51
|
Omotuyi OI, Hamada T. Human furin Cys198 imposes dihedral and positional restraints on His194 for optimal Ser386-proton transfer. J Biomol Struct Dyn 2015; 33:2442-51. [DOI: 10.1080/07391102.2015.1041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
52
|
Fittler H, Depp A, Avrutina O, Dahms SO, Than ME, Empting M, Kolmar H. Engineering a Constrained Peptidic Scaffold towards Potent and Selective Furin Inhibitors. Chembiochem 2015; 16:2441-4. [DOI: 10.1002/cbic.201500447] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Heiko Fittler
- Clemens-Schöpf-Institut für organische und Biochemie; Technische Universität Darmstadt; Alarich-Weiss Strasse 4 64287 Darmstadt Germany
| | - Alexander Depp
- Clemens-Schöpf-Institut für organische und Biochemie; Technische Universität Darmstadt; Alarich-Weiss Strasse 4 64287 Darmstadt Germany
| | - Olga Avrutina
- Clemens-Schöpf-Institut für organische und Biochemie; Technische Universität Darmstadt; Alarich-Weiss Strasse 4 64287 Darmstadt Germany
| | - Sven O. Dahms
- Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI); Beutenbergstrasse 11 07745 Jena Germany
| | - Manuel E. Than
- Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI); Beutenbergstrasse 11 07745 Jena Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS); Campus C2.3 66123 Saarbrücken Germany
| | - Harald Kolmar
- Clemens-Schöpf-Institut für organische und Biochemie; Technische Universität Darmstadt; Alarich-Weiss Strasse 4 64287 Darmstadt Germany
| |
Collapse
|
53
|
Ramos-Molina B, Lick AN, Blanco EH, Posada-Salgado JA, Martinez-Mayorga K, Johnson AT, Jiao GS, Lindberg I. Identification of potent and compartment-selective small molecule furin inhibitors using cell-based assays. Biochem Pharmacol 2015; 96:107-18. [PMID: 26003844 DOI: 10.1016/j.bcp.2015.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
The proprotein convertase furin is implicated in a variety of pathogenic processes such as bacterial toxin activation, viral propagation, and cancer. Several groups have identified non-peptide compounds with high inhibitory potency against furin in vitro, although their efficacy in various cell-based assays is largely unknown. In this study we show that certain guanidinylated 2,5-dideoxystreptamine derivatives exhibit interesting ex vivo properties. Compound 1b (1,1'-(4-((2,4-diguanidino-5-(4-guanidinophenoxy)cyclohexyl)oxy)-1,3-phenylene)diguanidine) is a potent and cell-permeable inhibitor of cellular furin, since it was able to retard tumor cell migration, block release of a Golgi reporter, and protect cells against Bacillus anthracis (anthrax) and Pseudomonas aeruginosa intoxication, with no evident cell toxicity. Other compounds based on the 2,5-dideoxystreptamine scaffold, such as compound 1g (1,1'-(4,6-bis(4-guanidinophenoxy)cyclohexane-1,3-diyl)diguanidine) also efficiently protected cells against anthrax, but displayed only moderate protection against Pseudomonas exotoxin A and did not inhibit cell migration, suggesting poor cell permeability. Certain bis-guanidinophenyl ether derivatives such as 2f (1,3-bis(2,4-diguanidinophenoxy) benzene) exhibited micromolar potency against furin in vitro, low cell toxicity, and highly efficient protection against anthrax toxin; this compound only slightly inhibited intracellular furin. Thus, compounds 1g and 2f both represent potent furin inhibitors at the cell surface with low intracellular inhibitory action, and these particular compounds might therefore be of preferred therapeutic interest in the treatment of certain bacterial and viral infections.
Collapse
Affiliation(s)
- Bruno Ramos-Molina
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA
| | - Adam N Lick
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA
| | - Elias H Blanco
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA
| | | | | | - Alan T Johnson
- Department of Chemistry, Hawaii Biotech, Inc., Aiea, HI, USA
| | - Guan-Sheng Jiao
- Department of Chemistry, Hawaii Biotech, Inc., Aiea, HI, USA.
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, School of Medicine, University of Maryland-Baltimore, MD, USA.
| |
Collapse
|
54
|
Sfaxi F, Scamuffa N, Lalou C, Ma J, Metrakos P, Siegfried G, Ragg H, Bikfalvi A, Calvo F, Khatib AM. Repression of liver colorectal metastasis by the serpin Spn4A a naturally occurring inhibitor of the constitutive secretory proprotein convertases. Oncotarget 2015; 5:4195-210. [PMID: 24961901 PMCID: PMC4147316 DOI: 10.18632/oncotarget.1966] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Liver is the most common site of metastasis from colorectal cancers, and liver of patients with liver colorectal metastasis have abnormal levels of the proprotein convertases (PCs). These proteases are involved in the activation and/or expression of various colon cancer-related mediators, making them promising targets in colorectal liver metastasis therapy. Here, we revealed that the serpin Spn4 from Drosophila melanogaster inhibits the activity of all the PCs found in the constitutive secretory pathway and represses the metastatic potential of the colon cancer cells HT-29 and CT-26. In these cells, Spn4A inhibited the processing of the PCs substrates IGF-1R and PDGF-A that associated their reduced anchorage-independent growth, invasiveness and survival in response to apoptotic agents. In vivo, Spn4A-expressing tumor cells showed repressed subcutaneous tumor development and liver metastases formation in response to their intrasplenic inoculation. In these cells Spn4A induced the expression of molecules with anti-metastatic functions and inhibited expression of pro-tumorigenic molecules. Taken together, our findings identify Spn4A as the only endogenous inhibitor of all the constitutive secretory pathway PCs, which is able to repress the metastatic potential of colon cancer cells. These results suggest the potential use of Spn4A and/or derivates as a useful adduct colorectal liver metastasis prevention.
Collapse
Affiliation(s)
- Fatma Sfaxi
- Université Bordeaux 1, LAMC, Talence, France; INSERM, UMR 1029, F-33405 Talence, France
| | | | | | | | | | | | | | | | | | - Abdel-Majid Khatib
- Université Bordeaux 1, LAMC, Talence, France; INSERM, UMR 1029, F-33405 Talence, France
| |
Collapse
|
55
|
Kang H, Duran CL, Abbey CA, Kaunas RR, Bayless KJ. Fluid shear stress promotes proprotein convertase-dependent activation of MT1-MMP. Biochem Biophys Res Commun 2015; 460:596-602. [PMID: 25800869 DOI: 10.1016/j.bbrc.2015.03.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/13/2015] [Indexed: 11/26/2022]
Abstract
During angiogenesis, endothelial cells (ECs(1)) initiate new blood vessel growth and invade into the extracellular matrix (ECM). Membrane type-1 matrix metalloproteinase (MT1-MMP) facilitates this process and translocates to the plasma membrane following activation to promote ECM cleavage. The N-terminal pro-domain within MT1-MMP must be processed for complete activity of the proteinase. This study investigated whether MT1-MMP activation was altered by sphingosine 1-phosphate (S1P) and wall shear stress (WSS), which combine to stimulate EC invasion in three dimensional (3D) collagen matrices. MT1-MMP was activated rapidly and completely by WSS but not S1P. Proprotein convertases (PCs) promoted MT1-MMP processing, prompting us to test whether WSS or S1P treatments increased PC activity. Like MT1-MMP, PC activity increased with WSS, while S1P had no effect. A pharmacological PC inhibitor completely blocked S1P- and WSS-induced EC invasion and MT1-MMP translocation to the plasma membrane. Further, a recombinant PC inhibitor reduced MT1-MMP activation and decreased lumen formation in invading ECs, a process known to be controlled by MT1-MMP. Thus, we conclude that PC and MT1-MMP activation are mechanosensitive events that are required for EC invasion into 3D collagen matrices.
Collapse
Affiliation(s)
- Hojin Kang
- Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Camille L Duran
- Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Colette A Abbey
- Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA
| | - Roland R Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kayla J Bayless
- Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX, USA.
| |
Collapse
|
56
|
Couture F, Kwiatkowska A, Dory YL, Day R. Therapeutic uses of furin and its inhibitors: a patent review. Expert Opin Ther Pat 2015; 25:379-96. [PMID: 25563687 DOI: 10.1517/13543776.2014.1000303] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Since the discovery of furin, numerous reports have studied its role in health and diseases, including cancer, inflammatory and infectious diseases. This interest has led to the development of both large protein- and peptide-based inhibitors aiming to control furin activity to treat these disorders. The most recent advances include the development of potent peptidomimetic furin inhibitors, considerably expanding the field of therapeutic applications. AREA COVERED In this review, the use of furin or its inhibitors for therapeutic conditions is described through the patent literature since 1994. Only compounds with biological efficacy or augmented properties demonstrated within the patent literature or the associated publications concerning their claimed uses are discussed. EXPERT OPINION Considering the diseases that may benefit from furin inhibition, several patents detail the use of the restricted number of furin inhibitors. However, there have been recent reports of new scaffolds, and even the use of furin itself, as a therapeutic agent. Despite considerable evidence of in vivo efficacy, limited confirmation from clinical trials supports or refutes the further use of these compounds in a therapeutic context. The most advanced application is the use of furin knockdown in the generation of an autologous cancer vaccine, which has initiated clinical trials.
