51
|
Cai Y, Mikkelsen JG. Driving DNA transposition by lentiviral protein transduction. Mob Genet Elements 2014; 4:e29591. [PMID: 25057443 PMCID: PMC4092313 DOI: 10.4161/mge.29591] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022] Open
Abstract
Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction.
Collapse
Affiliation(s)
- Yujia Cai
- Department of Biomedicine; Aarhus University; Aarhus C, Denmark
| | | |
Collapse
|
52
|
Ejsmont RK, Hassan BA. The Little Fly that Could: Wizardry and Artistry of Drosophila Genomics. Genes (Basel) 2014; 5:385-414. [PMID: 24827974 PMCID: PMC4094939 DOI: 10.3390/genes5020385] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 12/30/2022] Open
Abstract
For more than 100 years now, the fruit fly Drosophila melanogaster has been at the forefront of our endeavors to unlock the secrets of the genome. From the pioneering studies of chromosomes and heredity by Morgan and his colleagues, to the generation of fly models for human disease, Drosophila research has been at the forefront of genetics and genomics. We present a broad overview of some of the most powerful genomics tools that keep Drosophila research at the cutting edge of modern biomedical research.
Collapse
Affiliation(s)
| | - Bassem A Hassan
- VIB Center for the Biology of Disease, VIB, 3000 Leuven, Belgium.
| |
Collapse
|
53
|
Highly efficient integration and expression of piggyBac-derived cassettes in the honeybee (Apis mellifera). Proc Natl Acad Sci U S A 2014; 111:9003-8. [PMID: 24821811 DOI: 10.1073/pnas.1402341111] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Honeybees (Apis mellifera), which are important pollinators of plants, display remarkable individual behaviors that collectively contribute to the organization of a complex society. Advances in dissecting the complex processes of honeybee behavior have been limited in the recent past due to a lack of genetic manipulation tools. These tools are difficult to apply in honeybees because the unit of reproduction is the colony, and many interesting phenotypes are developmentally specified at later stages. Here, we report highly efficient integration and expression of piggyBac-derived cassettes in the honeybee. We demonstrate that 27 and 20% of queens stably transmitted two different expression cassettes to their offspring, which is a 6- to 30-fold increase in efficiency compared with those generally reported in other insect species. This high efficiency implies that an average beekeeping facility with a limited number of colonies can apply this tool. We demonstrated that the cassette stably and efficiently expressed marker genes in progeny under either an artificial or an endogenous promoter. This evidence of efficient expression encourages the use of this system to inhibit gene functions through RNAi in specific tissues and developmental stages by using various promoters. We also showed that the transgenic marker could be used to select transgenic offspring to be employed to facilitate the building of transgenic colonies via the haploid males. We present here the first to our knowledge genetic engineering tool that will efficiently allow for the systematic detection and better understanding of processes underlying the biology of honeybees.
Collapse
|
54
|
PLE-wu, a new member of piggyBac transposon family from insect, is active in mammalian cells. J Biosci Bioeng 2014; 118:359-66. [PMID: 24751435 DOI: 10.1016/j.jbiosc.2014.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/20/2014] [Accepted: 03/18/2014] [Indexed: 11/20/2022]
Abstract
piggyBac, a highly active transposon in insect and mammalian cells, is a very useful tool in genome manipulation. A new piggyBac-like element (PLE), named PLE-wu, was identified from a mutant baculovirus cultured in sf9 insect cells. This new transposon is 2931 bp in length and encodes two active forms of transposase, a 708-amino acid-long transposase and a short 576-residue-long transposase translated from a downstream in-frame initiation codon. PLE-wu has asymmetric terminal structures, containing 6-bp inverted terminal repeats, 32-bp imperfect inverted and direct sub-terminal repeats. Similar to piggyBac, PLE-wu exhibits traceless excision activity in both insect and mammalian cells, restoring the original TTAA target sequence upon excision. It also retains the insertion activity in mammalian cells with a plasmid to chromosome transposition rate about 10-fold higher than random integration. Plasmid rescue assays revealed that the TTAA target sequence was duplicated at the junctions of the insertion site. Deletion of the terminal sequences including the sub-terminal repeats decreased the transposition activity of the 708-residue-long transposase, while the transposition activity of the short form of transposase was not affected. With its low sequence similarity to piggyBac, PLE-wu will contribute to the understanding the mechanism of PLE transposition, as well as design of new transposon systems with higher activity.
Collapse
|
55
|
A modified piggybac transposon system mediated by exogenous mRNA to perform gene delivery in bovine mammary epithelial cells. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
56
|
Ding S, Xu T, Wu X. Generation of genetically engineered mice by the piggyBac transposon system. Methods Mol Biol 2014; 1194:171-85. [PMID: 25064103 DOI: 10.1007/978-1-4939-1215-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetically engineered mice (GEM) are invaluable tools not only for understanding mammalian biology but also for modeling human diseases. Here we present protocols to generate GEM with the piggyBac (PB) transposon system. In the first part, we describe a transgenic procedure that co-injects the transgene carried by a PB donor plasmid and a PB transposase (PBase)-expressing helper plasmid into the pronuclei of fertilized eggs. In the second part, we provide a large-scale, cost-effective insertional mutagenesis strategy that remobilizes single-copy PB transposons in the male germ line. Given that PB can transpose in a broad spectrum of eukaryotic hosts, the protocols described here could be adapted for other species in the future.
Collapse
Affiliation(s)
- Sheng Ding
- State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Fudan-Yale Biomedical Research Center, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | | | | |
Collapse
|
57
|
Not all GMOs are crop plants: non-plant GMO applications in agriculture. Transgenic Res 2013; 23:1057-68. [PMID: 24242193 DOI: 10.1007/s11248-013-9769-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023]
Abstract
Since tools of modern biotechnology have become available, the most commonly applied and often discussed genetically modified organisms are genetically modified crop plants, although genetic engineering is also being used successfully in organisms other than plants, including bacteria, fungi, insects, and viruses. Many of these organisms, as with crop plants, are being engineered for applications in agriculture, to control plant insect pests or diseases. This paper reviews the genetically modified non-plant organisms that have been the subject of permit approvals for environmental release by the United States Department of Agriculture/Animal and Plant Health Inspection Service since the US began regulating genetically modified organisms. This is an indication of the breadth and progress of research in the area of non-plant genetically modified organisms. This review includes three examples of promising research on non-plant genetically modified organisms for application in agriculture: (1) insects for insect pest control using improved vector systems; (2) fungal pathogens of insects to control insect pests; and (3) virus for use as transient-expression vectors for disease control in plants.
