51
|
Pseudomonas brassicacearum strain DF41 kills Caenorhabditis elegans through biofilm-dependent and biofilm-independent mechanisms. Appl Environ Microbiol 2016; 82:6889-6898. [PMID: 27637885 DOI: 10.1128/aem.02199-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas brassicacearum DF41 is a biocontrol agent that suppresses disease caused by the fungal pathogen Sclerotinia sclerotiorum A number of exometabolites are produced by DF41 including the lipopeptide sclerosin, hydrogen cyanide (HCN) and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional level by quorum sensing (QS) and the Gac-two component regulatory system. In order to be successful, a biocontrol agent must persist in the environment at levels sufficient for pathogen control. Bacterivorous predators, including nematodes, represent a challenge to the establishment of introduced microorganisms. In the current study, DF41 was investigated for its ability to resist predation by Caenorhabditis elegans. We discovered that this bacterium is capable of killing C. elegans through two different mechanisms: the first involves exposure to toxic metabolites; and the second entails biofilm formation on the nematode head blocking the buccal cavity. Biofilm formation on nematodes, which has only been reported for Yersinia spp. and Xenorhabdus nematophila, is dependent upon the Gac system. Biofilms were not observed when bacteria were grown on NaCl-containing media, and on C. elegans biofilm-resistant mutants. Co-culturing with nematodes lead to increased expression of the pdfRI-rfiA QS genes and hcnA which is under QS control. HCN was the most nematicidal of the exometabolites, suggesting that this bacterium can respond to predator cues and upregulate expression of toxins accordingly. In summary, DF41 is able to respond to the presence of C. elegans and through two distinct mechanisms it can escape predation. IMPORTANCE Pseudomonas brassicacearum DF41 can suppress fungal pathogens through a process known as biocontrol. To be successful, a biocontrol agent must be able to persist in the environment at levels sufficient for pathogen control. Predators including the nematode Caenorhabditis elegans represent a threat to persistence. The aim of the current study was to investigate the DF41-C. elegans interaction. We discovered that DF41 is able to escape predation through two distinct mechanisms. The first involves exposure to toxic bacterial metabolites and the second entails formation of a sticky coating on the nematode head, called a biofilm, which blocks feeding and causes starvation. This is the first report of a pseudomonad forming biofilms on the C. elegans surface. When grown with C. elegans, DF41 exhibits altered gene expression and metabolite production indicating that this bacterium can sense the presence of these predators and adjust its physiology accordingly.
Collapse
|
52
|
Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt-29 biosensor. Sci Rep 2016; 6:27475. [PMID: 27273550 PMCID: PMC4895344 DOI: 10.1038/srep27475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/19/2016] [Indexed: 01/07/2023] Open
Abstract
Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis.
Collapse
|
53
|
Ali M, Sun Y, Xie L, Yu H, Bashir A, Li L. The Pathogenicity of Pseudomonas syringae MB03 against Caenorhabditis elegans and the Transcriptional Response of Nematicidal Genes upon Different Nutritional Conditions. Front Microbiol 2016; 7:805. [PMID: 27303387 PMCID: PMC4884745 DOI: 10.3389/fmicb.2016.00805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Different species of the Pseudomonas genus have been reported for their pathogenic potential against animal cells. However, the pathogenicity of Pseudomonas syringae against Caenorhabditis elegans has never been reported. In this study, the interaction of P. syringae MB03 with C. elegans was studied. Different bioassays such as killing assay, lawn leaving assay, food preference assay, L4 growth assay and newly developed “secretion assay” were performed to evaluate the pathogenic potential of P. syringae on different growth media. The results of the killing assay showed that P. syringae MB03 was able to kill C. elegans under specific conditions, as the interaction between the host and the pathogen varied from non-pathogenic (assay on NGM medium) to pathogenic (assay on PG medium). The lawn leaving assay and the food preference assay illustrated that C. elegans identified P. syringae MB03 as a pathogen when assays were performed on PG medium. Green fluorescent protein was used as the reporter protein to study gut colonization by P. syringae MB03. Our results suggested that MB03 has the ability to colonize the gut of C. elegans. Furthermore, to probe the role of selected virulence determinants, qRT-PCR was used. The genes for pyoverdine, phoQ/phoP, phoR/phoB, and flagella were up regulated during the interaction of P. syringae MB03 and C. elegans on PG medium. Other than these, the genes for some proteases, such as pepP, clpA, and clpS, were also up regulated. On the other hand, kdpD and kdpB were down regulated more than threefold in the NGM – C. elegans interaction model. The deletion of the kdpD and kdpE genes altered the pathogenicity of the bacterial strain against C. elegans. Overall, our results suggested that the killing of C. elegans by P. syringae requires a prolonged interaction between the host and pathogen in an agar-based assay. Moreover, it seemed that some toxic metabolites were secreted by the bacterial strain that were sensed by C. elegans. Previously, it was believed that P. syringae could not damage animal cells. However, this study provides evidence of the pathogenic behavior of P. syringae against C. elegans.
Collapse
Affiliation(s)
- Muhammad Ali
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China; Biotechnology Program, Department of Environmental Sciences, COMSATS Institute of Information TechnologyAbbottabad, Pakistan
| | - Yu Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Li Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Huafu Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Anum Bashir
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Lin Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
54
|
GcsR, a TyrR-Like Enhancer-Binding Protein, Regulates Expression of the Glycine Cleavage System in Pseudomonas aeruginosa PAO1. mSphere 2016; 1:mSphere00020-16. [PMID: 27303730 PMCID: PMC4894688 DOI: 10.1128/msphere.00020-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/06/2016] [Indexed: 02/01/2023] Open
Abstract
Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux of glycine through several pathways, including the metabolism of glycine to produce other amino acids, entry into the trichloroacetic acid cycle, and the production of virulence factors such as hydrogen cyanide. In this study, we characterized GcsR, a transcriptional regulator that activates the expression of genes involved in P. aeruginosa PAO1 glycine metabolism. Our work reveals that GcsR is the founding member of a novel class of TyrR-like EBPs that likely regulate glycine metabolism in Pseudomonadales. Glycine serves as a major source of single carbon units for biochemical reactions within bacterial cells. Utilization of glycine is tightly regulated and revolves around a key group of proteins known as the glycine cleavage system (GCS). Our lab previously identified the transcriptional regulator GcsR (PA2449) as being required for catabolism of glycine in the opportunistic pathogen Pseudomonas aeruginosa PAO1. In an effort to clarify and have an overall better understanding of the role of GcsR in glycine metabolism, a combination of transcriptome sequencing and electrophoretic mobility shift assays was used to identify target genes of this transcriptional regulator. It was found that GcsR binds to an 18-bp consensus sequence (TGTAACG-N4-CGTTCCG) upstream of the gcs2 operon, consisting of the gcvH2, gcvP2, glyA2, sdaA, and gcvT2 genes. The proteins encoded by these genes, namely, the GCS (GcvH2-GcvP2-GcvT2), serine hydroxymethyltransferase (GlyA2), and serine dehydratase (SdaA), form a metabolic pathway for the conversion of glycine into pyruvate, which can enter the central metabolism. GcsR activates transcription of the gcs2 operon in response to glycine. Interestingly, GcsR belongs to a family of transcriptional regulators known as TyrR-like enhancer-binding proteins (EBPs). Until this study, TyrR-like EBPs were only known to function in regulating aromatic amino acid metabolism. GcsR is the founding member of a new class of TyrR-like EBPs that function in the regulation of glycine metabolism. Indeed, homologs of GcsR and its target genes are present in almost all sequenced genomes of the Pseudomonadales order, suggesting that this genetic regulatory mechanism is a common theme for pseudomonads. IMPORTANCE Glycine is required for various cellular functions, including cell wall synthesis, protein synthesis, and the biosynthesis of several important metabolites. Regulating levels of glycine metabolism allows P. aeruginosa to maintain the metabolic flux of glycine through several pathways, including the metabolism of glycine to produce other amino acids, entry into the trichloroacetic acid cycle, and the production of virulence factors such as hydrogen cyanide. In this study, we characterized GcsR, a transcriptional regulator that activates the expression of genes involved in P. aeruginosa PAO1 glycine metabolism. Our work reveals that GcsR is the founding member of a novel class of TyrR-like EBPs that likely regulate glycine metabolism in Pseudomonadales.
Collapse
|
55
|
Bracho OR, Manchery C, Haskell EC, Blanar CA, Smith RP. Circumvention of Learning Increases Intoxication Efficacy of Nematicidal Engineered Bacteria. ACS Synth Biol 2016; 5:241-9. [PMID: 26692340 DOI: 10.1021/acssynbio.5b00192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synthetic biology holds promise to engineer systems to treat diseases. One critical, yet underexplored, facet of designing such systems is the interplay between the system and the pathogen. Understanding this interplay may be critical to increasing efficacy and overcoming resistance against the system. Using the principles of synthetic biology, we engineer a strain of Escherichia coli to attract and intoxicate the nematode Caenorhabditis elegans. Our bacteria are engineered with a toxin module, which intoxicates the nematode upon ingestion, and an attraction module, which serves to attract and increase the feeding rate of the nematodes. When independently implemented, these modules successfully intoxicate and attract the worms, respectively. However, in combination, the efficacy of our bacteria is significantly reduced due to aversive associative learning in C. elegans. Guided by mathematical modeling, we dynamically regulate module induction to increase intoxication by circumventing learning. Our results detail the creation of a novel nematicidal bacterium that may have application against nematodes, unravel unique constraints on circuit dynamics that are governed by C. elegans physiology, and add to the growing list of design and implementation considerations associated with synthetic biology.
Collapse
Affiliation(s)
- Olena R. Bracho
- Department
of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| | - Cyril Manchery
- Department
of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| | - Evan C. Haskell
- Department
of Mathematics, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| | - Christopher A. Blanar
- Department
of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| | - Robert P. Smith
- Department
of Biological Sciences, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Fort Lauderdale, Florida 33314, United States
| |
Collapse
|
56
|
Kern T, Kutzner E, Eisenreich W, Fuchs TM. Pathogen-nematode interaction: Nitrogen supply of Listeria monocytogenes during growth in Caenorhabditis elegans. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:20-29. [PMID: 26478569 DOI: 10.1111/1758-2229.12344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Listeria monocytogenes is a Gram-positive facultatively intracellular human pathogen. Due to its saprophytic lifestyle, L. monocytogenes is assumed to infect and proliferate within soil organisms such as Caenorhabditis elegans. However, little is known about the nutrient usages and metabolite fluxes in this bacterium-nematode interaction. Here, we established a nematode colonization model for L. monocytogenes and a method for the efficient separation of the pathogen from the nematodal gut. Following (15)N labelling of C. elegans and gas chromatography-mass spectrometry-based (15)N isotopologue analysis, we detected a high basal metabolic rate of the nematode, and observed a significant metabolic flux from nitrogenous compounds of the nematode to listerial proteins during proliferation of the pathogen in the worm's intestine. For comparison, we also measured the N fluxes from the gut content into listerial proteins using completely (15)N-labelled Escherichia coli OP50 as food for C. elegans. In both settings, L. monocytogenes prefers the direct incorporation of histidine, arginine and lysine over their de novo biosynthesis. Our data suggest that colonization of nematodes is a strategy of L. monocytogenes to increase its access to N-rich nutrients.