Collapse
Affiliation(s)
- Frédéric Couture
- Université de Sherbrooke, Institut de Pharmacologie de Sherbrooke, Department of Surgery/Urology Division, Faculté de Médecine et des Sciences de la Santé , 3001 12e Ave. Nord, Sherbrooke, Québec, J1H 5N4 , Canada +1 819 564 5428 ; +1 819 564 5400 ;
| | | | | | | |
Collapse
|
57
|
Loveday EK, Diederich S, Pasick J, Jean F. Human microRNA-24 modulates highly pathogenic avian-origin H5N1 influenza A virus infection in A549 cells by targeting secretory pathway furin. J Gen Virol 2015; 96:30-39. [DOI: 10.1099/vir.0.068585-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Emma-Kate Loveday
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sandra Diederich
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John Pasick
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - François Jean
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
58
|
Kara I, Poggi M, Bonardo B, Govers R, Landrier JF, Tian S, Leibiger I, Day R, Creemers JWM, Peiretti F. The paired basic amino acid-cleaving enzyme 4 (PACE4) is involved in the maturation of insulin receptor isoform B: an opportunity to reduce the specific insulin receptor-dependent effects of insulin-like growth factor 2 (IGF2). J Biol Chem 2014; 290:2812-21. [PMID: 25527501 DOI: 10.1074/jbc.m114.592543] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gaining the full activity of the insulin receptor (IR) requires the proteolytic cleavage of its proform by intra-Golgi furin-like activity. In mammalian cells, IR is expressed as two isoforms (IRB and IRA) that are responsible for insulin action. However, only IRA transmits the growth-promoting and mitogenic effects of insulin-like growth factor 2. Here we demonstrate that the two IR isoforms are similarly cleaved by furin, but when this furin-dependent maturation is inefficient, IR proforms move to the cell surface where the proprotein convertase PACE4 selectively supports IRB maturation. Therefore, in situations of impaired furin activity, the proteolytic maturation of IRB is greater than that of IRA, and accordingly, the amount of phosphorylated IRB is also greater than that of IRA. We highlight the ability of a particular proprotein convertase inhibitor to effectively reduce the maturation of IRA and its associated mitogenic signaling without altering the signals emanating from IRB. In conclusion, the selective PACE4-dependent maturation of IRB occurs when furin activity is reduced; accordingly, the pharmacological inhibition of furin reduces IRA maturation and its mitogenic potential without altering the insulin effects.
Collapse
Affiliation(s)
- Imène Kara
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Marjorie Poggi
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Bernadette Bonardo
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Roland Govers
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Jean-François Landrier
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France
| | - Sun Tian
- Nuolan Net, 1098 Amsterdam, The Netherlands
| | - Ingo Leibiger
- the Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-17176 Stockholm, Sweden
| | - Robert Day
- the Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada, and
| | - John W M Creemers
- the Laboratory of Biochemical Neuroendocrinology Center for Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Franck Peiretti
- From the INSERM 1062, INRA 1260, Aix-Marseille Université, Faculté de médecine, F-13385, Marseille, France,
| |
Collapse
|
59
|
Kim NH, Cha YH, Kim HS, Lee SE, Huh JK, Kim JK, Kim JM, Ryu JK, Kim HJ, Lee Y, Lee SY, Noh I, Li XY, Weiss SJ, Jahng TA, Yook JI. A platform technique for growth factor delivery with novel mode of action. Biomaterials 2014; 35:9888-9896. [PMID: 25218859 DOI: 10.1016/j.biomaterials.2014.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/01/2014] [Indexed: 01/09/2023]
Abstract
Though growth factors allow tissue regeneration, the trade-off between their effectiveness and adverse effects limits clinical application. The key issues in current growth factor therapy largely derive from initial burst pharmacokinetics, rapid clearance, and proteolytic cleavage resulting in clinical ineffectiveness and diverse complications. While a number of studies have focused on the development of carriers, issues arising from soluble growth factor remain. In this study, we report a prodrug of growth factors constituting a novel mode of action (MoA). To mimic endogenous protein processing in cells, we developed a recombinant BMP-2 polypeptide based on a protein transduction domain (PTD) to transduce the protein into cells followed by furin-mediated protein cleavage and secretion of active growth factor. As proof of concept, a few micrograms scale of PTD-BMP-2 polypeptide sufficed to induce bone regeneration in vivo. As a simple platform, our technique can easily be extended to delivery of BMP-7 and DKK-1 as therapeutics for TGF-β and canonical Wnt signaling, respectively, to suppress the epithelial-mesenchymal transition (EMT), which constitutes a fundamental biological mechanism of many diseases. This technique largely overcomes the limitations of current soluble growth factors and opens the door to next generation growth factor therapeutics.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Yong Hoon Cha
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Soo Eon Lee
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-799, South Korea
| | - Jong-Ki Huh
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Jung Kook Kim
- Ortholution, 104 Suntechcity, 513-15, Sangdaewon-dong, Joongwon-gu, Seongnam-si, Kyunggi-do 462-725, South Korea
| | - Jeong Moon Kim
- Ortholution, 104 Suntechcity, 513-15, Sangdaewon-dong, Joongwon-gu, Seongnam-si, Kyunggi-do 462-725, South Korea
| | - Joo Kyung Ryu
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Hee-Jin Kim
- Department of Anatomy, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Yoonmi Lee
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, South Korea
| | - Su Yeon Lee
- Department of Chemical Engineering, Seoul National Universtiy of Science and Technology, Seoul 139-743, South Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 139-743, South Korea
| | - Insup Noh
- Department of Chemical Engineering, Seoul National Universtiy of Science and Technology, Seoul 139-743, South Korea; Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 139-743, South Korea
| | - Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine and the Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tae-Ahn Jahng
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul 110-799, South Korea.
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 120-752, South Korea.
| |
Collapse
|
60
|
Gagnon H, Beauchemin S, Kwiatkowska A, Couture F, D'Anjou F, Levesque C, Dufour F, Desbiens AR, Vaillancourt R, Bernard S, Desjardins R, Malouin F, Dory YL, Day R. Optimization of furin inhibitors to protect against the activation of influenza hemagglutinin H5 and Shiga toxin. J Med Chem 2013; 57:29-41. [PMID: 24359257 DOI: 10.1021/jm400633d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proprotein convertases (PCs) are crucial in the processing and entry of viral or bacterial protein precursors and confer increased infectivity of pathogens bearing a PC activation site, which results in increased symptom severity and lethality. Previously, we developed a nanomolar peptide inhibitor of PCs to prevent PC activation of infectious agents. Herein, we describe a peptidomimetic approach that increases the stability of this inhibitor for use in vivo to prevent systemic infections and cellular damage, such as that caused by influenza H5N1 and Shiga toxin. The addition of azaβ(3)-amino acids to both termini of the peptide successfully prevented influenza hemagglutinin 5 fusogenicity and Shiga toxin Vero toxicity in cell-based assays. The results from a cell-based model using stable shRNA-induced proprotein convertase knockdown indicate that only furin is the major proprotein convertase required for HA5 cleavage.
Collapse
Affiliation(s)
- Hugo Gagnon
- Institut de Pharmacologie de Sherbrooke (IPS) and Département de Chirurgie/Urologie, Faculté de Médecine et des Sciences de la Santé (FMSS), Université de Sherbrooke , 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Halford MM, Macheda ML, Parish CL, Takano EA, Fox S, Layton D, Nice E, Stacker SA. A fully human inhibitory monoclonal antibody to the Wnt receptor RYK. PLoS One 2013; 8:e75447. [PMID: 24058687 PMCID: PMC3776778 DOI: 10.1371/journal.pone.0075447] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 08/18/2013] [Indexed: 11/19/2022] Open
Abstract
RYK is an unusual member of the receptor tyrosine kinase (RTK) family that is classified as a putative pseudokinase. RYK regulates fundamental biological processes including cell differentiation, migration and target selection, axon outgrowth and pathfinding by transducing signals across the plasma membrane in response to the high affinity binding of Wnt family ligands to its extracellular Wnt inhibitory factor (WIF) domain. Here we report the generation and initial characterization of a fully human inhibitory monoclonal antibody to the human RYK WIF domain. From a naïve human single chain fragment variable (scFv) phage display library, we identified anti-RYK WIF domain–specific scFvs then screened for those that could compete with Wnt3a for binding. Production of a fully human IgG1κ from an inhibitory scFv yielded a monoclonal antibody that inhibits Wnt5a-responsive RYK function in a neurite outgrowth assay. This antibody will have immediate applications for modulating RYK function in a range of settings including development and adult homeostasis, with significant potential for therapeutic use in human pathologies.
Collapse
Affiliation(s)
- Michael M. Halford
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Angiogenesis Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Maria L. Macheda
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Angiogenesis Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Clare L. Parish
- Florey Neuroscience Institutes, Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena A. Takano
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Stephen Fox
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Layton
- Monash Antibody Technologies Facility, Monash University, Clayton, Victoria, Australia
| | - Edouard Nice
- Monash Antibody Technologies Facility, Monash University, Clayton, Victoria, Australia
| | - Steven A. Stacker
- Tumour Angiogenesis Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Angiogenesis Laboratory, Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
62
|
Kato S, Zhang R, Roberts JD. Proprotein convertases play an important role in regulating PKGI endoproteolytic cleavage and nuclear transport. Am J Physiol Lung Cell Mol Physiol 2013; 305:L130-40. [PMID: 23686857 PMCID: PMC3726948 DOI: 10.1152/ajplung.00391.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/15/2013] [Indexed: 12/27/2022] Open
Abstract
Nitric oxide and cGMP modulate vascular smooth muscle cell (SMC) phenotype by regulating cell differentiation and proliferation. Recent studies suggest that cGMP-dependent protein kinase I (PKGI) cleavage and the nuclear translocation of a constitutively active kinase fragment, PKGIγ, are required for nuclear cGMP signaling in SMC. However, the mechanisms that control PKGI proteolysis are unknown. Inspection of the amino acid sequence of a PKGI cleavage site that yields PKGIγ and a protease database revealed a putative minimum consensus sequence for proprotein convertases (PCs). Therefore we investigated the role of PCs in regulating PKGI proteolysis. We observed that overexpression of PCs, furin and PC5, but not PC7, which are all expressed in SMC, increase PKGI cleavage in a dose-dependent manner in human embryonic kidney (HEK) 293 cells. Moreover, furin-induced proteolysis of mutant PKGI, in which alanines were substituted into the putative PC consensus sequence, was decreased in these cells. In addition, overexpression of furin increased PKGI proteolysis in LoVo cells, which is an adenocarcinoma cell line expressing defective furin without PC activity. Also, expression of α1-PDX, an engineered serpin-like PC inhibitor, reduced PC activity and decreased PKGI proteolysis in HEK293 cells. Last, treatment of low-passage rat aortic SMC with membrane-permeable PC inhibitor peptides decreased cGMP-stimulated nuclear PKGIγ translocation. These data indicate for the first time that PCs have a role in regulating PKGI proteolysis and the nuclear localization of its active cleavage product, which are important for cGMP-mediated SMC phenotype.