Collapse
|
58
|
Pavelitz T, Gray LT, Padilla SL, Bailey AD, Weiner AM. PGBD5: a neural-specific intron-containing piggyBac transposase domesticated over 500 million years ago and conserved from cephalochordates to humans. Mob DNA 2013; 4:23. [PMID: 24180413 PMCID: PMC3902484 DOI: 10.1186/1759-8753-4-23] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/04/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND piggyBac domain (PGBD) transposons are found in organisms ranging from fungi to humans. Three domesticated piggyBac elements have been described. In the ciliates Paramecium tetraurelia and Tetrahymena thermophila, homologs known as piggyMacs excise internal eliminated sequences from germline micronuclear DNA during regeneration of the new somatic macronucleus. In primates, a PGBD3 element inserted into the Cockayne syndrome group B (CSB) gene over 43 Mya serves as an alternative 3' terminal exon, enabling the CSB gene to generate both full length CSB and a conserved CSB-PGBD3 fusion protein that joins an N-terminal CSB domain to the C-terminal transposase domain. RESULTS We describe a fourth domesticated piggyBac element called PGBD5. We show that i) PGBD5 was first domesticated in the common ancestor of the cephalochordate Branchiostoma floridae (aka lancelet or amphioxus) and vertebrates, and is conserved in all vertebrates including lamprey but cannot be found in more basal urochordates, hemichordates, or echinoderms; ii) the lancelet, lamprey, and human PGBD5 genes are syntenic and orthologous; iii) no potentially mobile ancestral PGBD5 elements can be identified in other more deeply rooted organisms; iv) although derived from an IS4-related transposase of the RNase H clan, PGBD5 protein is unlikely to retain enzymatic activity because the catalytic DDD(D) motif is not conserved; v) PGBD5 is preferentially expressed in certain granule cell lineages of the brain and in the central nervous system based on available mouse and human in situ hybridization data, and the tissue-specificity of documented mammalian EST and mRNA clones; vi) the human PGBD5 promoter and gene region is rich in bound regulatory factors including the neuron-restrictive silencer factors NRSF/REST and CoREST, as well as SIN3, KAP1, STAT3, and CTCF; and vii) despite preferential localization within the nucleus, PGBD5 protein is unlikely to bind DNA or chromatin as neither DNase I digestion nor high salt extraction release PGBD5 from fractionated mouse brain nuclei. CONCLUSIONS We speculate that the neural-specific PGBD5 transposase was domesticated >500 My after cephalochordates and vertebrates split from urochordates, and that PGBD5 may have played a role in the evolution of a primitive deuterostome neural network into a centralized nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Alan M Weiner
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA.
| |
Collapse
|
59
|
Solodushko V, Bitko V, Fouty B. Minimal piggyBac vectors for chromatin integration. Gene Ther 2013; 21:1-9. [PMID: 24131979 DOI: 10.1038/gt.2013.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/16/2013] [Accepted: 08/27/2013] [Indexed: 01/22/2023]
Abstract
We describe novel transposon piggyBac vectors engineered to deliver transgenes as efficiently as currently available piggyBac systems, but with significantly less helper DNA co-delivered into the host genome. To generate these plasmids, we identified a previously unreported aspect of transposon biology, that the full-length terminal domains required for successful plasmid-to-chromatin transgene delivery can be removed from the transgene delivery cassette to other parts of the plasmid without significantly impairing transposition efficiency. This is achieved by including in the same plasmid, an additional helper piggyBac sequence that contains both long terminal domains, but is modified to prevent its transposition into the host genome. This design decreases the size of the required terminal domains within the delivered gene cassette of the piggyBac vector from about 1500 to just 98 base pairs. By removing these sequences from the delivered gene cassette, they are no longer incorporated into the host genome which may reduce the risk of target cell transformation.
Collapse
Affiliation(s)
- V Solodushko
- 1] Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, USA [2] Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, USA
| | - V Bitko
- NanoBio Corporation, Ann Arbor, MI, USA
| | - B Fouty
- 1] Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, USA [2] Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, USA [3] Department of Internal Medicine University of South Alabama School of Medicine, Mobile, AL, USA
| |
Collapse
|
60
|
Wright JA, Smith RC, Xie K, Craig NL, Atkinson PW. IPB7 transposase behavior in Drosophila melanogaster and Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:899-906. [PMID: 23835045 PMCID: PMC3888874 DOI: 10.1016/j.ibmb.2013.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Transposons are used in insect science as genetic tools that enable the transformation of insects and the identification and isolation of genes though their ability to insert in or near to them. Four transposons, piggyBac, Mos1, Hermes and Minos are commonly used in insects beyond Drosophila melanogaster with piggyBac, due to its wide host range and frequency of transposition, being the most commonly chosen. The utility of these transposons as genetic tools is directly proportional to their activity since higher transposition rates would be expected to lead to higher transformation frequencies and higher frequencies of insertion throughout the genome. As a consequence there is an ongoing need for hyperactive transposases for use in insect genetics, however these have proven difficult to obtain. IPB7 is a hyperactive mutant of the piggyBac transposase that was identified by a genetic screen performed in yeast, a mammalian codon optimized version of which was then found to be highly active in rodent embryonic stem cells with no apparent deleterious effects. Here we report the activity of IPB7 in D. melanogaster and the mosquito, Aedes aegypti. Somatic transposition assays revealed an increase in IPB7's transposition rate from wild-type piggyBac transposase in D. melanogaster but not Ae. aegypti. However the use of IPB7 in D. melanogaster genetic transformations produced a high rate of sterility and a low transformation rate compared to wild-type transposase. This high rate of sterility was accompanied by significant gonadal atrophy that was also observed in the absence of the piggyBac vector transposon. We conclude that IPB7 has increased activity in the D. melanogaster germ-line but that a component of the sterility associated with its activity is independent of the presence of the piggyBac transposon.
Collapse
Affiliation(s)
- Jennifer A. Wright
- Department of Entomology, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Ryan C. Smith
- Cell Molecular and Developmental Biology Graduate Program, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Kefong Xie
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Nancy L. Craig
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
| | - Peter W. Atkinson
- Department of Entomology, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
- Cell Molecular and Developmental Biology Graduate Program, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 212205-2185, USA
- Center for Disease Vector Research, Institute for Integrative Genome Biology, University California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
61
|
MAR elements and transposons for improved transgene integration and expression. PLoS One 2013; 8:e62784. [PMID: 23646143 PMCID: PMC3640020 DOI: 10.1371/journal.pone.0062784] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/24/2013] [Indexed: 01/01/2023] Open
Abstract
Reliable and long-term expression of transgenes remain significant challenges for gene therapy and biotechnology applications, especially when antibiotic selection procedures are not applicable. In this context, transposons represent attractive gene transfer vectors because of their ability to promote efficient genomic integration in a variety of mammalian cell types. However, expression from genome-integrating vectors may be inhibited by variable gene transcription and/or silencing events. In this study, we assessed whether inclusion of two epigenetic control elements, the human Matrix Attachment Region (MAR) 1–68 and X-29, in a piggyBac transposon vector, may lead to more reliable and efficient expression in CHO cells. We found that addition of the MAR 1–68 at the center of the transposon did not interfere with transposition frequency, and transgene expressing cells could be readily detected from the total cell population without antibiotic selection. Inclusion of the MAR led to higher transgene expression per integrated copy, and reliable expression could be obtained from as few as 2–4 genomic copies of the MAR-containing transposon vector. The MAR X-29-containing transposons was found to mediate elevated expression of therapeutic proteins in polyclonal or monoclonal CHO cell populations using a transposable vector devoid of selection gene. Overall, we conclude that MAR and transposable vectors can be used to improve transgene expression from few genomic transposition events, which may be useful when expression from a low number of integrated transgene copies must be obtained and/or when antibiotic selection cannot be applied.
Collapse
|
62
|
Martins S, Naish N, Walker AS, Morrison NI, Scaife S, Fu G, Dafa'alla T, Alphey L. Germline transformation of the diamondback moth, Plutella xylostella L., using the piggyBac transposable element. INSECT MOLECULAR BIOLOGY 2012; 21:414-421. [PMID: 22621377 DOI: 10.1111/j.1365-2583.2012.01146.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The diamondback moth, Plutella xylostella, is one of the most economically important agricultural pests. The larvae of this moth cause damage by feeding on the foliage of cruciferous vegetables such as cabbage, broccoli, cauliflower and rapeseed. Control generally comprises chemical treatment; however, the diamondback moth is renowned for rapid development of resistance to pesticides. Other methods, such as biological control, have not been able to provide adequate protection. Germline transformation of pest insects has become available in recent years as an enabling technology for new genetics-based control methods, such as the Release of Insects carrying a Dominant Lethal (RIDL(®) ). In the present study, we report the first transformation of the diamondback moth, using the piggyBac transposable element, by embryo microinjection. In generating transgenic strains using four different constructs, the function of three regulatory sequences in this moth was demonstrated in driving expression of fluorescent proteins. The transformation rates achieved, 0.48-0.68%, are relatively low compared with those described in other Lepidoptera, but not prohibitive, and are likely to increase with experience. We anticipate that germline transformation of the diamondback moth will permit the development of RIDL strains for use against this pest and facilitate the wider use of this species as a model organism for basic studies.