Collapse
Affiliation(s)
- Tanja Kern
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Erika Kutzner
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| |
Collapse
|
57
|
Vílchez JI, Navas A, González-López J, Arcos SC, Manzanera M. Biosafety Test for Plant Growth-Promoting Bacteria: Proposed Environmental and Human Safety Index (EHSI) Protocol. Front Microbiol 2016; 6:1514. [PMID: 26779168 PMCID: PMC4703995 DOI: 10.3389/fmicb.2015.01514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/15/2015] [Indexed: 11/25/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) colonize plants and enhance their growth by different mechanisms. Some of these microorganisms may represent a potential threat to human, animal or plant health; however, their use might be approved in parts of Europe if they have been recommended as plant growth enhancers. The current regulatory framework has resulted in a fragmented, contradictory system, and there is an urgent need to establish harmonized protocols for the predictability, efficiency, consistency and especially the safety of PGPB for human and animal health and for the environment. In response to current efforts to update biosafety policies and provide alternative methods to replace the use of vertebrate animals, we propose a panel of tests and an evaluation system to reliably determine the biosafety of bacterial strains used as PGPB. Based on the results of different tests, we propose a scoring system to evaluate the safety of candidates for PGPB within the limitations of the assays used.
Collapse
Affiliation(s)
- Juan I Vílchez
- Institute for Water Research and Department of Microbiology, University of Granada Granada, Spain
| | - Alfonso Navas
- Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Jesús González-López
- Institute for Water Research and Department of Microbiology, University of Granada Granada, Spain
| | - Susana C Arcos
- Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Maximino Manzanera
- Institute for Water Research and Department of Microbiology, University of Granada Granada, Spain
| |
Collapse
|
58
|
Luck AN, Anderson KG, McClung CM, VerBerkmoes NC, Foster JM, Michalski ML, Slatko BE. Tissue-specific transcriptomics and proteomics of a filarial nematode and its Wolbachia endosymbiont. BMC Genomics 2015; 16:920. [PMID: 26559510 PMCID: PMC4642636 DOI: 10.1186/s12864-015-2083-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022] Open
Abstract
Background Filarial nematodes cause debilitating human diseases. While treatable, recent evidence suggests drug resistance is developing, necessitating the development of novel targets and new treatment options. Although transcriptomic and proteomic studies around the nematode life cycle have greatly enhanced our knowledge, whole organism approaches have not provided spatial resolution of gene expression, which can be gained by examining individual tissues. Generally, due to their small size, tissue dissection of human-infecting filarial nematodes remains extremely challenging. However, canine heartworm disease is caused by a closely related and much larger filarial nematode, Dirofilaria immitis. As with many other filarial nematodes, D. immitis contains Wolbachia, an obligate bacterial endosymbiont present in the hypodermis and developing oocytes within the uterus. Here, we describe the first concurrent tissue-specific transcriptomic and proteomic profiling of a filarial nematode (D. immitis) and its Wolbachia (wDi) in order to better understand tissue functions and identify tissue-specific antigens that may be used for the development of new diagnostic and therapeutic tools. Methods Adult D. immitis worms were dissected into female body wall (FBW), female uterus (FU), female intestine (FI), female head (FH), male body wall (MBW), male testis (MT), male intestine (MI), male head (MH) and 10.1186/s12864-015-2083-2 male spicule (MS) and used to prepare transcriptomic and proteomic libraries. Results Transcriptomic and proteomic analysis of several D. immitis tissues identified many biological functions enriched within certain tissues. Hierarchical clustering of the D. immitis tissue transcriptomes, along with the recently published whole-worm adult male and female D. immitis transcriptomes, revealed that the whole-worm transcriptome is typically dominated by transcripts originating from reproductive tissue. The uterus appeared to have the most variable transcriptome, possibly due to age. Although many functions are shared between the reproductive tissues, the most significant differences in gene expression were observed between the uterus and testis. Interestingly, wDi gene expression in the male and female body wall is fairly similar, yet slightly different to that of Wolbachia gene expression in the uterus. Proteomic methods verified 32 % of the predicted D. immitis proteome, including over 700 hypothetical proteins of D. immitis. Of note, hypothetical proteins were among some of the most abundant Wolbachia proteins identified, which may fulfill some important yet still uncharacterized biological function. Conclusions The spatial resolution gained from this parallel transcriptomic and proteomic analysis adds to our understanding of filarial biology and serves as a resource with which to develop future therapeutic strategies against filarial nematodes and their Wolbachia endosymbionts. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2083-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashley N Luck
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Kathryn G Anderson
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Colleen M McClung
- Chemical Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Nathan C VerBerkmoes
- Chemical Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Jeremy M Foster
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA
| | - Michelle L Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Barton E Slatko
- Genome Biology Division, New England Biolabs, Inc., 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
59
|
Pseudomonas aeruginosa Biofilm Formation and Persistence, along with the Production of Quorum Sensing-Dependent Virulence Factors, Are Disrupted by a Triterpenoid Coumarate Ester Isolated from Dalbergia trichocarpa, a Tropical Legume. PLoS One 2015; 10:e0132791. [PMID: 26186595 PMCID: PMC4505864 DOI: 10.1371/journal.pone.0132791] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/19/2015] [Indexed: 12/30/2022] Open
Abstract
Recently, extracts of Dalbergia trichocarpa bark have been shown to disrupt P. aeruginosa PAO1 quorum sensing (QS) mechanisms, which are key regulators of virulence factor expression and implicated in biofilm formation. One of the active compounds has been isolated and identified as oleanolic aldehyde coumarate (OALC), a novel bioactive compound that inhibits the formation of P. aeruginosa PAO1 biofilm and its maintenance as well as the expression of the las and rhl QS systems. Consequently, the production of QS-controlled virulence factors including, rhamnolipids, pyocyanin, elastase and extracellular polysaccharides as well as twitching and swarming motilities is reduced. Native acylhomoserine lactones (AHLs) production is inhibited by OALC but exogenous supply of AHLs does not restore the production of virulence factors by OALC-treated cultures, indicating that OALC exerts its effect beyond AHLs synthesis in the QS pathways. Further experiments provided a significant inhibition of the global virulence factor activator gacA by OALC. OALC disorganizes established biofilm structure and improves the bactericidal activity of tobramycin against biofilm-encapsulated PAO1 cells. Finally, a significant reduction of Caenorhabditis elegans paralysis was recorded when the worms were infected with OALC-pre-treated P. aeruginosa. Taken together, these results show that triterpenoid coumarate esters are suitable chemical backbones to target P. aeruginosa virulence mechanisms.
Collapse
|
60
|
Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R. Role of quorum sensing in bacterial infections. World J Clin Cases 2015; 3:575-598. [PMID: 26244150 PMCID: PMC4517333 DOI: 10.12998/wjcc.v3.i7.575] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/30/2014] [Accepted: 04/20/2015] [Indexed: 02/05/2023] Open
Abstract
Quorum sensing (QS) is cell communication that is widely used by bacterial pathogens to coordinate the expression of several collective traits, including the production of multiple virulence factors, biofilm formation, and swarming motility once a population threshold is reached. Several lines of evidence indicate that QS enhances virulence of bacterial pathogens in animal models as well as in human infections; however, its relative importance for bacterial pathogenesis is still incomplete. In this review, we discuss the present evidence from in vitro and in vivo experiments in animal models, as well as from clinical studies, that link QS systems with human infections. We focus on two major QS bacterial models, the opportunistic Gram negative bacteria Pseudomonas aeruginosa and the Gram positive Staphylococcus aureus, which are also two of the main agents responsible of nosocomial and wound infections. In addition, QS communication systems in other bacterial, eukaryotic pathogens, and even immune and cancer cells are also reviewed, and finally, the new approaches proposed to combat bacterial infections by the attenuation of their QS communication systems and virulence are also discussed.
Collapse
|
61
|
Nandi M, Selin C, Brassinga AKC, Belmonte MF, Fernando WGD, Loewen PC, de Kievit TR. Pyrrolnitrin and Hydrogen Cyanide Production by Pseudomonas chlororaphis Strain PA23 Exhibits Nematicidal and Repellent Activity against Caenorhabditis elegans. PLoS One 2015; 10:e0123184. [PMID: 25901993 PMCID: PMC4406715 DOI: 10.1371/journal.pone.0123184] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas chlororaphis strain PA23 is a biocontrol agent able to suppress growth of the fungal pathogen Sclerotinia sclerotiorum. This bacterium produces an arsenal of exometabolites including pyrrolnitrin (PRN), phenazine (PHZ), hydrogen cyanide (HCN), and degradative enzymes. Production of these compounds is controlled at both the transcriptional and posttranscriptional levels by the Gac-Rsm system, RpoS, PsrA, and the Phz quorum-sensing system. Beyond pathogen-suppression, the success of a biocontrol agent is dependent upon its ability to establish itself in the environment where predation by bacterivorous organisms, including nematodes, may threaten persistence. The focus of this study was to investigate whether PA23 is able to resist grazing by Caenorhabditis elegans and to define the role played by exoproducts in the bacterial-nematode interaction. We discovered that both PRN and HCN contribute to fast- and slow-killing of C. elegans. HCN is well-established as having lethal effects on C. elegans; however, PRN has not been reported to be nematicidal. Exposure of L4 stage nematodes to purified PRN reduced nematode viability in a dose-dependent fashion and led to reduced hatching of eggs laid by gravid adults. Because bacterial metabolites can act as chemoattractants or repellents, we analyzed whether PA23 exhibited attractant or repulsive properties towards C. elegans. Both PRN and HCN were found to be potent repellents. Next we investigated whether the presence of C. elegans would elicit changes in PA23 gene activity. Co-culturing the two organisms increased expression of a number of genes associated with biocontrol, including phzA, hcnA, phzR, phzI, rpoS and gacS. Exoproduct analysis showed that PHZ and autoinducer signals were upregulated, consistent with the gene expression profiles. Collectively, these findings indicate that PA23 is able to sense the presence of C. elegans and it is able to both repel and kill the nematodes, which should facilitate environmental persistence and ultimately biocontrol.