Collapse
Affiliation(s)
- Shin Kato
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
63
|
HDAC6 deacetylase activity is required for hypoxia-induced invadopodia formation and cell invasion. PLoS One 2013; 8:e55529. [PMID: 23405166 PMCID: PMC3566011 DOI: 10.1371/journal.pone.0055529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/27/2012] [Indexed: 02/06/2023] Open
Abstract
Despite significant progress in the cancer field, tumor cell invasion and metastasis remain a major clinical challenge. Cell invasion across tissue boundaries depends largely on extracellular matrix degradation, which can be initiated by formation of actin-rich cell structures specialized in matrix degradation called invadopodia. Although the hypoxic microenvironment within solid tumors has been increasingly recognized as an important driver of local invasion and metastasis, little is known about how hypoxia influences invadopodia biogenesis. Here, we show that histone deacetylase 6 (HDAC6), a cytoplasmic member of the histone deacetylase family, is a novel modulator of hypoxia-induced invadopodia formation. Hypoxia was found to enhance HDAC6 tubulin deacetylase activity through activation of the EGFR pathway. Activated HDAC6, in turn, triggered Smad3 phosphorylation resulting in nuclear accumulation. Inhibition of HDAC6 activity or knockdown of the protein inhibited both hypoxia-induced Smad3 activation and invadopodia formation. Our data provide evidence that hypoxia influences invadopodia formation in a biphasic manner, which involves the activation of HDAC6 deacetylase activity by EGFR, resulting in enhanced Smad phosphorylation and nuclear accumulation. The identification of HDAC6 as a key participant of hypoxia-induced cell invasion may have important therapeutic implications for the treatment of metastasis in cancer patients.
Collapse
|
64
|
Hada K, Isshiki K, Matsuda S, Yuasa K, Tsuji A. Engineering of α1-antitrypsin variants with improved specificity for the proprotein convertase furin using site-directed random mutagenesis. Protein Eng Des Sel 2012; 26:123-31. [PMID: 23155057 DOI: 10.1093/protein/gzs091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Furin, PACE4, PC5/6 and PC7 are members of the subtilisin-like proprotein convertase (SPC) family. Although these enzymes are known to play critical roles in various physiological and pathological events including cell differentiation, tumor growth, virus replication and the activation of bacterial toxins, their distinct functions are yet to be fully delineated. α1-PDX is an engineered α1-antitrypsin variant carrying the RXXR consensus motif for furin within its reactive site loop. However, α1-PDX inhibits other SPCs in addition to furin. In this work, we prepared various rat α1-antitrypsin variants containing Arg at the P1 site within the reactive site loop, and examined their respective selectivity. The novel α1-antitrypsin variant AVNR (AVPM(352)/AVNR) was identified as a highly selective inhibitor of furin. This variant formed a sodium dodecyl sulfate- and heat-stable furin/α1-antitrypsin complex and inhibited furin activity ex vivo and in vitro. Other SPC members including PACE4, PC5/6 and PC7 were not inhibited by the AVNR variant. Furin-mediated maturation of bone morphogenetic protein-4 was completely inhibited by ectopic expression of the AVNR variant. The AVNR variant should prove to be a useful inhibitor in identifying the specific role of furin.
Collapse
Affiliation(s)
- Koichiro Hada
- Department of Biological Science and Technology, University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | | | | | | | | |
Collapse
|
65
|
Corrigendum to ‘Furin inhibitors: Importance of the positive formal charge and beyond’ [Bioorg. Med. Chem. 20 (2012) 4462–4471]. Bioorg Med Chem 2012. [DOI: 10.1016/j.bmc.2012.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
66
|
Artenstein AW, Opal SM. Novel approaches to the treatment of systemic anthrax. Clin Infect Dis 2012; 54:1148-61. [PMID: 22438345 DOI: 10.1093/cid/cis017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anthrax continues to generate concern as an agent of bioterrorism and as a natural cause of sporadic disease outbreaks. Despite the use of appropriate antimicrobial agents and advanced supportive care, the mortality associated with the systemic disease remains high. This is primarily due to the pathogenic exotoxins produced by Bacillus anthracis as well as other virulence factors of the organism. For this reason, new therapeutic strategies that target events in the pathogenesis of anthrax and may potentially augment antimicrobials are being investigated. These include anti-toxin approaches, such as passive immune-based therapies; non-antimicrobial drugs with activity against anthrax toxin components; and agents that inhibit binding, processing, or assembly of toxins. Adjunct therapies that target spore germination or downstream events in anthrax intoxication are also under investigation. In combination, these modalities may enhance the management of systemic anthrax.
Collapse
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket, and The Warren Alpert Medical School of Brown University, Providence, RI 02860, USA
| | | |
Collapse
|
67
|
López-Vallejo F, Martínez-Mayorga K. Furin inhibitors: importance of the positive formal charge and beyond. Bioorg Med Chem 2012; 20:4462-71. [PMID: 22682919 DOI: 10.1016/j.bmc.2012.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/03/2012] [Accepted: 05/12/2012] [Indexed: 02/02/2023]
Abstract
Furin is the prototype member of the proprotein convertases superfamily. Proprotein convertases are associated with hormonal response, neural degeneration, viral and bacterial activation, and cancer. Several studies over the last decade have examined small molecules, natural products, peptides and peptide derivatives as furin inhibitors. Currently, subnanomolar inhibition of furin is possible. Herein, we report the analysis of 115 furin inhibitors reported in the literature. Analysis of the physicochemical properties of these compounds highlights the dependence of the inhibitory potency with the total formal charge and also shows how the most potent (peptide-based) furin inhibitors have physicochemical properties similar to drugs. In addition, we report docking studies of 26 furin inhibitors using Glide XP. Inspection of binding interactions shows that the two putative binding modes derived from our study are reasonable. Analysis of the binding modes and protein-ligand interaction fingerprints, used here as postdocking procedure, shows that electrostatic interactions predominate on S1, S2 and S4 subsites but are seldom in S3. Our models also show that the benzimidamide group, present in the most active inhibitors, can be accommodated in the S1 subsite. These results are valuable for the design of new furin inhibitors.
Collapse
Affiliation(s)
- Fabian López-Vallejo
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port St. Lucie, FL 34987, USA
| | | |
Collapse
|
68
|
Becker GL, Lu Y, Hardes K, Strehlow B, Levesque C, Lindberg I, Sandvig K, Bakowsky U, Day R, Garten W, Steinmetzer T. Highly potent inhibitors of proprotein convertase furin as potential drugs for treatment of infectious diseases. J Biol Chem 2012; 287:21992-2003. [PMID: 22539349 DOI: 10.1074/jbc.m111.332643] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Optimization of our previously described peptidomimetic furin inhibitors was performed and yielded several analogs with a significantly improved activity. The most potent compounds containing an N-terminal 4- or 3-(guanidinomethyl)phenylacetyl residue inhibit furin with K(i) values of 16 and 8 pM, respectively. These analogs inhibit other proprotein convertases, such as PC1/3, PC4, PACE4, and PC5/6, with similar potency, whereas PC2, PC7, and trypsin-like serine proteases are poorly affected. Incubation of selected compounds with Madin-Darby canine kidney cells over a period of 96 h revealed that they exhibit great stability, making them suitable candidates for further studies in cell culture. Two of the most potent derivatives were used to inhibit the hemagglutinin cleavage and viral propagation of a highly pathogenic avian H7N1 influenza virus strain. The treatment with inhibitor 24 (4-(guanidinomethyl)phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide) resulted in significantly delayed virus propagation compared with an inhibitor-free control. The same analog was also effective in inhibiting Shiga toxin activation in HEp-2 cells. This antiviral effect, as well as the protective effect against a bacterial toxin, suggests that inhibitors of furin or furin-like proprotein convertases could represent promising lead structures for future drug development, in particular for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Gero L Becker
- Institute of Pharmaceutical Chemistry, Philipps University, 35032 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Stepwise proteolytic activation of type I procollagen to collagen within the secretory pathway of tendon fibroblasts in situ. Biochem J 2012; 441:707-17. [PMID: 21967573 PMCID: PMC3430002 DOI: 10.1042/bj20111379] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proteolytic cleavage of procollagen I to collagen I is essential for the formation of collagen fibrils in the extracellular matrix of vertebrate tissues. Procollagen is cleaved by the procollagen N- and C-proteinases, which remove the respective N- and C-propeptides from procollagen. Procollagen processing is initiated within the secretory pathway in tendon fibroblasts, which are adept in assembling an ordered extracellular matrix of collagen fibrils in vivo. It was thought that intracellular processing was restricted to the TGN (trans-Golgi network). In the present study, brefeldin A treatment of tendon explant cultures showed that N-proteinase activity is present in the resulting fused ER (endoplasmic reticulum)–Golgi compartment, but that C-proteinase activity is restricted to the TGN in embryonic chick tendon fibroblasts. In late embryonic and postnatal rat tail and postnatal mouse tail tendon, C-proteinase activity was detected in TGN and pre-TGN compartments. Preventing activation of the procollagen N- and C-proteinases with the furin inhibitor Dec-RVKR-CMK (decanoyl-Arg-Val-Lys-Arg-chloromethylketone) indicated that only a fraction of intracellular procollagen cleavage was mediated by newly activated proteinases. In conclusion, the N-propeptides are removed earlier in the secretory pathway than the C-propeptides. The removal of the C-propeptides in post-Golgi compartments most probably indicates preparation of collagen molecules for fibril formation at the cell–matrix interface.
