51
|
MURATA K. Polyphosphate-dependent nicotinamide adenine dinucleotide (NAD) kinase: A novel missing link in human mitochondria. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:479-498. [PMID: 34629356 PMCID: PMC8553519 DOI: 10.2183/pjab.97.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Polyphosphate [poly(P)] is described as a homopolymer of inorganic phosphates. Nicotinamide adenine dinucleotide kinase (NAD kinase) catalyzes the phosphorylation of NAD+ to NADP+ in the presence of ATP (ATP-NAD kinase). Novel NAD kinase that explicitly phosphorylates NAD+ to NADP+ using poly(P), besides ATP [ATP/poly(P)-NAD kinase], was found in bacteria, in particular, Gram-positive bacteria, and the gene encoding ATP/poly(P)-NAD kinase was also newly identified in Mycobacterium tuberculosis H37Rv. Both NAD kinases required multi-homopolymeric structures for activity expression. The enzymatic and genetic results, combined with their primary and tertiary structures, have led to the discovery of a long-awaited human mitochondrial NAD kinase. This discovery showed that the NAD kinase is a bacterial type of ATP/poly(P)-NAD kinase. These pioneering findings, i.e., ATP/poly(P)-NAD kinase, NAD kinase gene, and human mitochondrial NAD kinase, have significantly enhanced research on the biochemistry, molecular biology, and evolutionary biology of NAD kinase, mitochondria, and poly(P), including some biotechnological knowledge applicable to NADP+ production.
Collapse
|
52
|
Abduraman MA, Azizan NA, Teoh SH, Tan ML. Ketogenesis and SIRT1 as a tool in managing obesity. Obes Res Clin Pract 2020; 15:10-18. [PMID: 33371997 DOI: 10.1016/j.orcp.2020.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/21/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Obesity is a serious chronic disease and a public health concern in both developing and developed countries. Managing obesity has been a great challenge for both health care professionals and patients alike. Among the various diet programs aimed at promoting weight loss, the ketogenic diet, a diet high in fat and low in carbohydrates, has been at the forefront recently and its mechanism in weight loss is much debated. Activation of Sirtuin 1 or SIRT1 is able to circumvent various diseases, including metabolic syndrome and obesity and is thought to be a potentially reliable treatment target for both of them. Augmentation of SIRT1 may be carried out using dietary means such as nicotinamide adenine dinucleotide (NAD) supplementation and/or ketogenic diet. Although ketogenic diet may augment SIRT1 activation in people affected by obesity, recent studies have indicated that the relationship between SIRT1 and ketogenesis is unpredictable. The exact circumstances and mechanisms of SIRT1, NAD and ketogenesis in the clinical setting as an intervention tool in managing obesity remained uncertain. Although several recent literatures have documented significant weight-loss following ketogenic diet interventions, there were limitations with regards to duration of trial, choice and the number of trial subjects. Studies investigating the safety of ketogenic diet in the long term, beyond 46 weeks and related mechanism and pathways are still lacking and the sustainability of this diet remains to be determined. This review explores the recent progress on ketogenic diet and its relationships with SIRT1 as a tool in managing obesity and relevant clinical implications.
Collapse
Affiliation(s)
- Muhammad Asyraf Abduraman
- Advanced Medical & Dental Institute, SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Nurul Ain Azizan
- Advanced Medical & Dental Institute, SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia; Center for Population Health, Dept. Social and Preventive Medicine, Faculty of Medicine, University Malaya, 50603 Kuala Lumpur, Malaysia
| | - Soo Huat Teoh
- Advanced Medical & Dental Institute, SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Mei Lan Tan
- Advanced Medical & Dental Institute, SAINS@BERTAM, Universiti Sains Malaysia, 13200 Kepala Batas, Pulau Pinang, Malaysia; School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Pulau Pinang, Malaysia.
| |
Collapse
|
53
|
Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD + metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol 2020; 22:119-141. [PMID: 33353981 DOI: 10.1038/s41580-020-00313-x] [Citation(s) in RCA: 629] [Impact Index Per Article: 157.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme for redox reactions, making it central to energy metabolism. NAD+ is also an essential cofactor for non-redox NAD+-dependent enzymes, including sirtuins, CD38 and poly(ADP-ribose) polymerases. NAD+ can directly and indirectly influence many key cellular functions, including metabolic pathways, DNA repair, chromatin remodelling, cellular senescence and immune cell function. These cellular processes and functions are critical for maintaining tissue and metabolic homeostasis and for healthy ageing. Remarkably, ageing is accompanied by a gradual decline in tissue and cellular NAD+ levels in multiple model organisms, including rodents and humans. This decline in NAD+ levels is linked causally to numerous ageing-associated diseases, including cognitive decline, cancer, metabolic disease, sarcopenia and frailty. Many of these ageing-associated diseases can be slowed down and even reversed by restoring NAD+ levels. Therefore, targeting NAD+ metabolism has emerged as a potential therapeutic approach to ameliorate ageing-related disease, and extend the human healthspan and lifespan. However, much remains to be learnt about how NAD+ influences human health and ageing biology. This includes a deeper understanding of the molecular mechanisms that regulate NAD+ levels, how to effectively restore NAD+ levels during ageing, whether doing so is safe and whether NAD+ repletion will have beneficial effects in ageing humans.
Collapse
Affiliation(s)
- Anthony J Covarrubias
- Buck Institute for Research on Aging, Novato, CA, USA.,UCSF Department of Medicine, San Francisco, CA, USA
| | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA. .,UCSF Department of Medicine, San Francisco, CA, USA.
