (RT-PCR), HO enzyme activity assay, HO-1, HO-2 protein detection by Western blot, cyclic guanosine monophosphate (cGMP) tissue levels by enzyme linked immunosorbent assay (ELISA) and histopathology. METHODS Two hundred forty Sprague-Dawley rats divided into five equal groups were investigated: group (Gr) 1, controls received regular diet; Gr 2, received sildenafil citrate 4 mg/kg orally; Gr 3, received the same dose of sildenafil added to HO inducer, diferuloylmethane; Gr 4, received sildenafil added to HO inhibitor, zinc protoporphyrin, and Gr 5, received sildenafil kg orally by gastric tube. Gr 3 received the same dose of sildenafil added to HO inducer, added to nitric oxide synthase inhibitor, L-Nitroarginine methylester. Twelve rats from each group were sacrificed by cervical dislocation successively after 1/2, 1, 2, and 3 hours from the intake. RESULTS HO-2 gene expression was demonstrated in all groups. HO-1 was not expressed in controls, expressed in Gr 2, accentuated in Gr 3, and attenuated in Gr 4 and 5. These results were confirmed by Western blot. The nNOS was expressed in controls, increased in Gr 2 and 3, and decreased in Gr 4 and 5. HO enzyme activity and cGMP levels were significantly elevated in Gr 2, accentuated in Gr 3, and significantly decreased in Gr 4 and 5 compared to controls. Vasodilatations were observed in cavernous tissues of histopathologic sections of Gr 2 and increased in those of Gr 3. CONCLUSION Sildenafil citrate actions may be mediated by up-regulation of HO-1 gene expression.
Collapse
Affiliation(s)
- M Talaat Abdel Aziz
- Molecular Biology Unit, Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Huber WJ, Backes WL. Expression and characterization of full-length human heme oxygenase-1: the presence of intact membrane-binding region leads to increased binding affinity for NADPH cytochrome P450 reductase. Biochemistry 2007; 46:12212-9. [PMID: 17915953 DOI: 10.1021/bi701496z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase-1 (HO-1) is the chief regulatory enzyme in the oxidative degradation of heme to biliverdin. In the process of heme degradation, HO-1 receives the electrons necessary for catalysis from the flavoprotein NADPH cytochrome P450 reductase (CPR), releasing free iron and carbon monoxide. Much of the recent research involving heme oxygenase has been done using a 30 kDa soluble form of the enzyme, which lacks the membrane binding region (C-terminal 23 amino acids). The goal of this study was to express and purify a full-length human HO-1 (hHO-1) protein; however, due to the lability of the full-length form, a rapid purification procedure was required. This was accomplished by use of a glutathione-s-transferase (GST)-tagged hHO-1 construct. Although the procedure permitted the generation of a full-length HO-1, this form was contaminated with a 30 kDa degradation product that could not be eliminated. Therefore, attempts were made to remove a putative secondary thrombin cleavage site by a conservative mutation of amino acid 254, which replaces arginine with lysine. This mutation allowed the expression and purification of a full-length hHO-1 protein. Unlike wild type (WT) HO-1, the R254K mutant could be purified to a single 32 kDa protein capable of degrading heme at the same rate as the WT enzyme. The R254K full-length form had a specific activity of approximately 200-225 nmol of bilirubin h-1 nmol-1 HO-1 as compared to approximately 140-150 nmol of bilirubin h-1 nmol-1 for the WT form, which contains the 30 kDa contaminant. This is a 2-3-fold increase from the previously reported soluble 30 kDa HO-1, suggesting that the C-terminal 23 amino acids are essential for maximal catalytic activity. Because the membrane-spanning domain is present, the full-length hHO-1 has the potential to incorporate into phospholipid membranes, which can be reconstituted at known concentrations, in combination with other endoplasmic reticulum resident enzymes.
Collapse
Affiliation(s)
- Warren J Huber
- Department of Pharmacology and Experimental Therapeutics and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
70
|
De Backer O, Lefebvre RA. Mechanisms of relaxation by carbon monoxide-releasing molecule-2 in murine gastric fundus and jejunum. Eur J Pharmacol 2007; 572:197-206. [PMID: 17610869 DOI: 10.1016/j.ejphar.2007.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/31/2007] [Accepted: 06/04/2007] [Indexed: 11/30/2022]
Abstract
This study investigated the effects and mechanisms of action of carbon monoxide-releasing molecule-2 (CORM-2), compared to those of carbon monoxide (CO), in murine gastric fundus and jejunal circular smooth muscle. Functional in vitro experiments and cGMP measurements were conducted. In both tissues, CO and CORM-2 induced concentration-dependent relaxations. CO-induced relaxations were abolished by the soluble guanylyl cyclase (sGC) inhibitor ODQ, while CORM-2-evoked inhibitory responses were only partly prevented by ODQ. Relaxations elicited by CO (300 microM) were associated with a significant increase in cGMP levels, whereas for CORM-2 (300 microM) no significant increase in cGMP levels could be measured. The sGC sensitizer YC-1 was able to accelerate and potentiate both CO- and CORM-2-induced relaxations. Furthermore, the intermediate- and large-conductance Ca2+-activated K+ (IKCa-BKCa) channel blocker charybdotoxin significantly reduced CO- and CORM-2-induced relaxations in jejunal tissue; this same effect was observed with the BKCa channel blocker iberiotoxin. The combination of apamin plus charybdotoxin significantly reduced relaxations in gastric fundus and had synergistic inhibitory effects in jejunum. The NOS inhibitor L-NAME had no effect on the induced relaxations in gastric fundus, but significantly reduced CO- and CORM-2-evoked relaxations in jejunum. In conclusion, these results demonstrate that CO and CORM-2 produce relaxation in gastric fundus and jejunum via sGC and activation of KCa channels, and a nitric oxide (NO)-mediated amplification of CO signaling in jejunum is suggested.