Collapse
Affiliation(s)
- Munmun Nandi
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carrie Selin
- Department of Plant Science University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Mark F. Belmonte
- Department of Biological Sciences University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Peter C. Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teresa R. de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
62
|
Schaffer K, Taylor CT. The impact of hypoxia on bacterial infection. FEBS J 2015; 282:2260-6. [PMID: 25786849 DOI: 10.1111/febs.13270] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/19/2015] [Accepted: 03/16/2015] [Indexed: 12/28/2022]
Abstract
Tissue hypoxia is a common microenvironmental feature during inflammation associated with bacterial infection. Hypoxia has recently been shown to play an important role in both innate and adaptive host immunity through the regulation of transcription factors, including hypoxia-inducible factor and nuclear factor-κB, in both infiltrating immunocytes and inflamed resident cells. Recent studies have suggested that, by regulating these important immune effector pathways in host tissues, hypoxia can significantly alter the process of bacterial infection and subsequent disease progression. Although hypoxia is often beneficial in terms of reducing the development of infection, its net effect depends on a number of factors, including the nature of the pathogen and the characteristics of the infection encountered. In this minireview, we will discuss the impact of local tissue hypoxia and the resulting activation of hypoxia-sensitive pathways on bacterial infection by a range of pathogens. Furthermore, we will review how this knowledge may be used to develop new approaches to anti-infective therapeutics.
Collapse
Affiliation(s)
- Kirsten Schaffer
- Department of Microbiology, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Cormac T Taylor
- School of Medicine and Medical Science & The Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
63
|
Pritchard RE, Balish MF. Mycoplasma iowae: relationships among oxygen, virulence, and protection from oxidative stress. Vet Res 2015; 46:36. [PMID: 25880161 PMCID: PMC4367981 DOI: 10.1186/s13567-015-0170-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/05/2015] [Indexed: 12/20/2022] Open
Abstract
The poultry-associated bacterium Mycoplasma iowae colonizes multiple sites in embryos, with disease or death resulting. Although M. iowae accumulates in the intestinal tract, it does not cause disease at that site, but rather only in tissues that are exposed to atmospheric O2. The activity of M. iowae catalase, encoded by katE, is capable of rapid removal of damaging H2O2 from solution, and katE confers a substantial reduction in the amount of H2O2 produced by Mycoplasma gallisepticum katE transformants in the presence of glycerol. As catalase-producing bacteria are often beneficial to hosts with inflammatory bowel disease, we explored whether M. iowae was exclusively protective against H2O2-producing bacteria in a Caenorhabditis elegans model, whether its protectiveness changed in response to O2 levels, and whether expression of genes involved in H2O2 metabolism and virulence changed in response to O2 levels. We observed that M. iowae was in fact protective against H2O2-producing Streptococcus pneumoniae, but not HCN-producing Pseudomonas aeruginosa, and that M. iowae cells grown in 1% O2 promoted survival of C. elegans to a greater extent than M. iowae cells grown in atmospheric O2. Transcript levels of an M. iowae gene encoding a homolog of Mycoplasma pneumoniae CARDS toxin were 5-fold lower in cells grown in low O2. These data suggest that reduced O2, representing the intestinal environment, triggers M. iowae to reduce its virulence capabilities, effecting a change from a pathogenic mode to a potentially beneficial one.
Collapse
Affiliation(s)
- Rachel E Pritchard
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA. .,Present address: Division of Natural Sciences and Mathematics, Kentucky Wesleyan College, Owensboro, KY, 42301, USA.
| | - Mitchell F Balish
- Department of Microbiology, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
64
|
Tipton KA, Coleman JP, Pesci EC. Post-transcriptional regulation of gene PA5507 controls Pseudomonas quinolone signal concentration in P. aeruginosa. Mol Microbiol 2015; 96:670-83. [PMID: 25662317 DOI: 10.1111/mmi.12963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa can sense and respond to a myriad of environmental signals and utilizes a system of small molecules to communicate through intercellular signaling. The small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas Quinolone Signal [PQS]) is one of these signals and its synthesis is important for virulence. Previously, we identified an RpiR-type transcriptional regulator, QapR, that positively affects PQS production by repressing the qapR operon. An in-frame deletion of this regulator caused P. aeruginosa to produce a greatly reduced concentration of PQS. Here, we report that QapR translation is linked to the downstream gene PA5507. We found that introduction of a premature stop codon within qapR eliminates transcriptional autorepression of the qapR operon as expected but has no effect on PQS concentration. This was investigated with a series of lacZ reporter fusions which showed that translation of QapR must terminate at, or close to, the native qapR stop codon in order for translation of PA5507 to occur. Also, it was shown that truncation of the 5' end of the qapR transcript permitted PA5507 translation without translation of QapR. Our findings led us to conclude that PA5507 transcription and translation are both tightly controlled by QapR and this control is important for PQS homeostasis.
Collapse
Affiliation(s)
- Kyle A Tipton
- Department of Microbiology and Immunology, The Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, North Carolina, 27834, USA
| | | | | |
Collapse
|
65
|
Kroupitski Y, Pinto R, Bucki P, Belausov E, Ruess L, Spiegel Y, Sela (Saldinger) S. Acrobeloides buetschlii as a potential vector for enteric pathogens. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objective of the present study was to assess ifAcrobeloides buetschlii, an opportunistic species common across many soils, can be employed as a suitable model for interactions between free-living soil nematodes and enteric human pathogens.Acrobeloides buetschliiwas exposed to mCherry-taggedSalmonella entericaandEscherichia coliO157:H7 and its vector potential was assessed.Salmonellacells were more readily ingested by the nematodes compared toE. coliO157:H7. Adult nematodes ingested more bacteria compared to juveniles.Salmonellasurvived internally for at least 7 days without affecting the viability of nematodes. Bacterial ingestion byA. buetschliidid not vary for three testedSalmonellaserovars but was significantly lower forE. coliO157:H7. Considering the ubiquitous nature of pathogen and vector, these findings suggest thatA. buetschliican serve as a relevant model for studying nematode-Salmonellainteractions in an agricultural setting and as potential transport for food-borne pathogens from soil to crops.
Collapse
Affiliation(s)
- Yulia Kroupitski
- Microbial Food-Safety Research Unit, Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, The Hebrew University, Rehovot, Israel
- Department of Biochemistry and Food Science, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Riky Pinto
- Microbial Food-Safety Research Unit, Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, The Hebrew University, Rehovot, Israel
| | - Patricia Bucki
- Department of Nematology, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Edward Belausov
- Confocal Microscopy Unit, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Liliane Ruess
- Humboldt-Universität zu Berlin, Institute of Biology, Ecology Group, Berlin, Germany
| | - Yitzhak Spiegel
- Department of Nematology, Institute of Plant Protection, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Shlomo Sela (Saldinger)
- Microbial Food-Safety Research Unit, Department of Food Quality & Safety, Institute for Postharvest and Food Sciences, The Hebrew University, Rehovot, Israel
| |
Collapse
|
66
|
A HIF-independent mediator of transcriptional responses to oxygen deprivation in Caenorhabditis elegans. Genetics 2014; 199:739-48. [PMID: 25552276 DOI: 10.1534/genetics.114.173989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The adaptive response to hypoxia is accompanied by widespread transcriptional changes that allow for prolonged survival in low oxygen. Many of these changes are directly regulated by the conserved hypoxia-inducible factor-1 (HIF-1) complex; however, even in its absence, many oxygen-sensitive transcripts in Caenorhabditis elegans are appropriately regulated in hypoxia. To identify mediators of these non-HIF-dependent responses, we established a hif-1 mutant reporter line that expresses GFP in hypoxia or when worms are treated with the hypoxia mimetic cobalt chloride (CoCl2). The reporter is selective and HIF independent, in that it remains insensitive to a number of cellular stresses, but is unaffected by mutation of the prolyl hydroxylase egl-9, suggesting that the regulators of this response pathway are different from those controlling the HIF pathway. We used the HIF-independent reporter to screen a transcription factor RNA interference (RNAi) library and identified genes that are required for hypoxia-sensitive and CoCl2-induced GFP expression. We identified the zinc finger protein BLMP-1 as a mediator of the HIF-independent response. We show that mutation of blmp-1 renders animals sensitive to hypoxic exposure and that blmp-1 is required for appropriate hypoxic-induced expression of HIF-independent transcripts. Further, we demonstrate that BLMP-1 is necessary for an increase of hypoxia-dependent histone acetylation within the promoter of a non-HIF-dependent hypoxia response gene.
Collapse
|
67
|
Henze AT, Garvalov BK, Seidel S, Cuesta AM, Ritter M, Filatova A, Foss F, Dopeso H, Essmann CL, Maxwell PH, Reifenberger G, Carmeliet P, Acker-Palmer A, Acker T. Loss of PHD3 allows tumours to overcome hypoxic growth inhibition and sustain proliferation through EGFR. Nat Commun 2014; 5:5582. [PMID: 25420773 PMCID: PMC4263145 DOI: 10.1038/ncomms6582] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023] Open
Abstract
Solid tumours are exposed to microenvironmental factors such as hypoxia that normally inhibit cell growth. However, tumour cells are capable of counteracting these signals through mechanisms that are largely unknown. Here we show that the prolyl hydroxylase PHD3 restrains tumour growth in response to microenvironmental cues through the control of EGFR. PHD3 silencing in human gliomas or genetic deletion in a murine high-grade astrocytoma model markedly promotes tumour growth and the ability of tumours to continue growing under unfavourable conditions. The growth-suppressive function of PHD3 is independent of the established PHD3 targets HIF and NF-κB and its hydroxylase activity. Instead, loss of PHD3 results in hyperphosphorylation of epidermal growth factor receptor (EGFR). Importantly, epigenetic/genetic silencing of PHD3 preferentially occurs in gliomas without EGFR amplification. Our findings reveal that PHD3 inactivation provides an alternative route of EGFR activation through which tumour cells sustain proliferative signalling even under conditions of limited oxygen availability. Little is known on how solid tumours overcome growth inhibitory signals within its hypoxic microenvironment. Here Henze et al. show that oxygen sensor PHD3 is frequently lost in gliomas, and that this loss hyperactivates EGFR signaling to sustain tumour cell proliferation and survival in hypoxia.
Collapse
Affiliation(s)
- Anne-Theres Henze
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Boyan K Garvalov
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Sascha Seidel
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Angel M Cuesta
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Mathias Ritter
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Alina Filatova
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Franziska Foss
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Higinio Dopeso
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| | - Clara L Essmann
- Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter Carmeliet
- Vesalius Research Center (VRC), Angiogenesis and Neurovascular Link Laboratory, University of Leuven, Leuven B-3000, Belgium
| | - Amparo Acker-Palmer
- 1] Institute of Cell Biology and Neuroscience, Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, 60438 Frankfurt, Germany [2] Focus Program Translational Neurosciences (FTN), University of Mainz, 55131 Mainz, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, 35392 Giessen, Germany
| |
Collapse
|
68
|
Tahseen Q, Clark IM. Attraction and preference of bacteriophagous and plant-parasitic nematodes towards different types of soil bacteria. J NAT HIST 2014. [DOI: 10.1080/00222933.2013.873088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
69
|
O'Reilly LP, Luke CJ, Perlmutter DH, Silverman GA, Pak SC. C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 2014; 69-70:247-53. [PMID: 24333896 DOI: 10.1016/j.addr.2013.12.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 11/27/2022]
Abstract
Caenorhabditis elegans has been proven to be a useful model organism for investigating molecular and cellular aspects of numerous human diseases. More recently, investigators have explored the use of this organism as a tool for drug discovery. Although earlier drug screens were labor-intensive and low in throughput, recent advances in high-throughput liquid workflows, imaging platforms and data analysis software have made C. elegans a viable option for automated high-throughput drug screens. This review will outline the evolution of C. elegans-based drug screening, discuss the inherent challenges of using C. elegans, and highlight recent technological advances that have paved the way for future drug screens.