| |
Collapse
|
54
|
Aventaggiato M, Vernucci E, Barreca F, Russo MA, Tafani M. Sirtuins' control of autophagy and mitophagy in cancer. Pharmacol Ther 2020; 221:107748. [PMID: 33245993 DOI: 10.1016/j.pharmthera.2020.107748] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Mammalian cells use a specialized and complex machinery for the removal of altered proteins or dysfunctional organelles. Such machinery is part of a mechanism called autophagy. Moreover, when autophagy is specifically employed for the removal of dysfunctional mitochondria, it is called mitophagy. Autophagy and mitophagy have important physiological implications and roles associated with cellular differentiation, resistance to stresses such as starvation, metabolic control and adaptation to the changing microenvironment. Unfortunately, transformed cancer cells often exploit autophagy and mitophagy for sustaining their metabolic reprogramming and growth to a point that autophagy and mitophagy are recognized as promising targets for ongoing and future antitumoral therapies. Sirtuins are NAD+ dependent deacylases with a fundamental role in sensing and modulating cellular response to external stresses such as nutrients availability and therefore involved in aging, oxidative stress control, inflammation, differentiation and cancer. It is clear, therefore, that autophagy, mitophagy and sirtuins share many common aspects to a point that, recently, sirtuins have been linked to the control of autophagy and mitophagy. In the context of cancer, such a control is obtained by modulating transcription of autophagy and mitophagy genes, by post translational modification of proteins belonging to the autophagy and mitophagy machinery, by controlling ROS production or major metabolic pathways such as Krebs cycle or glutamine metabolism. The present review details current knowledge on the role of sirtuins, autophagy and mitophagy in cancer to then proceed to discuss how sirtuins can control autophagy and mitophagy in cancer cells. Finally, we discuss sirtuins role in the context of tumor progression and metastasis indicating glutamine metabolism as an example of how a concerted activation and/or inhibition of sirtuins in cancer cells can control autophagy and mitophagy by impinging on the metabolism of this fundamental amino acid.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enza Vernucci
- Department of Internistic, Anesthesiologic and Cardiovascular Clinical Sciences, Italy; MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy
| | - Federica Barreca
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy
| | - Matteo A Russo
- MEBIC Consortium, San Raffaele Open University, Via val Cannuta 247, 00166 Rome, Italy; IRCCS San Raffaele, Via val Cannuta 247, 00166 Rome, Italy
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
55
|
Sygitowicz G, Sitkiewicz D. Sirtuins and their role as physiological modulators
of metabolism. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.5247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The sirtuins are a family of highly evolutionary conserved NAD+-dependent deacetylases
(SIRT1, 2, 3, 5). Certain human sirtuins (SIRT4, 6) have, in addition, an ADP-ribosyltransferase
activity. SIRT1 and SIRT2 are located in the nucleus and cytoplasm; SIRT3 exists predominantly
in mitochondria, and SIRT6 is located in the nucleus. The mammalian sirtuins have emerged
as key metabolic sensors that directly link environmental nutrient signals to metabolic homeostasis.
SIRT1 is involved in the regulation of gluconeogenesis and fatty acid oxidation, as
well as inhibiting lipogenesis and inflammation in the liver. In addition, they contribute to
the mobilization of fat in white adipose tissue, sense nutrient availability in the hypothalamus;
regulate insulin secretion in the pancreas; as well as modulating the expression of genes
responsible for the activity of the circadian clock in metabolic tissues. Sirtuins are implicated
in a variety of cellular functions ranging from gene silencing, through the control of the cell
cycle, to energy homeostasis. Caloric restriction, supported by polyphenols, including resveratrol,
which is the SIRT1 activator, plays a special role in maintaining energy homeostasis.
On a whole body level, the wide range of cellular activities of the sirtuins suggests that they
could constitute a therapeutic target to combat obesity and related metabolic diseases. In
addition, this work presents the current state of knowledge in the field of sirtuin activity in
relation to nutritional status and lifespan.
Collapse
Affiliation(s)
- Grażyna Sygitowicz
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw
| | - Dariusz Sitkiewicz
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Warsaw
| |
Collapse
|
56
|
Kao ZN, Liu CH, Liu WJ, Kumar R, Leu JH, Wang HC. Shrimp SIRT1 activates of the WSSV IE1 promoter independently of the NF-κB binding site. FISH & SHELLFISH IMMUNOLOGY 2020; 106:910-919. [PMID: 32841684 DOI: 10.1016/j.fsi.2020.08.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Since the mechanisms by which cellular factors modulate replication of the shrimp viral pathogen white spot syndrome virus (WSSV) are still largely unknown, here we consider the sirtuins, a family of NAD+-dependent protein deacetylases that are known to function as regulatory factors that activate or suppress viral transcription and replication in mammals. In particular, we focus on SIRT1 by isolating and characterizing LvSIRT1 from white shrimp (Litopenaeus vannamei) and investigating its involvement in WSSV infection. DsRNA-mediated gene silencing led to the expression of WSSV genes and the replication of genomic DNAs being significantly decreased in LvSIRT1-silenced shrimp. The deacetylase activity of LvSIRT1 was significantly induced at the early stage (2 hpi) and the genome replication stage (12 hpi) of WSSV replication, but decreased at the late stage of WSSV replication (24 hpi). Treatment with the SIRT1 activator resveratrol further suggested that LvSIRT1 activation increased the expression of several WSSV genes (IE1, VP28 and ICP11). Lastly, we used transfection and dual luciferase assays in Sf9 insect cells to show that while the overexpression of LvSIRT1 facilitates the promoter activity of WSSV IE1, this enhancement of WSSV IE1 expression is achieved by a transactivation pathway that is NF-κB-independent.
Collapse
Affiliation(s)
- Zi-Ning Kao
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chun-Hung Liu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Wang-Jing Liu
- Department of Earth and Life Science, University of Taipei, Taipei, Taiwan
| | - Ramya Kumar
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan; International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
57
|
Annie L, Gurusubramanian G, Roy VK. Inhibition of visfatin/NAMPT affects ovarian proliferation, apoptosis, and steroidogenesis in pre-pubertal mice ovary. J Steroid Biochem Mol Biol 2020; 204:105763. [PMID: 32987128 DOI: 10.1016/j.jsbmb.2020.105763] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/15/2022]
Abstract
Pubertal ovarian function might be dependent on the factors present in the pre-pubertal stages. Visfatin regulates ovarian steroidogenesis in adult. To date, no study has investigated the role of visfatin either in pre-pubertal or pubertal mice ovary. Thus, we investigated the role of visfatin in pre-pubertal mice ovary in relation to steroidogenesis and proliferation and apoptosis in vitro by inhibiting the endogenous visfatin by a specific inhibitor, FK866. Inhibition of visfatin increased the estrogen secretion and also up-regulated the expression of CYP11A1, 17βHSD and CYP19A1 in mice ovary. Furthermore, active caspase3 was up-regulated along with the down-regulation of BAX and BCL2 in the pre-pubertal ovary after visfatin inhibition. The expression of GCNA, PCNA, and BrdU labeling was also decreased by FK866 treatment. These results suggest that visfatin inhibits steroidogenesis, increases proliferation, and suppresses apoptosis in the pre-pubertal mice ovary. So, visfatin is a new regulator of ovary function in pre-pubertal mice.
Collapse
Affiliation(s)
| | | | - Vikas Kumar Roy
- Department of Zoology, Mizoram University, Aizawl, Mizoram 796 004, India.
| |
Collapse
|
58
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
59
|
Shao LW, Peng Q, Dong M, Gao K, Li Y, Li Y, Li CY, Liu Y. Histone deacetylase HDA-1 modulates mitochondrial stress response and longevity. Nat Commun 2020; 11:4639. [PMID: 32934238 PMCID: PMC7493924 DOI: 10.1038/s41467-020-18501-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/24/2020] [Indexed: 01/06/2023] Open
Abstract
The ability to detect, respond and adapt to mitochondrial stress ensures the development and survival of organisms. Caenorhabditis elegans responds to mitochondrial stress by activating the mitochondrial unfolded protein response (UPRmt) to buffer the mitochondrial folding environment, rewire the metabolic state, and promote innate immunity and lifespan extension. Here we show that HDA-1, the C. elegans ortholog of mammalian histone deacetylase (HDAC) is required for mitochondrial stress-mediated activation of UPRmt. HDA-1 interacts and coordinates with the genome organizer DVE-1 to induce the transcription of a broad spectrum of UPRmt, innate immune response and metabolic reprogramming genes. In rhesus monkey and human tissues, HDAC1/2 transcript levels correlate with the expression of UPRmt genes. Knocking down or pharmacological inhibition of HDAC1/2 disrupts the activation of the UPRmt and the mitochondrial network in mammalian cells. Our results underscore an evolutionarily conserved mechanism of HDAC1/2 in modulating mitochondrial homeostasis and regulating longevity.