Collapse
Affiliation(s)
- Ole De Backer
- Heymans Institute of Pharmacology, Ghent University, De Pintelaan 185, B-9000 Ghent, Belgium
| | | |
Collapse
|
71
|
Sha L, Farrugia G, Harmsen WS, Szurszewski JH. Membrane potential gradient is carbon monoxide-dependent in mouse and human small intestine. Am J Physiol Gastrointest Liver Physiol 2007; 293:G438-45. [PMID: 17510199 DOI: 10.1152/ajpgi.00037.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aims of this study were to quantify the change in resting membrane potential (RMP) across the thickness of the circular muscle layer in the mouse and human small intestine and to determine whether the gradient in RMP is dependent on the endogenous production of carbon monoxide (CO). Conventional sharp glass microelectrodes were used to record the RMPs of circular smooth muscle cells at different depths in the human small intestine and in wild-type, HO2-KO, and W/W(V) mutant mouse small intestine. In the wild-type mouse and human intestine, the RMP of circular smooth muscle cells near the myenteric plexus was -65.3 +/- 2 mV and -58.4 +/- 2 mV, respectively, and -60.1 +/- 2 mV and -49.1 +/- 1 mV, respectively, in circular smooth muscle cells at the submucosal border. Oxyhemoglobin (20 microM), a trapping agent for CO, and chromium mesoporphyrin IX, an inhibitor of heme oxygenase, abolished the transwall gradient. The RMP gradients in mouse and human small intestine were not altered by N(G)-nitro-l-arginine (200 microM). No transwall RMP gradient was found in HO2-KO mice and W/W(V) mutant mice. TTX (1 microM) and 1H-[1,2,4-]oxadiazolo[4,3-a]quinoxalin-1-one (10 microM) had no effect on the RMP gradient. These data suggest that the gradient in RMP across the thickness of the circular muscle layer of mouse and human small intestine is CO dependent.
Collapse
MESH Headings
- Animals
- Carbon Monoxide/metabolism
- Enzyme Inhibitors/pharmacology
- Guanylate Cyclase/antagonists & inhibitors
- Guanylate Cyclase/metabolism
- Heme Oxygenase (Decyclizing)/antagonists & inhibitors
- Heme Oxygenase (Decyclizing)/deficiency
- Heme Oxygenase (Decyclizing)/genetics
- Heme Oxygenase (Decyclizing)/metabolism
- Humans
- In Vitro Techniques
- Intestine, Small/drug effects
- Intestine, Small/enzymology
- Intestine, Small/metabolism
- Membrane Potentials
- Mesoporphyrins/pharmacology
- Mice
- Mice, Knockout
- Mice, Neurologic Mutants
- Muscle, Smooth/drug effects
- Muscle, Smooth/enzymology
- Muscle, Smooth/metabolism
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Nitroarginine/pharmacology
- Oxadiazoles/pharmacology
- Oxyhemoglobins/metabolism
- Quinoxalines/pharmacology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Soluble Guanylyl Cyclase
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- Lei Sha
- Enteric NeuroScience Program, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
72
|
Leu BM, Silvernail NJ, Zgierski MZ, Wyllie GRA, Ellison MK, Scheidt WR, Zhao J, Sturhahn W, Alp EE, Sage JT. Quantitative vibrational dynamics of iron in carbonyl porphyrins. Biophys J 2007; 92:3764-83. [PMID: 17350996 PMCID: PMC1868970 DOI: 10.1529/biophysj.106.093773] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 01/04/2007] [Indexed: 11/18/2022] Open
Abstract
We use nuclear resonance vibrational spectroscopy and computational predictions based on density functional theory (DFT) to explore the vibrational dynamics of (57)Fe in porphyrins that mimic the active sites of histidine-ligated heme proteins complexed with carbon monoxide. Nuclear resonance vibrational spectroscopy yields the complete vibrational spectrum of a Mössbauer isotope, and provides a valuable probe that is not only selective for protein active sites but quantifies the mean-squared amplitude and direction of the motion of the probe nucleus, in addition to vibrational frequencies. Quantitative comparison of the experimental results with DFT calculations provides a detailed, rigorous test of the vibrational predictions, which in turn provide a reliable description of the observed vibrational features. In addition to the well-studied stretching vibration of the Fe-CO bond, vibrations involving the Fe-imidazole bond, and the Fe-N(pyr) bonds to the pyrrole nitrogens of the porphyrin contribute prominently to the observed experimental signal. All of these frequencies show structural sensitivity to the corresponding bond lengths, but previous studies have failed to identify the latter vibrations, presumably because the coupling to the electronic excitation is too small in resonance Raman measurements. We also observe the FeCO bending vibrations, which are not Raman active for these unhindered model compounds. The observed Fe amplitude is strongly inconsistent with three-body oscillator descriptions of the FeCO fragment, but agrees quantitatively with DFT predictions. Over the past decade, quantum chemical calculations have suggested revised estimates of the importance of steric distortion of the bound CO in preventing poisoning of heme proteins by carbon monoxide. Quantitative agreement with the predicted frequency, amplitude, and direction of Fe motion for the FeCO bending vibrations provides direct experimental support for the quantum chemical description of the energetics of the FeCO unit.
Collapse
Affiliation(s)
- Bogdan M Leu
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
The past few decades have revealed that cell death can be precisely programmed with two principal forms, apoptosis and necrosis. Besides pathophysiological alterations, physiologic processes, such as the pruning of neurons during normal development and the involution of the thymus, involve apoptosis. This review focuses on the role of inter- and intracellular signaling systems in cell death, especially in the nervous system. Among neurotransmitters, glutamate and nitric oxide have been most extensively characterized and contribute to cell death in excitotoxic damage, especially in stroke and possibly in neurodegenerative diseases. Within cells, calcium, the most prominent of all intracellular messengers, mediates diverse forms of cell death with actions modulated by many proteins, including IP3 receptors, calcineurin, calpain, and cytochrome c.
Collapse
Affiliation(s)
- Makoto R Hara
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
74
|
Abstract
Numerous studies indicate that carbon monoxide (CO) participates in a broader range of processes than any other single molecule, ranging from subcellular to planetary scales. Despite its toxicity to many organisms, a diverse group of bacteria that span multiple phylogenetic lineages metabolize CO. These bacteria are globally distributed and include pathogens, plant symbionts and biogeochemically important lineages in soils and the oceans. New molecular and isolation techniques, as well as genome sequencing, have greatly expanded our knowledge of the diversity of CO oxidizers. Here, we present a newly emerging picture of the distribution, diversity and ecology of aerobic CO-oxidizing bacteria.