Collapse
|
70
|
Olmstead AD, Knecht W, Lazarov I, Dixit SB, Jean F. Human subtilase SKI-1/S1P is a master regulator of the HCV Lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog 2012; 8:e1002468. [PMID: 22241994 PMCID: PMC3252376 DOI: 10.1371/journal.ppat.1002468] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/17/2011] [Indexed: 12/11/2022] Open
Abstract
HCV infection is a major risk factor for liver cancer and liver transplantation worldwide. Overstimulation of host lipid metabolism in the liver by HCV-encoded proteins during viral infection creates a favorable environment for virus propagation and pathogenesis. In this study, we hypothesize that targeting cellular enzymes acting as master regulators of lipid homeostasis could represent a powerful approach to developing a novel class of broad-spectrum antivirals against infection associated with human Flaviviridae viruses such as hepatitis C virus (HCV), whose assembly and pathogenesis depend on interaction with lipid droplets (LDs). One such master regulator of cholesterol metabolic pathways is the host subtilisin/kexin-isozyme-1 (SKI-1) – or site-1 protease (S1P). SKI-1/S1P plays a critical role in the proteolytic activation of sterol regulatory element binding proteins (SREBPs), which control expression of the key enzymes of cholesterol and fatty-acid biosynthesis. Here we report the development of a SKI-1/S1P-specific protein-based inhibitor and its application to blocking the SREBP signaling cascade. We demonstrate that SKI-1/S1P inhibition effectively blocks HCV from establishing infection in hepatoma cells. The inhibitory mechanism is associated with a dramatic reduction in the abundance of neutral lipids, LDs, and the LD marker: adipose differentiation-related protein (ADRP)/perilipin 2. Reduction of LD formation inhibits virus assembly from infected cells. Importantly, we confirm that SKI-1/S1P is a key host factor for HCV infection by using a specific active, site-directed, small-molecule inhibitor of SKI-1/S1P: PF-429242. Our studies identify SKI-1/S1P as both a novel regulator of the HCV lifecycle and as a potential host-directed therapeutic target against HCV infection and liver steatosis. With identification of an increasing number of human viruses that use host LDs for infection, our results suggest that SKI-1/S1P inhibitors may allow development of novel broad-spectrum biopharmaceuticals that could lead to novel indirect-acting antiviral options with the current standard of care. Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver cancer and liver transplantation worldwide. No vaccine is available for preventing the spread of HCV, and the current therapeutic regimen is only moderately effective and causes serious side effects. New antiviral agents are required to treat HCV infection, but the high mutation rate of HCV hinders the effectiveness of virus-specific inhibitors. Targeting the host enzymes required for HCV to replicate offers a promising new direction for antiviral therapy. During infection, HCV promotes excessive fat accumulation in the liver, which benefits the virus as this promotes formation of lipid droplets, a cellular organelle essential for assembly of new HCV infectious viral particles. Here, we report the development of a specific inhibitor targeting SKI-1/S1P, a host enzyme required for lipid production in human cells. We show that inhibiting SKI-1/S1P activity in human liver cells effectively blocks lipid droplet formation and HCV infection. Many prevalent human viruses, such as dengue, rotavirus, and hepatitis B virus, hijack host lipid metabolic pathways similar to those targeted by HCV to complete their lifecycle. Thus, we propose that cellular SKI-1/S1P is a potential target for developing desperately needed novel broad-spectrum antiviral drugs.
Collapse
Affiliation(s)
- Andrea D. Olmstead
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfgang Knecht
- Lead Generation - Target Production, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | - Ina Lazarov
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - François Jean
- Department of Microbiology and Immunology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
71
|
Affiliation(s)
- Andrew W Artenstein
- Center for Biodefense and Emerging Pathogens, Department of Medicine, Memorial Hospital of Rhode Island, Pawtucket 02860, USA.
| | | |
Collapse
|
72
|
Couture F, D'Anjou F, Day R. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. Biomol Concepts 2011; 2:421-438. [PMID: 22308173 DOI: 10.1515/bmc.2011.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There is increasing interest in the therapeutic targeting of proteases for the treatment of important diseases. Additionally new protein-based therapeutic strategies have the potential to widen the available treatments against these pathologies. In the last decade, accumulated evidence has confirmed that the family of proteases known as proprotein convertases (PCs) are potential targets for viral infections, osteoarthritis, cancer and cardiovascular disease, among others. Nevertheless, there are still many unanswered questions about the relevance of targeting PCs in a therapeutic context, especially regarding the anticipated secondary effects of treatment, considering the observed embryonic lethality of some PC knockout mice. In this review, the benefits of PCs as pharmacological targets will be discussed, with focus on concepts and strategies, as well as on the state of advancement of actual and future inhibitors.
Collapse
Affiliation(s)
- Frédéric Couture
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | | | | |
Collapse
|
73
|
Jiang CJ, Hao ZY, Zeng R, Shen PH, Li JF, Wu B. Characterization of a novel serine protease inhibitor gene from a marine metagenome. Mar Drugs 2011; 9:1487-1501. [PMID: 22131953 PMCID: PMC3225930 DOI: 10.3390/md9091487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 11/20/2022] Open
Abstract
A novel serine protease inhibitor (serpin) gene designated as Spi1C was cloned via the sequenced-based screening of a metagenomic library from uncultured marine microorganisms. The gene had an open reading frame of 642 base pairs, and encoded a 214-amino acid polypeptide with a predicted molecular mass of about 28.7 kDa. The deduced amino acid sequence comparison and phylogenetic analysis indicated that Spi1C and some partial proteinase inhibitor I4 serpins were closely related. Functional characterization demonstrated that the recombinant Spi1C protein could inhibit a series of serine proteases. The Spi1C protein exhibited inhibitory activity against α-chymotrypsin and trypsin with K(i) values of around 1.79 × 10(-8) and 1.52 × 10(-8) M, respectively. No inhibition activity was exhibited against elastase. Using H-d-Phe-Pip-Arg-pNA as the chromogenic substrate, the optimum pH and temperature of the inhibition activity against trypsin were 7.0-8.0 and 25 °C, respectively. The identification of a novel serpin gene underscores the potential of marine metagenome screening for novel biomolecules.
Collapse
Affiliation(s)
- Cheng-Jian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi 530004, China; E-Mails: (C.-J.J.); (Z.-Y.H.); (R.Z.); (P.-H.S.); (J.-F.L.)
| | - Zhen-Yu Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi 530004, China; E-Mails: (C.-J.J.); (Z.-Y.H.); (R.Z.); (P.-H.S.); (J.-F.L.)
| | - Rong Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi 530004, China; E-Mails: (C.-J.J.); (Z.-Y.H.); (R.Z.); (P.-H.S.); (J.-F.L.)
| | - Pei-Hong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi 530004, China; E-Mails: (C.-J.J.); (Z.-Y.H.); (R.Z.); (P.-H.S.); (J.-F.L.)
| | - Jun-Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi 530004, China; E-Mails: (C.-J.J.); (Z.-Y.H.); (R.Z.); (P.-H.S.); (J.-F.L.)
| | - Bo Wu
- College of Chemistry and Ecology Engineering, Guangxi University for Nationalities, 188 Daxue East Road, Nanning, Guangxi 530006, China
| |
Collapse
|
74
|
Sadeqzadeh E, de Bock CE, Zhang XD, Shipman KL, Scott NM, Song C, Yeadon T, Oliveira CS, Jin B, Hersey P, Boyd AW, Burns GF, Thorne RF. Dual processing of FAT1 cadherin protein by human melanoma cells generates distinct protein products. J Biol Chem 2011; 286:28181-91. [PMID: 21680732 DOI: 10.1074/jbc.m111.234419] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The giant cadherin FAT1 is one of four vertebrate orthologues of the Drosophila tumor suppressor fat. It engages in several functions, including cell polarity and migration, and in Hippo signaling during development. Homozygous deletions in oral cancer suggest that FAT1 may play a tumor suppressor role, although overexpression of FAT1 has been reported in some other cancers. Here we show using Northern blotting that human melanoma cell lines variably but universally express FAT1 and less commonly FAT2, FAT3, and FAT4. Both normal melanocytes and keratinocytes also express comparable FAT1 mRNA relative to melanoma cells. Analysis of the protein processing of FAT1 in keratinocytes revealed that, like Drosophila FAT, human FAT1 is cleaved into a non-covalent heterodimer before achieving cell surface expression. The use of inhibitors also established that such cleavage requires the proprotein convertase furin. However, in melanoma cells, the non-cleaved proform of FAT1 is also expressed at the cell surface together with the furin-cleaved heterodimer. Moreover, furin-independent processing generates a potentially functional proteolytic product in melanoma cells, a persistent 65-kDa membrane-bound cytoplasmic fragment no longer in association with the extracellular fragment. In vitro localization studies of FAT1 showed that melanoma cells display high levels of cytosolic FAT1 protein, whereas keratinocytes, despite comparable FAT1 expression levels, exhibited mainly cell-cell junctional staining. Such differences in protein distribution appear to reconcile with the different protein products generated by dual FAT1 processing. We suggest that the uncleaved FAT1 could promote altered signaling, and the novel products of alternate processing provide a dominant negative function in melanoma.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- Cancer Research Unit, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Bernot D, Stalin J, Stocker P, Bonardo B, Scroyen I, Alessi MC, Peiretti F. Plasminogen activator inhibitor 1 is an intracellular inhibitor of furin proprotein convertase. J Cell Sci 2011; 124:1224-30. [PMID: 21406565 DOI: 10.1242/jcs.079889] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proprotein convertases (PCs) are a family of serine proteases that are involved in the post-translational processing and activation of a wide range of regulatory proteins. The upstream role of PCs in the control of many physiological and pathological processes generates a growing interest in understanding their regulation. Here, we demonstrate that the serine protease inhibitor plasminogen activator inhibitor 1 (PAI-1) forms an SDS-stable complex with the PC furin, which leads to the inhibition of the intra-Golgi activity of furin. It is known that elevated PAI-1 plasma levels are correlated with the occurrence of the metabolic syndrome and type 2 diabetes, and we show that PAI-1 reduces the furin-dependent maturation and activity of the insulin receptor and ADAM17: two proteins involved in the onset of these metabolic disorders. In addition to demonstrating that PAI-1 is an intracellular inhibitor of furin, this study also provides arguments in favor of an active role for PAI-1 in the development of metabolic disorders.
Collapse
Affiliation(s)
- Denis Bernot
- Inserm, U626, Université de Méditerranée, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseilles Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
76
|
Biswas A, Joo KI, Liu J, Zhao M, Fan G, Wang P, Gu Z, Tang Y. Endoprotease-mediated intracellular protein delivery using nanocapsules. ACS NANO 2011; 5:1385-1394. [PMID: 21268592 DOI: 10.1021/nn1031005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proteins possess distinct intracellular roles allowing them to have vast therapeutic applications. However, due to poor cellular permeability and fragility of most proteins, intracellular delivery of native, active proteins is challenging. We describe a biomimetic protein delivery vehicle which is degradable upon the digestion by furin, a ubiquitous intracellular protease, to release encapsulated cargos. Proteins were encapsulated in a nanosized matrix prepared with monomers and a bisacrylated peptide cross-linker which can be specifically recognized and cleaved by furin. Release of encapsulated protein was confirmed in a cell-free system upon proteolytic degradation of nanocapsules. In vitro cell culture studies demonstrated successful intracellular delivery of both nuclear and cytosolic proteins and confirmed the importance of furin-degradable construction for native protein release. This endoprotease-mediated intracellular delivery system may be extended to effectively deliver various biological therapeutics.