Collapse
Affiliation(s)
- S Martins
- Department of Zoology, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Alrefaei YN, Okatcha TI, Skinner DE, Brindley PJ. Progress with schistosome transgenesis. Mem Inst Oswaldo Cruz 2012; 106:785-93. [PMID: 22124549 DOI: 10.1590/s0074-02762011000700002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022] Open
Abstract
Genome sequences for Schistosoma japonicum and Schistosoma mansoni are now available. The schistosome genome encodes ~13,000 protein encoding genes for which the function of only a minority is understood. There is a valuable role for transgenesis in functional genomic investigations of these new schistosome gene sequences. In gain-of-function approaches, transgenesis can lead to integration of transgenes into the schistosome genome which can facilitate insertional mutagenesis screens. By contrast, transgene driven, vector-based RNA interference (RNAi) offers powerful loss-of-function manipulations. Our laboratory has focused on development of tools to facilitate schistosome transgenesis. We have investigated the utility of retroviruses and transposons to transduce schistosomes. Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) can transduce developmental stages of S. mansoni including eggs. We have also observed that the piggyBac transposon is transpositionally active in schistosomes. Approaches with both VSVG-MLV and piggyBac have resulted in somatic transgenesis and have lead to integration of active reporter transgenes into schistosome chromosomes. These findings provided the first reports of integration of reporter transgenes into schistosome chromosomes. Experience with these systems is reviewed herewith, along with findings with transgene mediated RNAi and germ line transgenesis, in addition to pioneering and earlier reports of gene manipulation for schistosomes.
Collapse
Affiliation(s)
- Yousef Noori Alrefaei
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, DC, USA
| | | | | | | |
Collapse
|
64
|
Abstract
The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized.
Collapse
Affiliation(s)
- Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| |
Collapse
|
65
|
Abstract
The ability to introduce genetic constructs of choice into the genome of Anopheles mosquitoes provides a valuable tool to study the molecular interactions between the Plasmodium parasite and its insect host. In the long term, this technology could potentially offer new ways to control vector-borne diseases through the suppression of target mosquito populations or through the introgression of traits that preclude pathogen transmission. Here, we describe in detail protocols for the generation of transgenic Anopheles gambiae mosquitoes based on germ-line transformation using either modified transposable elements or the site-specific PhiC31 recombinase.
Collapse
|
66
|
Goo TW, Kim SW, Kim YB, Kim SR, Park SW, Kang SW, Kwon OY, Yun EY. A powerful ubiquitous activity of Bombyx mori heat shock protein 70 promoter. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0060-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
67
|
Kokoza VA, Raikhel AS. Targeted gene expression in the transgenic Aedes aegypti using the binary Gal4-UAS system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:637-44. [PMID: 21536128 PMCID: PMC3124619 DOI: 10.1016/j.ibmb.2011.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 05/04/2023]
Abstract
In this study, we report the establishment of the binary Gal4/UAS system for the yellow fever mosquito Aedes aegypti. We utilized the 1.8-kb 5' upstream region of the vitellogenin gene (Vg) to genetically engineer mosquito lines with the Vg-Gal4 activator and established UAS-EGFP responder transgenic mosquito lines to evaluate the binary Gal4/UAS system. The results show that the Vg-Gal4 driver leads to a high level of tissue-, stage- and sex-specific expression of the EGFP reporter in the fat body of Vg-Gal4/UAS-EGFP hybrids after blood-meal activation. In addition, the applicability of this system to study hormonal regulation of gene expression was demonstrated in in vitro organ culture experiments in which the EGFP reporter was highly activated in isolated fat bodies of previtellogenic Vg-Gal4/UAS-EGFP females incubated in the presence of 20-hydroxyecdysone (20E). Hence, this study has opened the door for further refinement of genetic tools in mosquitoes.
Collapse
|
68
|
Size matters: versatile use of PiggyBac transposons as a genetic manipulation tool. Mol Cell Biochem 2011; 354:301-9. [PMID: 21516337 DOI: 10.1007/s11010-011-0832-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 04/15/2011] [Indexed: 12/16/2022]
Abstract
Transposons have been promising elements for gene integration, and the Sleeping Beauty (SB) system has been the major one for many years, although there have been several other transposon systems available, for example, Tol2. However, recently another system known as PiggyBac (PB) has been introduced and developed for fulfilling the same purposes, for example, mutagenesis, transgenesis and gene therapy and in some cases with improved transposition efficiency and advantages over the Sleeping Beauty transposon system, although improved hyperactive transposase has highly increased the transposition efficacy for SB. The PB systems have been used in many different scientific research fields; therefore, the purpose of this review is to describe some of these versatile uses of the PiggyBac system to give readers an overview on the usage of PiggyBac system.
Collapse
|
69
|
Warren IA, Fowler K, Smith H. Germline transformation of the stalk-eyed fly, Teleopsis dalmanni. BMC Mol Biol 2010; 11:86. [PMID: 21080934 PMCID: PMC2999598 DOI: 10.1186/1471-2199-11-86] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stalk-eyed flies of the family Diopsidae have proven to be an excellent model organism for studying the evolution of ornamental sexual traits. In diopsid flies the eyes and antennae are borne at the end of lateral head projections called 'eye-stalks'. Eyespan, the distance between the eyes, and the degree of sexual dimorphism in eyespan vary considerably between species and several sexually dimorphic species show sexual selection through female mate preference for males with exaggerated eyespan. Relatively little is known about the molecular genetic basis of intra- or inter-species variation in eyespan, eye-stalk development or growth regulation in diopsids. Molecular approaches including comparative developmental analyses, EST screening and QTL mapping have identified potential candidate loci for eyespan regulation in the model species Teleopsis dalmanni. Functional analyses of these genes to confirm and fully characterise their roles in eye-stalk growth require the development of techniques such as germline transformation to manipulate gene activity in vivo. RESULTS We used in vivo excision assays to identify transposon vector systems with the activity required to mediate transgenesis in T. dalmanni. Mariner based vectors showed no detectable excision while both Minos and piggyBac were active in stalk-eyed fly embryos. Germline transformation with an overall efficiency of 4% was achieved using a Minos based vector and the 3xP3-EGFP marker construct. Chromosomal insertion of constructs was confirmed by Southern blot analysis. Both autosomal and X-linked inserts were recovered. A homozygous stock, established from one of the X-linked inserts, has maintained stable expression for eight generations. CONCLUSIONS We have performed stable germline transformation of a stalk-eyed fly, T. dalmanni. This is the first transgenic protocol to be developed in an insect species that exhibits an exaggerated male sexual trait. Transgenesis will enable the development of a range of techniques for analysing gene function in this species and so provide insight into the mechanisms underlying the development of a morphological trait subject to sexual selection. Our X-linked insertion line will permit the sex of live larvae to be determined. This will greatly facilitate the identification of genes which are differentially expressed during eye-stalk development in males and females.