Collapse
Affiliation(s)
- Gary M King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
75
|
D'Amico G, Lam F, Hagen T, Moncada S. Inhibition of cellular respiration by endogenously produced carbon monoxide. J Cell Sci 2007; 119:2291-8. [PMID: 16723735 DOI: 10.1242/jcs.02914] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endogenously produced nitric oxide (NO) interacts with mitochondrial cytochrome c oxidase, leading to inhibition of cellular respiration. This interaction has been shown to have important physiological and pathophysiological consequences. Exogenous carbon monoxide (CO) is also known to inhibit cytochrome c oxidase in vitro; however, it is not clear whether endogenously produced CO can inhibit cellular respiration and, if so, what the significance of this might be. In this study, we show that exogenous CO inhibits respiration in a moderate but persistent manner in HEK293 cells under ambient (21%) oxygen concentrations (K(i) = 1.44 microM). This effect of CO was increased (K(i) = 0.35 microM) by incubation in hypoxic conditions (1% oxygen). Endogenous CO, generated by HEK293 cells transfected with the inducible isoform of haem oxygenase (haem oxygenase-1; HO-1), also inhibited cellular respiration moderately (by 12%) and this was accompanied by inhibition (23%) of cytochrome c oxidase activity. When the cells were incubated in hypoxic conditions during HO-1 induction, the inhibitory effect of CO on cell respiration was markedly increased to 70%. Furthermore, endogenously produced CO was found to be responsible for the respiratory inhibition that occurs in RAW264.7 cells activated in hypoxic conditions with lipopolysaccharide and interferon-gamma, in the presence of N-(iminoethyl)-L-ornithine to prevent the synthesis of NO. Our results indicate that CO contributes significantly to the respiratory inhibition in activated cells, particularly under hypoxic conditions. Inhibition of cell respiration by endogenous CO through its interaction with cytochrome c oxidase might have an important role in inflammatory and hypoxic conditions.
Collapse
Affiliation(s)
- Gabriela D'Amico
- Wolfson Institute for Biomedical Research, University College London, UK.
| | | | | | | |
Collapse
|
76
|
Ding Y, Zhang YZ, Furuyama K, Ogawa K, Igarashi K, Shibahara S. Down-regulation of heme oxygenase-2 is associated with the increased expression of heme oxygenase-1 in human cell lines. FEBS J 2006; 273:5333-46. [PMID: 17064313 DOI: 10.1111/j.1742-4658.2006.05526.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular heme concentrations are maintained in part by heme degradation, which is catalyzed by heme oxygenase. Heme oxygenase consists of two structurally related isozymes, HO-1 and HO-2. Recent studies have identified HO-2 as a potential oxygen sensor. To gain further insights into the regulatory role of HO-2 in heme homeostasis, we analyzed the expression profiles of HO-2 and the biochemical consequences of HO-2 knockdown with specific short interfering RNA (siRNA) in human cells. Both HO-2 mRNA and protein are expressed in the eight human cancer cell lines examined, and HO-1 expression is detectable in five of the cell lines, including HeLa cervical cancer and HepG2 hepatoma. Down-regulation of HO-2 expression with siRNA against HO-2 (siHO-2) caused induction of HO-1 expression at both mRNA and protein levels in HeLa and HepG2 cells. In contrast, knockdown of HO-1 expression did not noticeably influence HO-2 expression. HO-2 knockdown prolonged the half-life of HO-1 mRNA twofold in HeLa cells. Transient transfection assays in HeLa cells revealed that the 4.5-kb human HO-1 gene promoter was activated with selective knockdown of HO-2 in a sequence-dependent manner. Moreover, HO-2 knockdown caused heme accumulation in HeLa and HepG2 cells only when exposed to exogenous hemin. HO-2 knockdown may mimic a certain physiological change that is important in the maintenance of cellular heme homeostasis. These results suggest that HO-2 may down-regulate the expression of HO-1, thereby directing the co-ordinated expression of HO-1 and HO-2.
Collapse
Affiliation(s)
- Yuanying Ding
- Department of Molecular Biology and Applied Physiology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
77
|
Gan HT, Chen JDZ. Induction of heme oxygenase-1 improves impaired intestinal transit after burn injury. Surgery 2006; 141:385-93. [PMID: 17349851 DOI: 10.1016/j.surg.2006.06.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/06/2005] [Accepted: 06/28/2006] [Indexed: 02/05/2023]
Abstract
BACKGROUND Burn injury has been shown to impair intestinal transit. The induction of heme oxygenase (HO)-1, the rate-limiting enzyme in heme degradation, has been demonstrated to provide protection against various injuries. The aim of this study was to investigate whether the induction of HO-1 by hemin would improve impaired intestinal transit after burn injury. METHODS Burn/sham rats were divided into 3 groups: saline solution, hemin (HO-1 inducer), and hemin plus tin protoporphyrin IX. Intestinal transit was measured with the use of phenol red and assessed with the geometric center. The gene and/or protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1beta, HO-1, and p38 mitogen-activated protein kinase (p38 MAPK) was measured by real-time polymerase chain reaction and/or by Western blot analysis. RESULTS Intestinal transit was delayed with burn injury and improved significantly with the induction of HO-1; burn injury significantly activated p38 MAPK and myeloperoxidase and increased gene and/or protein expression of iNOS, COX-2, IL-1beta, and HO-1. The administration of hemin led to a significant decrease in the activation of p38 MAPK and myeloperoxidase and the gene and/or protein expression of iNOS, COX-2, and IL-1beta. CONCLUSION The induction of HO-1 improves burn-induced delayed intestinal transit. The beneficial effect of hemin treatment could be linked, at least in part, to the down-regulation of iNOS, COX-2, and IL-1beta expression, which suggests that the induction of HO-1 may provide an effective therapeutic measure for gut dysmotility after burn injury.