Collapse
Affiliation(s)
- Anuradha Biswas
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Leonhardt RM, Vigneron N, Rahner C, Cresswell P. Proprotein convertases process Pmel17 during secretion. J Biol Chem 2011; 286:9321-37. [PMID: 21247888 PMCID: PMC3059051 DOI: 10.1074/jbc.m110.168088] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pmel17 is a melanocyte/melanoma-specific protein that traffics to melanosomes where it forms a fibrillar matrix on which melanin gets deposited. Before being cleaved into smaller fibrillogenic fragments the protein undergoes processing by proprotein convertases, a class of serine proteases that typically recognize the canonical motif RX(R/K)R↓. The current model of Pmel17 maturation states that this processing step occurs in melanosomes, but in light of recent reports this issue has become controversial. We therefore addressed this question by thoroughly assessing the processing kinetics of either wild-type Pmel17 or a secreted soluble Pmel17 derivative. Our results demonstrate clearly that processing of Pmel17 occurs during secretion and that it does not require entry of the protein into the endocytic system. Strikingly, processing proceeds even in the presence of the secretion inhibitor monensin, suggesting that Pmel17 is an exceptionally good substrate. In line with this, we find that newly synthesized surface Pmel17 is already quantitatively cleaved. Moreover, we demonstrate that Pmel17 function is independent of the sequence identity of its unconventional proprotein convertase-cleavage motif that lacks arginine in P4 position. The data alter the current view of Pmel17 maturation and suggest that the multistep processing of Pmel17 begins with an early cleavage during secretion that primes the protein for later functional processing.
Collapse
Affiliation(s)
- Ralf M Leonhardt
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA.
| | | | | | | |
Collapse
|
78
|
Opal SM, Lim YP, Cristofaro P, Artenstein AW, Kessimian N, Delsesto D, Parejo N, Palardy JE, Siryaporn E. Inter-α inhibitor proteins: a novel therapeutic strategy for experimental anthrax infection. Shock 2011; 35:42-4. [PMID: 20523269 PMCID: PMC3016999 DOI: 10.1097/shk.0b013e3181e83204] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human inter-α inhibitor proteins are endogenous human plasma proteins that function as serine protease inhibitors. Inter-α inhibitor proteins can block the systemic release of proteases in sepsis and block furin-mediated assembly of protective antigen, an essential stop in the intracellular delivery of the anthrax exotoxins, lethal toxin and edema toxin. Inter-α inhibitor proteins administered on hour or up to 24 h after spore challenge with Bacillus anthracis Sterne strain protected mice from lethality if administered with antimicrobial therapy (P < 0.001). These human plasma proteins possess combined actions against anthrax as general inhibitors of excess serine proteases in sepsis and specific inhibitors of anthrax toxin assembly. Inter-α inhibitor proteins could represent a novel adjuvant therapy for the treatment of established anthrax infection.
Collapse
Affiliation(s)
- Steven M Opal
- Infectious Disease Research Laboratory, Memorial Hospital of Rhode Island, Pawtucket, RI 02860, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Olson ST, Gettins PGW. Regulation of proteases by protein inhibitors of the serpin superfamily. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:185-240. [PMID: 21238937 DOI: 10.1016/b978-0-12-385504-6.00005-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The serpins comprise an ancient superfamily of proteins, found abundantly in eukaryotes and even in some bacteria and archea, that have evolved to regulate proteases of both serine and cysteine mechanistic classes. Unlike the thermodynamically determined lock-and-key type inhibitors, such as those of the Kunitz and Kazal families, serpins use conformational change and consequent kinetic trapping of an enzyme intermediate to effect inhibition. By combining interactions of both an exposed reactive center loop and exosites outside this loop with the active site and complementary exosites on the target protease, serpins can achieve remarkable specificity. Together with the frequent use of regulatory cofactors, this permits a sophisticated time- and location-dependent mode of protease regulation. An understanding of the structure and function of serpins has suggested that they may provide novel scaffolds for engineering protease inhibitors of desired specificity for therapeutic use.
Collapse
Affiliation(s)
- Steven T Olson
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
80
|
Proprotein convertase inhibition results in decreased skin cell proliferation, tumorigenesis, and metastasis. Neoplasia 2010; 12:516-26. [PMID: 20651981 DOI: 10.1593/neo.92030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/18/2022] Open
Abstract
PACE4 is a proprotein convertase (PC) responsible for cleaving and activating proteins that contribute to enhance tumor progression. PACE4 overexpression significantly increased the susceptibility to carcinogenesis, leading to enhanced tumor cell proliferation and premature degradation of the basement membrane. In the present study, we sought to evaluate a novel approach to retard skin tumor progression based on the inhibition of PACE4. We used decanoyl-RVKR-chloromethylketone (CMK), a small-molecule PC inhibitor, for in vitro and in vivo experiments. We found that CMK-dependent blockage of PACE4 activity in skin squamous cell carcinoma cell lines resulted in impaired insulin-like growth factor 1 receptor maturation, diminished its intrinsic tyrosine kinase activity, and decreased tumor cell proliferation. Two-stage skin chemical carcinogenesis experiments, together with topical applications of CMK, demonstrated that this PC inhibitor markedly reduced tumor incidence, tumor multiplicity, and metastasis, pointing to a significant delay in tumor progression in wild-type and PACE4 transgenic mice. These results identify PACE4, together with other PCs, as suitable targets to slow down or block tumor progression, suggesting that PC inhibition is a potential approach for therapy for solid tumors.
Collapse
|
81
|
Le Gall SM, Maretzky T, Issuree PDA, Niu XD, Reiss K, Saftig P, Khokha R, Lundell D, Blobel CP. ADAM17 is regulated by a rapid and reversible mechanism that controls access to its catalytic site. J Cell Sci 2010; 123:3913-22. [PMID: 20980382 DOI: 10.1242/jcs.069997] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein ectodomain shedding is crucial for cell-cell interactions because it controls the bioavailability of soluble tumor necrosis factor-α (TNFα) and ligands of the epidermal growth factor (EGF) receptor, and the release of many other membrane proteins. Various stimuli can rapidly trigger ectodomain shedding, yet much remains to be learned about the identity of the enzymes that respond to these stimuli and the mechanisms underlying their activation. Here, we demonstrate that the membrane-anchored metalloproteinase ADAM17, but not ADAM10, is the sheddase that rapidly responds to the physiological signaling pathways stimulated by thrombin, EGF, lysophosphatidic acid and TNFα. Stimulation of ADAM17 is swift and quickly reversible, and does not depend on removal of its inhibitory pro-domain by pro-protein convertases, or on dissociation of an endogenous inhibitor, TIMP3. Moreover, activation of ADAM17 by physiological stimuli requires its transmembrane domain, but not its cytoplasmic domain, arguing against inside-out signaling via cytoplasmic phosphorylation as the underlying mechanism. Finally, experiments with the tight binding hydroxamate inhibitor DPC333, used here to probe the accessibility of the active site of ADAM17, demonstrate that this inhibitor can quickly bind to ADAM17 in stimulated, but not quiescent cells. These findings support the concept that activation of ADAM17 involves a rapid and reversible exposure of its catalytic site.
Collapse
Affiliation(s)
- Sylvain M Le Gall
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mesnard D, Constam DB. Imaging proprotein convertase activities and their regulation in the implanting mouse blastocyst. ACTA ACUST UNITED AC 2010; 191:129-39. [PMID: 20876279 PMCID: PMC2953431 DOI: 10.1083/jcb.201005026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The CLIP biosensor reveals the spatiotemporal activity of the Nodal proprotein convertases Furin and Pace4 during embryonic development. Axis formation and allocation of pluripotent progenitor cells to the germ layers are governed by the TGF-β–related Nodal precursor and its secreted proprotein convertases (PCs) Furin and Pace4. However, when and where Furin and Pace4 first become active have not been determined. To study the distribution of PCs, we developed a novel cell surface–targeted fluorescent biosensor (cell surface–linked indicator of proteolysis [CLIP]). Live imaging of CLIP in wild-type and Furin- and Pace4-deficient embryonic stem cells and embryos revealed that Furin and Pace4 are already active at the blastocyst stage in the inner cell mass and can cleave membrane-bound substrate both cell autonomously and nonautonomously. CLIP was also cleaved in the epiblast of implanted embryos, in part by a novel activity in the uterus that is independent of zygotic Furin and Pace4, suggesting a role for maternal PCs during embryonic development. The unprecedented sensitivity and spatial resolution of CLIP opens exciting new possibilities to elucidate PC functions in vivo.