Collapse
Affiliation(s)
- Linda P O'Reilly
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Cliff J Luke
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - David H Perlmutter
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Gary A Silverman
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA
| | - Stephen C Pak
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224,USA.
| |
Collapse
|
70
|
Kirienko NV, Kirienko DR, Larkins-Ford J, Wählby C, Ruvkun G, Ausubel FM. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 2014; 13:406-16. [PMID: 23601103 DOI: 10.1016/j.chom.2013.03.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/30/2013] [Accepted: 02/18/2013] [Indexed: 12/24/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes serious human infections, but effective treatments and the mechanisms mediating pathogenesis remain elusive. Caenorhabditis elegans shares innate immune pathways with humans, making it invaluable to investigate infection. To determine how P. aeruginosa disrupts host biology, we studied how P. aeruginosa kills C. elegans in a liquid-based pathogenesis model. We found that P. aeruginosa-mediated killing does not require quorum-sensing pathways or host colonization. A chemical genetic screen revealed that iron chelators alleviate P. aeruginosa-mediated killing. Consistent with a role for iron in P. aeruginosa pathogenesis, the bacterial siderophore pyoverdin was required for virulence and was sufficient to induce a hypoxic response and death in the absence of bacteria. Loss of the C. elegans hypoxia-inducing factor HIF-1, which regulates iron homeostasis, exacerbated P. aeruginosa pathogenesis, further linking hypoxia and killing. As pyoverdin is indispensable for virulence in mice, pyoverdin-mediated hypoxia is likely to be relevant in human pathogenesis.
Collapse
Affiliation(s)
- Natalia V Kirienko
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
71
|
Chen ZX, Wallis K, Fell SM, Sobrado VR, Hemmer MC, Ramsköld D, Hellman U, Sandberg R, Kenchappa RS, Martinson T, Johnsen JI, Kogner P, Schlisio S. RNA helicase A is a downstream mediator of KIF1Bβ tumor-suppressor function in neuroblastoma. Cancer Discov 2014; 4:434-51. [PMID: 24469107 DOI: 10.1158/2159-8290.cd-13-0362] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Inherited KIF1B loss-of-function mutations in neuroblastomas and pheochromocytomas implicate the kinesin KIF1B as a 1p36.2 tumor suppressor. However, the mechanism of tumor suppression is unknown. We found that KIF1B isoform β (KIF1Bβ) interacts with RNA helicase A (DHX9), causing nuclear accumulation of DHX9, followed by subsequent induction of the proapoptotic XIAP-associated factor 1 (XAF1) and, consequently, apoptosis. Pheochromocytoma and neuroblastoma arise from neural crest progenitors that compete for growth factors such as nerve growth factor (NGF) during development. KIF1Bβ is required for developmental apoptosis induced by competition for NGF. We show that DHX9 is induced by and required for apoptosis stimulated by NGF deprivation. Moreover, neuroblastomas with chromosomal deletion of 1p36 exhibit loss of KIF1Bβ expression and impaired DHX9 nuclear localization, implicating the loss of DHX9 nuclear activity in neuroblastoma pathogenesis. SIGNIFICANCE KIF1Bβ has neuroblastoma tumor-suppressor properties and promotes and requires nuclear-localized DHX9 for its apoptotic function by activating XAF1 expression. Loss of KIF1Bβ alters subcellular localization of DHX9 and diminishes NGF dependence of sympathetic neurons, leading to reduced culling of neural progenitors, and, therefore, might predispose to tumor formation.
Collapse
Affiliation(s)
- Zhi Xiong Chen
- 1Ludwig Institute for Cancer Research Ltd.; 2Department of Cell and Molecular Biology, Karolinska Institutet; 3Department of Women's and Children's Health, Karolinska University Hospital, Stockholm; 4Ludwig Institute for Cancer Research Ltd., Biomedical Center, Uppsala; 5Department of Clinical Genetics, Institute of Biomedicine, University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden; and 6Moffitt Cancer Center, Neuro-Oncology Program, Tampa, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Kirienko NV, Cezairliyan BO, Ausubel FM, Powell JR. Pseudomonas aeruginosa PA14 pathogenesis in Caenorhabditis elegans. Methods Mol Biol 2014; 1149:653-669. [PMID: 24818940 DOI: 10.1007/978-1-4939-0473-0_50] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The nematode Caenorhabditis elegans is a simple model host for studying the interaction between bacterial pathogens such as Pseudomonas aeruginosa and the metazoan innate immune system. Powerful genetic and molecular tools in both C. elegans and P. aeruginosa facilitate the identification and analysis of bacterial virulence factors as well as host defense factors. Here we describe three different assays that use the C. elegans-P. aeruginosa strain PA14 host-pathogen system. Fast Killing is a toxin-mediated death that depends on a diffusible toxin produced by PA14 but not on live bacteria. Slow Killing is due to an active infection in which bacteria colonize the C. elegans intestinal lumen. Liquid Killing is designed for high-throughput screening of chemical libraries for anti-infective compounds. Each assay has unique features and, interestingly, the PA14 virulence factors involved in killing are different in each assay.
Collapse
Affiliation(s)
- Natalia V Kirienko
- Department of Genetics, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | |
Collapse
|
73
|
Ghose P, Park EC, Tabakin A, Salazar-Vasquez N, Rongo C. Anoxia-reoxygenation regulates mitochondrial dynamics through the hypoxia response pathway, SKN-1/Nrf, and stomatin-like protein STL-1/SLP-2. PLoS Genet 2013; 9:e1004063. [PMID: 24385935 PMCID: PMC3873275 DOI: 10.1371/journal.pgen.1004063] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/12/2013] [Indexed: 12/04/2022] Open
Abstract
Many aerobic organisms encounter oxygen-deprived environments and thus must have adaptive mechanisms to survive such stress. It is important to understand how mitochondria respond to oxygen deprivation given the critical role they play in using oxygen to generate cellular energy. Here we examine mitochondrial stress response in C. elegans, which adapt to extreme oxygen deprivation (anoxia, less than 0.1% oxygen) by entering into a reversible suspended animation state of locomotory arrest. We show that neuronal mitochondria undergo DRP-1-dependent fission in response to anoxia and undergo refusion upon reoxygenation. The hypoxia response pathway, including EGL-9 and HIF-1, is not required for anoxia-induced fission, but does regulate mitochondrial reconstitution during reoxygenation. Mutants for egl-9 exhibit a rapid refusion of mitochondria and a rapid behavioral recovery from suspended animation during reoxygenation; both phenotypes require HIF-1. Mitochondria are significantly larger in egl-9 mutants after reoxygenation, a phenotype similar to stress-induced mitochondria hyperfusion (SIMH). Anoxia results in mitochondrial oxidative stress, and the oxidative response factor SKN-1/Nrf is required for both rapid mitochondrial refusion and rapid behavioral recovery during reoxygenation. In response to anoxia, SKN-1 promotes the expression of the mitochondrial resident protein Stomatin-like 1 (STL-1), which helps facilitate mitochondrial dynamics following anoxia. Our results suggest the existence of a conserved anoxic stress response involving changes in mitochondrial fission and fusion. Oxygen deprivation plays a role in multiple human diseases ranging from heart attack, ischemic stroke, and traumatic injury. Aerobic organisms use oxygen to generate cellular energy in mitochondria; thus, oxygen deprivation results in energy depletion. Low oxygen can be catastrophic in tissues like the nervous system, which has high-energy demands and few glycolytic reserves. By contrast, other cells, including stem cells and cancerous cells within tumors, adapt and thrive in low oxygen. We are just beginning to understand how different organisms and even different cell types within the same organism respond to low oxygen conditions. The response of mitochondria to oxygen deprivation is particularly critical given their role in aerobic energy production. In addition, mitochondria actively injure cells during oxygen deprivation through the generation of reactive oxygen species, the disruption of calcium homeostasis, and the activation of cell death pathways. Here we use a genetic approach to show that mitochondria undergo fission during oxygen deprivation and refusion upon oxygen restoration. The hypoxia response pathway and the oxidative stress response pathway together modulate this response. We identify a new factor, stomatin-like protein, as a promoter of mitochondrial fusion in response to oxygen deprivation stress. Our findings uncover a new mechanism – regulated mitochondrial dynamics – by which cells adapt to oxygen deprivation stress.
Collapse
Affiliation(s)
- Piya Ghose
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- The Graduate Program in Neuroscience, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Eun Chan Park
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Alexandra Tabakin
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Nathaly Salazar-Vasquez
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- The Graduate Program in Genetics and Microbiology, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Christopher Rongo
- The Waksman Institute, Department of Genetics, Rutgers The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
74
|
Choosing an appropriate infection model to study quorum sensing inhibition in Pseudomonas infections. Int J Mol Sci 2013; 14:19309-40. [PMID: 24065108 PMCID: PMC3794835 DOI: 10.3390/ijms140919309] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023] Open
Abstract
Bacteria, although considered for decades to be antisocial organisms whose sole purpose is to find nutrients and multiply are, in fact, highly communicative organisms. Referred to as quorum sensing, cell-to-cell communication mechanisms have been adopted by bacteria in order to co-ordinate their gene expression. By behaving as a community rather than as individuals, bacteria can simultaneously switch on their virulence factor production and establish successful infections in eukaryotes. Understanding pathogen-host interactions requires the use of infection models. As the use of rodents is limited, for ethical considerations and the high costs associated with their use, alternative models based on invertebrates have been developed. Invertebrate models have the benefits of low handling costs, limited space requirements and rapid generation of results. This review presents examples of such models available for studying the pathogenicity of the Gram-negative bacterium Pseudomonas aeruginosa. Quorum sensing interference, known as quorum quenching, suggests a promising disease-control strategy since quorum-quenching mechanisms appear to play important roles in microbe-microbe and host-pathogen interactions. Examples of natural and synthetic quorum sensing inhibitors and their potential as antimicrobials in Pseudomonas-related infections are discussed in the second part of this review.