Collapse
Affiliation(s)
- Ian A Warren
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | | | | |
Collapse
|
70
|
Meza JS, Nirmala X, Zimowska GJ, Zepeda-Cisneros CS, Handler AM. Development of transgenic strains for the biological control of the Mexican fruit fly, Anastrepha ludens. Genetica 2010; 139:53-62. [DOI: 10.1007/s10709-010-9484-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 08/07/2010] [Indexed: 12/20/2022]
|
71
|
Scolari F, Siciliano P, Gabrieli P, Gomulski LM, Bonomi A, Gasperi G, Malacrida AR. Safe and fit genetically modified insects for pest control: from lab to field applications. Genetica 2010; 139:41-52. [PMID: 20725766 DOI: 10.1007/s10709-010-9483-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 08/07/2010] [Indexed: 01/10/2023]
Abstract
Insect transgenesis is continuously being improved to increase the efficacy of population suppression and replacement strategies directed to the control of insect species of economic and sanitary interest. An essential prerequisite for the success of both pest control applications is that the fitness of the transformant individuals is not impaired, so that, once released in the field, they can efficiently compete with or even out-compete their wild-type counterparts for matings in order to reduce the population size, or to spread desirable genes into the target population. Recent research has shown that the production of fit and competitive transformants can now be achieved and that transgenes may not necessarily confer a fitness cost. In this article we review the most recent published results of the fitness assessment of different transgenic insect lines and underline the necessity to fulfill key requirements of ecological safety. Fitness evaluation studies performed in field cages and medium/large-scale rearing will validate the present encouraging laboratory results, giving an indication of the performance of the transgenic insect genotype after release in pest control programmes.
Collapse
Affiliation(s)
- F Scolari
- Department of Animal Biology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
72
|
Labbé GMC, Nimmo DD, Alphey L. piggybac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse). PLoS Negl Trop Dis 2010; 4:e788. [PMID: 20808959 PMCID: PMC2923142 DOI: 10.1371/journal.pntd.0000788] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 07/12/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Asian tiger mosquito, Aedes albopictus (Skuse), is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately. METHODOLOGY/PRINCIPAL FINDINGS Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2-3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2-6%. CONCLUSIONS/SIGNIFICANCE Both piggybac- and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies.
Collapse
Affiliation(s)
- Geneviève M. C. Labbé
- Oxitec Limited, Oxford, United Kingdom
- Division of Biology, Imperial College London Silwood Park, Ascot, United Kingdom
| | | | - Luke Alphey
- Oxitec Limited, Oxford, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
73
|
Ferguson HJ, Neven LG, Thibault ST, Mohammed A, Fraser M. Genetic transformation of the codling moth, Cydia pomonella L., with piggyBac EGFP. Transgenic Res 2010; 20:201-14. [DOI: 10.1007/s11248-010-9391-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 03/26/2010] [Indexed: 11/27/2022]
|
74
|
Expression of hIGF-I in the silk glands of transgenic silkworms and in transformed silkworm cells. ACTA ACUST UNITED AC 2009; 52:1131-9. [DOI: 10.1007/s11427-009-0148-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/27/2009] [Indexed: 10/20/2022]
|
75
|
Carpes MP, Nunes JF, Sampaio TL, Castro MEB, Zanotto PMA, Ribeiro BM. Molecular analysis of a mutant Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) shows an interruption of an inhibitor of apoptosis gene (iap-3) by a new class-II piggyBac-related insect transposon. INSECT MOLECULAR BIOLOGY 2009; 18:747-757. [PMID: 19788700 DOI: 10.1111/j.1365-2583.2009.00917.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new piggyBac-related transposable element (TE) was found in the genome of a mutant Anticarsia gemmatalis multiple nucleopolyhedrovirus interrupting an inhibitor of apoptosis gene. This mutant virus induces apoptosis upon infection of an Anticarsia gemmatalis cell line, but not in a Trichoplusia ni cell line. The sequence of the new TE (which was named IDT for iap disruptor transposon) has 2531 bp with two DNA sequences flanking a putative Transposase (Tpase) ORF of 1719 bp coding for a protein with 572 amino acids. These structural features are similar to the piggyBac TE, also reported for the first time in the genome of a baculovirus. We have also isolated variants of this new TE from different lepidopteran insect cells and compared their Tpase sequences.
Collapse
Affiliation(s)
- M P Carpes
- Laboratório de Microscopia Eletrônica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | | | | | | | | | | |
Collapse
|
76
|
Daubnerová I, Roller L, Žitňan D. Transgenesis approaches for functional analysis of peptidergic cells in the silkworm Bombyx mori. Gen Comp Endocrinol 2009; 162:36-42. [PMID: 19111552 PMCID: PMC2854327 DOI: 10.1016/j.ygcen.2008.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/14/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The domestic silkworm, Bombyx mori represents an insect model of great scientific and economic importance. Besides the establishment of a stable germline transformation using the PiggyBac vector, technically feasible methods for in vivo gene delivery and transient gene expression were developed using viral based vectors, especially Sindbis viruses and baculoviruses. The recombinant baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), commonly used for large-scale protein production in permissive cell lines or insects, has been used for foreign gene transfer into specific peptidergic cells of B. mori in vivo. Since targeted gene expression is essential for functional analysis of neuropeptide genes and their receptors, the baculovirus-mediated gene transfer can serve as a reliable approach in reverse genetic studies in the silkworm. We review various strategies employing the baculovirus vector system for transient expression of molecular markers and transcription factors in specific peptidergic cells to investigate their roles in B. mori. We also use this system for functional analysis of neuropeptide signaling in the ecdysis behavioral sequence. Our data indicate that the AcMNPV vector is suitable for efficient delivery of foreign genes and their expression directed into specific peptidergic neurons and endocrine cells of B. mori larvae and pupae. However, some modifications of the vector and steps for optimization are necessary to minimize negative effects of viral infection on the host development. The transient gene expression using the AcMNPV and other virus vectors are promising tools for analysis of molecular mechanisms underlying various neuroendocrine processes during development of B. mori.
Collapse
Affiliation(s)
- Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, SAV, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84205 Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, SAV, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, SAV, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
77
|
Bazopoulou D, Tavernarakis N. The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans. Genetica 2009; 137:39-46. [PMID: 19343510 DOI: 10.1007/s10709-009-9361-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/20/2009] [Indexed: 12/01/2022]
Abstract
The nematode Caenorhabditis elegans is a widely appreciated, powerful platform in which to study important biological mechanisms related to human health. More than 65% of human disease genes have homologues in the C. elegans genome, and essential aspects of mammalian cell biology, neurobiology and development are faithfully recapitulated in this organism. The EU-funded NemaGENETAG project was initiated with the aim to develop cutting-edge tools and resources that will facilitate modelling of human pathologies in C. elegans, and advance our understanding of animal development and physiology. The main objective of the project involves the generation and evaluation of a large collection of transposon-tagged mutants. In the process of achieving this objective the NemaGENETAG consortium also endeavours to optimize and automate existing transposon-mediated mutagenesis methodologies based on the Mos1 transposable element, in addition to developing alternatives using other transposon systems. The final product of this initiative-a comprehensive collection of transposon-tagged alleles-together with the acquisition of efficient transposon-based tools for mutagenesis and transgenesis in C. elegans, should yield a wealth of information on gene function, immediately relevant to key biological processes and to pharmaceutical research and development.
Collapse
Affiliation(s)
- Daphne Bazopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | | |
Collapse
|
78
|
Kokolakis G, Kritsidima M, Tkachenko T, Mintzas AC. Two hsp23 genes in the Mediterranean fruit fly, Ceratitis capitata: structural characterization, heat shock regulation and developmental expression. INSECT MOLECULAR BIOLOGY 2009; 18:171-181. [PMID: 19320758 DOI: 10.1111/j.1365-2583.2009.00868.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the present study, we characterized a 3320-bp genomic DNA fragment encoding two medfly (Ceratitis capitata) homologues of the Drosophila melanogaster heat shock protein 23 (hsp23) gene, named Cchsp23-alphaand -beta. The two medfly hsp23 genes are transcribed in opposite directions and encode two almost identical proteins. Furthermore, the two genes exhibit a very high degree of similarity in their 5' untranslated and proximal promoter regions. Phylogenetic analysis indicated that the CcHsp23 proteins are orthologous to Drosophila Hsp23 and Sarcophaga crassipalpis Hsp23. Structural analysis of the 5' flanking regions of the Cchsp23 genes revealed the presence of several putative heat shock elements. Both CcHsp23 genes are induced by heat in a similar manner. In addition to heat-induction, the Cchsp23 genes are expressed at several stages of normal development as well as in ovaries and testes. In general, the developmental expression patterns of the medfly genes are similar, suggesting that they are under similar regulatory mechanisms. However, the expression of the Cchsp23 genes differs significantly from the expression of the Drosophila hsp23 gene in certain embryonic and larval stages, suggesting differential regulation of the hsp23 genes in the two dipteran species. The expression of both Cchsp23 genes in adult flies is increased with age, especially in males.