Collapse
Affiliation(s)
- Li-Wa Shao
- Beijing Advanced Innovation Center for Genomics, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Qi Peng
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Mingyue Dong
- Beijing Advanced Innovation Center for Genomics, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Kaiyu Gao
- Beijing Advanced Innovation Center for Genomics, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Yumei Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China
| | - Yi Li
- Beijing Advanced Innovation Center for Genomics, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Chuan-Yun Li
- Laboratory of Bioinformatics and Genomic Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China.
| | - Ying Liu
- Beijing Advanced Innovation Center for Genomics, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, 100871, Beijing, China.
| |
Collapse
|
60
|
Investigation of the Effect of the SIRT1 Gene Polymorphisms in Parkinson's Disease. ANADOLU KLINIĞI TIP BILIMLERI DERGISI 2020. [DOI: 10.21673/anadoluklin.702828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
61
|
Moraes DS, Moreira DC, Andrade JMO, Santos SHS. Sirtuins, brain and cognition: A review of resveratrol effects. IBRO Rep 2020; 9:46-51. [PMID: 33336103 PMCID: PMC7733131 DOI: 10.1016/j.ibror.2020.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/20/2020] [Indexed: 02/08/2023] Open
Abstract
Sirtuins (SIRTs) are a protein family with high preservation degree among evolutionary scale. SIRTs are histone deacetylases regulatory enzymes of genetic material deeply involved in numerous physiological tasks including metabolism, brain function and aging. Mammals sirtuins comprise seven enzymatic components (SIRT1–SIRT7). The highest studied sirtuin is SIRT1, which plays an essential position in the prevention and evolution of neuro-disorders. Resveratrol (3,5,4-trihydroxystylbene) (RSV) is a polyphenol, which belongs to a family compounds identified as stilbenes, predominantly concentrated in grapes and red wine. RSV is the must studied Sirtuin activator and is used as food supplementary compound. Resveratrol exhibits strong antioxidant activity, reducing free radicals, diminishing quinone-reductase-2 activity and exerting positive regulation of several endogenous enzymes. Resveratrol is also able to inhibit pro-inflammatory factors, reducing the stimulation of the nuclear factor kB (NF-kB) and the release of endogenous cytokines. Resveratrol treatment can modulate multiple signaling pathway effectors related to programmed cell death, cell survival, and synaptic plasticity. In this context, the present review looks over news and the role of Sirtuins activation and resveratrol effects on modulating target genes, cognition and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel Silva Moraes
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Daniele Cristina Moreira
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Postgraduate Program in Health Science, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Minas Gerais, Brazil.,Institute of Agricultural Sciences (ICA), Food Engineering, Universidade Federal de Minas Gerais, Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
62
|
Hepatocellular Expression of SIRT1 and Its Effect on Hepatocellular Carcinoma Progression: A Future Therapeutic Perspective. Int J Hepatol 2020; 2020:2374615. [PMID: 32607257 PMCID: PMC7315277 DOI: 10.1155/2020/2374615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive primary hepatic malignancy with a significant morbidity and mortality rate. Although chemotherapy along with surgical incision is believed to be an effective therapeutic approach, to date recurrence is being lifted a major concern. Thus, identifying another best therapeutic approach is becoming the main aim of physicians and scholars. In support of this, recently, several studies reported a significant observation of Sirtuin1 (SIRT1) overexpression in the malignant tumor cells, including HCC. As a result, they believed that overexpression of SIRT1 may have an effect on the progression of HCC by targeting growth and/or apoptotic controlling transcriptional factors/signaling pathways. Similarly, other reports confirmed that SIRT1 inhibition had a direct or indirect role in the control of tumor cell growth and metastasis. Therefore, inhibiting the expression and activity of SIRT1 might have a therapeutic effect to handle HCC. However, there are a limited number of reviews regarding the issue, and here, we summarized hepatocellular expression of SIRT1 and its role on HCC progression.
Collapse
|
63
|
Klein MA, Denu JM. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. J Biol Chem 2020; 295:11021-11041. [PMID: 32518153 DOI: 10.1074/jbc.rev120.011438] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 6 (SIRT6) is a nuclear NAD+-dependent deacetylase of histone H3 that regulates genome stability and gene expression. However, nonhistone substrates and additional catalytic activities of SIRT6, including long-chain deacylation and mono-ADP-ribosylation of other proteins, have also been reported, but many of these noncanonical roles remain enigmatic. Genetic studies have revealed critical homeostatic cellular functions of SIRT6, underscoring the need to better understand which catalytic functions and molecular pathways are driving SIRT6-associated phenotypes. At the physiological level, SIRT6 activity promotes increased longevity by regulating metabolism and DNA repair. Recent work has identified natural products and synthetic small molecules capable of activating the inefficient in vitro deacetylase activity of SIRT6. Here, we discuss the cellular functions of SIRT6 with a focus on attributing its catalytic activity to its proposed biological functions. We cover the molecular architecture and catalytic mechanisms that distinguish SIRT6 from other NAD+-dependent deacylases. We propose that combining specific SIRT6 amino acid substitutions identified in enzymology studies and activity-selective compounds could help delineate SIRT6 functions in specific biological contexts and resolve the apparently conflicting roles of SIRT6 in processes such as tumor development. We further highlight the recent development of small-molecule modulators that provide additional biological insight into SIRT6 functions and offer therapeutic approaches to manage metabolic and age-associated diseases.
