51
|
Madge PD, Maggioni A, Pascolutti M, Amin M, Waespy M, Bellette B, Thomson RJ, Kelm S, von Itzstein M, Haselhorst T. Structural characterisation of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt's lymphoma (BL) Daudi cells by NMR spectroscopy. Sci Rep 2016; 6:36012. [PMID: 27808110 PMCID: PMC5093622 DOI: 10.1038/srep36012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022] Open
Abstract
Siglec-2 undergoes constitutive endocytosis and is a drug target for autoimmune diseases and B cell-derived malignancies, including hairy cell leukaemia, marginal zone lymphoma, chronic lymphocytic leukaemia and non-Hodgkin's lymphoma (NHL). An alternative to current antibody-based therapies is the use of liposomal nanoparticles loaded with cytotoxic drugs and decorated with Siglec-2 ligands. We have recently designed the first Siglec-2 ligands (9-biphenylcarboxamido-4-meta-nitrophenyl-carboxamido-Neu5Acα2Me, 9-BPC-4-mNPC-Neu5Acα2Me) with simultaneous modifications at C-4 and C-9 position. In the current study we have used Saturation Transfer Difference (STD) NMR spectroscopy to monitor the binding of 9-BPC-4-mNPC-Neu5Acα2Me to Siglec-2 present on intact Burkitt's lymphoma Daudi cells. Pre-treatment of cells with periodate resulted in significantly higher STD NMR signal intensities for 9-BPC-4-mNPC-Neu5Acα2Me as the cells were more susceptible to ligand binding because cis-binding on the cell surface was removed. Quantification of STD NMR effects led to a cell-derived binding epitope of 9-BPC-4-mNPC-Neu5Acα2Me that facilitated the design and synthesis of C-2, C-3, C-4 and C-9 tetra-substituted Siglec-2 ligands showing an 88-fold higher affinity compared to 9-BPC-Neu5Acα2Me. This is the first time a NMR-based binding study of high affinity Siglec-2 (CD22) ligands in complex with whole Burkitt's lymphoma Daudi cells has been described that might open new avenues in developing tailored therapeutics and personalised medicine.
Collapse
Affiliation(s)
- Paul D Madge
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Andrea Maggioni
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Mauro Pascolutti
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Moein Amin
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, 28334 Bremen, Germany
| | - Bernadette Bellette
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Robin J Thomson
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Sørge Kelm
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.,Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, 28334 Bremen, Germany
| | - Mark von Itzstein
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| |
Collapse
|
52
|
Esmaeilnejad B, Froushani SMA. Evaluation of serum sialic acid level in buffaloes naturally infected with Theileria annulata. Trop Anim Health Prod 2016; 48:1381-6. [PMID: 27312595 PMCID: PMC5040735 DOI: 10.1007/s11250-016-1096-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Tropical theileriosis, caused by Theileria annulata, is the most economically important disease of domestic buffaloes and causing major losses in livestock production in Iran. Sialic acids are often involved in interaction between the cells and the infectious agents by regulating the molecular relations as well as mediating a variety of cell-cell adhesion processes in the immune response. This study was conducted to assess the effect of T. annulata infection on sialic acid concentration in blood sera in naturally infected buffaloes. T. annulata-infected (n = 22) and uninfected control (n = 20) adult buffaloes were selected. Theileria infection was revealed by Giemsa-stained peripheral blood and was confirmed by nested-PCR using T. annulata-specific primers. Based on the detected parasitemia, the infected animals were subgrouped into low <1 %, moderate 1-3 %, high 3-5 %, and very high >5 %. Hematological parameters and the concentrations of total sialic acid (TSA), lipid-bound sialic acid (LBSA), and protein-bound sialic acid (PBSA) were measured and correlated to parasitemia. The results showed significant differences (P < 0.05) in red blood cells (RBCs), packed cell volume (PCV), hemoglobin (Hb), and sialic acid concentrations between infected and control groups. As the parasitemia increased accordingly, a significant decrease in RBCs, PCV, Hb and increase in the mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and serum sialic acids was observed. We concluded that T. annulata infection could elevate the serum sialic acid concentrations. The increased levels of serum sialic acid concentrations during parasitemia presumably stimulate the host immune response and influence the parasite-host cell adhesion.
Collapse
Affiliation(s)
- Bijan Esmaeilnejad
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | |
Collapse
|
53
|
Abstract
An important underlying mechanism that contributes to autoimmunity is the loss of inhibitory signaling in the immune system. Sialic acid-recognizing Ig superfamily lectins or Siglecs are a family of cell surface proteins largely expressed in hematopoietic cells. The majority of Siglecs are inhibitory receptors expressed in immune cells that bind to sialic acid-containing ligands and recruit SH2-domain-containing tyrosine phosphatases to their cytoplasmic tails. They deliver inhibitory signals that can contribute to the constraining of immune cells, and thus protect the host from autoimmunity. The inhibitory functions of CD22/Siglec-2 and Siglec-G and their contributions to tolerance and autoimmunity, primarily in the B lymphocyte context, are considered in some detail in this review. The relevance to autoimmunity and unregulated inflammation of modified sialic acids, enzymes that modify sialic acid, and other sialic acid-binding proteins are also reviewed.
Collapse
Affiliation(s)
- Vinay S Mahajan
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Departments of Medicine and Pathology, Harvard Medical School, Boston, MA, USA.,Deaprtment of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.,Departments of Medicine and Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Huang ML, Godula K. Nanoscale materials for probing the biological functions of the glycocalyx. Glycobiology 2016; 26:797-803. [PMID: 26916883 PMCID: PMC5018045 DOI: 10.1093/glycob/cww022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/31/2016] [Accepted: 02/16/2016] [Indexed: 12/23/2022] Open
Abstract
Glycans are among the most intriguing carriers of biological information in living systems. The structures of glycans not only convey the cells' physiological state, but also regulate cellular communication and responses by engaging receptors on neighboring cells and in the extracellular matrix. The assembly of simple monosaccharide building blocks into linear or branched oligo- and polysaccharides gives rise to a large repertoire of diverse glycan structures. Despite their structural complexity, individual glycans rarely engage their protein partners with high affinity. Yet, glycans modulate biological processes with exquisite selectivity and specificity. To correctly evaluate glycan interactions and their biological consequences, one needs to look beyond individual glycan structures and consider the entirety of the cell-surface landscape. There, glycans are presented on protein scaffolds, or are linked directly to membrane lipids, forming a complex, hierarchically organized network with specialized functions, called the glycocalyx. Nanoscale glycomaterials, which can mimic the various components of the glycocalyx, have been instrumental in revealing how the presentation of glycans can influence their biological functions. In this review, we wish to highlight some recent developments in this area, while placing emphasis on the applications of glycomaterials providing new insights into the mechanisms through which glycans mediate cellular functions.
Collapse
Affiliation(s)
- Mia L Huang
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0358, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093-0358, USA
| |
Collapse
|
55
|
Huang ML, Fisher CJ, Godula K. Glycomaterials for probing host-pathogen interactions and the immune response. Exp Biol Med (Maywood) 2016; 241:1042-53. [PMID: 27190259 DOI: 10.1177/1535370216647811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The initial engagement of host cells by pathogens is often mediated by glycan structures presented on the cell surface. Various components of the glycocalyx can be targeted by pathogens for adhesion to facilitate infection. Glycans also play integral roles in the modulation of the host immune response to infection. Therefore, understanding the parameters that define glycan interactions with both pathogens and the various components of the host immune system can aid in the development of strategies to prevent, interrupt, or manage infection. Glycomaterials provide a unique and powerful tool with which to interrogate the compositional and functional complexity of the glycocalyx. The objective of this review is to highlight some key contributions from this area of research in deciphering the mechanisms of pathogenesis and the associated host response.
Collapse
Affiliation(s)
- Mia L Huang
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - Christopher J Fisher
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
56
|
Gasparrini F, Feest C, Bruckbauer A, Mattila PK, Müller J, Nitschke L, Bray D, Batista FD. Nanoscale organization and dynamics of the siglec CD22 cooperate with the cytoskeleton in restraining BCR signalling. EMBO J 2016; 35:258-80. [PMID: 26671981 PMCID: PMC4741297 DOI: 10.15252/embj.201593027] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/09/2022] Open
Abstract
Receptor organization and dynamics at the cell membrane are important factors of signal transduction regulation. Using super-resolution microscopy and single-particle tracking, we show how the negative coreceptor CD22 works with the cortical cytoskeleton in restraining BCR signalling. In naïve B cells, we found endogenous CD22 to be highly mobile and organized into nanodomains. The landscape of CD22 and its lateral diffusion were perturbed either in the absence of CD45 or when the CD22 lectin domain was mutated. To understand how a relatively low number of CD22 molecules can keep BCR signalling in check, we generated Brownian dynamic simulations and supported them with ex vivo experiments. This combined approach suggests that the inhibitory function of CD22 is influenced by its nanoscale organization and is ensured by its fast diffusion enabling a "global BCR surveillance" at the plasma membrane.