Collapse
Affiliation(s)
- G Kokolakis
- Department of Biology, University of Patras, Greece
| | | | | | | |
Collapse
|
79
|
Lukacsovich T, Hamada N, Miyazaki S, Kimpara A, Yamamoto D. A new versatile gene-trap vector for insect transgenics. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2008; 69:168-175. [PMID: 18949801 DOI: 10.1002/arch.20276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A new piggyBac-based gene-trap vector, pB-GT1, was constructed. pB-GT1 contains three marker genes, dsRed, Gal4, and EGFP. dsRed is under the control of the constitutive 3xP3 promoter, which induces dsRed expression wherever the vector is inserted in the host genome. The Gal4 sequence has no promoter but is preceded by the splice acceptor site so that it can be transcribed as a transcript fused with the host exon 5' to the insertion site. EGFP is driven by the constitutive ie+hr promoter but lacks a poly(A)(+) signal sequence, and thus the EGFP expression is detectable only when its transcript is fused with the host exon 3' downstream of the insertion. By the microinjection of the vector into fertilized eggs, we obtained transgenic Drosophila with a single copy of pB-GT1, which was inserted into the first intron of the ovo gene. The female flies of this transgenic line are sterile, indicating that the insertion inactivated the ovo gene, generating a new allele of this locus, ovo(pB-GT1). RT-PCR analysis demonstrated that an ovo-Gal4-fusion transcript is produced in ovo(pB-GT1) flies. The fact that UAS-EGFP reporter expression was detected in ovo(pB-GT1) germ cells in a pattern similar to that reported for wild-type ovo indicates that functional Gal4 is expressed via pB-GT1, recapitulating the endogenous expression pattern of the trapped gene. pB-GT1 is thus useful in insect genomics for the efficient assignment of functions of individual genes.
Collapse
Affiliation(s)
- Tamas Lukacsovich
- Tohoku University Graduate School of Life Sciences, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | |
Collapse
|
80
|
Kokolakis G, Tatari M, Zacharopoulou A, Mintzas AC. The hsp27 gene of the Mediterranean fruit fly, Ceratitis capitata: structural characterization, regulation and developmental expression. INSECT MOLECULAR BIOLOGY 2008; 17:699-710. [PMID: 19133079 DOI: 10.1111/j.1365-2583.2008.00840.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In the present study, a genomic DNA clone encoding the medfly homolog of Drosophila melanogaster hsp27 gene, named Cchsp27, was isolated. We sequenced a part of the clone containing the coding region, the 5' untranslated region and approximately 2.8 Kb of the 5' flanking region of the gene. Phylogenetic analysis of several insect small heat shock proteins, suggested that CcHsp27 is orthologous to Drosophila Hsp27 and Sarcophaga crassipalpis Hsp25. The Cchsp27 gene was mapped at the 81A division of the sixth chromosome which coincides with one of the major heat shock puffs of medfly. Structural analysis of the 5' flanking region of the Cchsp27 gene revealed the presence of five putative heat shock elements and one putative ecdysone response element. In addition to heat induction, the Cchsp27 gene was expressed at several stages of normal medfly development. In general, the developmental expression pattern of the Cchsp27 gene was similar to the respective pattern of Drosophila hsp27 gene. However, there were some important differences in certain developmental stages suggesting differential regulation of the hsp27 gene in the two dipterans species. Salivary gland culture experiments showed that the Cchsp27 gene is regulated by 20-hydroxyecdysone.
Collapse
Affiliation(s)
- G Kokolakis
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|
81
|
O'Brochta DA, Handler AM. Perspectives on the state of insect transgenics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 627:1-18. [PMID: 18510010 DOI: 10.1007/978-0-387-78225-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Genetic transformation is a critical component to the fundamental genetic analysis of insect species and holds great promise for establishing strains that improve population control and behavior for practical application. This is especially so for insects that are disease vectors, many of which are currently subject to genomic sequence analysis, and intensive population control measures that must be improved for better efficacy and cost-effectiveness. Transposon-mediated germ-line transformation has been the ultimate goal for most fundamental and practical studies, and impressive strides have been made in recent development of transgene vector and marker systems for several mosquito species. This has resulted in rapid advances in functional genomic sequence analysis and new strategies for biological control based on conditional lethality. Importantly, advances have also been made in our ability to use these systems more effectively in terms of enhanced stability and targeting to specific genomic loci. Nevertheless, not all insects are currently amenable to germ-line transformation techniques, and thus advances in transient somatic expression and paratransgenesis have also been critical, if not preferable for some applications. Of particular importance is how this technology will be used for practical application. Early ideas for population replacement of indigenous pests with innocuous transgenic siblings by transposon-vector spread, may require reevaluation in terms of our current knowledge of the behavior of transposons currently available for transformation. The effective implementation of any control program using released transgenics, will also benefit from broadening the perspective of these control measures as being more mainstream than exotic.
Collapse
Affiliation(s)
- David A O'Brochta
- University of Maryland Biotechnology Institute, Center for Biosystems Research, Rockville, MD, USA.
| | | |
Collapse
|
82
|
Keith JH, Schaeper CA, Fraser TS, Fraser MJ. Mutational analysis of highly conserved aspartate residues essential to the catalytic core of the piggyBac transposase. BMC Mol Biol 2008; 9:73. [PMID: 18694512 PMCID: PMC2533014 DOI: 10.1186/1471-2199-9-73] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 08/11/2008] [Indexed: 01/08/2023] Open
Abstract
Background The piggyBac mobile element is quickly gaining popularity as a tool for the transgenesis of many eukaryotic organisms. By studying the transposase which catalyzes the movement of piggyBac, we may be able to modify this vector system to make it a more effective transgenesis tool. In a previous publication, Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, and Collins FH have proposed the presence of the widespread 'DDE/DDD' motif for piggyBac at amino acid positions D268, D346, and D447. Results This study utilizes directed mutagenesis and plasmid-based mobility assays to assess the importance of these residues as the catalytic core of the piggyBac transposase. We have functionally analyzed individual point-mutations with respect to charge and physical size in all three proposed residues of the 'DDD' motif as well as another nearby, highly conserved aspartate at D450. All of our mutations had a significant effect on excision frequency in S2 cell cultures. We have also aligned the piggyBac transposase to other close family members, both functional and non-functional, in an attempt to identify the most highly conserved regions and position a number of interesting features. Conclusion We found all the designated DDD aspartates reside in clusters of amino acids that conserved among piggyBac family transposase members. Our results indicate that all four aspartates are necessary, to one degree or another, for excision to occur in a cellular environment, but D450 seems to have a tolerance for a glutamate substitution. All mutants tested significantly decreased excision frequency in cell cultures when compared with the wild-type transposase.