Collapse
Affiliation(s)
- Mark A Klein
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - John M Denu
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, USA .,Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
64
|
Yu L, Dong L, Li H, Liu Z, Luo Z, Duan G, Dai X, Lin Z. Ubiquitination-mediated degradation of SIRT1 by SMURF2 suppresses CRC cell proliferation and tumorigenesis. Oncogene 2020; 39:4450-4464. [PMID: 32361710 DOI: 10.1038/s41388-020-1298-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
The NAD-dependent deacetylase sirtuin 1 (SIRT1), a member of the mammalian sirtuin family, plays a pivotal role in deacetylating histone and nonhistone proteins. Recently, it has been reported that SIRT1 is upregulated in various kinds of tumors and is associated with cell growth and metastasis. However, the factors and molecular mechanism regulating its cellular levels remain to be clarified. Here, we reported that the E3 ubiquitin ligase SMURF2 interacts with SIRT1 and mediates its ubiquitination and degradation. Depletion of SMURF2 leads to SIRT1 upregulation and induces the tumor formation and growth of colorectal cancer in vitro and in vivo. Furthermore, we show a negative correlation between SIRT1 and SMURF2 expression in human colorectal cancer. Thus, we propose a novel mechanism of colorectal tumorigenesis via SIRT1 regulation by SMURF2, which could potentially give rise to a new strategy for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Le Yu
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Ling Dong
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Hui Li
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhaojian Liu
- Department of Cell Biology, Shandong University School of Medicine, 250012, Jinan, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Guangjie Duan
- Department of Pulmonology, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Xiaotian Dai
- Department of Pulmonology, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China.
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
65
|
Orlandi I, Alberghina L, Vai M. Nicotinamide, Nicotinamide Riboside and Nicotinic Acid-Emerging Roles in Replicative and Chronological Aging in Yeast. Biomolecules 2020; 10:E604. [PMID: 32326437 PMCID: PMC7226615 DOI: 10.3390/biom10040604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Nicotinamide, nicotinic acid and nicotinamide riboside are vitamin B3 precursors of NAD+ in the human diet. NAD+ has a fundamental importance for cellular biology, that derives from its essential role as a cofactor of various metabolic redox reactions, as well as an obligate co-substrate for NAD+-consuming enzymes which are involved in many fundamental cellular processes including aging/longevity. During aging, a systemic decrease in NAD+ levels takes place, exposing the organism to the risk of a progressive inefficiency of those processes in which NAD+ is required and, consequently, contributing to the age-associated physiological/functional decline. In this context, dietary supplementation with NAD+ precursors is considered a promising strategy to prevent NAD+ decrease and attenuate in such a way several metabolic defects common to the aging process. The metabolism of NAD+ precursors and its impact on cell longevity have benefited greatly from studies performed in the yeast Saccharomyces cerevisiae, which is one of the most established model systems used to study the aging processes of both proliferating (replicative aging) and non-proliferating cells (chronological aging). In this review we summarize important aspects of the role played by nicotinamide, nicotinic acid and nicotinamide riboside in NAD+ metabolism and how each of these NAD+ precursors contribute to the different aspects that influence both replicative and chronological aging. Taken as a whole, the findings provided by the studies carried out in S. cerevisiae are informative for the understanding of the complex dynamic flexibility of NAD+ metabolism, which is essential for the maintenance of cellular fitness and for the development of dietary supplements based on NAD+ precursors.
Collapse
Affiliation(s)
- Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 2016 Milan, Italy;
| | | | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, 2016 Milan, Italy;
| |
Collapse
|
66
|
Dong YT, Cao K, Xiang J, Shan L, Guan ZZ. Silent Mating-Type Information Regulation 2 Homolog 1 Attenuates the Neurotoxicity Associated with Alzheimer Disease via a Mechanism Which May Involve Regulation of Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-α. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1545-1564. [PMID: 32289286 DOI: 10.1016/j.ajpath.2020.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 12/29/2022]
Abstract
To investigate the neuroprotective role of silent mating-type information regulation 2 homolog 1 (SIRT1) in Alzheimer disease (AD), brain tissues from patients with AD and APP/PS1 mice as well as primary rat neurons exposed to oligomers of amyloid-β peptide were examined. The animals were treated with resveratrol (RSV) or suramin for 2 months. Cell cultures were treated with RSV, suramin, and the peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) stimulator ZLN005. Cells were transiently transfected with PGC-1α silencing RNA. The level of SIRT1 in brain tissues from patients with AD and APP/PS1 mice, including nuclear and mitochondrial proteins, as well as in primary neurons exposed to oligomers of amyloid-β peptide, was decreased. Overexpression of APP/PS1 impaired learning and memory of mice; produced more senile plaques, disrupted membranes, and resulted in broken or absent cristae of mitochondria in the brain; decreased levels of A disintegrin and metallopeptidase domain 10, beta-secretase 2, 8-oxoguanine DNA glycosylase-1, PGC-1α, and NAD+; and increased levels of beta-secretase 1 and apoptosis. Interestingly, these changes were attenuated significantly by RSV treatment but enhanced by suramin administration. By activating PGC-1α but inhibiting SIRT1, apoptotic cell death was significantly decreased; however, by activating SIRT1 but inhibiting PGC-1α with small interfering PGC-1α, these levels remained unchanged. These findings indicate that SIRT1 may protect against AD-associated neurotoxicity, which might involve PGC-1α regulation.
Collapse
Affiliation(s)
- Yang-Ting Dong
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China; Provincial Key Laboratory of Medical Molecular Biology, Guiyang, PR China
| | - Kun Cao
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Jie Xiang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China
| | - Ling Shan
- the Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Zhi-Zhong Guan
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, PR China; Provincial Key Laboratory of Medical Molecular Biology, Guiyang, PR China.
| |
Collapse
|
67
|
Zuo JX, Li M, Jiang L, Lan F, Tang YY, Kang X, Zou W, Wang CY, Zhang P, Tang XQ. Hydrogen Sulfide Prevents Sleep Deprivation-Induced Hippocampal Damage by Upregulation of Sirt1 in the Hippocampus. Front Neurosci 2020; 14:169. [PMID: 32218719 PMCID: PMC7078349 DOI: 10.3389/fnins.2020.00169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/14/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) induces hippocampal damage. Hydrogen sulfide (H2S) is a neuronal protective factor. Silence information regulating factor 1 (Sirt1) plays an important role in neuroprotection. Therefore, this study was aimed at exploring whether H2S meliorates SD-induced hippocampal damage and whether Sirt1 mediates this protective role of H2S. We found that sodium hydrosulfide (NaHS, a donor of H2S) alleviated SD-generated hippocampal oxidative stress, including increases in the activation of SOD and the level of GSH as well as a decrease in the level of MDA. Meanwhile, we found that NaHS reduced SD-exerted hippocampal endoplasmic reticulum (ER) Stress, including downregulations of GRP78, CHOP, and cleaved-caspase-12 expression. Moreover, NaHS reduced the apoptosis in the SD-exposed hippocampus, and this included decreases in the number of apoptotic cells and the activation of caspase-3, downregulation of Bax expression, and upregulation of Bcl-2 expression. NaHS upregulated the expression of Sirt1 in the hippocampus of SD-exposed rats. Furthermore, Sirtinol, the inhibitor of Sirt1, abrogated the protection of NaHS against SD-exerted hippocampal oxidative stress, ER stress, and apoptosis. These results suggested that H2S alleviates SD-induced hippocampal damage by upregulation of hippocampal Sirt1.