Collapse
Affiliation(s)
| | - Christoph Feest
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| | - Andreas Bruckbauer
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| | - Pieta K Mattila
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| | - Jennifer Müller
- Chair of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Lars Nitschke
- Chair of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Dennis Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Facundo D Batista
- Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
57
|
Restuccia A, Fettis MM, Hudalla GA. Glycomaterials for immunomodulation, immunotherapy, and infection prophylaxis. J Mater Chem B 2016; 4:1569-1585. [DOI: 10.1039/c5tb01780g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synthetic carbohydrate-modified materials that can engage the innate and adaptive immune systems are receiving increasing interest to confer protection against onset of future disease, such as pathogen infection, as well as to treat established diseases, such as autoimmunity and cancer.
Collapse
Affiliation(s)
- Antonietta Restuccia
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - Margaret M. Fettis
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering
- University of Florida
- Gainesville
- USA
| |
Collapse
|
58
|
Macauley MS, Kawasaki N, Peng W, Wang SH, He Y, Arlian BM, McBride R, Kannagi R, Khoo KH, Paulson JC. Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man. J Biol Chem 2015; 290:30066-77. [PMID: 26507663 DOI: 10.1074/jbc.m115.691337] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 11/06/2022] Open
Abstract
CD22 is an inhibitory B-cell co-receptor whose function is modulated by sialic acid (Sia)-bearing glycan ligands. Glycan remodeling in the germinal center (GC) alters CD22 ligands, with as yet no ascribed biological consequence. Here, we show in both mice and humans that loss of high affinity ligands on GC B-cells unmasks the binding site of CD22 relative to naive and memory B-cells, promoting recognition of trans ligands. The conserved modulation of CD22 ligands on GC B-cells is striking because high affinity glycan ligands of CD22 are species-specific. In both species, the high affinity ligand is based on the sequence Siaα2-6Galβ1-4GlcNAc, which terminates N-glycans. The human ligand has N-acetylneuraminic acid (Neu5Ac) as the sialic acid, and the high affinity ligand on naive B-cells contains 6-O-sulfate on the GlcNAc. On human GC B-cells, this sulfate modification is lost, giving rise to lower affinity CD22 ligands. Ligands of CD22 on naive murine B-cells do not contain the 6-O-sulfate modification. Instead, the high affinity ligand for mouse CD22 has N-glycolylneuraminic acid (Neu5Gc) as the sialic acid, which is replaced on GC B-cells with Neu5Ac. Human naive and memory B-cells express sulfated glycans as high affinity CD22 ligands, which are lost on GC B-cells. In mice, Neu5Gc-containing glycans serve as high affinity CD22 ligands that are replaced by Neu5Ac-containing glycans on GC B-cells. Our results demonstrate that loss of high affinity CD22 ligands on GC B-cells occurs in both mice and humans through alternative mechanisms, unmasking CD22 relative to naive and memory B-cells.
Collapse
Affiliation(s)
| | | | | | | | - Yuan He
- Cell and Molecular Biology, and
| | | | | | - Reiji Kannagi
- Biomedical Science, Academia Sinica, Taipei 115, Taiwan
| | | | - James C Paulson
- From the Departments of Chemical Physiology, Cell and Molecular Biology, and Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037 and
| |
Collapse
|
59
|
Jiang YN, Cai X, Zhou HM, Jin WD, Zhang M, Zhang Y, Du XX, Chen ZHK. Diagnostic and prognostic roles of soluble CD22 in patients with Gram-negative bacterial sepsis. Hepatobiliary Pancreat Dis Int 2015; 14:523-9. [PMID: 26459729 DOI: 10.1016/s1499-3872(15)60394-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Soluble CD22 (sCD22) is a fragment of CD22, a B cell-specific membrane protein that negatively regulates B-cell receptor signaling. To date, sCD22 has only been regarded as a tumor marker of B-cell malignancies. Its expression in infectious diseases has not yet been assessed. METHODS Serum concentrations of sCD22, procalcitonin (PCT) and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assays in patients with intra-abdominal Gram-negative bacterial infection. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic accuracy of these biomarkers in this type of infection. The correlations between biomarkers and the Acute Physiology and Chronic Health Evaluation (APACHE) II scores were also analyzed. RESULTS Concentrations of sCD22 were significantly elevated in patients with sepsis and the elevation is correlated with the severity of sepsis. sCD22 was also slightly elevated in patients with non-infected systemic inflammatory response syndrome or local infection. The diagnostic accuracy of sCD22 for sepsis was equivalent to that of PCT or IL-6. In addition, the correlation of sCD22 with APACHE II scores was stronger than that of PCT or IL-6. CONCLUSIONS Serum sCD22 is a novel inflammatory mediator released during infection. This soluble biomarker plays a potential role in the diagnosis of Gram-negative bacterial sepsis, with a diagnostic accuracy as efficient as that of PCT or IL-6. Furthermore, sCD22 is more valuable to predict the outcomes in patients with sepsis than PCT or IL-6. The present study suggested that sCD22 might be potentially useful in supplementing current criteria for sepsis.
Collapse
Affiliation(s)
- Yi-Nan Jiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Ministry of Health, and Key Laboratory of Ministry of Education, Wuhan 430030, China.
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Chang CH, Wang Y, Gupta P, Goldenberg DM. Extensive crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in human lymphoma cells. MAbs 2015; 7:199-211. [PMID: 25484043 PMCID: PMC4622945 DOI: 10.4161/19420862.2014.979081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epratuzumab has demonstrated therapeutic activity in patients with non-Hodgkin lymphoma, acute lymphoblastic leukemia, systemic lupus erythematosus, and Sjögren's syndrome, but its mechanism of affecting normal and malignant B cells remains incompletely understood. We reported previously that epratuzumab displayed in vitro cytotoxicity to CD22-expressing Burkitt lymphoma cell lines (Daudi and Ramos) only when immobilized on plates or combined with a crosslinking antibody plus a suboptimal amount of anti-IgM (1 μg/mL). Herein, we show that, in the absence of additional anti-IgM ligation, extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor with a sufficiently high amount of anti-IgM (10 μg/mL). Specifically, either treatment led to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were essential for effecting caspase-dependent apoptosis. Moreover, such immobilization induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (Δψm), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. The physiological relevance of immobilized epratuzumab was implicated by noting that several of its in vitro effects, including apoptosis, drop in Δψm, and generation of ROS, could be observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells. These results suggest that the in vivo mechanism of non-ligand-blocking epratuzumab may, in part, involve the unmasking of CD22 to facilitate the trans-interaction of B cells with vascular endothelium.
Collapse
Key Words
- 488-annexin V, Alexa Fluor 488-conjugated annexin V
- 7-AAD, 7-aminoactinomycin D, Syk, spleen tyrosine kinase
- Anti-IgM, F(ab’)2 fragment of affinity-purified goat anti-human IgM, Fc5μ fragment
- BCR
- BCR, B-cell antigen receptor
- BSA, bovine serum albumin
- CD22
- CM-H2DCF-DA, 2′,7′-dichlorodihydrofluorescein diacetate
- DNP, 2,4-dinitrophenyl
- EC, endothelial cells
- ERKs, extracellular signal-regulated kinases
- FBS, fetal bovine serum
- FITC-DNase I, fluorescein isothiocyanate-conjugated DNase I
- GAH, F(ab′)2 fragment of affinity-purified goat anti-human IgG Fcγ fragment-specific
- HUV-EC
- HUV-EC, human umbilical vein endothelial cells
- ITIM, immunoreceptor tyrosine-based inhibition motif
- JNKs, c-Jun N-terminal kinases
- JP, jasplakinolide
- LatB, latrunculin B
- Lyn, Lck/Yes novel tyrosine kinase
- MAP kinases, mitogen-activated protein kinases
- MTS, (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
- PARP, poly(ADP-ribose) polymerase
- PBS, phosphate-buffered saline
- PLCγ2, phospholipase C, isotype gamma 2
- ROS, reactive oxygen species
- Rhodamine-anti-IgG, rhodamine-conjugated F(ab′)2 fragment of affinity-purified goat anti-human IgG, F(ab′)2 fragment-specific
- TMRE/tetramethylrhodamine/ethyl ester
- epratuzumab
- human B-cell lymphoma
- immobilized
- mIgM, membrane IgM
- Δψm, mitochondria membrane potential
Collapse
|
61
|
Coles CH, Jones EY, Aricescu AR. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Semin Cell Dev Biol 2015; 37:98-107. [PMID: 25234613 PMCID: PMC4765084 DOI: 10.1016/j.semcdb.2014.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
The receptor protein tyrosine phosphatases (RPTPs) exhibit a wide repertoire of cellular signalling functions. In particular, type IIa RPTP family members have recently been highlighted as hubs for extracellular interactions in neurons, regulating neuronal extension and guidance, as well as synaptic organisation. In this review, we will discuss the recent progress of structural biology investigations into the architecture of type IIa RPTP ectodomains and their interactions with extracellular ligands. Structural insights, in combination with biophysical and cellular studies, allow us to begin to piece together molecular mechanisms for the transduction and integration of type IIa RPTP signals and to propose hypotheses for future experimental validation.