Collapse
|
83
|
Keith JH, Fraser TS, Fraser MJ. Analysis of the piggyBac transposase reveals a functional nuclear targeting signal in the 94 c-terminal residues. BMC Mol Biol 2008; 9:72. [PMID: 18694511 PMCID: PMC2532691 DOI: 10.1186/1471-2199-9-72] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 08/11/2008] [Indexed: 11/30/2022] Open
Abstract
Background The piggyBac transposable element is a popular tool for germ-line transgenesis of eukaryotes. Despite this, little is known about the mechanism of transposition or the transposase (TPase) itself. A thorough understanding of just how piggyBac works may lead to more effective use of this important mobile element. A PSORTII analysis of the TPase amino acid sequence predicts a bipartite nuclear localization signal (NLS) near the c-terminus, just upstream of a putative ZnF (ZnF). Results We fused the piggyBac TPase upstream of and in-frame with the enhanced yellow fluorescent protein (EYFP) in the Drosophila melanogaster inducible metallothionein protein. Using Drosophila Schneider 2 (S2) cells and the deep red fluorescent nuclear stain Draq5, we were able to track the pattern of piggyBac localization with a scanning confocal microscope 48 hours after induction with copper sulphate. Conclusion Through n and c-terminal truncations, targeted internal deletions, and specific amino acid mutations of the piggyBac TPase open reading frame, we found that not only is the PSORTII-predicted NLS required for the TPase to enter the nucleus of S2 cells, but there are additional requirements for negatively charged amino acids a short length upstream of this region for nuclear localization.
Collapse
|
84
|
Handler AM, Zimowska GJ, Armstrong KF. Highly similar piggyBac elements in Bactrocera that share a common lineage with elements in noctuid moths. INSECT MOLECULAR BIOLOGY 2008; 17:387-393. [PMID: 18651920 DOI: 10.1111/j.1365-2583.2008.00813.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The piggyBac IFP2 transposable element, originally discovered in a Trichoplusia ni cell line, also exists as nearly identical elements in other noctuid lepidopterans, and in several species of the tephritid genus Bactrocera. To further define the distribution of piggyBacs in Bactrocera, and compare their relationship to sequences found in Lepidoptera, a survey by PCR amplification was performed in a range of Bactrocera species. Highly similar piggyBac sequences were found in all B. dorsalis complex species tested, as well as in species in the B. zonata and B. frauenfeldi complexes. All nucleotide sequences had > 94% identity to corresponding sequences in the T. ni IFP2 element, and > 88% identity among the sequences. Conserved primers did not amplify any distantly related sequences that have been found by computational searches in a wider range of insect and non-insect species. Notably, 55 nucleotide substitutions relative to IFP2 were common to all the Bactrocera sequences, 44 of which exist in piggyBacs previously sequenced from moths, with 17 resulting in amino acid substitutions. These piggyBac elements, that apparently traversed orders by horizontal transfer, probably arose from a lineage separate from IFP2 and the other known elements in T. ni. Implications for the presence of nearly identical piggyBacs, in widely distributed insects, to the applied use of piggyBac vectors are discussed.
Collapse
Affiliation(s)
- A M Handler
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, FL 32608, USA.
| | | | | |
Collapse
|
85
|
Choi SH, Lee G, Monahan P, Park JH. Spatial regulation of Corazonin neuropeptide expression requires multiple cis-acting elements in Drosophila melanogaster. J Comp Neurol 2008; 507:1184-95. [PMID: 18181151 DOI: 10.1002/cne.21594] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although most invertebrate neuropeptide-encoding genes display distinct expression patterns in the central nervous system (CNS), the molecular mechanisms underlying spatial regulation of the neuropeptide genes are largely unknown. Expression of the neuropeptide Corazonin (Crz) is limited to only 24 neurons in the larval CNS of Drosophila melanogaster, and these neurons have been categorized into three groups, namely, DL, DM, and vCrz. To identify cis-regulatory elements that control transcription of Crz in each neuronal group, reporter gene expression patterns driven by various 5' flanking sequences of Crz were analyzed to assess their promoter activities in the CNS. We show that the 504-bp 5' upstream sequence is the shortest promoter directing reporter activities in all Crz neurons. Further dissection of this sequence revealed two important regions responsible for group specificity: -504::-419 for DM expression and -380::-241 for DL and vCrz expression. The latter region is further subdivided into three sites (proximal, center, and distal), in which any combinations of the two are sufficient for DL expression, whereas both proximal and distal sites are required for vCrz expression. Interestingly, the TATA box does not play a role in Crz transcription in most neurons. We also show that a 434-bp 5' upstream sequence of the D. virilis Crz gene, when introduced into the D. melanogaster genome, drives reporter expression in the DL and vCrz neurons, suggesting that regulatory mechanisms for Crz expression in at least two such neuronal groups are conserved between the two species.
Collapse
Affiliation(s)
- Seung-Hoon Choi
- Laboratory of Neurogenetics, Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
86
|
Sun ZC, Wu M, Miller TA, Han ZJ. piggyBac-like elements in cotton bollworm, Helicoverpa armigera (Hübner). INSECT MOLECULAR BIOLOGY 2008; 17:9-18. [PMID: 18237280 DOI: 10.1111/j.1365-2583.2008.00780.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two piggyBac-like elements (PLEs) were identified in the cotton bollworm, Helicoverpa armigera, and were designated as HaPLE1 and HaPLE2. HaPLE1 is flanked by 16 bp inverted terminal repeats (ITRs) and the duplicated TTAA tetranucleotide, and contains an open reading frame (ORF) of 1794 bp with the presumed DDD domain, indicating that this element may be an active autonomously mobile element. HaPLE2 was found with the same ITRs, but lacks the majority of an ORF-encoding transposase. Thus, this element was thought to be a non-autonomous element. Transposable element displays and distribution of the two PLEs in individuals from three different H. armigera populations suggest that transmobilization of HaPLE2 by the transposase of HaPLE1 may be likely, and mobilization of HaPLE1 might occur not only within the same individual, but also among different individuals. In addition, horizontal transfer was probably involved in the evolution of PLEs between H. armigera and Trichoplusia ni.
Collapse
Affiliation(s)
- Z C Sun
- Key Lab of Monitoring and Management of Plant Disease and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
87
|
Chen S, Li X. Molecular characterization of the first intact Transib transposon from Helicoverpa zea. Gene 2008; 408:51-63. [DOI: 10.1016/j.gene.2007.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/06/2007] [Accepted: 10/12/2007] [Indexed: 01/10/2023]
|
88
|
Ishida K. Vectorette PCR-primed transposon display using the Jordan transposon in Volvox carteri: an efficient tool that analyzes more than 300 Jordan-derived PCR fragments to retrieve tagged genes. Protist 2007; 159:5-19. [PMID: 18061538 DOI: 10.1016/j.protis.2007.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Koichi Ishida
- Nishii Initiative Research Unit, Frontier Research System, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
89
|
Condon KC, Condon GC, Dafa'alla TH, Fu G, Phillips CE, Jin L, Gong P, Alphey L. Genetic sexing through the use of Y-linked transgenes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1168-1176. [PMID: 17916503 DOI: 10.1016/j.ibmb.2007.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/03/2007] [Accepted: 07/06/2007] [Indexed: 05/25/2023]
Abstract
Sterile insect technique (SIT)-based pest control programs rely on the mass release of sterile insects to reduce the wild target population. In many cases, it is desirable to release only males. Sterile females may cause damage, e.g., disease transmission by mosquitoes or crop damage via oviposition by the Mediterranean fruit fly (Medfly). Also, sterile females may decrease the effectiveness of released males by distracting them from seeking out wild females. To eliminate females from the release population, a suitable sexual dimorphism is required. For several pest species, genetic sexing strains have been constructed in which such a dimorphism has been induced by genetics. Classical strains were based on the translocation to the Y chromosome of a selectable marker, which is therefore expressed only in males. Recently, several prototype strains have been constructed using sex-specific expression of markers or conditional lethal genes from autosomal insertions of transgenes. Here, we describe a novel genetic sexing strategy based on the use of Y-linked transgenes expressing fluorescent proteins. We demonstrate the feasibility of this strategy in a major pest species, Ceratitis capitata (Wiedemann), and discuss the advantages and disadvantages relative to other genetic sexing methods and potential applicability to other species.