Collapse
Affiliation(s)
- Jin-Xi Zuo
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Min Li
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Li Jiang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Fang Lan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Kang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Chun-Yan Wang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
68
|
Croft T, Venkatakrishnan P, Lin SJ. NAD + Metabolism and Regulation: Lessons From Yeast. Biomolecules 2020; 10:E330. [PMID: 32092906 PMCID: PMC7072712 DOI: 10.3390/biom10020330] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite involved in various cellular processes. The cellular NAD+ pool is maintained by three biosynthesis pathways, which are largely conserved from bacteria to human. NAD+ metabolism is an emerging therapeutic target for several human disorders including diabetes, cancer, and neuron degeneration. Factors regulating NAD+ homeostasis have remained incompletely understood due to the dynamic nature and complexity of NAD+ metabolism. Recent studies using the genetically tractable budding yeast Saccharomyces cerevisiae have identified novel NAD+ homeostasis factors. These findings help provide a molecular basis for how may NAD+ and NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function. Here we summarize major NAD+ biosynthesis pathways, selected cellular processes that closely connect with and contribute to NAD+ homeostasis, and regulation of NAD+ metabolism by nutrient-sensing signaling pathways. We also extend the discussions to include possible implications of NAD+ homeostasis factors in human disorders. Understanding the cross-regulation and interconnections of NAD+ precursors and associated cellular pathways will help elucidate the mechanisms of the complex regulation of NAD+ homeostasis. These studies may also contribute to the development of effective NAD+-based therapeutic strategies specific for different types of NAD+ deficiency related disorders.
Collapse
Affiliation(s)
| | | | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA; (T.C.); (P.V.)
| |
Collapse
|
69
|
Evolution of Distinct Responses to Low NAD + Stress by Rewiring the Sir2 Deacetylase Network in Yeasts. Genetics 2020; 214:855-868. [PMID: 32071196 DOI: 10.1534/genetics.120.303087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/12/2020] [Indexed: 01/20/2023] Open
Abstract
Evolutionary adaptation increases the fitness of a species in its environment. It can occur through rewiring of gene regulatory networks, such that an organism responds appropriately to environmental changes. We investigated whether sirtuin deacetylases, which repress transcription and require NAD+ for activity, serve as transcriptional rewiring points that facilitate the evolution of potentially adaptive traits. If so, bringing genes under the control of sirtuins could enable organisms to mount appropriate responses to stresses that decrease NAD+ levels. To explore how the genomic targets of sirtuins shift over evolutionary time, we compared two yeast species, Saccharomyces cerevisiae and Kluyveromyces lactis, that display differences in cellular metabolism and life cycle timing in response to nutrient availability. We identified sirtuin-regulated genes through a combination of chromatin immunoprecipitation and RNA expression. In both species, regulated genes were associated with NAD+ homeostasis, mating, and sporulation, but the specific genes differed. In addition, regulated genes in K. lactis were associated with other processes, including utilization of nonglucose carbon sources, detoxification of arsenic, and production of the siderophore pulcherrimin. Consistent with the species-restricted regulation of these genes, sirtuin deletion affected relevant phenotypes in K. lactis but not S. cerevisiae Finally, sirtuin-regulated gene sets were depleted for broadly conserved genes, consistent with sirtuins regulating processes restricted to a few species. Taken together, these results are consistent with the notion that sirtuins serve as rewiring points that allow species to evolve distinct responses to low NAD+ stress.
Collapse
|
70
|
Yu J, Li J, He S, Xu L, Zhang Y, Jiang H, Gong D, Gu Z. Sirt1 regulates the expression of critical metabolic genes in chicken hepatocytes. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Studies in mammals show that SIRT1 plays an important role in many biological processes including liver metabolism through histone and non-histone deacetylation. Little is known about the function of Sirt1 in the chicken.
Aims
The current study investigated the expression pattern of Sirt1 mRNA in the chicken and its functions in the chicken liver.
Methods
In this work, we used real-time quantitative polymerase chain reaction to quantify the expression levels of Sirt1 mRNA in major chicken organs and tissue types, siRNA to knock down Sirt1 expression in primary chicken hepatocytes, RNA sequencing to identify gene-expression changes induced by Sirt1 knockdown, and analysed the function of the differentially expressed genes (DEGs) through gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes ontology analysis.
Key results
In total, 86 DEGs were found between Sirt1 knockdown and control chicken hepatocytes, of which 63 genes were downregulated and 23 genes were upregulated by Sirt1 knockdown. The Kyoto Encyclopedia of Genes and Genomes analysis showed that 24 DEGs were involved in metabolism. Seven DEGs were involved in carbohydrate and lipid metabolism.
Conclusions
The present study showed that Sirt1 regulates the expression of genes involved in carbohydrate and lipid metabolism and many other biological processes in the chicken liver.
Implications
The results of the present study imply that Sirt1 has various functions in the chicken liver and that Sirt1 plays a potentially important role in hepatic carbohydrate and lipid metabolism in the chicken.