Collapse
Affiliation(s)
- Charlotte H Coles
- Laboratory for Axon Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
62
|
Coles CH, Mitakidis N, Zhang P, Elegheert J, Lu W, Stoker AW, Nakagawa T, Craig AM, Jones EY, Aricescu AR. Structural basis for extracellular cis and trans RPTPσ signal competition in synaptogenesis. Nat Commun 2014; 5:5209. [PMID: 25385546 PMCID: PMC4239663 DOI: 10.1038/ncomms6209] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/09/2014] [Indexed: 01/26/2023] Open
Abstract
Receptor protein tyrosine phosphatase sigma (RPTPσ) regulates neuronal extension and acts as a presynaptic nexus for multiple protein and proteoglycan interactions during synaptogenesis. Unknown mechanisms govern the shift in RPTPσ function, from outgrowth promotion to synaptic organization. Here, we report crystallographic, electron microscopic and small-angle X-ray scattering analyses, which reveal sufficient inter-domain flexibility in the RPTPσ extracellular region for interaction with both cis (same cell) and trans (opposite cell) ligands. Crystal structures of RPTPσ bound to its postsynaptic ligand TrkC detail an interaction surface partially overlapping the glycosaminoglycan-binding site. Accordingly, heparan sulphate and heparin oligomers compete with TrkC for RPTPσ binding in vitro and disrupt TrkC-dependent synaptic differentiation in neuronal co-culture assays. We propose that transient RPTPσ ectodomain emergence from the presynaptic proteoglycan layer allows capture by TrkC to form a trans-synaptic complex, the consequent reduction in RPTPσ flexibility potentiating interactions with additional ligands to orchestrate excitatory synapse formation.
Collapse
Affiliation(s)
- Charlotte H. Coles
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Nikolaos Mitakidis
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Peng Zhang
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Andrew W. Stoker
- Cancer Section, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Terunaga Nakagawa
- Department of Molecular Physiology and Biophysics, Vanderbilt University, School of Medicine, 702 Light Hall (0615), Nashville, Tennessee 37232-0615, USA
| | - Ann Marie Craig
- Brain Research Centre and Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada V6T 2B5
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - A. Radu Aricescu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
63
|
Macauley MS, Paulson JC. Siglecs induce tolerance to cell surface antigens by BIM-dependent deletion of the antigen-reactive B cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:4312-21. [PMID: 25252961 DOI: 10.4049/jimmunol.1401723] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Infusion of blood cells from a donor can induce humoral tolerance in a recipient and increase the probability of successful organ transplant, a clinical method defined as donor-specific transfusion (DST). Despite the clinical success of DST, the immunological mechanisms by which blood cells displaying a foreign Ag induce tolerance remain poorly understood. Based on recent findings showing that the B cell siglecs, CD22 and Siglec-G, can promote tolerance to Ags presented on the same surface as their ligands, we speculated that the B cell siglecs are key players in tolerance induced by DST. Using a variety of chemical and genetic approaches, we show that the B cell siglecs mediate tolerance to cell surface Ags by initiating an inhibitory signal that culminates in elimination of the Ag-reactive B cell. CD22 and Siglec-G are recruited to the immunological synapse by sialic acid ligands on the Ag-bearing cells, producing a tolerogenic signal involving Lyn and the proapoptotic factor BIM that promotes deletion of the B cell and failure of mice to develop Abs to the Ag upon subsequent challenge. We speculate that this tolerogenic mechanism is a contributing factor in DST and a mechanism of peripheral B cell tolerance to cell surface autoantigens.
Collapse
Affiliation(s)
- Matthew S Macauley
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| | - James C Paulson
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037; and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
64
|
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 2014; 14:653-66. [PMID: 25234143 DOI: 10.1038/nri3737] [Citation(s) in RCA: 778] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All mammalian cells display a diverse array of glycan structures that differ from those that are found on microbial pathogens. Siglecs are a family of sialic acid-binding immunoglobulin-like receptors that participate in the discrimination between self and non-self, and that regulate the function of cells in the innate and adaptive immune systems through the recognition of their glycan ligands. In this Review, we describe the recent advances in our understanding of the roles of Siglecs in the regulation of immune cell function in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Matthew S Macauley
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - James C Paulson
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
65
|
Nitschke L. CD22 and Siglec-G regulate inhibition of B-cell signaling by sialic acid ligand binding and control B-cell tolerance. Glycobiology 2014; 24:807-17. [PMID: 25002414 DOI: 10.1093/glycob/cwu066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD22 and Siglec-G are two B-cell expressed members of the Siglec (sialic acid-binding immunoglobulin (Ig)-like lectin) family and are potent inhibitors of B-cell signaling. Genetic approaches have provided evidence that this inhibition of B-cell antigen receptor (BCR) signaling by Siglecs is dependent on ligand binding to sialic acids in specific linkages. The cis-ligand-binding activity of CD22 leads to homo-oligomer formation, which are to a large extent found in membrane domains that are distinct from those containing the BCR. In contrast, Siglec-G is recruited via sialic acid binding to the BCR. This interaction of Siglec-G with mIgM leads to an inhibitory function that seems to be specific for B-1 cells. Both CD22 and Siglec-G control B-cell tolerance and loss of these proteins, its ligands or its inhibitory pathways can increase the susceptibility for autoimmune diseases. CD22 is a target protein both in B-cell leukemias and lymphomas, as well as in B-cell mediated autoimmune diseases. Both antibodies and synthetic chemically modified sialic acids are currently tested to target Siglecs on B cells.
Collapse
Affiliation(s)
- Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
66
|
Abstract
Siglecs are mammalian sialic acid (Sia) recognizing immunoglobulin-like receptors expressed across the major leukocyte lineages, and function to recognize ubiquitous Sia epitopes on cell surface glycoconjugates and regulate immunological and inflammatory activities of these cells. A large subset referred to as CD33-related Siglecs are inhibitory receptors that limit leukocyte activation, and recent research has shown that the pathogen group B Streptococcus (GBS) binds to these Siglecs in Sia- and protein-dependent fashion to downregulate leukocyte bactericidal capacity. Conversely, sialoadhesin is a macrophage phagocytic receptor that engages GBS and other sialylated pathogens to promote effective phagocytosis and antigen presentation for the adaptive immune response. A variety of other important Siglec interactions with bacterial, viral and protozoan pathogens are beginning to be recognized. Siglec genes and binding specificities are rapidly evolving among primates, with key extant polymorphisms in human populations that may influence susceptibility to infection-associated disorders including chronic obstructive pulmonary disease and premature birth. This review summarizes current understanding of interactions between pathogens and Siglecs, a field of investigation that is likely to continue expanding in scope and medical importance.
Collapse
Affiliation(s)
- Yung-Chi Chang
- Glycobiology Research and Training Center Department of Pediatrics
| | - Victor Nizet
- Glycobiology Research and Training Center Department of Pediatrics Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
67
|
Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience 2014; 275:113-24. [PMID: 24924144 DOI: 10.1016/j.neuroscience.2014.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 11/22/2022]
Abstract
Sialic acid binding immunoglobulin-like lectins (Siglecs) are cell surface receptors of microglia and oligodendrocytes that recognize the sialic acid cap of healthy neurons and neighboring glial cells. Upon ligand binding, Siglecs typically signal through an immunoreceptor tyrosine-based inhibition motif (ITIM) to keep the cell in a homeostatic status and support healthy neighboring cells. Siglecs can be divided into two groups; the first, being conserved among different species. The conserved Siglec-4/myelin-associated glycoprotein is expressed on oligodendrocytes and Schwann cells. Siglec-4 protects neurons from acute toxicity via interaction with sialic acids bound to neuronal gangliosides. The second group of Siglecs, named CD33-related Siglecs, is almost exclusively expressed on immune cells and is highly variable among different species. Microglial expression of Siglec-11 is human lineage-specific and prevents neurotoxicity via interaction with α2.8-linked sialic acid oligomers exposed on the neuronal glycocalyx. Microglial Siglec-E is a mouse CD33-related Siglec member that prevents microglial phagocytosis and the associated oxidative burst. Mouse Siglec-E of microglia binds to α2.8- and α2.3-linked sialic acid residues of the healthy glycocalyx of neuronal and glial cells. Recently, polymorphisms of the human Siglec-3/CD33 were linked to late onset Alzheimer's disease by genome-wide association studies. Human Siglec-3 is expressed on microglia and produces inhibitory signaling that decreases uptake of particular molecules such as amyloid-β aggregates. Thus, glial ITIM-signaling Siglecs recognize the intact glycocalyx of neurons and are involved in the modulation of neuron-glia interaction in healthy and diseased brain.