Collapse
Affiliation(s)
- Kirsty C Condon
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Condon KC, Condon GC, Dafa'alla TH, Forrester OT, Phillips CE, Scaife S, Alphey L. Germ-line transformation of the Mexican fruit fly. INSECT MOLECULAR BIOLOGY 2007; 16:573-80. [PMID: 17894556 DOI: 10.1111/j.1365-2583.2007.00752.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Germ-line transformation of a major agricultural pest, the Mexican fruit fly (Anastrepha ludens Loew, Mexfly), was achieved using composite piggyBac transposable elements marked with green, yellow and red fluorescent proteins (CopGreen, PhiYFP and J-Red). We also investigated the possibility of generating transposon-free insertions, in order to address potential concerns relating to proposed field use of transgenic Mexfly. We describe a highly efficient method for transforming Mexfly, compare efficiency of piggyBac terminal sequences for transformation and also describe the derivation of a transposon-free insertion line. The development of an efficient transformation system for Mexfly holds great promise for improved applications of the sterile insect technique, a major component of the present control measures for this economically important pest species.
Collapse
Affiliation(s)
- K C Condon
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
91
|
Sethuraman N, Fraser MJ, Eggleston P, O’Brochta DA. Post-integration stability of piggyBac in Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:941-51. [PMID: 17681233 PMCID: PMC1986768 DOI: 10.1016/j.ibmb.2007.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 04/19/2007] [Accepted: 05/01/2007] [Indexed: 05/10/2023]
Abstract
The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the regulatory control of the Drosophila melanogaster hsp70 promoter. No evidence for somatic remobilization was detected in the subsequent adults whereas somatic remobilization was readily detected when similar lines of transgenic D. melanogaster were injected with the same piggyBac transposase-expressing plasmid. Ae. aegypti heterozygotes of piggyBac reporter-containing transgenes and piggyBac transposase-expressing transgenes showed no evidence of somatic and germ-line remobilization based on phenotypic and molecular detection methods. The post-integration mobility properties of piggyBac in Ae. aegypti enhance the utility of this gene vector for certain applications, particularly those where any level of vector remobilization is unacceptable.
Collapse
Affiliation(s)
- Nagaraja Sethuraman
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | - Malcolm J. Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - David. A O’Brochta
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
- Corresponding Author: Center for Biosystems Research, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, 240-314-6343 office, 240-314-6255 fax,
| |
Collapse
|
92
|
Cadiñanos J, Bradley A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res 2007; 35:e87. [PMID: 17576687 PMCID: PMC1919496 DOI: 10.1093/nar/gkm446] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/14/2007] [Accepted: 05/18/2007] [Indexed: 01/12/2023] Open
Abstract
Genomic studies in the mouse have been slowed by the lack of transposon-mediated mutagenesis. However, since the resurrection of Sleeping Beauty (SB), the possibility of performing forward genetics in mice has been reinforced. Recently, piggyBac (PB), a functional transposon from insects, was also described to work in mammals. As the activity of PB is higher than that of SB11 and SB12, two hyperactive SB transposases, we have characterized and improved the PB system in mouse ES cells. We have generated a mouse codon-optimized version of the PB transposase coding sequence (CDS) which provides transposition levels greater than the original. We have also found that the promoter sequence predicted in the 5'-terminal repeat of the PB transposon is active in the mammalian context. Finally, we have engineered inducible versions of the optimized piggyBac transposase fused with ERT2. One of them, when induced, provides higher levels of transposition than the native piggyBac CDS, whereas in the absence of induction its activity is indistinguishable from background. We expect that these tools, adaptable to perform mouse-germline mutagenesis, will facilitate the identification of genes involved in pathological and physiological processes, such as cancer or ES cell differentiation.
Collapse
Affiliation(s)
| | - Allan Bradley
- The Wellcome Trust Sanger Institute. Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| |
Collapse
|
93
|
Late-acting dominant lethal genetic systems and mosquito control. BMC Biol 2007; 5:11. [PMID: 17374148 PMCID: PMC1865532 DOI: 10.1186/1741-7007-5-11] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 03/20/2007] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Reduction or elimination of vector populations will tend to reduce or eliminate transmission of vector-borne diseases. One potential method for environmentally-friendly, species-specific population control is the Sterile Insect Technique (SIT). SIT has not been widely used against insect disease vectors such as mosquitoes, in part because of various practical difficulties in rearing, sterilization and distribution. Additionally, vector populations with strong density-dependent effects will tend to be resistant to SIT-based control as the population-reducing effect of induced sterility will tend to be offset by reduced density-dependent mortality. RESULTS We investigated by mathematical modeling the effect of manipulating the stage of development at which death occurs (lethal phase) in an SIT program against a density-dependence-limited insect population. We found late-acting lethality to be considerably more effective than early-acting lethality. No such strains of a vector insect have been described, so as a proof-of-principle we constructed a strain of the principal vector of the dengue and yellow fever viruses, Aedes (Stegomyia) aegypti, with the necessary properties of dominant, repressible, highly penetrant, late-acting lethality. CONCLUSION Conventional SIT induces early-acting (embryonic) lethality, but genetic methods potentially allow the lethal phase to be tailored to the program. For insects with strong density-dependence, we show that lethality after the density-dependent phase would be a considerable improvement over conventional methods. For density-dependent parameters estimated from field data for Aedes aegypti, the critical release ratio for population elimination is modeled to be 27% to 540% greater for early-acting rather than late-acting lethality. Our success in developing a mosquito strain with the key features that the modeling indicated were desirable demonstrates the feasibility of this approach for improved SIT for disease control.
Collapse
|
94
|
Zhong B, Li J, Chen J, Ye J, Yu S. Comparison of transformation efficiency of piggyBac transposon among three different silkworm Bombyx mori Strains. Acta Biochim Biophys Sin (Shanghai) 2007; 39:117-22. [PMID: 17277886 DOI: 10.1111/j.1745-7270.2007.00252.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The transformation rate of three different strains of silkworm Bombyx mori was compared after the introduction of enhanced green fluorescence protein (EGFP)-encoding genes into the silkworm eggs by microinjection of a mixture of piggyBac vector and helper plasmid containing a transposase-encoding sequence. Although there were no significant differences among the three strains in the percentages of fertile moths in microinjected eggs (P=0.1258), the percentages of G(0) transformed moths in fertile moths and injected eggs were both significantly different (P=0.01368 and P=0.02398, respectively). The transformation rate of the Nistari strain (Indian strain) was significantly higher than that of the other two strains, Golden-yellow-cocoon (Vietnamese strain) and Jiaqiu (Chinese strain), which had similar rate. These results indicate that the transformation efficiency of the piggyBac-based system might vary with silkworm strains with different genetic backgrounds. The presence of endogenous piggyBac-like elements might be an important factor influencing the transformation efficiency of introduced piggyBac-derived vectors, and the diverse amount and activation in different silkworm strains might account for the significant differences.
Collapse
Affiliation(s)
- Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou 310029, China.
| | | | | | | | | |
Collapse
|
95
|
Bossin H, Furlong RB, Gillett JL, Bergoin M, Shirk PD. Somatic transformation efficiencies and expression patterns using the JcDNV and piggyBac transposon gene vectors in insects. INSECT MOLECULAR BIOLOGY 2007; 16:37-47. [PMID: 17257207 DOI: 10.1111/j.1365-2583.2006.00693.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A somatic transformation gene vector that exploits the genomic integration properties of Junonia coenia lepidopteran densovirus (JcDNV) sequences in vivo has been developed. JcDNV somatic transformation vectors are derivatives of plasmids containing an interrupted genome of JcDNV that provide efficient, robust vectors that can be used to examine regulation of chromosomally integrated transgenes in insects. Microinjection of JcDNV plasmids into syncytial embryos of Drosophila melanogaster or the lepidopterans Plodia interpunctella, Ephestia kuehniella or Trichoplusia ni resulted in persistent transgene expression throughout development. Inclusion of transgenes with tissue-specific promoters resulted in expression patterns canonical with phenotypes of piggyBac germline transformants. Somatic transformation required the presence of the viral inverted terminal repeat in cis only and did not depend upon non-structural viral proteins.