Collapse
Affiliation(s)
- Hua Tian Gan
- Department of Geriatric Medicine, West China Hospital, Sichuan University, Sichuan, China
| | | |
Collapse
|
78
|
Kinobe RT, Vlahakis JZ, Soong JM, Szarek WA, Brien JF, Longo LD, Nakatsu K. Heme oxygenase activity in fetal and adult sheep is not altered by acclimatization to high altitude hypoxia. Can J Physiol Pharmacol 2006; 84:893-901. [PMID: 17111034 DOI: 10.1139/y06-034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxic stress has been reported to induce the expression of stress proteins such as heme oxygenase (HO), which catalyze the breakdown of heme to generate biliverdin, ferrous iron, and carbon monoxide. These degradation products play a role in the regulation of a variety of processes such as vascular tone, inflammation, and central nervous system function. In mammals, there are 2 catalytically functional HO isozymes, HO-1 (inducible) and HO-2 (constitutive). HO-1 expression is regulated by an array of nonphysiological and physiological stimuli including acute hypoxemia. As relatively little is known of the HO response to prolonged hypoxia in whole animals other than small laboratory rodents, the aim of this work was to examine the effect of long-term hypoxia on total HO activity in fetal and adult ovine tissue. Sheep were maintained at high altitude (3820 m), after which the following tissues were harvested from near-term fetal and non-pregnant ewes for in vitro measurement of HO activity: left ventricle, renal papilla, lung apex, pulmonary artery, carotid artery, mesenteric artery, placental cotyledon, spleen, and brain frontal cortex. There were no significant differences between HO activities in tissues from hypoxic fetal and adult sheep compared with their normoxic controls. Fetal heart HO activities were higher than those of adult tissue (p < 0.05), whereas adult spleen HO activity was significantly higher than that of fetal tissue (p < 0.05). In conclusion, these data indicate that long-term exposure to high altitude hypoxia does not have a persistent effect on HO activity in ovine tissues. Also, except for the spleen where there is a high expression of HO-1 under normal conditions, tissue HO activity is correlated with the expression of HO-2, the constitutive isozyme.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
79
|
|
80
|
Ryter SW, Alam J, Choi AMK. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev 2006; 86:583-650. [PMID: 16601269 DOI: 10.1152/physrev.00011.2005] [Citation(s) in RCA: 1778] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The heme oxygenases, which consist of constitutive and inducible isozymes (HO-1, HO-2), catalyze the rate-limiting step in the metabolic conversion of heme to the bile pigments (i.e., biliverdin and bilirubin) and thus constitute a major intracellular source of iron and carbon monoxide (CO). In recent years, endogenously produced CO has been shown to possess intriguing signaling properties affecting numerous critical cellular functions including but not limited to inflammation, cellular proliferation, and apoptotic cell death. The era of gaseous molecules in biomedical research and human diseases initiated with the discovery that the endothelial cell-derived relaxing factor was identical to the gaseous molecule nitric oxide (NO). The discovery that endogenously produced gaseous molecules such as NO and now CO can impart potent physiological and biological effector functions truly represented a paradigm shift and unraveled new avenues of intense investigations. This review covers the molecular and biochemical characterization of HOs, with a discussion on the mechanisms of signal transduction and gene regulation that mediate the induction of HO-1 by environmental stress. Furthermore, the current understanding of the functional significance of HO shall be discussed from the perspective of each of the metabolic by-products, with a special emphasis on CO. Finally, this presentation aspires to lay a foundation for potential future clinical applications of these systems.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
81
|
Wang J, Evans JP, Ogura H, La Mar GN, Ortiz de Montellano PR. Alteration of the regiospecificity of human heme oxygenase-1 by unseating of the heme but not disruption of the distal hydrogen bonding network. Biochemistry 2006; 45:61-73. [PMID: 16388581 PMCID: PMC2507887 DOI: 10.1021/bi051645k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase regiospecifically oxidizes heme at the alpha-meso position to give biliverdin IXalpha, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry but partially shifts the oxidation to the beta/delta-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by approximately 90 degrees, causes a slight loss of regiospecificity but combined with the R183E and K18E mutations results primarily in beta/delta-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane.
Collapse
Affiliation(s)
| | | | - Hiroshi Ogura
- Department of Chemistry, University of California, Davis, California 95616
| | - Gerd N. La Mar
- Department of Chemistry, University of California, Davis, California 95616
| | - Paul R. Ortiz de Montellano
- To whom editorial correspondence should be addressed: Paul R. Ortiz de Montellano, University of California, San Francisco, 600 16th Street, N572D, San Francisco, CA 94143-2280, Telephone: (415) 476-2903, FAX: (415) 502-4728, E-mail:
| |
Collapse
|
82
|
Elhini A, Abdelwahab S, Ikeda K. Heme oxygenase (HO)-1 is upregulated in the nasal mucosa with allergic rhinitis. Laryngoscope 2006; 116:446-50. [PMID: 16540907 DOI: 10.1097/01.mlg.0000194692.51979.d1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Heme oxygenase (HO) is considered to be an antioxidant enzyme that catabolizes heme to produce carbon monoxide (CO) and biliverdin. Three isoforms of HO have been discovered. Recently, HO-1 has been found to be upregulated after allergic inflammations of the lower airway. OBJECTIVE The objective of this study was to address the expression of HO isoenzymes 1 and 2 in the nasal mucosa of patients with allergic rhinitis as well as normal control subjects. METHODS Nasal mucosa from 30 patients with persistent allergic rhinitis as well as from 10 normal volunteers was used in this study. We used immunofluorescent technique, Western blotting, and real-time quantitative polymerase chain reaction to localize and quantify the expression of these isoenzymes in normal and allergic human nasal tissues. RESULTS We found that HO-1 is expressed in the epithelial cells of seromucinous glands and macrophages with significant upregulation of its glandular expression in allergic rhinitis but with no difference in its macrophage expression between the study groups in contrast to HO-2 that is expressed in the vascular endothelial lining cells as well as macrophages with no marked difference between the study groups. CONCLUSION We demonstrated that expression of HO-1, but not HO-2, was upregulated within the nasal tissues in allergic rhinitis inflammation, and understanding the induction of HO-1 expression may provide for better management of allergic rhinitis that involves oxidative stress.
Collapse
MESH Headings
- Blotting, Western
- Gene Expression Regulation, Enzymologic/physiology
- Genetic Markers
- Heme Oxygenase (Decyclizing)/genetics
- Heme Oxygenase (Decyclizing)/metabolism
- Heme Oxygenase-1/genetics
- Heme Oxygenase-1/metabolism
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Microscopy, Fluorescence
- Nasal Mucosa/enzymology
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Rhinitis, Allergic, Perennial/enzymology
- Rhinitis, Allergic, Perennial/genetics
- Rhinitis, Allergic, Perennial/pathology
- Up-Regulation
Collapse
Affiliation(s)
- Ahmed Elhini
- Department of Otorhinolaryngology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | | | | |
Collapse
|
83
|
Kinobe RT, Vlahakis JZ, Vreman HJ, Stevenson DK, Brien JF, Szarek WA, Nakatsu K. Selectivity of imidazole-dioxolane compounds for in vitro inhibition of microsomal haem oxygenase isoforms. Br J Pharmacol 2006; 147:307-15. [PMID: 16331285 PMCID: PMC1751307 DOI: 10.1038/sj.bjp.0706555] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/14/2005] [Accepted: 10/28/2005] [Indexed: 11/09/2022] Open
Abstract
Haem oxygenases (HO) are involved in the catalytic breakdown of haem to generate carbon monoxide (CO), iron and biliverdin. It is widely accepted that products of haem catabolism are involved in biological signaling in many physiological processes. Conclusions to most studies in this field have gained support from the judicious use of synthetic metalloporphyrins such as chromium mesoporphyrin (CrMP) to selectively inhibit HO. However, metalloporphyrins have also been found to inhibit other haem-dependent enzymes, such as nitric oxide synthase (NOS), cytochromes P-450 (CYPs) and soluble guanylyl cyclase (sGC), induce the expression of HO-1 or exhibit varied toxic effects. To obviate some of these problems, we have been examining non-porphyrin HO inhibitors and the present study describes imidazole-dioxolane compounds with high selectivity for inhibition of HO-1 (rat spleen microsomes) compared to HO-2 (rat brain microsomes) in vitro. (2R,4R)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-methyl-1,3-dioxolane hydrochloride) was identified as the most selective inhibitor with a concentration of 0.6 microM inhibiting HO-1(inducible) by 50% compared with 394 microM for HO-2 (constitutive). These compounds were found to have no effects on the catalytic activities of rat brain NOS and lung sGC, but were potent inhibitors of microsomal CYP2E1 and CYP3A1/3A2 activities. In conclusion, we have identified imidazole-dioxolanes that are able to inhibit microsomal HO in vitro with high selectivity for HO-1 compared to HO-2, and little or no effect on the activities of neuronal NOS and sGC. These molecules could be used to facilitate studies on the elucidation of physiological roles of HO/CO in biological systems.