Collapse
|
68
|
Desmarets LMB, Theuns S, Roukaerts IDM, Acar DD, Nauwynck HJ. Role of sialic acids in feline enteric coronavirus infections. J Gen Virol 2014; 95:1911-1918. [PMID: 24876305 DOI: 10.1099/vir.0.064717-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To initiate infections, many coronaviruses use sialic acids, either as receptor determinants or as attachment factors helping the virus find its receptor underneath the heavily glycosylated mucus layer. In the present study, the role of sialic acids in serotype I feline enteric coronavirus (FECV) infections was studied in feline intestinal epithelial cell cultures. Treatment of cells with neuraminidase (NA) enhanced infection efficiency, showing that terminal sialic acid residues on the cell surface were not receptor determinants and even hampered efficient virus-receptor engagement. Knowing that NA treatment of coronaviruses can unmask viral sialic acid binding activity, replication of untreated and NA-treated viruses was compared, showing that NA treatment of the virus enhanced infectivity in untreated cells, but was detrimental in NA-treated cells. By using sialylated compounds as competitive inhibitors, it was demonstrated that sialyllactose (2,6-α-linked over 2,3-α-linked) notably reduced infectivity of NA-treated viruses, whereas bovine submaxillary mucin inhibited both treated and untreated viruses. In desialylated cells, however, viruses were less prone to competitive inhibition with sialylated compounds. In conclusion, this study demonstrated that FECV had a sialic acid binding capacity, which was partially masked by virus-associated sialic acids, and that attachment to sialylated compounds could facilitate enterocyte infections. However, sialic acid binding was not a prerequisite for the initiation of infection and virus-receptor engagement was even more efficient after desialylation of cells, indicating that FECV requires sialidases for efficient enterocyte infections.
Collapse
Affiliation(s)
- Lowiese M B Desmarets
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sebastiaan Theuns
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Inge D M Roukaerts
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Delphine D Acar
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
69
|
Li Y, Mariuzza RA. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front Immunol 2014; 5:123. [PMID: 24723923 PMCID: PMC3972465 DOI: 10.3389/fimmu.2014.00123] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/10/2014] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are key components of innate immune responses to tumors and viral infections. NK cell function is regulated by NK cell receptors that recognize both cellular and viral ligands, including major histocompatibility complex (MHC), MHC-like, and non-MHC molecules. These receptors include Ly49s, killer immunoglobulin-like receptors, leukocyte immunoglobulin-like receptors, and NKG2A/CD94, which bind MHC class I (MHC-I) molecules, and NKG2D, which binds MHC-I paralogs such as the stress-induced proteins MICA and ULBP. In addition, certain viruses have evolved MHC-like immunoevasins, such as UL18 and m157 from cytomegalovirus, that act as decoy ligands for NK receptors. A growing number of NK receptor–ligand interaction pairs involving non-MHC molecules have also been identified, including NKp30–B7-H6, killer cell lectin-like receptor G1–cadherin, and NKp80–AICL. Here, we describe crystal structures determined to date of NK cell receptors bound to MHC, MHC-related, and non-MHC ligands. Collectively, these structures reveal the diverse solutions that NK receptors have developed to recognize these molecules, thereby enabling the regulation of NK cytolytic activity by both host and viral ligands.
Collapse
Affiliation(s)
- Yili Li
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| | - Roy A Mariuzza
- W. M. Keck Laboratory for Structural Biology, Institute for Bioscience and Biotechnology Research, University of Maryland , Rockville, MD , USA ; Department of Cell Biology and Molecular Genetics, University of Maryland , College Park, MD , USA
| |
Collapse
|
70
|
Khatua B, Roy S, Mandal C. Sialic acids siglec interaction: a unique strategy to circumvent innate immune response by pathogens. Indian J Med Res 2013; 138:648-62. [PMID: 24434319 PMCID: PMC3928697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Sialic acids (Sias) are nine-carbon keto sugars primarily present on the terminal residue of cell surface glycans. Sialic acid binding immunoglobulins (Ig)-like lectins (siglecs) are generally expressed on various immune cells. They selectively recognize different linkage-specific sialic acids and undertake a variety of cellular functions. Many pathogens either synthesize or acquire sialic acids from the host. Sialylated pathogens generally use siglecs to manipulate the host immune response. The present review mainly deals with the newly developed information regarding mechanism of acquisition of sialic acids by pathogens and their biological relevance especially in the establishment of successful infection by impairing host innate immunity. The pathogens which are unable to synthesize sialic acids might adsorb these from the host as a way to engage the inhibitory siglecs. They promote association with the immune cells through sialic acids-siglec dependent manner. Such an association plays an important role to subvert host's immunity. Detailed investigation of these pathways has been discussed in this review. Particular attention has been focused on Pseudomonas aeruginosa (PA) and Leishmania donovani.
Collapse
Affiliation(s)
- Biswajit Khatua
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Saptarshi Roy
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chitra Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Reprint requests: Dr Chitra Mandal, Cancer Biology & Inflammatory Disorders Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India e-mail: or
| |
Collapse
|
71
|
Abstract
Glycans are key participants in biological processes ranging from reproduction to cellular communication to infection. Revealing glycan roles and the underlying molecular mechanisms by which glycans manifest their function requires access to glycan derivatives that vary systematically. To this end, glycopolymers (polymers bearing pendant carbohydrates) have emerged as valuable glycan analogs. Because glycopolymers can readily be synthesized, their overall shape can be varied, and they can be altered systematically to dissect the structural features that underpin their activities. This review provides examples in which glycopolymers have been used to effect carbohydrate-mediated signal transduction. Our objective is to illustrate how these powerful tools can reveal the molecular mechanisms that underlie carbohydrate-mediated signal transduction.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA.
| | | |
Collapse
|
72
|
Kikkeri R, Padler-Karavani V, Diaz S, Verhagen A, Yu H, Cao H, Langereis MA, De Groot RJ, Chen X, Varki A. Quantum dot nanometal surface energy transfer based biosensing of sialic acid compositions and linkages in biological samples. Anal Chem 2013; 85:3864-70. [PMID: 23489180 PMCID: PMC5996995 DOI: 10.1021/ac400320n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current methods for analyzing sialic acid diversity in modifications and linkages require multistep processing, derivatization, and chromatographic analyses. We here report a single-step optical method for identification and quantification of different compositions of sialoglycans on glycoproteins and in serum. This was achieved by measuring and quantifying nanometal surface energy transfer (NSET) signals between quantum dots and gold nanoparticles bound to specific sialic acid binding proteins (SBPs) and sialic acid moieties, respectively. The biosensing process is based on the NSET turn-on by external sialic acid species that compete for binding to the SBPs. Selectivity of the biosensor toward sialoglycans can be designed to detect the total amount, glycosylation linkages (α2-6 vs α2-3), and modifications (9-O-acetyl and N-glycolyl groups) in the samples. This nanobiosensor is a prototype expected to achieve limits of the detection down to the micromolar range for high-throughput quantification and analysis of different compositions of sialoglycans present in biological or biomedical samples.
Collapse
Affiliation(s)
- Raghavendra Kikkeri
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| | - Vered Padler-Karavani
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| | - Sandra Diaz
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| | - Andrea Verhagen
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Hongzhi Cao
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Martijn A. Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Raoul J. De Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
73
|
Abstract
CD22 is a 140-kDa member of the Siglec family of cell surface proteins that is expressed by most mature B-cell lineages. As a co-receptor of the B-cell receptor (BCR), it is known to contribute to the sensitive control of the B-cell response to antigen. Cross-linking of CD22 and the BCR by antigen triggers the phosphorylation of CD22, which leads to activation of signaling molecules such as phosphatases. Signal transduction pathways involving CD22 have been explored in a number of mouse models, some of which have provided evidence that in the absence of functional CD22, B cells have a "hyperactivated" phenotype, and suggest that loss of CD22 function could contribute to the pathogenesis of autoimmune diseases. Modulating CD22 activity has therefore been suggested as a possible therapeutic approach to such diseases. For example, the novel CD22-targeting monoclonal antibody epratuzumab is currently under investigation as a treatment for the connective tissue disorder systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Thomas Dörner
- Charité University Medicine Berlin, CC12, Dept. Medicine/Rheumatology and Clinical Immunology and German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany.
| | | | | |
Collapse
|
74
|
Yadav R, Kikkeri R. Exploring the effect of sialic acid orientation on ligand-receptor interactions. Chem Commun (Camb) 2012; 48:7265-7. [PMID: 22699370 DOI: 10.1039/c2cc32587j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Here, we present the synthesis of two sialo-micelles to validate the significance of sialic acid orientation during specific carbohydrate-protein and carbohydrate-carbohydrate interactions. Our data clearly suggest that orientation of carboxylic acid and glycerol side chains of sialic acid moieties exert fine tuning of ligand-receptor interactions.