Collapse
Affiliation(s)
- H Bossin
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, US Department of Agriculture, Gainesville, Florida 32608, USA
| | | | | | | | | |
Collapse
|
96
|
Shi X, Harrison RL, Hollister JR, Mohammed A, Fraser MJ, Jarvis DL. Construction and characterization of new piggyBac vectors for constitutive or inducible expression of heterologous gene pairs and the identification of a previously unrecognized activator sequence in piggyBac. BMC Biotechnol 2007; 7:5. [PMID: 17233894 PMCID: PMC1783651 DOI: 10.1186/1472-6750-7-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 01/18/2007] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We constructed and characterized several new piggyBac vectors to provide transposition of constitutively- or inducibly-expressible heterologous gene pairs. The dual constitutive control element consists of back-to-back copies of a baculovirus immediate early (ie1) promoter separated by a baculovirus enhancer (hr5). The dual inducible control element consists of back-to-back copies of a minimal cytomegalovirus (CMVmin) promoter separated by a synthetic operator (TetO7), which drives transcription in the presence of a mutant transcriptional repressor plus tetracycline. RESULTS Characterization of these vectors revealed an unexpected position effect, in which heterologous genes adjacent to the 3'- terminal region ("rightward" genes) were consistently expressed at higher levels than those adjacent to the 5'-terminal region ("leftward" genes) of the piggyBac element. This position effect was observed with all six heterologous genes examined and with both transcriptional control elements. Further analysis demonstrated that this position effect resulted from stimulation of rightward gene expression by the internal domain sequence of the 3'-terminal region of piggyBac. Inserting a copy of this sequence into the 5'- terminal repeat region of our new piggyBac vectors in either orientation stimulated leftward gene expression. Representative piggyBac vectors designed for constitutive or inducible expression of heterologous gene pairs were shown to be functional as insect transformation vectors. CONCLUSION This study is significant because (a) it demonstrates the utility of a strategy for the construction of piggyBac vectors that can provide constitutive or inducible heterologous gene pair expression and (b) it reveals the presence of a previously unrecognized transcriptional activator in piggyBac, which is an important and increasingly utilized transposable element.
Collapse
Affiliation(s)
- Xianzong Shi
- Department of Molecular Biology University of Wyoming 1000 E. University Avenue Laramie, WY, USA 82071
- Chesapeake-PERL, Inc. 8510A Corridor Rd Savage, MD, USA 20763
| | - Robert L Harrison
- Department of Molecular Biology University of Wyoming 1000 E. University Avenue Laramie, WY, USA 82071
- Chesapeake-PERL, Inc. 8510A Corridor Rd Savage, MD, USA 20763
- USDA, ARS, PSI Insect Biocontrol Lab Building 011A, Room 214, BARC-W 10300 Baltimore Ave.Beltsville, MD, USA 20705
| | - Jason R Hollister
- Department of Molecular Biology University of Wyoming 1000 E. University Avenue Laramie, WY, USA 82071
- USDA, ARS, NAA, PIADC Plum Island Animal Disease Center P.O. BOX 848, GREENPORT, LI Orient Point, NY, USA 11944
| | - Ahmed Mohammed
- Department of Biological Sciences University of Notre Dame Notre Dame, IN, USA 46556-0369
| | - Malcolm J Fraser
- Department of Biological Sciences University of Notre Dame Notre Dame, IN, USA 46556-0369
| | - Donald L Jarvis
- Department of Molecular Biology University of Wyoming 1000 E. University Avenue Laramie, WY, USA 82071
| |
Collapse
|
97
|
Lobo NF, Fraser TS, Adams JA, Fraser MJ. Interplasmid transposition demonstrates piggyBac mobility in vertebrate species. Genetica 2007; 128:347-57. [PMID: 17028963 DOI: 10.1007/s10709-006-7165-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 02/01/2006] [Indexed: 10/24/2022]
Abstract
The piggyBac transposon is an extremely versatile helper-dependent vector for gene transfer and germ line transformation in a wide range of invertebrate species. Analyses of genome sequencing databases have identified piggyBac homologues among several sequenced animal genomes, including the human genome. In this report we demonstrate that this insect transposon is capable of transposition in primate cells and embryos of the zebrafish, Danio rerio. piggyBac mobility was demonstrated using an interplasmid transposition assay that has consistently predicted the germ line transformation capabilities of this mobile element in several other species. Both transfected COS-7 primate cells and injected zebrafish embryos supported the helper-dependent movement of tagged piggyBac element between plasmids in the characteristic cut-and-paste, TTAA target-site specific manner. These results validate piggyBac as a valuable tool for genetic analysis of vertebrates.
Collapse
Affiliation(s)
- Neil F Lobo
- Department of Biological Sciences, Center for Tropical Diseases Research and Training, University of Notre Dame, PO Box 369, Notre Dame, IN 46556-0369, USA
| | | | | | | |
Collapse
|
98
|
Theodoraki MA, Mintzas AC. cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata. INSECT MOLECULAR BIOLOGY 2006; 15:839-52. [PMID: 17201776 DOI: 10.1111/j.1365-2583.2006.00691.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This report presents the cDNA cloning, heat shock regulation and developmental expression of the hsp90 gene homologue of the Mediterranean fruit fly Ceratitis capitata (medfly). The isolated cDNA contained the coding region, the 3'UTR and most of the 5'UTR of the medfly hsp90 homologue, which was named Cchsp83. The deduced CcHSP83 polypeptide contained all the highly conserved amino acid segments that characterize the cytosolic members of the HSP90 family. Genomic analysis showed that the Cchsp83 gene is unique and was mapped at the 94C division of the sixth polytene chromosome. The size of the Cchsp83 mRNA was found to be approximately 2.7 kb. The predicted molecular mass of the CcHSP83 protein was 81.4 kDa, while the apparent molecular weight estimated by SDS-PAGE was approximately 90 kDa. Phylogenetic analysis based on 14 insect HSP90 amino acid sequences was consistent with the known phylogeny at low taxonomic level. The Cchsp83 gene is constitutively expressed in all stages of medfly development and is induced from a low level to several-fold by heat, depending on the developmental stage. Heat shock induction begins at 30 degrees C, reaching a maximum between 35 and 41 degrees C. Cchsp83 RNA expression is highly regulated during embryonic development; however, the temporal fluctuations in RNA levels during embryogenesis were not followed by similar fluctuations in the levels of the protein.
Collapse
Affiliation(s)
- M A Theodoraki
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | | |
Collapse
|
99
|
Summers MD. Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Adv Virus Res 2006; 68:3-73. [PMID: 16997008 DOI: 10.1016/s0065-3527(06)68001-9] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The baculovirus expression vector system (BEVS) is widely established as a highly useful and effective eukaryotic expression system. Thousands of soluble and membrane proteins that, in general, are correctly folded, modified, sorted and assembled to produce highly authentic recombinant proteins have been cloned and expressed. This historical chronology and perspective will focus on the original, peer-reviewed discoveries that were pioneering and seminal to the development of the BEVS and that provided the basis for subsequent and more recent developments and applications.
Collapse
Affiliation(s)
- Max D Summers
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
100
|
Ren X, Han Z, Miller TA. Excision and transposition of piggyBac transposable element in tobacco budworm embryos. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 63:49-56. [PMID: 16983664 DOI: 10.1002/arch.20140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The TTAA-specific lepidopteran transposon piggyBac has already proved useful as a gene-transfer vector for efficient transformation of a wide variety of insects. Transposable element excision and transposition assays are useful indicators of an element's ability to be mobilized in vivo and, thus, potentially serve as a transforming vector. Here, we report that this transposon is capable of excision and transposition in tobacco budworm embryos with relatively low frequency.
Collapse
Affiliation(s)
- Xiaoxia Ren
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|