Collapse
Affiliation(s)
- Robert T Kinobe
- Department of Pharmacology & Toxicology, Queen's University, Botterell Hall 521, Kingston, ON, Canada K7L 3N6
| | - Jason Z Vlahakis
- Department of Chemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Hendrik J Vreman
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305-5208, U.S.A
| | - David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Stanford, CA 94305-5208, U.S.A
| | - James F Brien
- Department of Pharmacology & Toxicology, Queen's University, Botterell Hall 521, Kingston, ON, Canada K7L 3N6
| | - Walter A Szarek
- Department of Chemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Kanji Nakatsu
- Department of Pharmacology & Toxicology, Queen's University, Botterell Hall 521, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
84
|
Takahashi T, Shimizu H, Akagi R, Morita K, Sassa S. Heme oxygenase-1: a new drug target in oxidative tissue injuries in critically ill conditions. Drug Dev Res 2006. [DOI: 10.1002/ddr.20073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
85
|
Goh BJ, Tan BT, Hon WM, Lee KH, Khoo HE. Nitric oxide synthase and heme oxygenase expressions in human liver cirrhosis. World J Gastroenterol 2006; 12:588-94. [PMID: 16489673 PMCID: PMC4066092 DOI: 10.3748/wjg.v12.i4.588] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Portal hypertension is a common complication of liver cirrhosis. Intrahepatic pressure can be elevated in several ways. Abnormal architecture affecting the vasculature, an increase in vasoconstrictors and increased circulation from the splanchnic viscera into the portal system may all contribute. It follows that endogenous vasodilators may be able to alleviate the hypertension. We therefore aimed to investigate the levels of endogenous vasodilators, nitric oxide (NO) and carbon monoxide (CO) through the expression of nitric oxide synthase (NOS) and heme oxygenase (HO).
METHOD: Cirrhotic (n = 20) and non-cirrhotic (n = 20) livers were obtained from patients who had undergone surgery. The mRNA and protein expressions of the various isoforms of NOS and HO were examined using competitive PCR, Western Blot and immunohistochemistry.
RESULTS: There was no significant change in either inducible NOS (iNOS) or neuronal NOS (nNOS) expressions while endothelial NOS (eNOS) was up-regulated in cirrhotic livers. Concomitantly, caveolin-1, an established down-regulator of eNOS, was up-regulated. Inducible HO-1 and constitutive HO-2 were found to show increased expression in cirrhotic livers albeit in different localizations.
CONCLUSION: The differences of NOS expression might be due to their differing roles in maintaining liver homeostasis and/or involvement in the pathology of cirrhosis. Sheer stress within the hypertensive liver may induce increased expression of eNOS. In turn, caveolin-1 is also increased. Whether this serves as a defense mechanism against further cirrhosis or is a consequence of cirrhosis, is yet unknown. The elevated expression of HO-1 and HO-2 suggest that CO may compensate in its role as a vasodilator albeit weakly. It is possible that CO and NO have parallel or coordinated functions within the liver and may work antagonistically in the pathophysiology of portal hypertension.
Collapse
Affiliation(s)
- Beatrice J Goh
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Block MD4A, #01-03 5 Science Drive 2, 117597, Singapore
| | | | | | | | | |
Collapse
|
86
|
|
87
|
Shotton HR, Lincoln J. Diabetes only affects nitric oxide synthase-containing myenteric neurons that do not contain heme oxygenase 2. Brain Res 2006; 1068:248-56. [PMID: 16375869 DOI: 10.1016/j.brainres.2005.11.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 11/07/2005] [Accepted: 11/07/2005] [Indexed: 02/06/2023]
Abstract
It has been demonstrated that subpopulations of myenteric neurons are differentially susceptible to the development of neuropathy in diabetes. Within the myenteric plexus are neurons that contain neuronal nitric oxide synthase (nNOS). However, these are not a homogeneous population. Some of the nNOS-containing neurons also contain heme oxygenase 2 (HO2). Therefore, the aim of this study was to compare the effects of diabetes on HO2- and nNOS-containing neurons within the myenteric plexus of the rat ileum. Diabetes was induced in male Wistar rats (350-400 g) by a single i.p. injection of buffered streptozotocin (65 mg/kg). After 12 weeks, immunostaining of wholemount preparations of ileum revealed that diabetes induced a significant shift (P < 0.001, chi-squared test for trend) towards increased neuronal cell body size in nNOS-immunoreactive neurons while HO2-immunoreactive neurons remained unaffected. Double-labeling studies revealed that approximately 50% of nNOS-containing neurons also contained HO2 and that the diabetes-induced change in size was confined to nNOS-immunoreactive neurons that did not contain HO2 (P < 0.01). No change in the size distribution occurred in neurons in which nNOS and HO2 were colocalized. Differences in the response of these two subpopulations of nNOS-containing neurons to diabetes could occur because they supply different targets within the gastrointestinal tract or indicate that the antioxidant, HO2, protects those nNOS-containing neurons in which it is colocalized, against oxidative stress that occurs in diabetes.