Collapse
Affiliation(s)
- Rohan Yadav
- Indian Institute of Science Education and Research, Sai Trinity Building, Pashan, Pune 411021, India
| | | |
Collapse
|
75
|
Rhee JK, Baksh M, Nycholat C, Paulson JC, Kitagishi H, Finn MG. Glycan-targeted virus-like nanoparticles for photodynamic therapy. Biomacromolecules 2012; 13:2333-8. [PMID: 22827531 DOI: 10.1021/bm300578p] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Virus-like particles (VLPs) have proven to be versatile platforms for chemical and genetic functionalization for a variety of purposes in biomedicine, catalysis, and materials science. We describe here the simultaneous modification of the bacteriophage Qβ VLP with a metalloporphyrin derivative for photodynamic therapy and a glycan ligand for specific targeting of cells bearing the CD22 receptor. This application benefits from the presence of the targeting function and the delivery of a high local concentration of singlet oxygen-generating payload.
Collapse
Affiliation(s)
- Jin-Kyu Rhee
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
76
|
Gieseke F, Mang P, Viebahn S, Sonntag I, Kruchen A, Erbacher A, Pfeiffer M, Handgretinger R, Müller I. Siglec-7 tetramers characterize B-cell subpopulations and leukemic blasts. Eur J Immunol 2012; 42:2176-86. [PMID: 22585296 DOI: 10.1002/eji.201142298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/29/2012] [Accepted: 04/20/2012] [Indexed: 01/31/2023]
Abstract
Cell surface glycosylation has important regulatory functions in the maturation, activation, and homeostasis of lymphocytes. The family of human sialic acid-binding immunoglobulin-like lectins (siglecs) comprises inhibitory as well as activating receptors intimately involved in the regulation of immune responses. Analyses of the interaction between siglecs and glycans are hampered by the low affinity of this interaction. Therefore, we expressed siglec-7 in eukaryotic cells, allowing for glycosylation, and oligomerized the protein in analogy to MHC tetramers. Using this tool, flow cytometric analysis of lymphocytes became possible. Sialic acid-dependent binding of siglec-7 tetramers was confirmed by glycan array analysis and loss of siglec tetramer binding after neuraminidase treatment of lymphocytes. In contrast to most lymphocyte subpopulations, which showed high siglec-7 ligand expression, B-cell subpopulations could be further subdivided according to different siglec-7 ligand expression levels. We also analyzed blasts from acute lymphoblastic leukemias of the B-cell lineage as well as the T-cell lineage, since malignant transformation is often associated with aberrant cell surface glycosylation. While pediatric T-ALL blasts highly expressed siglec-7 ligands, siglec-7 ligands were barely detectable on cALL blasts. Taken together, oligomerization of recombinant soluble siglec-7 enabled flow cytometric identification of physiologic lymphocyte subpopulations and malignant blasts.
Collapse
|
77
|
Abstract
Sialic acids are a diverse family of monosaccharides widely expressed on all cell surfaces of vertebrates and so-called "higher" invertebrates, and on certain bacteria that interact with vertebrates. This overview surveys examples of biological roles of sialic acids in immunity, with emphasis on an evolutionary perspective. Given the breadth of the subject, the treatment of individual topics is brief. Subjects discussed include biophysical effects regulation of factor H; modulation of leukocyte trafficking via selectins; Siglecs in immune cell activation; sialic acids as ligands for microbes; impact of microbial and endogenous sialidases on immune cell responses; pathogen molecular mimicry of host sialic acids; Siglec recognition of sialylated pathogens; bacteriophage recognition of microbial sialic acids; polysialic acid modulation of immune cells; sialic acids as pathogen decoys or biological masks; modulation of immunity by sialic acid O-acetylation; sialic acids as antigens and xeno-autoantigens; antisialoglycan antibodies in reproductive incompatibility; and sialic-acid-based blood groups.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, 92093-0687, USA.
| | | |
Collapse
|
78
|
CD22 and Siglec-G in B cell function and tolerance. Trends Immunol 2012; 33:413-20. [PMID: 22677186 DOI: 10.1016/j.it.2012.04.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/31/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022]
Abstract
The immune system has evolved into two main arms: the primitive innate arm that is the first line of defense but relatively short-lived and broad acting; and the advanced adaptive arm that generates immunological memory, allowing rapid, specific recall responses. T cell-independent type-2 (TI-2) antigens (Ags) invoke innate immune responses. However, due to its 'at the ready' nature, how the innate arm of the immune system maintains tolerance to potentially abundant host TI-2 Ags remains elusive. Therefore, it is important to define the mechanisms that establish innate immune tolerance. This review highlights recent insights into B cell tolerance to theoretical self TI-2 Ags, and examines how the B cell-restricted sialic acid binding Ig-like lectins (Siglecs), CD22 and Siglec-G, might contribute to this process.
Collapse
|
79
|
Affiliation(s)
- Jae H Park
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
80
|
Paulson JC, Macauley MS, Kawasaki N. Siglecs as sensors of self in innate and adaptive immune responses. Ann N Y Acad Sci 2012; 1253:37-48. [PMID: 22288608 DOI: 10.1111/j.1749-6632.2011.06362.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Siglecs are expressed on most white blood cells of the immune system and are known to modulate the activity of cell signaling receptors via regulatory motifs in their cytoplasmic domains. This immunoglobulin subfamily of coreceptors recognize sialic acid containing glycans as ligands, which are found on glycoproteins and glycolipids of all mammalian cells. By virtue of their ability to recognize this common structural element, siglecs are increasingly recognized for their ability to help immune cells distinguish between self and nonself, and dampen autoimmune responses.
Collapse
Affiliation(s)
- James C Paulson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
81
|
Cho SK, Kwon YJ. Simultaneous gene transduction and silencing using stimuli-responsive viral/nonviral chimeric nanoparticles. Biomaterials 2012; 33:3316-23. [PMID: 22281425 DOI: 10.1016/j.biomaterials.2012.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/09/2012] [Indexed: 01/07/2023]
Abstract
Despite viral vectors' predominant use in clinical trials, due to higher gene delivery efficiency than nonviral counterparts, intrinsic immunogenicity and limited tunability for multi-modal effects are major concerns for their usage in gene therapy. An adeno-associated viral (AAV) particle was shielded with acid-degradable, siRNA-encapsulating polyketal (PK) shell, resulting in core-shell viral/nonviral chimeric nanoparticles (ChNPs). The AAV core of a ChNP is protected from immune responses by the PK shell which also facilitates the intracellular trafficking of the AAV core and efficiently releases the encapsulated siRNA into the cytoplasm. ChNPs led to significantly enhanced gene transduction, compared to unmodified free AAVs, and simultaneous silencing of a target gene, while avoiding inactivation by recognition from the immune system. Furthermore, conjugation of sialic acid (SA) on the surface of ChNPs enabled receptor-mediated targeted gene delivery to CD22-expressing cells. The ChNPs developed in this study combine the advantages of both viral and nonviral vectors and are a promising platform for targeted co-delivery of DNA and siRNA in inducing synergistic therapeutic effects by simultaneous expression and silencing of multiple genes.
Collapse
Affiliation(s)
- Soo Kyung Cho
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, United States
| | | |
Collapse
|
82
|
Jellusova J, Nitschke L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol 2012; 2:96. [PMID: 22566885 PMCID: PMC3342095 DOI: 10.3389/fimmu.2011.00096] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/28/2011] [Indexed: 01/08/2023] Open
Abstract
B cell antigen receptor (BCR) engagement can lead to many different physiologic outcomes. To achieve an appropriate response, the BCR signal is interpreted in the context of other stimuli and several additional receptors on the B cell surface participate in the modulation of the signal. Two members of the Siglec (sialic acid-binding immunoglobulin-like lectin) family, CD22 and Siglec-G have been shown to inhibit the BCR signal. Recent findings indicate that the ability of these two receptors to bind sialic acids might be important to induce tolerance to self-antigens. Sialylated glycans are usually absent on microbes but abundant in higher vertebrates and might therefore provide an important tolerogenic signal. Since the expression of the specific ligands for Siglec-G and CD22 is tightly regulated and since Siglecs are not only able to bind their ligands in trans but also on the same cell surface this might provide additional mechanisms to control the BCR signal. Although both Siglec-G and CD22 are expressed on B cells and are able to inhibit BCR mediated signaling, they also show unique biological functions. While CD22 is the dominant regulator of calcium signaling on conventional B2 cells and also seems to play a role on marginal zone B cells, Siglec-G exerts its function mainly on B1 cells and influences their lifespan and antibody production. Both Siglec-G and CD22 have also recently been linked to toll-like receptor signaling and may provide a link in the regulation of the adaptive and innate immune response of B cells.