Collapse
|
75
|
Components of the cultivated red seaweed Chondrus crispus enhance the immune response of Caenorhabditis elegans to Pseudomonas aeruginosa through the pmk-1, daf-2/daf-16, and skn-1 pathways. Appl Environ Microbiol 2013; 79:7343-50. [PMID: 24056462 DOI: 10.1128/aem.01927-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine macroalgae are rich in bioactive compounds that can, when consumed, impart beneficial effects on animal and human health. The red seaweed Chondrus crispus has been reported to have a wide range of health-promoting activities, such as antitumor and antiviral activities. Using a Caenorhabditis elegans infection model, we show that C. crispus water extract (CCWE) enhances host immunity and suppresses the expression of quorum sensing (QS) and the virulence factors of Pseudomonas aeruginosa (strain PA14). Supplementation of nematode growth medium with CCWE induced the expression of C. elegans innate immune genes, such as irg-1, irg-2, F49F1.6, hsf-1, K05D8.5, F56D6.2, C29F3.7, F28D1.3, F38A1.5 ZK6.7, lys-1, spp-1, and abf-1, by more than 2-fold, while T20G5.7 was not affected. Additionally, CCWE suppressed the expression of PA14 QS genes and virulence factors, although it did not affect the growth of the bacteria. These effects correlated with a 28% reduction in the PA14-inflicted killing of C. elegans. Kappa-carrageenan (K-CGN), a major component of CCWE, was shown to play an important role in the enhancement of host immunity. Using C. elegans mutants, we identified that pmk-1, daf-2/daf-16, and skn-1 are essential in the K-CGN-induced host immune response. In view of the conservation of innate immune pathways between C. elegans and humans, the results of this study suggest that water-soluble components of C. crispus may also play a health-promoting role in higher animals and humans.
Collapse
|
76
|
Ma DK, Rothe M, Zheng S, Bhatla N, Pender CL, Menzel R, Horvitz HR. Cytochrome P450 drives a HIF-regulated behavioral response to reoxygenation by C. elegans. Science 2013; 341:554-8. [PMID: 23811225 PMCID: PMC3969381 DOI: 10.1126/science.1235753] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxygen deprivation followed by reoxygenation causes pathological responses in many disorders, including ischemic stroke, heart attacks, and reperfusion injury. Key aspects of ischemia-reperfusion can be modeled by a Caenorhabditis elegans behavior, the O2-ON response, which is suppressed by hypoxic preconditioning or inactivation of the O2-sensing HIF (hypoxia-inducible factor) hydroxylase EGL-9. From a genetic screen, we found that the cytochrome P450 oxygenase CYP-13A12 acts in response to the EGL-9-HIF-1 pathway to facilitate the O2-ON response. CYP-13A12 promotes oxidation of polyunsaturated fatty acids into eicosanoids, signaling molecules that can strongly affect inflammatory pain and ischemia-reperfusion injury responses in mammals. We propose that roles of the EGL-9-HIF-1 pathway and cytochrome P450 in controlling responses to reoxygenation after anoxia are evolutionarily conserved.
Collapse
Affiliation(s)
- Dengke K. Ma
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Michael Rothe
- Lipidomix GmbH, Robert-Roessle-Str. 10, 13125 Berlin, Germany
| | - Shu Zheng
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Corinne L. Pender
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Ralph Menzel
- Humboldt-Universität zu Berlin, Department of Biology, Freshwater and Stress Ecology, Spaethstr. 80/81, 12437 Berlin, Germany
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, McGovern Institute for Brain Research, Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
77
|
Live and dead GFP-tagged bacteria showed indistinguishable fluorescence in Caenorhabditis elegans gut. J Microbiol 2013; 51:367-72. [PMID: 23812817 DOI: 10.1007/s12275-013-2589-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/28/2013] [Indexed: 12/19/2022]
Abstract
Caenorhabditis elegans has been used for studying host-pathogen interactions since long, and many virulence genes of pathogens have been successfully identified. In several studies, fluorescent pathogens were fed to C. elegans and fluorescence observed in the gut was considered an indicator for bacterial colonization. However, the grinder in the pharynx of these nematodes supposedly crushes the bacterial cells, and the ground material is delivered to the intestine for nutrient absorption. Therefore, it remains unclear whether intact bacteria pass through the grinder and colonize in the intestine. Here we investigated whether the appearance of fluorescence is indicative of intact bacteria in the gut using both fluorescence microscopy and transmission electron microscopy. In wild-type N2 C. elegans, Escherichia coli DH5α, and Vibrio vulnificus 93U204, both of which express the green fluorescence protein, were found intact only proximal to the grinder, while crushed bacterial debris was found in the post-pharyngeal lumen. Nevertheless, the fluorescence was evident throughout the lumen of worm intestines irrespective of whether the bacteria were intact or not. We further investigated the interaction of the bacteria with C. elegans phm-2 mutant, which has a dysfunctional grinder. Both strains of bacteria were found to be intact and accumulated in the pharynx and intestine owing to the defective grinder. The fluorescence intensity of intact bacteria in phm-2 worms was indistinguishable from that of crushed bacterial debris in N2 worms. Therefore, appearance of fluorescence in the C. elegans intestine should not be directly interpreted as successful bacterial colonization in the intestine.
Collapse
|
78
|
Saldanha JN, Parashar A, Pandey S, Powell-Coffman JA. Multiparameter behavioral analyses provide insights to mechanisms of cyanide resistance in Caenorhabditis elegans. Toxicol Sci 2013; 135:156-68. [PMID: 23805000 DOI: 10.1093/toxsci/kft138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Environmental toxicants influence development, behavior, and ultimately survival. The nematode Caenorhabditis elegans has proven to be an exceptionally powerful model for toxicological studies. Here, we develop novel technologies to describe the effects of cyanide toxicity with high spatiotemporal resolution. Importantly, we use these methods to examine the genetic underpinnings of cyanide resistance. Caenorhabditis elegans that lack the EGL-9 oxygen sensing enzyme have been shown to be resistant to hydrogen cyanide (HCN) gas produced by the pathogen Pseudomonas aeruginosa PAO1. We demonstrate that the cyanide resistance exhibited by egl-9 mutants is completely dependent on the HIF-1 hypoxia-inducible factor and is mediated by the cysl-2 cysteine synthase, which likely functions in metabolic pathways that inactivate cyanide. Further, the expression of cysl-2 correlates with the degree of cyanide resistance exhibited in each genetic background. We find that each mutant exhibits similar relative resistance to HCN gas on plates or to aqueous potassium cyanide in microfluidic chambers. The design of the microfluidic devices, in combination with real-time imaging, addresses a series of challenges presented by mutant phenotypes and by the chemical nature of the toxicant. The microfluidic assay produces a set of behavioral parameters with increased resolution that describe cyanide toxicity and resistance in C. elegans, and this is particularly useful in analyzing subtle phenotypes. These multiparameter analyses of C. elegans behavior hold great potential as a means to monitor the effects of toxicants or chemical interventions in real time and to study the biological networks that underpin toxicant resistance.
Collapse
Affiliation(s)
- Jenifer N Saldanha
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
79
|
Jain C, Pastor K, Gonzalez AY, Lorenz MC, Rao RP. The role of Candida albicans AP-1 protein against host derived ROS in in vivo models of infection. Virulence 2013; 4:67-76. [PMID: 23314569 DOI: 10.4161/viru.22700] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans, causing mucosal infections that are difficult to eliminate and systemic infections that are often lethal primarily due to defects in the host's innate status. Here we demonstrate the utility of Caenorhabditis elegans, a model host to study innate immunity, by exploring the role of reactive oxygen species (ROS) as a critical innate response against C. albicans infections. Much like a human host, the nematode's innate immune response is activated to produce ROS in response to fungal infection. We use the C. albicans cap1 mutant, which is susceptible to ROS, as a tool to dissect this physiological innate immune response and show that cap1 mutants fail to cause disease and death, except in bli-3 mutant worms that are unable to produce ROS because of a defective NADPH oxidase. We further validate the ROS-mediated host defense mechanism in mammalian phagocytes by demonstrating that chemical inhibition of the NADPH oxidase in cultured macrophages enables the otherwise susceptible cap1 mutant to resists ROS-mediated phagolysis. Loss of CAP1 confers minimal attenuation of virulence in a disseminated mouse model, suggesting that CAP1-independent mechanisms contribute to pathogen survival in vivo. Our findings underscore a central theme in the process of infection-the intricate balance between the virulence strategies employed by C. albicans and the host's innate immune system and validates C. elegans as a simple model host to dissect this balance at the molecular level.
Collapse
Affiliation(s)
- Charu Jain
- Department of Biology and Biotechnology, Life Sciences and Bioengineering Center at Gateway Park, Worcester Polytechnic Institute, Worcester, MA, USA
| | | | | | | | | |
Collapse
|
80
|
QapR (PA5506) represses an operon that negatively affects the Pseudomonas quinolone signal in Pseudomonas aeruginosa. J Bacteriol 2013; 195:3433-41. [PMID: 23708133 DOI: 10.1128/jb.00448-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that can cause disease in varied sites within the human body and is a significant source of morbidity and mortality in those afflicted with cystic fibrosis. P. aeruginosa is able to coordinate group behaviors, such as virulence factor production, through the process of cell-to-cell signaling. There are three intercellular signaling systems employed by P. aeruginosa, and one of these systems utilizes the small molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas quinolone signal [PQS]). PQS is required for virulence in multiple infection models and has been found in the lungs of cystic fibrosis patients colonized by P. aeruginosa. In this study, we have identified an RpiR family transcriptional regulator, QapR, which is an autoregulatory repressor. We found that mutation of qapR caused overexpression of the qapR operon. We characterized the qapR operon to show that it contains genes qapR, PA5507, PA5508, and PA5509 and that QapR directly controls the transcription of these genes in a negative manner. We also show that derepression of this operon greatly reduces PQS concentration in P. aeruginosa. Our results suggest that qapR affects PQS concentration by repressing an enzymatic pathway that acts on PQS or a PQS precursor to lower the PQS concentration. We believe that this operon comprises a novel mechanism to regulate PQS concentration in P. aeruginosa.
Collapse
|
81
|
JebaMercy G, Balamurugan K. Effects of sequential infections of Caenorhabditis elegans with Staphylococcus aureus and Proteus mirabilis. Microbiol Immunol 2013; 56:825-35. [PMID: 22957781 DOI: 10.1111/j.1348-0421.2012.00509.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caenorhabditis elegans can be used to study the dynamics of polymicrobial infections, specifically those between Gram-positive and Gram-negative bacteria. With C. elegans, Proteus mirabilis acts as an opportunistic pathogen and does not kill this host. Hence, in the present study, C. elegans was immunochallenged by pre-infecting it with the pathogen Staphylococcus aureus in order to study the subsequent effect of P. mirabilis on the host. It was found that 12 hrs of S. aureus and 80 hrs of subsequent P. mirabilis infection significantly reduced the life span of exposed C. elegans by 80%. However, preinfection with S. aureus for 8 and 4 hrs reduced the life span of C. elegans by only 60 and 30%, respectively. Further, there was greater production of reactive oxygen species in the sequentially infected samples than in the S. aureus and P. mirabilis controls. Real time PCR analysis indicated regulation of candidate immune regulatory genes, lysozyme (lys-7), CUB-like proteins (F08G5.6), neuropeptide-like factors (nlp-29), transcription factors of mitogen-activated protein kinase (ATF-7) and daf-2-daf-16 (daf-16), insulin-like signaling pathways and C-type lectin (clec-60 and clec-87) family members during S. aureus and subsequent P. mirabilis-mediated infections, indicating possible roles of, and contributions by, the above factors during host immune responses against these sequential infections. The present findings demonstrate that S. aureus infections increase the vulnerability of the C. elegans host by subverting its immune system, which then permits the opportunistic pathogen P. mirabilis to be pathogenic to this host.