Collapse
Affiliation(s)
- Hannah R Shotton
- Department of Anatomy and Developmental Biology, Autonomic Neuroscience Institute, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
88
|
Wu L, Wang R. Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacol Rev 2005; 57:585-630. [PMID: 16382109 DOI: 10.1124/pr.57.4.3] [Citation(s) in RCA: 663] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Over the last decade, studies have unraveled many aspects of endogenous production and physiological functions of carbon monoxide (CO). The majority of endogenous CO is produced in a reaction catalyzed by the enzyme heme oxygenase (HO). Inducible HO (HO-1) and constitutive HO (HO-2) are mostly recognized for their roles in the oxidation of heme and production of CO and biliverdin, whereas the biological function of the third HO isoform, HO-3, is still unclear. The tissue type-specific distribution of these HO isoforms is largely linked to the specific biological actions of CO on different systems. CO functions as a signaling molecule in the neuronal system, involving the regulation of neurotransmitters and neuropeptide release, learning and memory, and odor response adaptation and many other neuronal activities. The vasorelaxant property and cardiac protection effect of CO have been documented. A plethora of studies have also shown the importance of the roles of CO in the immune, respiratory, reproductive, gastrointestinal, kidney, and liver systems. Our understanding of the cellular and molecular mechanisms that regulate the production and mediate the physiological actions of CO has greatly advanced. Many diseases, including neurodegenerations, hypertension, heart failure, and inflammation, have been linked to the abnormality in CO metabolism and function. Enhancement of endogenous CO production and direct delivery of exogenous CO have found their applications in many health research fields and clinical settings. Future studies will further clarify the gasotransmitter role of CO, provide insight into the pathogenic mechanisms of many CO abnormality-related diseases, and pave the way for innovative preventive and therapeutic strategies based on the physiologic effects of CO.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Biology, Lakehead University, 955 Oliver Rd., Thunder Bay, Ontario, Canada P7B 5E1
| | | |
Collapse
|
89
|
Migita CT, Togashi S, Minakawa M, Zhang X, Yoshida T. Evidence for the hydrophobic cavity of heme oxygenase-1 to be a CO-trapping site. Biochem Biophys Res Commun 2005; 338:584-9. [PMID: 16125669 DOI: 10.1016/j.bbrc.2005.08.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Accepted: 08/04/2005] [Indexed: 12/27/2022]
Abstract
Carbon monoxide (CO) is produced during the heme catabolism by heme oxygenase. In brain or blood vessels, CO functions as a neurotransmitter or an endothelial-derived relaxing factor. To verify whether crystallographically proposed CO-trapping sites of rat and cyanobacterial heme oxygenase-1 really work, heme catabolism by heme oxygenase-1 from rat and cyanobacterial Synechocystis sp. PCC 6803 has been scrutinized in the presence of 2-propanol. If 2-propanol occupies the trapping sites, formation of CO-bound verdoheme should be enhanced. Although effects of 2-propanol on the rat heme oxygenase-1 reaction were obscure, the reaction of cyanobacterial enzyme in the presence of NADPH/ferredoxin reductase/ferredoxin was apparently affected. Relative amount of CO-verdoheme versus CO-free verdoheme detected by optical absorption spectra increased as the equivalent of 2-propanol increased, thereby supporting indirectly that the hydrophobic cavity in cyanobacterial enzyme traps CO to reduce CO inhibition of verdoheme degradation.
Collapse
Affiliation(s)
- Catharina T Migita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| | | | | | | | | |
Collapse
|
90
|
Rattan S, Regan RF, Patel CA, De Godoy MAF. Nitric oxide not carbon monoxide mediates nonadrenergic noncholinergic relaxation in the murine internal anal sphincter. Gastroenterology 2005; 129:1954-66. [PMID: 16344064 DOI: 10.1053/j.gastro.2005.08.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 08/17/2005] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Inhibitory reflexes in the internal anal sphincter (IAS) are controlled by inhibitory nonadrenergic, noncholinergic innervation (i-NANC). We investigated the roles of 3 different neurohumoral agonists as possible i-NANC neurotransmitters: carbon monoxide (CO), nitric oxide (NO), and vasoactive intestinal peptide (VIP). METHODS IAS smooth muscle strips were isolated from wild-type (WT), heme oxygenase (HO)-2 knockout (HO-2-/-) and neuronal NO synthase (nNOS) knockout (nNOS-/-) mice. Relaxation of IAS was induced by CO, NO, VIP, and electrical field stimulation (EFS) in the presence and absence of neurohumoral inhibitors (tin protoporphyrin IX [SnPP IX] for CO synthesis, N(omega)-nitro-L-arginine [L-NNA] for NO synthesis, and VIP(10-28) for VIP receptor). Western blot and immunohistochemistry were used to test the presence and localization of HO (for CO synthesis) types 1 (HO-1) and 2 (HO-2), neuronal NO synthase (nNOS, for NO synthesis), and VIP. RESULTS All 3 neurohumoral agonists produced relaxation (with no difference between WT and HO-2-/- IAS), but CO was over 100 times less potent than NO and VIP. EFS produced relaxation in WT and HO-2-/- IAS with the same intensity. L-NNA and nNOS deletion (approximately 80%) and VIP(10-28) (approximately 15%) significantly inhibited the relaxations, whereas SnPP IX had no effect. Positive immunoreactivities for HO-2, nNOS, and VIP were found in the myenteric plexus of WT IAS. HO-2-/- IAS did not express immunoreactivity for HO-2. CONCLUSIONS i-NANC relaxations of mouse IAS are primarily mediated via NO (by nNOS activity) and partly via VIP. CO directly relaxes the mouse IAS but does not play any significant role in the i-NANC relaxation.
Collapse
Affiliation(s)
- Satish Rattan
- Department of Medicine, Division of Gastroenterology and Hepatology, and Division of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
91
|
Zuckerbraun BS, Otterbein LE, Boyle P, Jaffe R, Upperman J, Zamora R, Ford HR. Carbon monoxide protects against the development of experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 2005; 289:G607-13. [PMID: 15890710 DOI: 10.1152/ajpgi.00055.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Necrotizing enterocolitis (NEC) is a disease of neonates that is increasing in incidence and often results in significant morbidity and mortality. Carbon monoxide (CO), a byproduct of the catabolism of heme, is known to have anti-inflammatory and antiapoptotic properties. In this study, we aimed to demonstrate that inhaled CO protects against the development of intestinal inflammation in a model of experimental NEC as well as decreases enterocyte cell death in vitro. Additionally, we also aimed to demonstrate that CO decreases enterocyte production of inducible nitric oxide synthase (iNOS) and nitric oxide (NO). Neonatal rats were exposed to intermittent hypoxia exposure and formula feeding to induce experimental NEC. Animals randomized to CO treatment were put in an environment containing 0.025% CO for 1 h/day on days 1-3 of life. All animals were killed on day 4 of life. In vitro experiments were performed with IEC-6 cells, a rat enterocyte cell line. Cells were examined for viability, iNOS production, and elaboration of NO. We found that CO diminished levels of serum inflammatory cytokines and nitrites, protected against intestinal inflammation, and decreased ileal iNOS production and protein nitration in a model of experimental NEC. In vitro, CO decreased cytokine- or hypoxia/endotoxin-induced iNOS and NO production. CO also abrogated TNF-alpha- and actinomycin D-induced apoptosis or hypoxia/endotoxin-induced cell death. In conclusion, 1 h of daily low-dose inhaled CO protected against the development of intestinal inflammation in a model of experimental NEC. iNOS and NO production were decreased by CO both in vivo and in vitro. CO may prove to be a useful clinical adjunct in the treatment of NEC.