Collapse
|
83
|
Held W, Mariuzza RA. Cis-trans interactions of cell surface receptors: biological roles and structural basis. Cell Mol Life Sci 2011; 68:3469-78. [PMID: 21863376 PMCID: PMC11115084 DOI: 10.1007/s00018-011-0798-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 10/17/2022]
Abstract
Cell surface receptors bind ligands expressed on other cells (in trans) in order to communicate with neighboring cells. However, an increasing number of cell surface receptors are found to also interact with ligands expressed on the same cell (in cis). These observations raise questions regarding the biological role of such cis interactions. Specifically, it is important to know whether cis and trans binding have distinct functional effects and, if so, how a single cell discriminates between interactions in cis versus trans. Further, what are the structural features that allow certain cell surface receptors to engage ligand both on the same as well as on an apposed cell membrane? Here, we summarize known examples of receptors that display cis-trans binding and discuss the emerging diversity of biological roles played by these unconventional two-way interactions, along with their structural basis.
Collapse
Affiliation(s)
- Werner Held
- Ludwig Center for Cancer Research of the University of Lausanne, 1066 Epalinges, Switzerland.
| | | |
Collapse
|
84
|
Mesch S, Lemme K, Wittwer M, Koliwer-Brandl H, Schwardt O, Kelm S, Ernst B. From a Library of MAG Antagonists to Nanomolar CD22 Ligands. ChemMedChem 2011; 7:134-43. [DOI: 10.1002/cmdc.201100407] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Indexed: 12/14/2022]
|
85
|
Zou Z, Chastain A, Moir S, Ford J, Trandem K, Martinelli E, Cicala C, Crocker P, Arthos J, Sun PD. Siglecs facilitate HIV-1 infection of macrophages through adhesion with viral sialic acids. PLoS One 2011; 6:e24559. [PMID: 21931755 PMCID: PMC3169630 DOI: 10.1371/journal.pone.0024559] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 08/14/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) infects macrophages effectively, despite relatively low levels of cell surface-expressed CD4. Although HIV-1 infections are defined by viral tropisms according to chemokine receptor usage (R5 and X4), variations in infection are common within both R5- and X4-tropic viruses, indicating additional factors may contribute to viral tropism. METHODOLOGY AND PRINCIPAL FINDINGS Using both solution and cell surface binding experiments, we showed that R5- and X4-tropic HIV-1 gp120 proteins recognized a family of I-type lectin receptors, the Sialic acid-binding immunoglobulin-like lectins (Siglec). The recognition was through envelope-associated sialic acids that promoted viral adhesion to macrophages. The sialic acid-mediated viral-host interaction facilitated both R5-tropic pseudovirus and HIV-1(BaL) infection of macrophages. The high affinity Siglec-1 contributed the most to HIV-1 infection and the variation in Siglec-1 expression on primary macrophages from different donors was associated statistically with sialic acid-facilitated viral infection. Furthermore, envelope-associated sialoglycan variations on various strains of R5-tropic viruses also affected infection. CONCLUSIONS AND SIGNIFICANCE OF THE FINDINGS Our study showed that sialic acids on the viral envelope facilitated HIV-1 infection of macrophages through interacting with Siglec receptors, and the expression of Siglec-1 correlated with viral sialic acid-mediated host attachment. This glycan-mediated viral adhesion underscores the importance of viral sialic acids in HIV infection and pathogenesis, and suggests a novel class of antiviral compounds targeting Siglec receptors.
Collapse
Affiliation(s)
- Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ashley Chastain
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jennifer Ford
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Kathryn Trandem
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Elena Martinelli
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Crocker
- Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
86
|
Pérez-Oliva AB, Martínez-Esparza M, Vicente-Fernández JJ, Corral-San Miguel R, García-Peñarrubia P, Hernández-Caselles T. Epitope mapping, expression and post-translational modifications of two isoforms of CD33 (CD33M and CD33m) on lymphoid and myeloid human cells. Glycobiology 2011; 21:757-70. [PMID: 21278227 DOI: 10.1093/glycob/cwq220] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have tested the usefulness of several commercial anti-CD33 monoclonal antibodies (mAb) to determine the expression and localization of the two CD33 isoforms on several hematopoietic cell lines. The expression of the isoform CD33m, a CD33 transmembrane splice variant lacking the ligand-binding V immunoglobulin (Ig)-like domain, was detected by RT-polymerase chain reaction, western blot, confocal microscopy and flow cytometry on the membrane of several human cell types. CD33m was only detected by the anti-CD33 mAb HIM3-4 on the cell surface, whereas WM53, P67.6, 4D3, HIM3-4, WM54, D3HL60.251 or MY9 detected the CD33M isoform, indicating that HIM3-4 is the only mAb recognizing CD33 C(2) Ig domain. Accordingly, HIM3-4 binding to CD33 did not interfere with the binding of other antibodies against the CD33 V-domain. P67.6 mAb interfered with recognition by the rest of antibodies specific for the V domain. HIM3-4 staining could be increased after the sialidase treatment of all CD33(+) cells. However, this increase was stronger in activated T cells, suggesting a CD33 masking state in this cell population. Confocal microscopy analysis of CD33m HEK 293T-transfected cells revealed that this protein is expressed on the cell membrane and also detected in the Golgi compartment. CD33 is constitutively located outside the lipid raft domains, whereas cross-linked CD33 is highly recruited to this signaling platform. The unique ability of HIM3-4 mAb to detect the masking state of CD33 on different cell lineages makes it a good tool to improve the knowledge of the biological role of this sialic acid-binding Ig-like lectin.
Collapse
Affiliation(s)
- Ana B Pérez-Oliva
- Department of Biochemistry and Molecular Biology, School of Medicine, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
87
|
Kannagi R, Ohmori K, Chen GY, Miyazaki K, Izawa M, Sakuma K. Sialylated and Sulfated Carbohydrate Ligands for Selectins and Siglecs: Involvement in Traffic and Homing of Human Memory T and B Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:549-69. [DOI: 10.1007/978-1-4419-7877-6_29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
88
|
O'Reilly MK, Tian H, Paulson JC. CD22 is a recycling receptor that can shuttle cargo between the cell surface and endosomal compartments of B cells. THE JOURNAL OF IMMUNOLOGY 2010; 186:1554-63. [PMID: 21178016 DOI: 10.4049/jimmunol.1003005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CD22 is a member of the sialic acid-binding Ig-like lectin (Siglec) family that is known to be a regulator of B cell signaling. Its B cell-specific expression makes it an attractive target for immunotoxin-mediated B cell depletion therapy for the treatment of B cell lymphomas and autoimmune diseases. Although CD22 is well documented to be an endocytic receptor, it is believed that after internalization, it is targeted for degradation. We show in this study that CD22 is instead constitutively recycled to the cell surface. We also find that glycan ligand-based cargo is released from CD22 and accumulates intracellularly as CD22 recycles between the cell surface and endosomal compartments. In contrast, Abs to CD22 do not accumulate but remain bound to CD22 and recycle to the cell surface. The results have implications for development of agents that target CD22 as an endocytic receptor for delivery of cytotoxic cargo to B cells.
Collapse
Affiliation(s)
- Mary K O'Reilly
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
89
|
Bannister D, Popovic B, Sridharan S, Giannotta F, Filée P, Yilmaz N, Minter R. Epitope mapping and key amino acid identification of anti-CD22 immunotoxin CAT-8015 using hybrid β-lactamase display. Protein Eng Des Sel 2010; 24:351-60. [PMID: 21159620 PMCID: PMC3049344 DOI: 10.1093/protein/gzq114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibodies are a commercially successful class of drug molecules and there are now a growing number of antibodies coupled to toxic payloads, which demonstrate clinical efficacy. Determining the precise epitope of therapeutic antibodies is beneficial in understanding the structure-activity relationship of the drug, but in many cases is not done due to the structural complexity of, in particular, conformational protein epitopes. Using the immunotoxin CAT-8015 as a test case, this study demonstrates that a new methodology, hybrid β-lactamase display, can be employed to elucidate a complex epitope on CD22. Following insertion of random CD22 gene fragments into a permissive site within β-lactamase, proteins expressed in Escherichia coli were first screened for correct folding by resistance to ampicillin and then selected by phage display for affinity to CAT-8015. The optimal protein region recognised by CAT-8015 could then be used as a tool for fine epitope mapping, using alanine-scanning analysis, demonstrating that this technology is well suited to the rapid characterisation of antibody epitopes.