Collapse
|
71
|
Chandrasekaran K, Salimian M, Konduru SR, Choi J, Kumar P, Long A, Klimova N, Ho CY, Kristian T, Russell JW. Overexpression of Sirtuin 1 protein in neurons prevents and reverses experimental diabetic neuropathy. Brain 2019; 142:3737-3752. [PMID: 31754701 PMCID: PMC6885680 DOI: 10.1093/brain/awz324] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
In diabetic neuropathy, there is activation of axonal and sensory neuronal degeneration pathways leading to distal axonopathy. The nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylase enzyme, Sirtuin 1 (SIRT1), can prevent activation of these pathways and promote axonal regeneration. In this study, we tested whether increased expression of SIRT1 protein in sensory neurons prevents and reverses experimental diabetic neuropathy induced by a high fat diet (HFD). We generated a transgenic mouse that is inducible and overexpresses SIRT1 protein in neurons (nSIRT1OE Tg). Higher levels of SIRT1 protein were localized to cortical and hippocampal neuronal nuclei in the brain and in nuclei and cytoplasm of small to medium sized neurons in dorsal root ganglia. Wild-type and nSIRT1OE Tg mice were fed with either control diet (6.2% fat) or a HFD (36% fat) for 2 months. HFD-fed wild-type mice developed neuropathy as determined by abnormal motor and sensory nerve conduction velocity, mechanical allodynia, and loss of intraepidermal nerve fibres. In contrast, nSIRT1OE prevented a HFD-induced neuropathy despite the animals remaining hyperglycaemic. To test if nSIRT1OE would reverse HFD-induced neuropathy, nSIRT1OE was activated after mice developed peripheral neuropathy on a HFD. Two months after nSIRT1OE, we observed reversal of neuropathy and an increase in intraepidermal nerve fibre. Cultured adult dorsal root ganglion neurons from nSIRT1OE mice, maintained at high (30 mM) total glucose, showed higher basal and maximal respiratory capacity when compared to adult dorsal root ganglion neurons from wild-type mice. In dorsal root ganglion protein extracts from nSIRT1OE mice, the NAD+-consuming enzyme PARP1 was deactivated and the major deacetylated protein was identified to be an E3 protein ligase, NEDD4-1, a protein required for axonal growth, regeneration and proteostasis in neurodegenerative diseases. Our results indicate that nSIRT1OE prevents and reverses neuropathy. Increased mitochondrial respiratory capacity and NEDD4 activation was associated with increased axonal growth driven by neuronal overexpression of SIRT1. Therapies that regulate NAD+ and thereby target sirtuins may be beneficial in human diabetic sensory polyneuropathy.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sruthi R Konduru
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aaron Long
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nina Klimova
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence to: James W. Russell, MBChB, MS Professor, Department of Neurology, Anatomy and Neurobiology University of Maryland School of Medicine 3S-129, 110 South Paca Street, Baltimore, MD 21201-1642, USA E-mail:
| |
Collapse
|
72
|
Calycosin-7- O- β- D-glucoside Attenuates OGD/R-Induced Damage by Preventing Oxidative Stress and Neuronal Apoptosis via the SIRT1/FOXO1/PGC-1 α Pathway in HT22 Cells. Neural Plast 2019; 2019:8798069. [PMID: 31885537 PMCID: PMC6915014 DOI: 10.1155/2019/8798069] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022] Open
Abstract
Neuronal apoptosis induced by oxidative stress is a major pathological process that occurs after cerebral ischemia-reperfusion. Calycosin-7-O-β-D-glucoside (CG) is a representative component of isoflavones in Radix Astragali (RA). Previous studies have shown that CG has potential neuroprotective effects. However, whether CG alleviates neuronal apoptosis through antioxidant stress after ischemia-reperfusion remains unknown. To investigate the positive effects of CG on oxidative stress and apoptosis of neurons, we simulated the ischemia-reperfusion process in vitro using an immortalized hippocampal neuron cell line (HT22) and oxygen-glucose deprivation/reperfusion (OGD/R) model. CG significantly improved cell viability and reduced oxidative stress and neuronal apoptosis. In addition, CG treatment upregulated the expression of SIRT1, FOXO1, PGC-1α, and Bcl-2 and downregulated the expression of Bax. In summary, our findings indicate that CG alleviates OGD/R-induced damage via the SIRT1/FOXO1/PGC-1α signaling pathway. Thus, CG maybe a promising therapeutic candidate for brain injury associated with ischemic stroke.
Collapse
|
73
|
Wen DT, Zheng L, Li JX, Lu K, Hou WQ. The activation of cardiac dSir2-related pathways mediates physical exercise resistance to heart aging in old Drosophila. Aging (Albany NY) 2019; 11:7274-7293. [PMID: 31503544 PMCID: PMC6756900 DOI: 10.18632/aging.102261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/02/2019] [Indexed: 01/30/2023]
Abstract
Cardiac aging is majorly characterized by increased diastolic dysfunction, lipid accumulation, oxidative stress, and contractility debility. The Sir2/Sirt1 gene overexpression delays cell aging and reduces obesity and oxidative stress. Exercise improves heart function and delays heart aging. However, it remains unclear whether exercise delaying heart aging is related to cardiac Sir2/Sirt1-related pathways. In this study, cardiac dSir2 overexpression or knockdown was regulated using the UAS/hand-Gal4 system in Drosophila. Flies underwent exercise interventions from 4 weeks to 5 weeks old. Results showed that either cardiac dSir2 overexpression or exercise remarkably increased the cardiac period, systolic interval, diastolic interval, fractional shortening, SOD activity, dSIR2 protein, Foxo, dSir2, Nmnat, and bmm expression levels in the aging flies; they also notably reduced the cardiac triacylglycerol level, malonaldehyde level, and the diastolic dysfunction index. Either cardiac dSir2 knockdown or aging had almost opposite effects on the heart as those of cardiac dSir2 overexpression. Therefore, we claim that cardiac dSir2 overexpression or knockdown delayed or promoted heart aging by reducing or increasing age-related oxidative stress, lipid accumulation, diastolic dysfunction, and contractility debility. The activation of cardiac dSir2/Foxo/SOD and dSir2/Foxo/bmm pathways may be two important molecular mechanisms through which exercise works against heart aging in Drosophila.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China.,Ludong University, Yantai 264025, Shan Dong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Jin-Xiu Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, Yantai 264025, Shan Dong Province, China
| |
Collapse
|
74
|
Costa-Machado LF, Fernandez-Marcos PJ. The sirtuin family in cancer. Cell Cycle 2019; 18:2164-2196. [PMID: 31251117 PMCID: PMC6738532 DOI: 10.1080/15384101.2019.1634953] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 01/02/2023] Open
Abstract
Sirtuins are a family of protein deacylases and ADP-ribosyl-transferases, homologs to the yeast SIR2 protein. Seven sirtuin paralogs have been described in mammals, with different subcellular locations, targets, enzymatic activities, and regulatory mechanisms. All sirtuins share NAD+ as substrate, placing them as central metabolic hubs with strong relevance in lifespan, metabolism, and cancer development. Much effort has been devoted to studying the roles of sirtuins in cancer, providing a wealth of data on sirtuins roles in mouse models and humans. Also, extensive data are available on the effects of pharmacological modulation of sirtuins in cancer development. Here, we present a comprehensive and organized resume of all the existing evidence linking every sirtuin with cancer development. From our analysis, we conclude that sirtuin modulation after tumor initiation results in unpredictable outcomes in most tumor types. On the contrary, all genetic and pharmacological models indicate that sirtuins activation prior to tumor initiation can constitute a powerful preventive strategy.
Collapse
Affiliation(s)
- Luis Filipe Costa-Machado
- Metabolic Syndrome group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Pablo J. Fernandez-Marcos
- Metabolic Syndrome group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
75
|
Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM. Mechanisms of rDNA Copy Number Maintenance. Trends Genet 2019; 35:734-742. [PMID: 31395390 DOI: 10.1016/j.tig.2019.07.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022]
Abstract
rDNA, the genes encoding the RNA components of ribosomes (rRNA), are highly repetitive in all eukaryotic genomes, containing 100s to 1000s of copies, to meet the demand for ribosome biogenesis. rDNA genes are arranged in large stretches of tandem repeats, forming loci that are highly susceptible to copy loss due to their repetitiveness and active transcription throughout the cell cycle. Despite this inherent instability, rDNA copy number is generally maintained within a particular range in each species, pointing to the presence of mechanisms that maintain rDNA copy number in a homeostatic range. In this review, we summarize the current understanding of these maintenance mechanisms and how they sustain rDNA copy number throughout populations.