Collapse
Affiliation(s)
- Brian S Zuckerbraun
- Dept. of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
92
|
Vlahakis JZ, Kinobe RT, Bowers RJ, Brien JF, Nakatsu K, Szarek WA. Synthesis and evaluation of azalanstat analogues as heme oxygenase inhibitors. Bioorg Med Chem Lett 2005; 15:1457-61. [PMID: 15713406 DOI: 10.1016/j.bmcl.2004.12.075] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 12/29/2004] [Indexed: 10/25/2022]
Abstract
Several analogues based on the lead structure of azalanstat were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). A number of these compounds, which are structurally distinct from metalloporphyrin HO inhibitors, were found to be selective for the HO-1 isozyme (stress induced), and had substantially less inhibitory activity on HO-2, the constitutive isozyme.
Collapse
Affiliation(s)
- Jason Z Vlahakis
- Departments of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
93
|
Abstract
Basal tone in the internal anal sphincter (IAS) is primarily myogenic. Neurohumoral substances like angiotensin II may partially provide external signal for the basal tone in the IAS. The sphincteric relaxation on the contrary is neurogenic by activation of non-adrenergic non-cholinergic (NANC) nerves that release nitric oxide (NO), vasoactive intestinal polypeptide (VIP) and perhaps carbon monoxide. Because of the presence of spontaneous tone, the IAS offers an excellent model to investigate the nature of the inhibitory neurotransmission for NANC relaxation. Work from different laboratories in different species concludes that NO is the major contributor in the NANC relaxation. This may invoke the role of other inhibitory neurotransmitters such as VIP, working partly via NO. An understanding of the basic regulation of basal tone in the IAS and nature of inhibitory neurotransmission are critical in the pathophysiology and therapeutic potentials in the anorectal motility disorders.
Collapse
Affiliation(s)
- S Rattan
- Division of Gastroenterology & Hepatology, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
94
|
Aziz MTA, El-Asmar MF, Mostafa T, Atta H, Wassef MAA, Fouad HH, Roshdy NK, Rashed LA, Sabry D. Effects of Nitric Oxide Synthase and Heme Oxygenase Inducers and Inhibitors on Molecular Signaling of Erectile Function. J Clin Biochem Nutr 2005. [DOI: 10.3164/jcbn.37.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
95
|
Pal B, Kitagawa T. Interactions of soluble guanylate cyclase with diatomics as probed by resonance Raman spectroscopy. J Inorg Biochem 2005; 99:267-79. [PMID: 15598506 DOI: 10.1016/j.jinorgbio.2004.09.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 09/24/2004] [Accepted: 09/27/2004] [Indexed: 10/26/2022]
Abstract
Soluble guanylate cyclase (sGC, EC 4.6.1.2) acts as a sensor for nitric oxide (NO), but is also activated by carbon monoxide in the presence of an allosteric modulator. Resonance Raman studies on the structure-function relations of sGC are reviewed with a focus on the CO-adduct in the presence and absence of allosteric modulator, YC-1, and substrate analogues. It is demonstrated that the sGC isolated from bovine lung contains one species with a five-coordinate (5c) ferrous high-spin heme with the Fe-His stretching mode at 204 cm(-1), but its CO adduct yields two species with different conformations about the heme pocket with the Fe-CO stretching (nuFe-CO) mode at 473 and 489 cm(-1), both of which are His- and CO-coordinated 6c ferrous adducts. Addition of YC-1 to it changes their population and further addition of GTP yields one kind of 6c (nuFe-CO=489 cm(-1)) in addition to 5c CO-adduct (nuFe-CO=521 cm(-1)). Under this condition the enzymatic activity becomes nearly the same level as that of NO adduct. Addition of gamma-S-GTP yields the same effect as GTP does but cGMP and GDP gives much less effects. Unexpectedly, ATP cancels the effects of GTP. The structural meaning of these spectroscopic observations is discussed in detail.
Collapse
Affiliation(s)
- Biswajit Pal
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Higashiyama 5-1, Okazaki 444-8787, Japan
| | | |
Collapse
|
96
|
Wang J, Lad L, Poulos TL, Ortiz de Montellano PR. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant. J Biol Chem 2004; 280:2797-806. [PMID: 15525643 DOI: 10.1074/jbc.m411229200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.
Collapse
Affiliation(s)
- Jinling Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA
| | | | | | | |
Collapse
|
97
|
Currò D, De Marco T, Preziosi P. Evidence for an apamin-sensitive, but not purinergic, component in the nonadrenergic noncholinergic relaxation of the rat gastric fundus. Br J Pharmacol 2004; 143:785-93. [PMID: 15504756 PMCID: PMC1575933 DOI: 10.1038/sj.bjp.0705993] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The involvement of adenosine triphosphate (ATP) and carbon monoxide (CO) in the non-nitrergic nonpeptidergic component of high-frequency electrical field stimulation (EFS)-induced nonadrenergic noncholinergic (NANC) relaxation of longitudinal muscle strips from the rat gastric fundus was investigated. Under NANC conditions (1 microM atropine + 5 microM guanethidine), N(G)-nitro-L-arginine methyl ester (L-NAME, 1 mM) slightly reduced the amplitude, but did not affect the area under the curve (AUC) of EFS (13 Hz, 2 min)-induced relaxation of 9,11-dideoxy-9alpha,11alpha-methanoepoxy prostaglandin F(2alpha) (U46619, 0.1 microM)-precontracted strips. With L-NAME (1 mM) plus alpha-chymotrypsin (1 U ml(-1)), the amplitude and the AUC of relaxation were reduced to approximately two-third and one-third of controls, respectively. Pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (100 microM), apamin (0.3 microM), desensitization to ATP, suramin (100 microM), zinc protoporphyrin IX (300 microM) or ferrous haemoglobin (100 microM) did not inhibit the component of relaxation resistant to L-NAME plus alpha-chymotrypsin. L-NAME (1 mM) plus anti-vasoactive intestinal peptide (VIP) serum (1 : 100) reduced the amplitude and the AUC of relaxation to a similar extent as L-NAME (1 mM) plus alpha-chymotrypsin (1 U ml(-1)). Adding apamin (0.1 microM) to L-NAME (1 mM) plus anti-VIP serum (1 : 100) further reduced the amplitude and the AUC of relaxation. These findings suggest that the non-nitrergic nonpeptidergic component of NANC relaxation of the rat gastric fundus induced by high-frequency stimulation is mediated by a neurotransmitter that acts through apamin-sensitive mechanisms, that is neither ATP nor CO.