Collapse
Affiliation(s)
- Daniel Mesnard
- Swiss Federal Institute of Technology Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, CH-1015 Lausanne, Switzerland
| | | |
Collapse
|
83
|
Gawlik K, Remacle AG, Shiryaev SA, Golubkov VS, Ouyang M, Wang Y, Strongin AY. A femtomol range FRET biosensor reports exceedingly low levels of cell surface furin: implications for the processing of anthrax protective antigen. PLoS One 2010; 5:e11305. [PMID: 20585585 PMCID: PMC2892035 DOI: 10.1371/journal.pone.0011305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 06/06/2010] [Indexed: 11/28/2022] Open
Abstract
Furin, a specialized endoproteinase, transforms proproteins into biologically active proteins. Furin function is important for normal cells and also in multiple pathologies including malignancy and anthrax. Furin is believed to cycle between the Golgi compartment and the cell surface. Processing of anthrax protective antigen-83 (PA83) by the cells is considered thus far as evidence for the presence of substantial levels of cell-surface furin. To monitor furin, we designed a cleavage-activated FRET biosensor in which the Enhanced Cyan and Yellow Fluorescent Proteins were linked by the peptide sequence SNSRKKR / STSAGP derived from anthrax PA83. Both because of the sensitivity and selectivity of the anthrax sequence to furin proteolysis and the FRET-based detection, the biosensor recorded the femtomolar levels of furin in the in vitro reactions and cell-based assays. Using the biosensor that was cell-impermeable because of its size and also by other relevant methods, we determined that exceedingly low levels, if any, of cell-surface furin are present in the intact cells and in the cells with the enforced furin overexpression. This observation was in a sharp contrast with the existing concepts about the furin presentation on cell surfaces and anthrax disease mechanism. We next demonstrated using cell-based tests that PA83, in fact, was processed by furin in the extracellular milieu and that only then the resulting PA63 bound the anthrax toxin cell-surface receptors. We also determined that the biosensor, but not the conventional peptide substrates, allowed continuous monitoring of furin activity in cancer cell extracts. Our results suggest that there are no physiologically-relevant levels of cell-surface furin and, accordingly, that the mechanisms of anthrax should be re-investigated. In addition, the availability of the biosensor is a foundation for non-invasive monitoring of furin activity in cancer cells. Conceptually, the biosensor we developed may serve as a prototype for other proteinase-activated biosensors.
Collapse
Affiliation(s)
- Katarzyna Gawlik
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Albert G. Remacle
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Sergey A. Shiryaev
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Vladislav S. Golubkov
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Mingxing Ouyang
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Yingxiao Wang
- Department of Bioengineering and the Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Alex Y. Strongin
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| |
Collapse
|
84
|
Remacle AG, Gawlik K, Golubkov VS, Cadwell GW, Liddington RC, Cieplak P, Millis SZ, Desjardins R, Routhier S, Yuan XW, Neugebauer WA, Day R, Strongin AY. Selective and potent furin inhibitors protect cells from anthrax without significant toxicity. Int J Biochem Cell Biol 2010; 42:987-95. [PMID: 20197107 PMCID: PMC2862824 DOI: 10.1016/j.biocel.2010.02.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 02/22/2010] [Indexed: 01/08/2023]
Abstract
Furin and related proprotein convertases cleave the multibasic motifs R-X-R/K/X-R in the precursor proteins and, as a result, transform the latent proproteins into biologically active proteins and peptides. Furin is present both in the intracellular secretory pathway and at the cell surface. Intracellular furin processes its multiple normal cellular targets in the Golgi and secretory vesicle compartments while cell-surface furin appears to be essential only for the processing of certain pathogenic proteins and, importantly, anthrax. To design potent, safe and selective inhibitors of furin, we evaluated the potency and selectivity of the derivatized peptidic inhibitors modeled from the extended furin cleavage sequence of avian influenza A H5N1. We determined that the N- and C-terminal modifications of the original RARRRKKRT inhibitory scaffold produced selective and potent, nanomolar range, inhibitors of furin. These inhibitors did not interfere with the normal cellular function of furin because of the likely functional redundancy existing between furin and other proprotein convertases. These furin inhibitors, however, were highly potent in blocking the furin-dependent cell-surface processing of anthrax protective antigen-83 both in vitro and cell-based assays and in vivo. We conclude that the inhibitors we have designed have a promising potential as selective anthrax inhibitors, without affecting major cell functions.
Collapse
Affiliation(s)
| | | | | | | | | | - Piotr Cieplak
- Burnham Institute for Medical Research, La Jolla, CA 92037
| | | | - Roxane Desjardins
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé and Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - Sophie Routhier
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé and Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - Xue Wen Yuan
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé and Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - Witold A. Neugebauer
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé and Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - Robert Day
- Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé and Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | |
Collapse
|
85
|
Semenov AG, Tamm NN, Seferian KR, Postnikov AB, Karpova NS, Serebryanaya DV, Koshkina EV, Krasnoselsky MI, Katrukha AG. Processing of pro-B-type natriuretic peptide: furin and corin as candidate convertases. Clin Chem 2010; 56:1166-76. [PMID: 20489134 DOI: 10.1373/clinchem.2010.143883] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND B-type natriuretic peptide (BNP) and its N-terminal fragment (NT-proBNP) are the products of the enzyme-mediated cleavage of their precursor molecule, proBNP. The clinical significance of proBNP-derived peptides as biomarkers of heart failure has been explored thoroughly, whereas little is known about the mechanisms of proBNP processing. We investigated the role of 2 candidate convertases, furin and corin, in human proBNP processing. METHODS We measured proBNP expression in HEK 293 and furin-deficient LoVo cells. We used a furin inhibitor and a furin-specific small interfering RNA (siRNA) to explore the implication of furin in proBNP processing. Recombinant proBNPs were incubated with HEK 293 cells transfected with the corin-expressing plasmid. We applied mass spectrometry to analyze the products of furin- and corin-mediated cleavage. RESULTS Reduction of furin activity significantly impaired proBNP processing in HEK 293 cells. Furin-deficient LoVo cells were unable to process proBNP, whereas coexpression with furin resulted in effective proBNP processing. Mass spectrometric analysis revealed that the furin-mediated cleavage of proBNP resulted in BNP 1-32, whereas corin-mediated cleavage led to the production of BNP 4-32. Some portion of proBNP in the plasma of heart failure patients was not glycosylated in the cleavage site region and was susceptible to furin-mediated cleavage. CONCLUSIONS Both furin and corin are involved in the proBNP processing pathway, giving rise to distinct BNP forms. The significance of the presence of unprocessed proBNP in circulation that could be cleaved by the endogenous convertases should be further investigated for better understanding BNP physiology.
Collapse
|
86
|
Furin targeted drug delivery for treatment of rhabdomyosarcoma in a mouse model. PLoS One 2010; 5:e10445. [PMID: 20454619 PMCID: PMC2862740 DOI: 10.1371/journal.pone.0010445] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 04/01/2010] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Improvement of treatment efficacy and decreased side effects through tumor-targeted drug delivery would be desirable. By panning with a phage-displayed cyclic random peptide library we selected a peptide with strong affinity for RMS in vitro and in vivo. The peptide minimal binding motif Arg-X-(Arg/Lys)(Arg/Lys) identified by alanine-scan, suggested the target receptor to be a proprotein convertase (PC). Expression profiling of all PCs in RMS biopsies and cell lines revealed consistent high expression levels for the membrane-bound furin and PC7. Direct binding of RMS-P3 peptide to furin was demonstrated by affinity chromatography and supported by activity and colocalization studies. Treatment of RMS in mice with doxorubicin coupled to the targeting peptide resulted in a two-fold increase in therapeutic efficacy compared to doxorubicin treatment alone. Our findings indicate surface-furin binding as novel mechanism for therapeutic cell penetration which needs to be further investigated. Furthermore, this work demonstrates that specific targeting of membrane-bound furin in tumors is possible for and suggests that RMS and other tumors might benefit from proprotein convertases targeted drug delivery.
Collapse
|
87
|
Brown SAN, Ghosh A, Winkles JA. Full-length, membrane-anchored TWEAK can function as a juxtacrine signaling molecule and activate the NF-kappaB pathway. J Biol Chem 2010; 285:17432-41. [PMID: 20385556 DOI: 10.1074/jbc.m110.131979] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF) family members are initially synthesized as type II transmembrane proteins, but some of these proteins are substrates for proteolytic enzymes that generate soluble cytokines with biological activity. TWEAK (TNF-like weak inducer of apoptosis), a member of the TNF family, is a multifunctional cytokine that acts via binding to a cell surface receptor named Fn14 (fibroblast growth factor-inducible 14). Studies conducted to date indicate that TWEAK-producing cells can co-express both membrane-anchored and soluble TWEAK isoforms, but there is little information on TWEAK proteolytic processing. Also, it is presently unclear whether membrane-anchored TWEAK, like soluble TWEAK, is biologically active. Here we show that full-length human TWEAK is processed intracellularly by the serine protease furin and identify TWEAK amino acid residues 90-93 as the predominant furin recognition site. In addition, we report that full-length, membrane-anchored TWEAK can bind the Fn14 receptor on neighboring cells and activate the NF-kappaB signaling pathway. Thus, TWEAK can act in a juxtacrine manner to initiate cellular responses, and this property may be important for TWEAK function during physiological wound repair and disease pathogenesis.
Collapse
Affiliation(s)
- Sharron A N Brown
- Department of Surgery and Physiology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
88
|
Felin JE, Mayo JL, Loos TJ, Jensen JD, Sperry DK, Gaufin SL, Meinhart CA, Moss JB, Bridgewater LC. Nuclear variants of bone morphogenetic proteins. BMC Cell Biol 2010; 11:20. [PMID: 20230640 PMCID: PMC2850327 DOI: 10.1186/1471-2121-11-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/15/2010] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) contribute to many different aspects of development including mesoderm formation, heart development, neurogenesis, skeletal development, and axis formation. They have previously been recognized only as secreted growth factors, but the present study detected Bmp2, Bmp4, and Gdf5/CDMP1 in the nuclei of cultured cells using immunocytochemistry and immunoblotting of nuclear extracts. RESULTS In all three proteins, a bipartite nuclear localization signal (NLS) was found to overlap the site at which the proproteins are cleaved to release the mature growth factors from the propeptides. Mutational analyses indicated that the nuclear variants of these three proteins are produced by initiating translation from downstream alternative start codons. The resulting proteins lack N-terminal signal peptides and are therefore translated in the cytoplasm rather than the endoplasmic reticulum, thus avoiding proteolytic processing in the secretory pathway. Instead, the uncleaved proteins (designated nBmp2, nBmp4, and nGdf5) containing the intact NLSs are translocated to the nucleus. Immunostaining of endogenous nBmp2 in cultured cells demonstrated that the amount of nBmp2 as well as its nuclear/cytoplasmic distribution differs between cells that are in M-phase versus other phases of the cell cycle. CONCLUSIONS The observation that nBmp2 localization varies throughout the cell cycle, as well as the conservation of a nuclear localization mechanism among three different BMP family members, suggests that these novel nuclear variants of BMP family proteins play an important functional role in the cell.