Collapse
|
82
|
Neidig A, Yeung ATY, Rosay T, Tettmann B, Strempel N, Rueger M, Lesouhaitier O, Overhage J. TypA is involved in virulence, antimicrobial resistance and biofilm formation in Pseudomonas aeruginosa. BMC Microbiol 2013; 13:77. [PMID: 23570569 PMCID: PMC3639842 DOI: 10.1186/1471-2180-13-77] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/04/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an important opportunistic human pathogen and is extremely difficult to treat due to its high intrinsic and adaptive antibiotic resistance, ability to form biofilms in chronic infections and broad arsenal of virulence factors, which are finely regulated. TypA is a GTPase that has recently been identified to modulate virulence in enteric Gram-negative pathogens. RESULTS Here, we demonstrate that mutation of typA in P. aeruginosa resulted in reduced virulence in phagocytic amoebae and human macrophage models of infection. In addition, the typA mutant was attenuated in rapid cell attachment to surfaces and biofilm formation, and exhibited reduced antibiotic resistance to ß-lactam, tetracycline and antimicrobial peptide antibiotics. Quantitative RT-PCR revealed the down-regulation, in a typA mutant, of important virulence-related genes such as those involved in regulation and assembly of the Type III secretion system, consistent with the observed phenotypes and role in virulence of P. aeruginosa. CONCLUSIONS These data suggest that TypA is a newly identified modulator of pathogenesis in P. aeruginosa and is involved in multiple virulence-related characteristics.
Collapse
Affiliation(s)
- Anke Neidig
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces, PO Box 3640, Karlsruhe, 76021, Germany
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A, Ausubel FM. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog 2013; 9:e1003101. [PMID: 23300454 PMCID: PMC3536714 DOI: 10.1371/journal.ppat.1003101] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 11/09/2012] [Indexed: 02/05/2023] Open
Abstract
Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.
Collapse
Affiliation(s)
- Brent Cezairliyan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nawaporn Vinayavekhin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Daniel Grenfell-Lee
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Grace J. Yuen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan Saghatelian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (AS); (FMA)
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (AS); (FMA)
| |
Collapse
|
84
|
Luhachack LG, Visvikis O, Wollenberg AC, Lacy-Hulbert A, Stuart LM, Irazoqui JE. EGL-9 controls C. elegans host defense specificity through prolyl hydroxylation-dependent and -independent HIF-1 pathways. PLoS Pathog 2012; 8:e1002798. [PMID: 22792069 PMCID: PMC3390412 DOI: 10.1371/journal.ppat.1002798] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/29/2012] [Indexed: 12/28/2022] Open
Abstract
Understanding host defense against microbes is key to developing new and more effective therapies for infection and inflammatory disease. However, how animals integrate multiple environmental signals and discriminate between different pathogens to mount specific and tailored responses remains poorly understood. Using the genetically tractable model host Caenorhabditis elegans and pathogenic bacterium Staphylococcus aureus, we describe an important role for hypoxia-inducible factor (HIF) in defining the specificity of the host response in the intestine. We demonstrate that loss of egl-9, a negative regulator of HIF, confers HIF-dependent enhanced susceptibility to S. aureus while increasing resistance to Pseudomonas aeruginosa. In our attempt to understand how HIF could have these apparently dichotomous roles in host defense, we find that distinct pathways separately regulate two opposing functions of HIF: the canonical pathway is important for blocking expression of a set of HIF-induced defense genes, whereas a less well understood noncanonical pathway appears to be important for allowing the expression of another distinct set of HIF-repressed defense genes. Thus, HIF can function either as a gene-specific inducer or repressor of host defense, providing a molecular mechanism by which HIF can have apparently opposing roles in defense and inflammation. Together, our observations show that HIF can set the balance between alternative pathogen-specific host responses, potentially acting as an evolutionarily conserved specificity switch in the host innate immune response. Understanding how animals detect infection and mount appropriate responses is key to treating infection and inflammatory disease. We use the tractable model Caenorhabditis elegans to study mechanisms of host defense against pathogenic bacteria. Here we show that hypoxia-inducible factor (HIF) is important for ensuring that the intestinal host response to infection has the appropriate specificity. HIF acts as an inducer and a repressor of host genes in the intestine, and regulation of these opposing activities is genetically separable. One well-understood regulatory pathway requires EGL-9 and VHL-1, negative regulators of HIF, to prevent constitutive expression of host defense genes. Noncanonical pathways are less understood; a recently identified noncanonical pathway requires EGL-9 and SWAN-1. This pathway appears to be more important for lifting the repression of defense genes by HIF-1. Mutants defective in EGL-9 are more susceptible to S. aureus but more resistant to the distinct pathogen P. aeruginosa, indicating that the defense role of HIF-1 is pathogen-specific. These studies are relevant to mammalian defense because mutations in hif-1, egl-9, and vhl-1 homologs in mice have similar effects on intestinal inflammation as in worms, and provide a framework to further explore the role of noncanonical HIF signaling in human infection and inflammatory disease.
Collapse
Affiliation(s)
- Lyly G. Luhachack
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Orane Visvikis
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amanda C. Wollenberg
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adam Lacy-Hulbert
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lynda M. Stuart
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Javier E. Irazoqui
- Program of Developmental Immunology, Department of Pediatrics, Massachusetts General Hospital, and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
85
|
Quantification of Pseudomonas aeruginosa hydrogen cyanide production by a polarographic approach. J Microbiol Methods 2012; 90:20-4. [DOI: 10.1016/j.mimet.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/02/2012] [Accepted: 04/10/2012] [Indexed: 01/25/2023]
|
86
|
Ma DK, Vozdek R, Bhatla N, Horvitz HR. CYSL-1 interacts with the O2-sensing hydroxylase EGL-9 to promote H2S-modulated hypoxia-induced behavioral plasticity in C. elegans. Neuron 2012; 73:925-40. [PMID: 22405203 PMCID: PMC3305813 DOI: 10.1016/j.neuron.2011.12.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2011] [Indexed: 12/17/2022]
Abstract
The C. elegans HIF-1 proline hydroxylase EGL-9 functions as an O(2) sensor in an evolutionarily conserved pathway for adaptation to hypoxia. H(2)S accumulates during hypoxia and promotes HIF-1 activity, but how H(2)S signals are perceived and transmitted to modulate HIF-1 and animal behavior is unknown. We report that the experience of hypoxia modifies a C. elegans locomotive behavioral response to O(2) through the EGL-9 pathway. From genetic screens to identify novel regulators of EGL-9-mediated behavioral plasticity, we isolated mutations of the gene cysl-1, which encodes a C. elegans homolog of sulfhydrylases/cysteine synthases. Hypoxia-dependent behavioral modulation and H(2)S-induced HIF-1 activation require the direct physical interaction of CYSL-1 with the EGL-9 C terminus. Sequestration of EGL-9 by CYSL-1 and inhibition of EGL-9-mediated hydroxylation by hypoxia together promote neuronal HIF-1 activation to modulate behavior. These findings demonstrate that CYSL-1 acts to transduce signals from H(2)S to EGL-9 to regulate O(2)-dependent behavioral plasticity in C. elegans.
Collapse
Affiliation(s)
- Dengke K. Ma
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - Roman Vozdek
- Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, Prague 2, 128 08 Czech Republic
| | - Nikhil Bhatla
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| | - H. Robert Horvitz
- Howard Hughes Medical Institute, Department of Biology, and McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
87
|
Caenorhabditis elegans, a model organism for investigating immunity. Appl Environ Microbiol 2012; 78:2075-81. [PMID: 22286994 DOI: 10.1128/aem.07486-11] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nematode Caenorhabditis elegans has been a powerful experimental organism for almost half a century. Over the past 10 years, researchers have begun to exploit the power of C. elegans to investigate the biology of a number of human pathogens. This work has uncovered mechanisms of host immunity and pathogen virulence that are analogous to those involved during pathogenesis in humans or other animal hosts, as well as novel immunity mechanisms which appear to be unique to the worm. More recently, these investigations have uncovered details of the natural pathogens of C. elegans, including the description of a novel intracellular microsporidian parasite as well as new nodaviruses, the first identification of viral infections of this nematode. In this review, we consider the application of C. elegans to human infectious disease research, as well as consider the nematode response to these natural pathogens.
Collapse
|
88
|
Korta DZ, Tuck S, Hubbard EJA. S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells. Development 2012; 139:859-70. [PMID: 22278922 DOI: 10.1242/dev.074047] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coupling of stem/progenitor cell proliferation and differentiation to organismal physiological demands ensures the proper growth and homeostasis of tissues. However, in vivo mechanisms underlying this control are poorly characterized. We investigated the role of ribosomal protein S6 kinase (S6K) at the intersection of nutrition and the establishment of a stem/progenitor cell population using the C. elegans germ line as a model. We find that rsks-1 (which encodes the worm homolog of mammalian p70S6K) is required germline-autonomously for proper establishment of the germline progenitor pool. In the germ line, rsks-1 promotes cell cycle progression and inhibits larval progenitor differentiation, promotes growth of adult tumors and requires a conserved TOR phosphorylation site. Loss of rsks-1 and ife-1 (eIF4E) together reduces the germline progenitor pool more severely than either single mutant and similarly to reducing the activity of let-363 (TOR) or daf-15 (RAPTOR). Moreover, rsks-1 acts in parallel with the glp-1 (Notch) and daf-2 (insulin-IGF receptor) pathways, and does not share the same genetic dependencies with its role in lifespan control. We show that overall dietary restriction and amino acid deprivation cause germline defects similar to a subset of rsks-1 mutant phenotypes. Consistent with a link between diet and germline proliferation via rsks-1, loss of rsks-1 renders the germ line largely insensitive to the effects of dietary restriction. Our studies establish the C. elegans germ line as an in vivo model to understand TOR-S6K signaling in proliferation and differentiation and suggest that this pathway is a key nutrient-responsive regulator of germline progenitors.