Collapse
Affiliation(s)
- Jonathan O Nelson
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - George J Watase
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Natalie Warsinger-Pepe
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
76
|
Mellini P, Itoh Y, Elboray EE, Tsumoto H, Li Y, Suzuki M, Takahashi Y, Tojo T, Kurohara T, Miyake Y, Miura Y, Kitao Y, Kotoku M, Iida T, Suzuki T. Identification of Diketopiperazine-Containing 2-Anilinobenzamides as Potent Sirtuin 2 (SIRT2)-Selective Inhibitors Targeting the "Selectivity Pocket", Substrate-Binding Site, and NAD +-Binding Site. J Med Chem 2019; 62:5844-5862. [PMID: 31144814 DOI: 10.1021/acs.jmedchem.9b00255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The NAD+-dependent deacetylase SIRT2 represents an attractive target for drug development. Here, we designed and synthesized drug-like SIRT2-selective inhibitors based on an analysis of the putative binding modes of recently reported SIRT2-selective inhibitors and evaluated their SIRT2-inhibitory activity. This led us to develop a more drug-like diketopiperazine structure as a "hydrogen bond (H-bond) hunter" to target the substrate-binding site of SIRT2. Thioamide 53, a conjugate of diketopiperazine and 2-anilinobenzamide which is expected to occupy the "selectivity pocket" of SIRT2, exhibited potent SIRT2-selective inhibition. Inhibition of SIRT2 by 53 was mediated by the formation of a 53-ADP-ribose conjugate, suggesting that 53 is a mechanism-based inhibitor targeting the "selectivity pocket", substrate-binding site, and NAD+-binding site. Furthermore, 53 showed potent antiproliferative activity toward breast cancer cells and promoted neurite outgrowth of Neuro-2a cells. These findings should pave the way for the discovery of novel therapeutic agents for cancer and neurological disorders.
Collapse
Affiliation(s)
- Paolo Mellini
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Yukihiro Itoh
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Elghareeb E Elboray
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan.,Chemistry Department, Faculty of Science , South Valley University , Qena 83523 , Egypt
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging , Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho , Itabashi-ku, Tokyo 173-0015 , Japan
| | - Ying Li
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Miki Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Yukari Takahashi
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Toshifumi Tojo
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Takashi Kurohara
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Yuka Miyake
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging , Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho , Itabashi-ku, Tokyo 173-0015 , Japan
| | - Yuki Kitao
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Masayuki Kotoku
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Tetsuya Iida
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan
| | - Takayoshi Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho , Sakyo-ku, Kyoto 606-0823 , Japan.,CREST , Japan Science and Technology Agency (JST) , 4-1-8 Honcho Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
77
|
Chen H, Lin R, Zhang Z, Wei Q, Zhong Z, Huang J, Xu Y. Sirtuin 1 knockdown inhibits glioma cell proliferation and potentiates temozolomide toxicity via facilitation of reactive oxygen species generation. Oncol Lett 2019; 17:5343-5350. [PMID: 31186751 PMCID: PMC6507466 DOI: 10.3892/ol.2019.10235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant glioma is one of the most common types of primary malignancies in the human central nervous system. Temozolomide (TMZ) is the most commonly used drug in clinical therapy of glioma; however, chemoresistance makes glioma difficult to cure and relapse likely. Sirtuin 1 (SIRT1) serves important roles in cell proliferation, differentiation and metabolism, but the role of SIRT1 in human glioma remains largely unexplored. In the present study, SIRT1 expression was assessed in human glioma tissues and cells. RNA interference and SIRT1 inhibitor were used to determine the effect of SIRT1 on glioma growth inhibition and glioma cell chemoresistance in vitro and in vivo. The levels of reactive oxygen species (ROS) in glioma cells were detected with the dihydroethidium probe following SIRT1 inhibition. The results demonstrated that SIRT1 was overexpressed in glioma tissues and cells, and patients with higher SIRT1 expression exhibited poorer prognosis. SIRT1 inhibition inhibited the proliferation of U87 and U251 cells. In addition, SIRT1 knockdown and SIRT1 inhibitor could significantly sensitize glioma cells to TMZ treatment in vitro and in vivo. The expression of Ki67 and p53 was demonstrated to be regulated by SIRT1. Finally, SIRT1 could regulate intracellular ROS generation in TMZ. In summary, SIRT1 was essential for glioma tumorigenesis and glioma cell chemoresistance. SIRT1 inhibition increased the sensitivity of glioma cells for TMZ via the facilitation of intracellular ROS generation, which suggested that SIRT1 may serve as a target for clinical therapy of glioma.
Collapse
Affiliation(s)
- Hongwu Chen
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Rui Lin
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ziheng Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Quantang Wei
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Zhiwei Zhong
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jiehao Huang
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yimin Xu
- Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Professor Yimin Xu, Department of Neurosurgery, The First Affiliated Hospital, Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
78
|
Regulation of sirtuin expression in autoimmune neuroinflammation: Induction of SIRT1 in oligodendrocyte progenitor cells. Neurosci Lett 2019; 704:116-125. [DOI: 10.1016/j.neulet.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022]
|
79
|
Ringel AE, Tucker SA, Haigis MC. Chemical and Physiological Features of Mitochondrial Acylation. Mol Cell 2019; 72:610-624. [PMID: 30444998 DOI: 10.1016/j.molcel.2018.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/15/2018] [Accepted: 10/15/2018] [Indexed: 01/09/2023]
Abstract
Growing appreciation of the diversity of post-translational modifications (PTMs) in the mitochondria necessitates reevaluation of the roles these modifications play in both health and disease. Compared to the cytosol and nucleus, the mitochondrial proteome is highly acylated, and remodeling of the mitochondrial "acylome" is a key adaptive mechanism that regulates fundamental aspects of mitochondrial biology. It is clear that we need to understand the underlying chemistry that regulates mitochondrial acylation, as well as how chemical properties of the acyl chain impact biological functions. Here, we dissect the sources of PTMs in the mitochondria, review major mitochondrial pathways that control levels of PTMs, and highlight how sirtuin enzymes respond to the bioenergetic state of the cell via NAD+ availability to regulate mitochondrial biology. By providing a framework connecting the chemistry of these modifications, their biochemical consequences, and the pathways that regulate the levels of acyl PTMs, we will gain a deeper understanding of the physiological significance of mitochondrial acylation and its role in mitochondrial adaptation.