Collapse
Affiliation(s)
- D Bannister
- MedImmune Research, Granta Park, Cambridge CB21 6GH, UK
| | | | | | | | | | | | | |
Collapse
|
90
|
Hu J, Fei J, Reutter W, Fan H. Involvement of sialic acid in the regulation of γ--aminobutyric acid uptake activity of γ-aminobutyric acid transporter 1. Glycobiology 2010; 21:329-39. [PMID: 21045010 DOI: 10.1093/glycob/cwq166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The γ-aminobutyric acid (GABA) transporters (GATs) have long been recognized for their key role in the uptake of neurotransmitters. The GAT1 belongs to the family of Na(+)- and Cl(-)-coupled transport proteins, which possess 12 putative transmembrane (TM) domains and three N-glycosylation sites on the extracellular loop between TM domains 3 and 4. Previously, we demonstrated that terminal trimming of N-glycans is important for the GABA uptake activity of GAT1. In this work, we examined the effect of deficiency, removal or oxidation of surface sialic acid residues on GABA uptake activity to investigate their role in the GABA uptake of GAT1. We found that the reduced concentration of sialic acid on N-glycans was paralleled by a decreased GABA uptake activity of GAT1 in Chinese hamster ovary (CHO) Lec3 cells (mutant defective in sialic acid biosynthesis) in comparison to CHO cells. Likewise, either enzymatic removal or chemical oxidation of terminal sialic acids using sialidase or sodium periodate, respectively, resulted in a strong reduction in GAT1 activity. Kinetic analysis revealed that deficiency, removal or oxidation of terminal sialic acids did not affect the K(m) GABA values. However, deficiency and removal of terminal sialic acids of GAT1 reduced the V(max) GABA values with a reduced apparent affinity for extracellular Na(+). Oxidation of cell surface sialic acids also strongly reduced V(max) without affecting both affinities of GAT1 for GABA and Na(+), respectively. These results demonstrated for the first time that the terminal sialic acid of N-linked oligosaccharides of GAT1 plays a crucial role in the GABA transport process.
Collapse
Affiliation(s)
- Jing Hu
- Institut für Biochemie und Molekularbiologie, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Arnimallee 22, 14195 Berlin-Dahlem, Germany
| | | | | | | |
Collapse
|
91
|
Kawasaki Y, Ito A, Withers DA, Taima T, Kakoi N, Saito S, Arai Y. Ganglioside DSGb5, preferred ligand for Siglec-7, inhibits NK cell cytotoxicity against renal cell carcinoma cells. Glycobiology 2010; 20:1373-9. [PMID: 20663960 DOI: 10.1093/glycob/cwq116] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In renal cell carcinoma (RCC), the presence of higher gangliosides correlates with systematic metastasis. Disialosyl globopentaosylceramide (DSGb5) was identified previously as one of the major gangliosides from RCC tissues. Siglec-7 (sialic acid-binding Ig-like lectin-7), expressed on natural killer (NK) cells as an inhibitory receptor, has a striking preference for internally branched α2,6-linked disialic gangliosides such as DSGb5. To clarify the functional role of DSGb5 in RCC metastases, we have investigated whether DSGb5 expressed on RCC cells can modulate NK cell cytotoxicity in a Siglec-7-dependent manner. The binding activity of RCC cells to Siglec-7-Fc fusion protein was specifically inhibited by anti-DSGb5 monoclonal antibody and transfection of siRNA for ST6GalNAcVI (synthetase of DSGb5). These observations showed that Siglec-7-Fc fusion protein specifically bound to DSGb5 expressed on RCC cells. In contrast, the sialic acid-binding site of Siglec-7 on NK cells was masked by cis interactions with endogenous sialoconjugates at the cell surface, but it could be unmasked by sialidase treatment of the NK cells. Following sialidase treatment of NK cells, NK cell cytotoxicity against RCC cells with high DSGb5 expression was significantly decreased relative to cells with low DSGb5 expression. These findings indicate that such NK cell cytotoxicity against RCC cells could be inhibited by the interaction between Siglec-7 on effecter cells and DSGb5 on target cells. The results of the present study suggest that DSGb5 expressed on RCC cells can downregulate NK cell cytotoxicity in a DSGb5-Siglec-7-dependent manner and that RCC cells with DSGb5 create favorable circumstance for their own survival and metastases.
Collapse
Affiliation(s)
- Yoshihide Kawasaki
- Department of Urology, Tohoku University School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
92
|
The correlations among serum tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and sialic acids with peripheral lymphocytes in bovine tropical theileriosis. Vet Res Commun 2010; 34:579-87. [PMID: 20607396 DOI: 10.1007/s11259-010-9429-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2010] [Indexed: 11/26/2022]
Abstract
The infection with protozoan parasite Theileria annulata induces changes triggering the activation and/or proliferation of the host lymphocytes. In order to find out the possible correlations among peripheral circulatory lymphocytes, cytokine activities and the level of sialic acids, 50 dairy Holstein cattle, naturally infected with T. annulata, were divided into 4 subgroups according to their parasitemia rates (<1%, 1-3%, 3-5% and >5%). Also, ten non-infected cattle were sampled as control group. Blood samples were taken from jugular vein into acid citrate dextrose-containing tubes for measuring hematological parameters and B and T (CD(4) and CD(8)) cell populations and without anticoagulant for TNF-alpha, IFN-gamma and sialic acid concentrations. Remarkable decreases observed in red blood cells (RBCs), white blood cells (WBCs) and packed cell volume (PCV) in infected cattle compared to healthy ones (P < 0.05). Also, with increase in parasitemia rate, total lymphocytes and monocytes alleviated in the diseased groups. By contrast, total neutrohpils and the concentrations of TNF-alpha, IFN-gamma and total sialic acids were significantly elevated (P < 0.05) in infected animals. Accordingly, the circulatory populations of CD(4) and CD(8) T cells and B cells showed a substantial decrease, while a significant increase was observed in T (CD(4) and CD(8)) cells in cattle infected with <1% parasitemia rates. Decreased circulatory T cell population shows the ineffective responses of T cells to the stimulatory cytokines such as IFN-gamma or TNF-alpha. On the other hand, the elevation of cytokines (particularly IFN-gamma) and sialic acids have presumably an inhibitory role on circulatory B cell population in infected cattle. In addition, a high level of sialic acid concentration indicates the probable role of sialic acid to regulate the parasite-host cell adhesion during sporozoites invasion.
Collapse
|
93
|
Ramya TNC, Weerapana E, Liao L, Zeng Y, Tateno H, Liao L, Yates JR, Cravatt BF, Paulson JC. In situ trans ligands of CD22 identified by glycan-protein photocross-linking-enabled proteomics. Mol Cell Proteomics 2010; 9:1339-51. [PMID: 20172905 DOI: 10.1074/mcp.m900461-mcp200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD22, a regulator of B-cell signaling, is a siglec that recognizes the sequence NeuAcalpha2-6Gal on glycoprotein glycans as ligands. CD22 interactions with glycoproteins on the same cell (in cis) and apposing cells (in trans) modulate its activity in B-cell receptor signaling. Although CD22 predominantly recognizes neighboring CD22 molecules as cis ligands on B-cells, little is known about the trans ligands on apposing cells. We conducted a proteomics scale study to identify candidate trans ligands of CD22 on B-cells by UV photocross-linking CD22-Fc chimera bound to B-cell glycoproteins engineered to carry sialic acids with a 9-aryl azide moiety. Using mass spectrometry-based quantitative proteomics to analyze the cross-linked products, 27 glycoproteins were identified as candidate trans ligands. Next, CD22 expressed on the surface of one cell was photocross-linked to glycoproteins on apposing B-cells followed by immunochemical analysis of the products with antibodies to the candidate ligands. Of the many candidate ligands, only the B-cell receptor IgM was found to be a major in situ trans ligand of CD22 that is selectively redistributed to the site of cell contact upon interaction with CD22 on the apposing cell.