Collapse
Affiliation(s)
- Dorota Z Korta
- Developmental Genetics Program, Helen and Martin Kimmel Center for Stem Cell Biology, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
89
|
Hypoxia regulates glutamate receptor trafficking through an HIF-independent mechanism. EMBO J 2012; 31:1379-93. [PMID: 22252129 DOI: 10.1038/emboj.2011.499] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/23/2011] [Indexed: 12/14/2022] Open
Abstract
Oxygen influences behaviour in many organisms, with low levels (hypoxia) having devastating consequences for neuron survival. How neurons respond physiologically to counter the effects of hypoxia is not fully understood. Here, we show that hypoxia regulates the trafficking of the glutamate receptor GLR-1 in C. elegans neurons. Either hypoxia or mutations in egl-9, a prolyl hydroxylase cellular oxygen sensor, result in the internalization of GLR-1, the reduction of glutamate-activated currents, and the depression of GLR-1-mediated behaviours. Surprisingly, hypoxia-inducible factor (HIF)-1, the canonical substrate of EGL-9, is not required for this effect. Instead, EGL-9 interacts with the Mint orthologue LIN-10, a mediator of GLR-1 membrane recycling, to promote LIN-10 subcellular localization in an oxygen-dependent manner. The observed effects of hypoxia and egl-9 mutations require the activity of the proline-directed CDK-5 kinase and the CDK-5 phosphorylation sites on LIN-10, suggesting that EGL-9 and CDK-5 compete in an oxygen-dependent manner to regulate LIN-10 activity and thus GLR-1 trafficking. Our findings demonstrate a novel mechanism by which neurons sense and respond to hypoxia.
Collapse
|
90
|
Bijtenhoorn P, Mayerhofer H, Müller-Dieckmann J, Utpatel C, Schipper C, Hornung C, Szesny M, Grond S, Thürmer A, Brzuszkiewicz E, Daniel R, Dierking K, Schulenburg H, Streit WR. A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 2011; 6:e26278. [PMID: 22046268 PMCID: PMC3202535 DOI: 10.1371/journal.pone.0026278] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
In Pseudomonas aeruginosa, the expression of a number of virulence factors, as well as biofilm formation, are controlled by quorum sensing (QS). N-Acylhomoserine lactones (AHLs) are an important class of signaling molecules involved in bacterial QS and in many pathogenic bacteria infection and host colonization are AHL-dependent. The AHL signaling molecules are subject to inactivation mainly by hydrolases (Enzyme Commission class number EC 3) (i.e. N-acyl-homoserine lactonases and N-acyl-homoserine-lactone acylases). Only little is known on quorum quenching mechanisms of oxidoreductases (EC 1). Here we report on the identification and structural characterization of the first NADP-dependent short-chain dehydrogenase/reductase (SDR) involved in inactivation of N-(3-oxo-dodecanoyl)-L-homoserine lactone (3-oxo-C(12)-HSL) and derived from a metagenome library. The corresponding gene was isolated from a soil metagenome and designated bpiB09. Heterologous expression and crystallographic studies established BpiB09 as an NADP-dependent reductase. Although AHLs are probably not the native substrate of this metagenome-derived enzyme, its expression in P. aeruginosa PAO1 resulted in significantly reduced pyocyanin production, decreased motility, poor biofilm formation and absent paralysis of Caenorhabditis elegans. Furthermore, a genome-wide transcriptome study suggested that the level of lasI and rhlI transcription together with 36 well known QS regulated genes was significantly (≥10-fold) affected in P. aeruginosa strains expressing the bpiB09 gene in pBBR1MCS-5. Thus AHL oxidoreductases could be considered as potent tools for the development of quorum quenching strategies.
Collapse
Affiliation(s)
- Patrick Bijtenhoorn
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | | | | | - Christian Utpatel
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Christina Schipper
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Claudia Hornung
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Matthias Szesny
- Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stephanie Grond
- Institut für Organische Chemie, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andrea Thürmer
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Elzbieta Brzuszkiewicz
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Laboratorium für Genomanalyse, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Wolfgang R. Streit
- Abteilung für Mikrobiologie und Biotechnologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
- * E-mail:
| |
Collapse
|
91
|
van Soest JJ, Stockhammer OW, Ordas A, Bloemberg GV, Spaink HP, Meijer AH. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. BMC Immunol 2011; 12:58. [PMID: 22003892 PMCID: PMC3206475 DOI: 10.1186/1471-2172-12-58] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/17/2011] [Indexed: 11/25/2022] Open
Abstract
Background The zebrafish embryo is an important in vivo model to study the host innate immune response towards microbial infection. In most zebrafish infectious disease models, infection is achieved by micro-injection of bacteria into the embryo. Alternatively, Edwardsiella tarda, a natural fish pathogen, has been used to treat embryos by static immersion. In this study we used transcriptome profiling and quantitative RT-PCR to analyze the immune response induced by E. tarda immersion and injection. Results Mortality rates after static immersion of embryos in E. tarda suspension varied between 25-75%, while intravenous injection of bacteria resulted in 100% mortality. Quantitative RT-PCR analysis on the level of single embryos showed that expression of the proinflammatory marker genes il1b and mmp9 was induced only in some embryos that were exposed to E. tarda in the immersion system, whereas intravenous injection of E. tarda led to il1b and mmp9 induction in all embryos. In addition, microarray expression profiles of embryos subjected to immersion or injection showed little overlap. E. tarda-injected embryos displayed strong induction of inflammatory and defense genes and of regulatory genes of the immune response. E. tarda-immersed embryos showed transient induction of the cytochrome P450 gene cyp1a. This gene was also induced after immersion in Escherichia coli and Pseudomonas aeruginosa suspensions, but, in contrast, was not induced upon intravenous E. tarda injection. One of the rare common responses in the immersion and injection systems was induction of irg1l, a homolog of a murine immunoresponsive gene of unknown function. Conclusions Based on the differences in mortality rates between experiments and gene expression profiles of individual embryos we conclude that zebrafish embryos cannot be reproducibly infected by exposure to E. tarda in the immersion system. Induction of il1b and mmp9 was consistently observed in embryos that had been systemically infected by intravenous injection, while the early transcriptional induction of cyp1a and irg1l in the immersion system may reflect an epithelial or other tissue response towards cell membrane or other molecules that are shed or released by bacteria. Our microarray expression data provide a useful reference for future analysis of signal transduction pathways underlying the systemic innate immune response versus those underlying responses to external bacteria and secreted virulence factors and toxins.
Collapse
Affiliation(s)
- Joost J van Soest
- Institute of Biology, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
Hydrogen sulfide (H2S), an endogenously produced small molecule, protects animals from various stresses. Recent studies demonstrate that animals exposed to H2S are long lived, resistant to hypoxia, and resistant to ischemia–reperfusion injury. We performed a forward genetic screen to gain insights into the molecular mechanisms Caenorhabditis elegans uses to appropriately respond to H2S. At least two distinct pathways appear to be important for this response, including the H2S-oxidation pathway and the hydrogen cyanide (HCN)-assimilation pathway. The H2S-oxidation pathway requires two distinct enzymes important for the oxidation of H2S: the sulfide:quinone reductase sqrd-1 and the dioxygenase ethe-1. The HCN-assimilation pathway requires the cysteine synthase homologs cysl-1 and cysl-2. A low dose of either H2S or HCN can activate hypoxia-inducible factor 1 (HIF-1), which is required for C. elegans to respond to either gas. sqrd-1 and cysl-2 represent the entry points in the H2S-oxidation and HCN-assimilation pathways, respectively, and expression of both of these enzymes is highly induced by HIF-1 in response to both H2S and HCN. In addition to their role in appropriately responding to H2S and HCN, we found that cysl-1 and cysl-2 are both essential mediators of innate immunity against fast paralytic killing by Pseudomonas. Furthermore, in agreement with these data, we showed that growing worms in the presence of H2S is sufficient to confer resistance to Pseudomonas fast paralytic killing. Our results suggest the hypoxia-independent hif-1 response in C. elegans evolved to respond to the naturally occurring small molecules H2S and HCN.
Collapse
|
93
|
Holcombe LJ, O’Gara F, Morrissey JP. Implications of interspecies signaling for virulence of bacterial and fungal pathogens. Future Microbiol 2011; 6:799-817. [DOI: 10.2217/fmb.11.60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite the broad armory of vaccines, antibiotics and other weapons at our disposal, pathogenic bacteria and fungi continue to present a serious threat to human health. These pathogens have proved very versatile and many are associated with infections of vulnerable individuals, often in hospital settings. Evidence is accumulating that certain infections, for example, of medical devices, the cystic fibrosis lung, the oral cavity, the GI tract and wounds, are in fact polymicrobial, with more than one microbe involved. To understand diseases and formulate intervention strategies, it is necessary to know the extent of contact and communication between microbes in these mixed infections. It is now emerging that the signals that microbes use to coordinate expression of viruence factors within a species may also be perceived by other microbes in the community. This article addresses such interspecies signaling and examines the consequences of such signaling between bacterial and fungal pathogens for expression of virulence traits.
Collapse
Affiliation(s)
- Lucy J Holcombe
- Microbiology Department, University College Cork, Cork, Ireland
| | - Fergal O’Gara
- BIOMERIT Research Centre, Microbiology Department, University College Cork, Cork, Ireland
| | | |
Collapse
|
94
|
Blier AS, Veron W, Bazire A, Gerault E, Taupin L, Vieillard J, Rehel K, Dufour A, Le Derf F, Orange N, Hulen C, Feuilloley MGJ, Lesouhaitier O. C-type natriuretic peptide modulates quorum sensing molecule and toxin production in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2011; 157:1929-1944. [PMID: 21511763 PMCID: PMC3755537 DOI: 10.1099/mic.0.046755-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa coordinates its virulence expression and establishment in the host in response to modification of its environment. During the infectious process, bacteria are exposed to and can detect eukaryotic products including hormones. It has been shown that P. aeruginosa is sensitive to natriuretic peptides, a family of eukaryotic hormones, through a cyclic nucleotide-dependent sensor system that modulates its cytotoxicity. We observed that pre-treatment of P. aeruginosa PAO1 with C-type natriuretic peptide (CNP) increases the capacity of the bacteria to kill Caenorhabditis elegans through diffusive toxin production. In contrast, brain natriuretic peptide (BNP) did not affect the capacity of the bacteria to kill C. elegans. The bacterial production of hydrogen cyanide (HCN) was enhanced by both BNP and CNP whereas the production of phenazine pyocyanin was strongly inhibited by CNP. The amount of 2-heptyl-4-quinolone (HHQ), a precursor to 2-heptyl-3-hydroxyl-4-quinolone (Pseudomonas quinolone signal; PQS), decreased after CNP treatment. The quantity of 2-nonyl-4-quinolone (HNQ), another quinolone which is synthesized from HHQ, was also reduced after CNP treatment. Conversely, both BNP and CNP significantly enhanced bacterial production of acylhomoserine lactone (AHL) [e.g. 3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) and butanoylhomoserine lactone (C4-HSL)]. These results correlate with an induction of lasI transcription 1 h after bacterial exposure to BNP or CNP. Concurrently, pre-treatment of P. aeruginosa PAO1 with either BNP or CNP enhanced PAO1 exotoxin A production, via a higher toxA mRNA level. At the same time, CNP led to elevated amounts of algC mRNA, indicating that algC is involved in C. elegans killing. Finally, we observed that in PAO1, Vfr protein is essential to the pro-virulent effect of CNP whereas the regulator PtxR supports only a part of the CNP pro-virulent activity. Taken together, these data reinforce the hypothesis that during infection natriuretic peptides, particularly CNP, could enhance the virulence of PAO1. This activity is relayed by Vfr and PtxR activation, and a general diagram of the virulence activation cascade involving AHL, HCN and exotoxin A is proposed.