Collapse
Affiliation(s)
- Jenny E Felin
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Becker GL, Sielaff F, Than ME, Lindberg I, Routhier S, Day R, Lu Y, Garten W, Steinmetzer T. Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. J Med Chem 2010; 53:1067-75. [PMID: 20038105 DOI: 10.1021/jm9012455] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Furin belongs to the family of proprotein convertases (PCs) and is involved in numerous normal physiological and pathogenic processes, such as viral propagation, bacterial toxin activation, cancer, and metastasis. Furin and related furin-like PCs cleave their substrates at characteristic multibasic consensus sequences, preferentially after an arginine residue. By incorporating decarboxylated arginine mimetics in the P1 position of substrate analogue peptidic inhibitors, we could identify highly potent furin inhibitors. The most potent compound, phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide (15), inhibits furin with a K(i) value of 0.81 nM and has also comparable affinity to other PCs like PC1/3, PACE4, and PC5/6, whereas PC2 and PC7 or trypsin-like serine proteases were poorly affected. In fowl plague virus (influenza A, H7N1)-infected MDCK cells, inhibitor 15 inhibited proteolytic hemagglutinin cleavage and was able to reduce virus propagation in a long-term infection test. Molecular modeling revealed several key interactions of the 4-amidinobenzylamide residue in the S1 pocket of furin contributing to the excellent affinity of these inhibitors.
Collapse
Affiliation(s)
- Gero L Becker
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Hoashi T, Tamaki K, Hearing VJ. The secreted form of a melanocyte membrane-bound glycoprotein (Pmel17/gp100) is released by ectodomain shedding. FASEB J 2009; 24:916-30. [PMID: 19884326 DOI: 10.1096/fj.09-140921] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ectodomain shedding is a proteolytic mechanism by which a transmembrane protein is converted into a secreted form. Pmel17/gp100 is a melanocyte-specific membrane-bound glycoprotein that has amyloid characteristics and forms fibrillar structures in melanosomes after a complex sequence of post-translational processing and trafficking events, including cleavage by a furin-like proprotein convertase (PC). A secreted form of Pmel17 (termed sPmel17) was also thought to be released due to cleavage by a PC. We used multidisciplinary approaches to demonstrate that sPmel17 is released by ectodomain shedding at the juxtamembrane and/or intramembrane motif and to show that this is independent of cleavage by a PC. We further show that sPmel17 consists of 2 fragments linked by disulfide bonds and that the shedding is inhibited at low temperature but not by metalloproteinase inhibitors. Moreover, treatment with a phorbol ester or a calmodulin inhibitor induces Pmel17 shedding. We also refine the reactivity of HMB50 and NKI/beteb, 2 monoclonal antibodies commonly used as melanoma-specific markers. The fact that those antibodies require physically separated domains of Pmel17 sheds interesting light on its 3-dimensional conformation. We conclude that sPmel17 is released by regulated proteolytic ectodomain shedding.-Hoashi, T., Tamaki, K., Hearing, V. J. The secreted form of a melanocyte membrane-bound glycoprotein (Pmel17/gp100) is released by ectodomain shedding.
Collapse
Affiliation(s)
- Toshihiko Hoashi
- V.J.H., National Institutes of Health, Laboratory of Cell Biology, Bldg. 37, Rm. 2132, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
91
|
Nelsen SM, Christian JL. Site-specific cleavage of BMP4 by furin, PC6, and PC7. J Biol Chem 2009; 284:27157-66. [PMID: 19651771 PMCID: PMC2785643 DOI: 10.1074/jbc.m109.028506] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/27/2009] [Indexed: 11/06/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) require proteolytic activation by members of the proprotein convertase (PC) family. Pro-BMP4 is initially cleaved at a site adjacent to the mature ligand domain (S1) and then at an upstream site (S2) within the prodomain. Cleavage at the S2 site, which appears to occur in a tissue-specific fashion, regulates the activity and signaling range of mature BMP4. To test the hypothesis that tissue-specific cleavage of pro-BMP4 is regulated by differential expression of a site-specific protease, we identified the PCs that cleave each site in vivo. In Xenopus oocytes, furin and PC6 function redundantly to cleave both the S1 and S2 sites of pro-BMP4, as evidenced by the results of antisense-mediated gene knockdown and the use of the furin- and PC6-selective inhibitor alpha(1)-PDX. By contrast, alpha(1)-PDX blocked cleavage of the S2 but not the S1 site of pro-BMP4 in embryos, suggesting the existence of a developmentally regulated S1 site-specific convertase. This protease is likely to be PC7 based on knowledge of its required substrate cleavage motif and resistance to alpha(1)-PDX. Consistent with this prediction, an alpha(1)-PDX variant engineered to target PC7, in addition to furin and PC6, completely inhibited cleavage of BMP4 in oocytes and embryos. Further studies showed that pc7 transcripts are expressed and polyadenylated, and that the PC7 precursor protein undergoes efficient autocatalytic activation in both oocytes and embryos. These results suggest that PC7, or a convertase with similar substrate specificity, functions to selectively cleave the S1 site of pro-BMP4 in a developmentally regulated fashion.
Collapse
Affiliation(s)
| | - Jan L. Christian
- Cell and Developmental Biology, Oregon Health and Science University School of Medicine, Portland, Oregon 97239-3098
| |
Collapse
|
92
|
Yuasa K, Masuda T, Yoshikawa C, Nagahama M, Matsuda Y, Tsuji A. Subtilisin-like proprotein convertase PACE4 is required for skeletal muscle differentiation. J Biochem 2009; 146:407-15. [PMID: 19520771 DOI: 10.1093/jb/mvp090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most growth factors stimulate myoblast proliferation and prevent differentiation, whereas insulin-like growth factors (IGFs) promote myoblast differentiation through the phosphatidylinositol 3-kinase (PI3K) pathway. Subtilisin-like proprotein convertases (SPCs) are involved in cell growth and differentiation via activation of pro-growth factors. However, the role of SPCs in myogenesis remains poorly understood. Here we show that PACE4, a member of the SPC family, plays a critical role in myogenic differentiation of C2C12 cells. PACE4 mRNA levels increased markedly during myogenesis, whereas the expression of other member of SPC family, furin and PC6, remained unchanged. The expression pattern of pro-IGF-II, which is processed extracellularly by SPCs, was similar to that of PACE4. The expression of shRNA targeting PACE4, but not furin, suppressed the expression of the muscle-specific myosin light chain (MLC). Interestingly, reduced expression of MLC was restored following treatment with recombinant mature IGF-II. Finally, we demonstrated that the PI3K inhibitor LY294002 blocked the induction of PACE4 mRNA, a result not observed when another myogenic differentiation inhibitor, SB203580 (p38 MAP kinase inhibitor), was employed, indicating the presence of a positive feedback loop regulating PACE4 expression. These results suggest that PACE4 plays an important role in myogenic differentiation through its association with the IGF-II pathway.
Collapse
Affiliation(s)
- Keizo Yuasa
- Department of Biological Science, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | | | | | | | | | | |
Collapse
|
93
|
Maisa A, Ströher U, Klenk HD, Garten W, Strecker T. Inhibition of Lassa virus glycoprotein cleavage and multicycle replication by site 1 protease-adapted alpha(1)-antitrypsin variants. PLoS Negl Trop Dis 2009; 3:e446. [PMID: 19488405 PMCID: PMC2685025 DOI: 10.1371/journal.pntd.0000446] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 04/28/2009] [Indexed: 12/02/2022] Open
Abstract
Background Proteolytic processing of the Lassa virus envelope glycoprotein precursor GP-C by the host proprotein convertase site 1 protease (S1P) is a prerequisite for the incorporation of the subunits GP-1 and GP-2 into viral particles and, hence, essential for infectivity and virus spread. Therefore, we tested in this study the concept of using S1P as a target to block efficient virus replication. Methodology/Principal Finding We demonstrate that stable cell lines inducibly expressing S1P-adapted α1-antitrypsin variants inhibit the proteolytic maturation of GP-C. Introduction of the S1P recognition motifs RRIL and RRLL into the reactive center loop of α1-antitrypsin resulted in abrogation of GP-C processing by endogenous S1P to a similar level observed in S1P-deficient cells. Moreover, S1P-specific α1-antitrypsins significantly inhibited replication and spread of a replication-competent recombinant vesicular stomatitis virus expressing the Lassa virus glycoprotein GP as well as authentic Lassa virus. Inhibition of viral replication correlated with the ability of the different α1-antitrypsin variants to inhibit the processing of the Lassa virus glycoprotein precursor. Conclusions/Significance Our data suggest that glycoprotein cleavage by S1P is a promising target for the development of novel anti-arenaviral strategies. The virus family Arenaviridae includes several hemorrhagic fever causing agents such as Lassa, Guanarito, Junin, Machupo, and Sabia virus that pose a major public health concern to the human population in West African and South American countries. Current treatment options to control fatal outcome of disease are limited to the ribonucleoside analogue ribavirin, although its use has some significant limitations. The lack of effective treatment alternatives emphasizes the need for novel antiviral therapeutics to counteract these life-threatening infections. Maturation cleavage of the viral envelope glycoprotein by the host cell proprotein convertase site 1 protease (S1P) is critical for infectious virion production of several pathogenic arenaviruses. This finding makes this protease an attractive target for the development of novel anti-arenaviral therapeutics. We demonstrate here that highly selective S1P-adapted α1-antitrypsins have the potential to efficiently inhibit glycoprotein processing, which resulted in reduced Lassa virus replication. Our findings suggest that S1P should be considered as an antiviral target and that further optimization of modified α1-antitrypsins could lead to potent and specific S1P inhibitors with the potential for treatment of certain viral hemorrhagic fevers.