Collapse
Affiliation(s)
- T N C Ramya
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Odaka M, Hasegawa M, Hamaguchi Y, Ishiura N, Kumada S, Matsushita T, Komura K, Sato S, Takehara K, Fujimoto M. Autoantibody-mediated regulation of B cell responses by functional anti-CD22 autoantibodies in patients with systemic sclerosis. Clin Exp Immunol 2010; 159:176-84. [PMID: 19919568 PMCID: PMC2810386 DOI: 10.1111/j.1365-2249.2009.04059.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2009] [Indexed: 01/13/2023] Open
Abstract
Studies have demonstrated that B cells play important roles in systemic sclerosis (SSc), especially through the CD19/CD22 autoimmune loop. CD22 is a B cell-specific inhibitory receptor that dampens B cell antigen receptor (BCR) signalling via tyrosine phosphorylation-dependent mechanism. In this study, we examined the presence and functional property of circulating autoantibodies reacting with CD22 in systemic sclerosis. Serum samples from 10 tight skin (TSK/+) mice and 50 SSc patients were assessed for anti-CD22 autoantibodies by enzyme-linked immunosorbent assays using recombinant mouse or human CD22. The association between anti-CD22 antibodies and clinical features was also investigated in SSc patients. Furthermore, the influence of SSc serum including anti-CD22 autoantibodies for CD22 tyrosine phosphorylation was examined by Western blotting using phosphotyrosine-specific antibodies reacting with four major tyrosine motifs of CD22 cytoplasmic domain. Anti-CD22 autoantibodies were positive in 80% of TSK/+ mice and in 22% of SSc patients. Patients positive for anti-CD22 antibodies showed significantly higher modified Rodnan skin thickness score compared with patients negative for anti-CD22 antibodies. Furthermore, anti-CD22 antibodies from patients' sera were capable of reducing phosphorylation of all four CD22 tyrosine motifs, while sera negative for anti-CD22 antibodies did not affect CD22 phosphorylation. Thus, a subset of SSc patients possessed autoantibodies reacting with a major inhibitory B cell response regulator, CD22. Because these antibodies can interfere CD22-mediated suppression onto B cell activation in vitro, SSc B cells produce functional autoantibodies that can enhance their own activation. This unique regulation may contribute to the autoimmune aspect of SSc.
Collapse
Affiliation(s)
- M Odaka
- Department of Dermatology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Siglecs have emerged as an important family of immunomodulatory glycan-binding proteins that can bind sialoside ligands both on the same cell surface, in cis, and on other cells, in trans. Expression of siglecs varies among a variety of immune cells, and tools to probe siglecs on these cells are crucial to understanding their function. In designing synthetic ligands, competition by cis ligands requires the use of multivalency to achieve sufficient avidity to stably bind siglecs on native cells. This chapter describes the use of multivalent ligands to probe cell surfaces, as well as to investigate ligand binding to recombinant siglecs.
Collapse
Affiliation(s)
- Mary K O'Reilly
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
96
|
Duong BH, Tian H, Ota T, Completo G, Han S, Vela JL, Ota M, Kubitz M, Bovin N, Paulson JC, Paulson J, Nemazee D. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. ACTA ACUST UNITED AC 2009; 207:173-87. [PMID: 20038598 PMCID: PMC2812539 DOI: 10.1084/jem.20091873] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Autoreactive B lymphocytes first encountering self-antigens in peripheral tissues are normally regulated by induction of anergy or apoptosis. According to the “two-signal” model, antigen recognition alone should render B cells tolerant unless T cell help or inflammatory signals such as lipopolysaccharide are provided. However, no such signals seem necessary for responses to T-independent type 2 (TI-2) antigens, which are multimeric antigens lacking T cell epitopes and Toll-like receptor ligands. How then do mature B cells avoid making a TI-2–like response to multimeric self-antigens? We present evidence that TI-2 antigens decorated with ligands of inhibitory sialic acid–binding Ig-like lectins (siglecs) are poorly immunogenic and can induce tolerance to subsequent challenge with immunogenic antigen. Two siglecs, CD22 and Siglec-G, contributed to tolerance induction, preventing plasma cell differentiation or survival. Although mutations in CD22 and its signaling machinery have been associated with dysregulated B cell development and autoantibody production, previous analyses failed to identify a tolerance defect in antigen-specific mutant B cells. Our results support a role for siglecs in B cell self-/nonself-discrimination, namely suppressing responses to self-associated antigens while permitting rapid “missing self”–responses to unsialylated multimeric antigens. The results suggest use of siglec ligand antigen constructs as an approach for inducing tolerance.
Collapse
Affiliation(s)
- Bao Hoa Duong
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Chan PHW, Lairson LL, Lee HJ, Wakarchuk WW, Strynadka NCJ, Withers SG, McIntosh LP. NMR Spectroscopic Characterization of the Sialyltransferase CstII from Campylobacter jejuni: Histidine 188 Is the General Base. Biochemistry 2009; 48:11220-30. [DOI: 10.1021/bi901606n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrick H. W. Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
- Centre for High-throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Luke L. Lairson
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 Canada
| | - Ho Jun Lee
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
- Centre for High-throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Warren W. Wakarchuk
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, K1A 0R6 Canada
| | - Natalie C. J. Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
- Centre for High-throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| | - Stephen G. Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
- Centre for High-throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 Canada
| | - Lawrence P. McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3 Canada
- Centre for High-throughput Biology, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4 Canada
| |
Collapse
|
98
|
Abstract
The lymphatic system is best known for draining interstitial fluid from the tissues and returning it to the blood circulation. However, the lymphatic system also provides the means for immune surveillance in the immune system, acting as conduits that convey soluble antigens and antigen-presenting cells from the tissues to the lymph nodes, where primary lymphocyte responses are generated. One macromolecule that potentially unites these two functions is the large extracellular matrix glycosaminoglycan hyaluronan (HA), a chemically simple copolymer of GlcNAc and GlcUA that fulfills a diversity of functions from danger signal to adhesive substratum, depending upon chain length and particular interaction with its many different binding proteins and a small but important group of receptors. The two most abundant of these receptors are CD44, which is expressed on leukocytes that traffic through the lymphatics, and LYVE-1, which is expressed almost exclusively on lymphatic endothelium. Curiously, much of the HA within the tissues is turned over and degraded in lymph nodes, by a poorly understood process that occurs in the medullary sinuses. Indeed there are several mysterious aspects to HA in the lymphatics. Here we cover some of these by reviewing recent findings in the biology of lymphatic endothelial cells and their possible roles in HA homeostasis together with fresh insights into the complex and enigmatic nature of LYVE-1, its regulation of HA binding by sialylation and self-association, and its potential function in leukocyte trafficking.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK. David.
| |
Collapse
|
99
|
Abstract
The association of receptors and solute transporters with components of the endocytic machinery regulates their surface levels, and thereby cellular sensitivity to cytokines, ligands and nutrients in the extracellular environment. Most transmembrane receptors and solute transporters are glycoproteins, and the Asn (N)-linked oligosaccharides (N-glycans) can bind animal lectins, forming multivalent lattices or microdomains that regulate glycoprotein mobility in the plane of membrane. The N-glycan number (sequence-encoded NXS/T) and context-dependent Golgi N-glycan branching cooperate to regulate glycoprotein affinities for the galectin family of lectins. Galectin-3 binding reduces EGF receptor trafficking into clathrin-coated pits and caveolae lipid rafts, decreases ligand-independent receptor activation and promotes alpha5beta1 integrin remodelling in focal adhesions. N-glycan branching in the medial Golgi increases glycan affinity for galectins, and the Golgi pathway is sensitive to uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) supply, in turn hexosamine pathway metabolites (fructose-6-P, glutamine and acetyl-CoA). Thus, lattice avidity and cellular responsiveness to extracellular cues are regulated in an adaptive manner by metabolism and Golgi modification to glycoproteins. Computational modelling of the hexosamine/Golgi/lattice has provided new insight on cell surface adaptation in cancer and autoimmune disease.
Collapse
Affiliation(s)
- James W Dennis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue R988, Toronto, ON, Canada M5G 1X5.
| | | | | | | |
Collapse
|
100
|
Reineks EZ, Osei ES, Rosenberg A, Auletta J, Meyerson HJ. CD22 expression on blastic plasmacytoid dendritic cell neoplasms and reactivity of anti-CD22 antibodies to peripheral blood dendritic cells. CYTOMETRY PART B-CLINICAL CYTOMETRY 2009; 76:237-48. [PMID: 19382197 DOI: 10.1002/cyto.b.20469] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We identified CD22 expression on a blastic plasmacytoid dendritic cell (pDC) neoplasm presenting as a leukemia in a child. CD22 expression, as determined by the antibody s-HCL-1, was also noted on the neoplastic cells from three additional patients with blastic pDC tumors identified at our institution. Subsequently we determined that peripheral blood pDCs react with the s-HCL-1 antibody demonstrating that normal pDCs express CD22. Evaluation of five additional anti-CD22 antibodies indicated that staining of pDCs with these reagents was poor except for s-HCL-1. Therefore, the detection of CD22 on pDCs is best demonstrated with the use of this specific antibody clone. All anti-CD22 antibodies stained conventional DCs. We also evaluated the reactivity of the anti-CD22 antibodies with basophils and noted that the pattern of staining was similar to that seen with pDCs. The studies demonstrate that normal DCs and pDC neoplasms express CD22, and highlight clone specific differences in anti-CD22 antibody reactivity patterns on pDCs and basophils.
Collapse
Affiliation(s)
- Edmunds Z Reineks
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|