Collapse
Affiliation(s)
- Anne-Sophie Blier
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Wilfried Veron
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, 56321 Lorient Cedex, France
| | - Eloïse Gerault
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, 56321 Lorient Cedex, France
| | | | - Karine Rehel
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, 56321 Lorient Cedex, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, Université de Bretagne-Sud B.P. 92116, 56321 Lorient Cedex, France
| | - Franck Le Derf
- SIMA, UMR 6014 COBRA, University of Rouen, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Christian Hulen
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Marc G. J. Feuilloley
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Cold Microbiology – Signals and Micro-environment EA 4312, University of Rouen, 55 Rue Saint Germain, 27000 Evreux, France
| |
Collapse
|
95
|
Marsh EK, van den Berg MCW, May RC. A two-gene balance regulates Salmonella typhimurium tolerance in the nematode Caenorhabditis elegans. PLoS One 2011; 6:e16839. [PMID: 21399680 PMCID: PMC3047536 DOI: 10.1371/journal.pone.0016839] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022] Open
Abstract
Lysozymes are antimicrobial enzymes that perform a critical role in resisting infection in a wide-range of eukaryotes. However, using the nematode Caenorhabditis elegans as a model host we now demonstrate that deletion of the protist type lysozyme LYS-7 renders animals susceptible to killing by the fatal fungal human pathogen Cryptococcus neoformans, but, remarkably, enhances tolerance to the enteric bacteria Salmonella Typhimurium. This trade-off in immunological susceptibility in C. elegans is further mediated by the reciprocal activity of lys-7 and the tyrosine kinase abl-1. Together this implies a greater complexity in C. elegans innate immune function than previously thought.
Collapse
Affiliation(s)
- Elizabeth K. Marsh
- School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
| | | | - Robin C. May
- School of Biosciences, University of Birmingham, Birmingham, West Midlands, United Kingdom
- * E-mail:
| |
Collapse
|
96
|
Romanowski A, Migliori ML, Valverde C, Golombek DA. Circadian variation in Pseudomonas fluorescens (CHA0)-mediated paralysis of Caenorhabditis elegans. Microb Pathog 2011; 50:23-30. [DOI: 10.1016/j.micpath.2010.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/15/2010] [Accepted: 09/20/2010] [Indexed: 11/17/2022]
|
97
|
Niu Q, Huang X, Zhang L, Xu J, Yang D, Wei K, Niu X, An Z, Bennett JW, Zou C, Yang J, Zhang KQ. A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proc Natl Acad Sci U S A 2010; 107:16631-6. [PMID: 20733068 PMCID: PMC2944701 DOI: 10.1073/pnas.1007276107] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms of host-pathogen interaction can provide crucial information for successfully manipulating their relationships. Because of its genetic background and practical advantages over vertebrate model systems, the nematode Caenorhabditis elegans model has become an attractive host for studying microbial pathogenesis. Here we report a "Trojan horse" mechanism of bacterial pathogenesis against nematodes. We show that the bacterium Bacillus nematocida B16 lures nematodes by emitting potent volatile organic compounds that are much more attractive to worms than those from ordinary dietary bacteria. Seventeen B. nematocida-attractant volatile organic compounds are identified, and seven are individually confirmed to lure nematodes. Once the bacteria enter the intestine of nematodes, they secrete two proteases with broad substrate ranges but preferentially target essential intestinal proteins, leading to nematode death. This Trojan horse pattern of bacterium-nematode interaction enriches our understanding of microbial pathogenesis.
Collapse
Affiliation(s)
- Qiuhong Niu
- Laboratory for Conservation and Utilization of Bio-Resources and
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
- School of Life Science and Technology, Nanyang Normal University, Nanyang City, Henan 473061, People's Republic of China
| | - Xiaowei Huang
- Laboratory for Conservation and Utilization of Bio-Resources and
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Lin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources and
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Dongmei Yang
- Laboratory for Conservation and Utilization of Bio-Resources and
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Kangbi Wei
- Laboratory for Conservation and Utilization of Bio-Resources and
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Xuemei Niu
- Laboratory for Conservation and Utilization of Bio-Resources and
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Zhiqiang An
- University of Texas Health Science Center, Houston, TX 77030; and
| | | | - Chenggang Zou
- Laboratory for Conservation and Utilization of Bio-Resources and
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources and
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| | - Ke-Qin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources and
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan 650091, People's Republic of China
| |
Collapse
|
98
|
Shao Z, Zhang Y, Ye Q, Saldanha JN, Powell-Coffman JA. C. elegans SWAN-1 Binds to EGL-9 and regulates HIF-1-mediated resistance to the bacterial pathogen Pseudomonas aeruginosa PAO1. PLoS Pathog 2010; 6:e1001075. [PMID: 20865124 PMCID: PMC2928816 DOI: 10.1371/journal.ppat.1001075] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/27/2010] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas aeruginosa is a nearly ubiquitous human pathogen, and infections can be lethal to patients with impaired respiratory and immune systems. Prior studies have established that strong loss-of-function mutations in the egl-9 gene protect the nematode C. elegans from P. aeruginosa PAO1 fast killing. EGL-9 inhibits the HIF-1 transcription factor via two pathways. First, EGL-9 is the enzyme that targets HIF-1 for oxygen-dependent degradation via the VHL-1 E3 ligase. Second, EGL-9 inhibits HIF-1-mediated gene expression through a VHL-1-independent mechanism. Here, we show that a loss-of-function mutation in hif-1 suppresses P. aeruginosa PAO1 resistance in egl-9 mutants. Importantly, we find stabilization of HIF-1 protein is not sufficient to protect C. elegans from P. aeruginosa PAO1 fast killing. However, mutations that inhibit both EGL-9 pathways result in higher levels of HIF-1 activity and confer resistance to the pathogen. Using forward genetic screens, we identify additional mutations that confer resistance to P. aeruginosa. In genetic backgrounds that stabilize C. elegans HIF-1 protein, loss-of-function mutations in swan-1 increase the expression of hypoxia response genes and protect C. elegans from P. aeruginosa fast killing. SWAN-1 is an evolutionarily conserved WD-repeat protein belonging to the AN11 family. Yeast two-hybrid and co-immunoprecipitation assays show that EGL-9 forms a complex with SWAN-1. Additionally, we present genetic evidence that the DYRK kinase MBK-1 acts downstream of SWAN-1 to promote HIF-1-mediated transcription and to increase resistance to P. aeruginosa. These data support a model in which SWAN-1, MBK-1 and EGL-9 regulate HIF-1 transcriptional activity and modulate resistance to P. aeruginosa PAO1 fast killing. Pseudomonas aeruginosa is a common bacterial pathogen that can infect a wide range of animals. In some conditions, P. aeruginosa produces cyanide, a toxin that limits cellular capacity to metabolize oxygen and produce energy. The nematode Caenorhabditis elegans is a powerful genetic model system for understanding the mechanisms of stress response and pathogen resistance. Here, we show that HIF-1, a DNA-binding transcription factor that mediates cellular responses to low oxygen, can protect C. elegans from P. aeruginosa fast killing. Additionally, we identify swan-1 as a gene that functions to inhibit HIF-1 activity and suppress P. aeruginosa resistance. The SWAN-1 protein binds directly to the oxygen-sensing EGL-9 enzyme that controls HIF-1 stability and activity. This study advances understanding of HIF-1 regulatory networks, defines connections between hypoxia response and P. aeruginosa fast killing, and provides new insights into mechanisms by which animals can resist this bacterial pathogen.
Collapse
Affiliation(s)
- Zhiyong Shao
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Yi Zhang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Qi Ye
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jenifer Neeta Saldanha
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
| | - Jo Anne Powell-Coffman
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
99
|
Membrane efflux and influx modulate both multidrug resistance and virulence of Klebsiella pneumoniae in a Caenorhabditis elegans model. Antimicrob Agents Chemother 2010; 54:4373-8. [PMID: 20679507 DOI: 10.1128/aac.01607-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cross-resistance to cefoxitin (FOX), chloramphenicol (CMP), and quinolones (nalidixic acid [NAL]) related to a putative efflux system overexpression has recently been reported for Klebsiella pneumoniae. The potential impact of this multidrug resistance (MDR) on the virulence of K. pneumoniae was evaluated in the Caenorhabditis elegans model. For 2 of the 3 MDR clinical isolates studied, a significant increase in acrB transcription was found in comparison with their antibiotic-susceptible revertants. ATCC 138821 and MDR, revertant, and derivative strains with altered porin expression were studied. Strains proved or suspected to overexpress an efflux system were significantly more virulent than the ATCC and revertant strains (time to kill 50% of nematodes [LT(50)] in days: 3.4 to 3.8 ± 0.2 versus 4.1 to 4.4 ± 0.3, P < 0.001). Inversely, strains with altered porin expression were significantly less virulent, independently of the expression level of efflux system (LT(50) = 5.4 to 5.6 ± 0.2, P < 0.001). Altered porin expression did not change MICs of CMP and NAL but did those of FOX (4 to 16× MIC) and ertapenem (16 to 64× MIC). The strains with a normally or an overexpressed efflux system that received the β-lactamase CTX-M-15 became more widely resistant without modification of their virulence potential, suggesting that balance between resistance and virulence is dependent on the type of resistance mechanisms. In conclusion, this study shows that the expression of both efflux systems and porins is a key factor not only for antibiotic resistance but also virulence potential in K. pneumoniae.
Collapse
|
100
|
Interkingdom signaling between pathogenic bacteria and Caenorhabditis elegans. Trends Microbiol 2010; 18:448-54. [PMID: 20667738 DOI: 10.1016/j.tim.2010.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/28/2010] [Accepted: 07/06/2010] [Indexed: 11/24/2022]
Abstract
Investigators have recently turned to the soil nematode Caenorhabditis elegans as a small animal infection model to study infectious disease. To extrapolate findings concerning bacterial pathogenesis from non-mammals to mammals, virulence factors should be conserved in function, independent of the infection model. Emerging from these studies is the observation that bacterial virulence regulatory networks function in a conserved manner across multiple hosts, including nematodes, mice and plants. Several regulatory networks have been implicated in nematode innate immune function and are being exploited in the C. elegans infection model to develop novel chemical therapies against bacterial pathogens.
Collapse
|