Collapse
Affiliation(s)
- Anna Maisa
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Ute Ströher
- Molecular Virology & Antiviral Approaches Unit, Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hans-Dieter Klenk
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| | - Wolfgang Garten
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| | - Thomas Strecker
- Institut für Virologie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
94
|
Izidoro MA, Gouvea IE, Santos JAN, Assis DM, Oliveira V, Judice WAS, Juliano MA, Lindberg I, Juliano L. A study of human furin specificity using synthetic peptides derived from natural substrates, and effects of potassium ions. Arch Biochem Biophys 2009; 487:105-14. [PMID: 19477160 DOI: 10.1016/j.abb.2009.05.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/20/2009] [Accepted: 05/20/2009] [Indexed: 01/04/2023]
Abstract
We explored furin substrate requirements in addition to the motif R-X-K/R-R using synthetic fluorescent resonance energy transfer (FRET) decapeptides. These decapeptides were derived from furin cleavage sites in viral coat glycoproteins and human and bacterial protein precursors. The hydrolysis by furin of most substrate was activated by K(+) ion, whereas kosmotropic anions of the Hofmeister series were inhibitors. The analysis of furin hydrolytic activity showed that its efficiency is highly dependent on the particular combinations of amino acids at different substrate positions. There is a clear interdependence of furin subsites that must be taken in account in determining its specificity and also for the design of inhibitors. However, clear preferences were detected for substrates with S at P(1)', and V at P(2)', at P(3)' the amino acids D, S, L and A are almost equally frequent. In the non-prime subsites the best substrates presented S and H at P(6); basic amino acids at P(5); and no clear tendency at P(3). Interestingly, two amino acid substitutions on the prime side of the peptide derived from H5N1 influenza hemagglutinin furin processing site highly improved its hydrolysis. These modifications are possible by single point mutations, suggesting a potential yield of a more infectious virus.
Collapse
Affiliation(s)
- Mario A Izidoro
- Department of Biophysics, Escola Paulista de Medicina, UNIFESP, São Paulo 04044-020, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Gawlik K, Shiryaev SA, Zhu W, Motamedchaboki K, Desjardins R, Day R, Remacle AG, Stec B, Strongin AY. Autocatalytic activation of the furin zymogen requires removal of the emerging enzyme's N-terminus from the active site. PLoS One 2009; 4:e5031. [PMID: 19352504 PMCID: PMC2662429 DOI: 10.1371/journal.pone.0005031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/06/2009] [Indexed: 11/18/2022] Open
Abstract
Background Before furin can act on protein substrates, it must go through an ordered process of activation. Similar to many other proteinases, furin is synthesized as a zymogen (profurin) which becomes active only after the autocatalytic removal of its auto-inhibitory prodomain. We hypothesized that to activate profurin its prodomain had to be removed and, in addition, the emerging enzyme's N-terminus had to be ejected from the catalytic cleft. Methodology/Principal Findings We constructed and analyzed the profurin mutants in which the egress of the emerging enzyme's N-terminus from the catalytic cleft was restricted. Mutants were autocatalytically processed at only the primary cleavage site Arg-Thr-Lys-Arg107↓Asp108, but not at both the primary and the secondary (Arg-Gly-Val-Thr-Lys-Arg75↓Ser76) cleavage sites, yielding, as a result, the full-length prodomain and mature furins commencing from the N-terminal Asp108. These correctly processed furin mutants, however, remained self-inhibited by the constrained N-terminal sequence which continuously occupied the S′ sub-sites of the catalytic cleft and interfered with the functional activity. Further, using the in vitro cleavage of the purified prodomain and the analyses of colon carcinoma LoVo cells with the reconstituted expression of the wild-type and mutant furins, we demonstrated that a three-step autocatalytic processing including the cleavage of the prodomain at the previously unidentified Arg-Leu-Gln-Arg89↓Glu90 site, is required for the efficient activation of furin. Conclusions/Significance Collectively, our results show the restrictive role of the enzyme's N-terminal region in the autocatalytic activation mechanisms. In a conceptual form, our data apply not only to profurin alone but also to a range of self-activated proteinases.
Collapse
Affiliation(s)
- Katarzyna Gawlik
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Sergey A. Shiryaev
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Wenhong Zhu
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | | | | | - Robert Day
- University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Albert G. Remacle
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Boguslaw Stec
- Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Alex Y. Strongin
- Burnham Institute for Medical Research, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
96
|
Komiyama T, Coppola JM, Larsen MJ, van Dort ME, Ross BD, Day R, Rehemtulla A, Fuller RS. Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules. J Biol Chem 2009; 284:15729-38. [PMID: 19332539 DOI: 10.1074/jbc.m901540200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Furin is a ubiquitously expressed proprotein convertase (PC) that plays a vital role in numerous disease processes including cancer metastasis, bacterial toxin activation (e.g. anthrax and Pseudomonas), and viral propagation (e.g. avian influenza and human immunodeficiency virus). To identify small molecule inhibitors of furin and related processing enzymes, we performed high-throughput screens of chemical diversity libraries utilizing both enzyme-based and cell-based assays. The screens identified partially overlapping sets of compounds that were further characterized for affinity, mechanism, and efficacy in additional cellular processing assays. Dicoumarols were identified as a class of compounds that inhibited furin non-competitively and reversibly with Ki values in the micromolar range. These compounds inhibited furin/furin-like activity both at the cell surface (protecting against anthrax toxin) and in the secretory pathway (blocking processing of the metastasis factor membrane-type 1 matrix metalloproteinase/MT1-MMP) at concentrations close to Ki values. Compounds tested exhibited distinct patterns of inhibition of other furin-family PCs (rat PACE4, human PC5/6 and human PC7), showing that dicoumarol derivatives might be developed as either generic or selective inhibitors of the PCs. The extensive clinical use, high bioavailability and relatively low toxicity of dicoumarols suggests that the dicoumarol structure will be a good starting point for development of drug-like inhibitors of furin and other PCs that can act both intracellularly and at the cell surface.
Collapse
Affiliation(s)
- Tomoko Komiyama
- Departments of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Kowalska D, Liu J, Appel JR, Ozawa A, Nefzi A, Mackin RB, Houghten RA, Lindberg I. Synthetic small-molecule prohormone convertase 2 inhibitors. Mol Pharmacol 2009; 75:617-25. [PMID: 19074544 PMCID: PMC2684913 DOI: 10.1124/mol.108.051334] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/10/2008] [Indexed: 11/22/2022] Open
Abstract
The proprotein convertases are believed to be responsible for the proteolytic maturation of a large number of peptide hormone precursors. Although potent furin inhibitors have been identified, thus far, no small-molecule prohormone convertase 1/3 or prohormone convertase 2 (PC2) inhibitors have been described. After screening 38 small-molecule positional scanning libraries against recombinant mouse PC2, two promising chemical scaffolds were identified: bicyclic guanidines, and pyrrolidine bis-piperazines. A set of individual compounds was designed from each library and tested against PC2. Pyrrolidine bis-piperazines were irreversible, time-dependent inhibitors of PC2, exhibiting noncompetitive inhibition kinetics; the most potent inhibitor exhibited a K(i) value for PC2 of 0.54 microM. In contrast, the most potent bicyclic guanidine inhibitor exhibited a K(i) value of 3.3 microM. Cross-reactivity with other convertases was limited: pyrrolidine bis-piperazines exhibited K(i) values greater than 25 microM for PC1/3 or furin, whereas the K(i) values of bicyclic guanidines for these other convertases were more than 15 microM. We conclude that pyrrolidine bis-piperazines and bicyclic guanidines represent promising initial leads for the optimization of therapeutically active PC2 inhibitors. PC2-specific inhibitors may be useful in the pharmacological blockade of PC2-dependent cleavage events, such as glucagon production in the pancreas and ectopic peptide production in small-cell carcinoma, and to study PC2-dependent proteolytic events, such as opioid peptide production.
Collapse
Affiliation(s)
- Dorota Kowalska
- Department of Anatomy and Neurobiology, University of Maryland at Baltimore, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Kohno S, Kohno T, Nakano Y, Suzuki K, Ishii M, Tagami H, Baba A, Hattori M. Mechanism and significance of specific proteolytic cleavage of Reelin. Biochem Biophys Res Commun 2009; 380:93-7. [PMID: 19166810 DOI: 10.1016/j.bbrc.2009.01.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/12/2009] [Indexed: 11/17/2022]
Abstract
Reelin is a secreted glycoprotein essential for normal brain development and function. In the extracellular milieu, Reelin is subject to specific cleavage at two (N-t and C-t) sites. The N-t cleavage of Reelin is implicated in psychiatric and Alzheimer's diseases, but the molecular mechanism and physiological significance of this cleavage are not completely understood. Particularly, whether the N-t cleavage affects the signaling activity of Reelin remains controversial. Here, we show that the protease in charge of the N-t cleavage of Reelin requires the activity of certain proprotein convertase family for maturation and has strong affinity for heparin. By taking advantage of these observations, we for the first time succeeded in obtaining "Uncleaved" and "Completely Cleaved" Reelin proteins. The N-t cleavage splits Reelin into two distinct fragments and virtually abolishes its signaling activity. These findings provide an important biochemical basis for the function of Reelin proteolysis in brain development and function.
Collapse
Affiliation(s)
- Shiori Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Shifley ET, Cole SE. Lunatic fringe protein processing by proprotein convertases may contribute to the short protein half-life in the segmentation clock. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2384-90. [DOI: 10.1016/j.bbamcr.2008.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/10/2008] [Accepted: 07/11/2008] [Indexed: 12/18/2022]
|
100
|
Wang S, Han J, Wang Y, Lu W, Chi C. Design of peptide inhibitors for furin based on the C-terminal fragment of histone H1.2. Acta Biochim Biophys Sin (Shanghai) 2008. [PMID: 18850049 PMCID: PMC7110110 DOI: 10.1111/j.1745-7270.2008.00470.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The mammalian proprotein convertase furin has been found to play an important role in diverse physiological and pathological events, such as the activation of viral glycoproteins and bacterial exotoxins. Small, non‐toxic and highly active, furin inhibitors are considered to be attractive drug candidates for diseases caused by virus and bacteria. In this study, a series of peptide inhibitors were designed and synthesized based on the C‐terminal fragment of histone H1.2, which has an inhibitory effect on furin. Replacing the reactive site of inhibitors with the consensus substrate recognition sequence of furin has been found to increase inhibitory activity greatly. The most potent inhibitor, I4, with 14 amino acid residues has a Ki value of 17 nM for furin. Although most of the synthesized peptides were temporary inhibitors, the inhibitor I5, with nine amino acids, retained its full potency, even after a 3 h incubation period with furin at 37 °C. These inhibitors may potentially lead to the development of anti‐viral and antibacterial drug compounds.
Collapse
Affiliation(s)
- Suming Wang
- School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | | | | | | | | |
Collapse
|