Collapse
Affiliation(s)
- Diego Currò
- Institute of Pharmacology, School of Medicine, Catholic University of the Sacred Heart, L.go F. Vito, 1, I-00168 Rome, Italy.
| | | | | |
Collapse
|
98
|
Kinobe R, Ji Y, Nakatsu K. Peroxynitrite-mediated inactivation of heme oxygenases. BMC Pharmacol 2004; 4:26. [PMID: 15498099 PMCID: PMC529254 DOI: 10.1186/1471-2210-4-26] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 10/21/2004] [Indexed: 11/10/2022] Open
Abstract
Background Endogenous nitric oxide (NO) and carbon monoxide (CO) are generated by nitric oxide synthase and heme oxygenase, respectively. Like NO, CO has been accepted as an important cellular signaling molecule in biological systems. An up-regulation in both gene and protein expression of heme oxygenase-1 (HO-1) under oxidative/nitrosative stress has been well documented, and the protective role of HO-1 and HO-2 against oxidative damage is proposed. However, data on the direct effect of reactive oxygen/nitrogen species (ROS/RNS) on HO function is incomplete. Using gas chromatography to quantify carbon monoxide (CO) formation from heme oxidation, we investigated the effects of peroxynitrite (ONOO-) on the in vitro catalytic activity of rat spleen (HO-1) and brain (HO-2) microsomal heme oxygenases. Results Exposure to ONOO- led to concentration-dependent but reversible decreases in the activity of microsomal rat spleen and brain HO activity. Spleen HO activity was 100-fold more sensitive to ONOO--dependent inactivation compared to that of the brain, with IC50 values of 0.015 ± 0.005 mM and 1.25 ± 0.25 mM respectively. Inhibition of both rat spleen and brain microsomal HO activity was also observed with tetra-nitromethane, a tyrosine nitrating agent, as well as two NO donors, S-nitrosoglutathione (GSNO) and diethylamine NONOate (DEA-NONOate). However, no additive effect was found following the application of NO donors and ONOO- together. Conclusion These results indicate that ONOO- may regulate HO-1 and HO-2 activities by mechanisms that involve different interactions with these proteins. It is suggested that while nitration of tyrosine residues and oxidation of sulfhydryl groups may be involved, consideration should be given to other facets of ONOO- chemistry. This inhibition of HO activity offers a mechanism for cross talk between the nitric oxide synthase and HO systems.
Collapse
Affiliation(s)
- Robert Kinobe
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, K7L 3N6, CANADA
| | - Yanbin Ji
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, K7L 3N6, CANADA
| | - Kanji Nakatsu
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, K7L 3N6, CANADA
| |
Collapse
|
99
|
Abstract
A number of phenotypes persist in the progeny of irradiated cells for many generations including delayed reproductive death, cell transformation, genomic instability, and mutations. It appears likely that persistent phenotypes are inherited by an epigenetic mechanism, although very little is known about the nature of such a mechanism or how it is established. One hypothesis is that radiation causes a heritable increase in oxy-radical activity. In the present study, intracellular levels of reactive oxygen species (ROS) in human lymphoblast clones derived from individually X-irradiated cells were monitored for about 55 generations after exposure. A number of clones derived from irradiated cells had an increase in dichlorofluorescein (DCF) fluorescence at various times. Cells with abrogated TP53 expression had a decreased oxidant response. Flow cytometry analysis of clones with increased fluorescence did not detect increases in the sub-G(1) fraction or decreased cell viability compared to nonirradiated clones, indicating that increased levels of apoptosis and cell death were not present. The oxidative stress response protein heme oxygenase 1 (HO1) was induced in some cultures derived from X-irradiated cells but not in cultures derived from unirradiated cells. The expression of the dual specificity mitogen-activated protein (MAP) kinase phosphatase (MPK1/CL100), which is inducible by oxidative stress and has a role in modulating ERK signaling pathways, was also increased in the progeny of some irradiated cells. Finally, there was an increase in the phosphorylated tyrosine content of a prominent protein band of about 45 kDa. These results support the hypothesis that increased oxy-radical activity is a persistent effect in X-irradiated mammalian cells and further suggest that this may lead to changes in the expression of proteins involved in signal transduction.
Collapse
Affiliation(s)
- Rebecca E Rugo
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
100
|
Vizi ES, Kiss JP, Lendvai B. Nonsynaptic communication in the central nervous system. Neurochem Int 2004; 45:443-51. [PMID: 15186910 DOI: 10.1016/j.neuint.2003.11.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 11/10/2003] [Indexed: 11/22/2022]
Abstract
Classical synaptic functions are important and suitable to relatively fast and discretely localized processes, but the nonclassical receptorial functions may be providing revolutionary possibilities for dealing at the cellular level with many of the more interesting and seemingly intractable features of neural and cerebral activities. Although different forms of nonsynaptic communication (volume transmission) often appear in different studies, their importance to modulate and mediate various functions is still not completely recognized. To establish the existence and the importance of nonsynaptic communication in the nervous system, here we cite pieces of evidence for each step of the interneuronal communication in the nonsynaptic context including the release into the extracellular space (ECS) and the extrasynaptic receptors and transporters that mediate nonsynaptic functions. We are now faced with a multiplicity of chemical communication. The fact that transmitters can even be released from nonsynaptic varicosities without being coupled to frequency-coded neuronal activity and they are able to diffuse over large distances indicates that there is a complementary mechanism of interneuronal communication to classical synaptic transmission. Nonconventional mediators that are also important part of the nonsynaptic world will also be overviewed.
Collapse
Affiliation(s)
- E Sylvester Vizi
- Department of Pharmacology, Institute of Experimental Medicine; Hungarian Academy of Sciences, P.O. Box 67, H-1450 Budapest, Hungary.
| | | | | |
Collapse
|