Collapse
Affiliation(s)
- Alison E Ringel
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Sarah A Tucker
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
| |
Collapse
|
80
|
Biradar SP, Tamboli AS, Khandare RV, Pawar PK. Chebulinic acid and Boeravinone B act as anti-aging and anti-apoptosis phyto-molecules during oxidative stress. Mitochondrion 2019; 46:236-246. [DOI: 10.1016/j.mito.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022]
|
81
|
Pinson B, Ceschin J, Saint-Marc C, Daignan-Fornier B. Dual control of NAD + synthesis by purine metabolites in yeast. eLife 2019; 8:43808. [PMID: 30860478 PMCID: PMC6430606 DOI: 10.7554/elife.43808] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolism is a highly integrated process resulting in energy and biomass production. While individual metabolic routes are well characterized, the mechanisms ensuring crosstalk between pathways are poorly described, although they are crucial for homeostasis. Here, we establish a co-regulation of purine and pyridine metabolism in response to external adenine through two separable mechanisms. First, adenine depletion promotes transcriptional upregulation of the de novo NAD+ biosynthesis genes by a mechanism requiring the key-purine intermediates ZMP/SZMP and the Bas1/Pho2 transcription factors. Second, adenine supplementation favors the pyridine salvage route resulting in an ATP-dependent increase of intracellular NAD+. This control operates at the level of the nicotinic acid mononucleotide adenylyl-transferase Nma1 and can be bypassed by overexpressing this enzyme. Therefore, in yeast, pyridine metabolism is under the dual control of ZMP/SZMP and ATP, revealing a much wider regulatory role for these intermediate metabolites in an integrated biosynthesis network.
Collapse
Affiliation(s)
- Benoît Pinson
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Johanna Ceschin
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Christelle Saint-Marc
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | | |
Collapse
|
82
|
Shao D, Yao C, Kim MH, Fry J, Cohen RA, Costello CE, Matsui R, Seta F, McComb ME, Bachschmid MM. Improved mass spectrometry-based activity assay reveals oxidative and metabolic stress as sirtuin-1 regulators. Redox Biol 2019; 22:101150. [PMID: 30877853 PMCID: PMC6423473 DOI: 10.1016/j.redox.2019.101150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/26/2022] Open
Abstract
Sirtuin-1 (SirT1) catalyzes NAD+-dependent protein lysine deacetylation and is a critical regulator of energy and lipid metabolism, mitochondrial biogenesis, apoptosis, and senescence. Activation of SirT1 mitigates metabolic perturbations associated with diabetes and obesity. Pharmacologic molecules, cellular redox, and nutritional states can regulate SirT1 activity. Technical barriers against measuring endogenous SirT1 activity have limited characterization of SirT1 in disease and its activation by small molecules. Herein, we developed a relative quantitative mass spectrometry-based technique for measuring endogenous SirT1 activity (RAMSSAY/RelAtive Mass Spectrometry Sirt1 Activity assaY) in cell and tissue homogenates using a biotin-labeled, acetylated p53-derived peptide as a substrate. We demonstrate that oxidative and metabolic stress diminish SirT1 activity in the hepatic cell line HepG2. Moreover, pharmacologic molecules including nicotinamide and EX-527 attenuate SirT1 activity; purported activators of SirT1, the polyphenol S17834, the polyphenol resveratrol, or the non-polyphenolic Sirtris compound SRT1720, failed to activate endogenous SirT1 significantly. Furthermore, we provide evidence that feeding a high fat high sucrose diet (HFHS) to mice inhibits endogenous SirT1 activity in mouse liver. In summary, we introduce a robust, specific and sensitive mass spectrometry-based assay for detecting and quantifying endogenous SirT1 activity using a biotin-labeled peptide in cell and tissue lysates. With this assay, we determine how pharmacologic molecules and metabolic and oxidative stress regulate endogenous SirT1 activity. The assay may also be adapted for other sirtuin isoforms. Fast, sensitive, and specific MALDI-TOF based sirtuin-1 activity assay applicable to cell and tissue lysates. Oxidative and metabolic stress inhibit Sirtuin-1 deacetylase activity. Purported activators of SirT1failed to significantly activate endogenous SirT1. The activity assay is adaptable to other sirtuin isoforms using specific synthetic peptides and assay conditions.
Collapse
Affiliation(s)
- Di Shao
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Chunxiang Yao
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA; Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA
| | - Maya H Kim
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Jessica Fry
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Richard A Cohen
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA
| | - Reiko Matsui
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Francesca Seta
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Mark E McComb
- Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA
| | - Markus M Bachschmid
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA; Cardiovascular Proteomics Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
83
|
Li Y, Chen X, Cui Y, Wei Q, Chen S, Wang X. Effects of SIRT1 silencing on viability, invasion and metastasis of human glioma cell lines. Oncol Lett 2019; 17:3701-3708. [PMID: 30930981 PMCID: PMC6425349 DOI: 10.3892/ol.2019.10063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/21/2019] [Indexed: 01/12/2023] Open
Abstract
Silent information regulator 1 (SIRT1), a member of the sirtuin family, is involved in the development of various types of tumor. Previous studies have revealed that SIRT1 has dual functions, as a promoter and an inhibitor, in certain tumors. However, the role of SIRT1 in invasion and metastasis of glioma cells and its associated signaling pathway remain unclear. The aim of the present study was to determine the effects of SIRT1 on these processes and on the epithelial-mesenchymal transition (EMT) in human glioma and adjacent tissues, and in the human glioma cell lines U87 and U251. SIRT1 expression in tissues was investigated using the reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. The U87 and U251 cell lines were divided into control and SIRT1-small interfering RNA (siRNA) groups. The Cell Counting Kit-8, cell invasion assays were used to evaluate the effects of SIRT1 silencing on cell viability, invasion and EMT. Results indicated that SIRT1 was highly expressed in glioma tissues compared with in adjacent brain tissues. In addition, SIRT1-siRNA significantly inhibited the viability and invasion of U87 and U251 cells. Furthermore, EMT analysis revealed that the expression levels of the mesenchymal markers fibronectin and vimentin were significantly lower in the SIRT1-siRNA group compared with in the control group. Conversely, expression levels of the epithelial markers epithelial cadherin and β-catenin were significantly higher in the SIRT1-siRNA group compared with in the control group. In conclusion, the results of the present study indicated that SIRT1 was positively associated with viability and invasion of U87 cells, potentially through EMT. These results suggested that SIRT1 may serve a crucial role in the proliferation and development of glioma.
Collapse
Affiliation(s)
- Yu Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Xin Chen
- Department of Orthopedics, The Third People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Yong Cui
- School of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan 650091, P.R. China
| | - Qun Wei
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Suiyun Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China.,Biocontrol Engineering Research Center of Plant Disease & Pest, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Xiaofang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
84
|
James Theoga Raj C, Croft T, Venkatakrishnan P, Groth B, Dhugga G, Cater T, Lin SJ. The copper-sensing transcription factor Mac1, the histone deacetylase Hst1, and nicotinic acid regulate de novo NAD + biosynthesis in budding yeast. J Biol Chem 2019; 294:5562-5575. [PMID: 30760525 DOI: 10.1074/jbc.ra118.006987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
NADH (NAD+) is an essential metabolite involved in various cellular biochemical processes. The regulation of NAD+ metabolism is incompletely understood. Here, using budding yeast (Saccharomyces cerevisiae), we established an NAD+ intermediate-specific genetic system to identify factors that regulate the de novo branch of NAD+ biosynthesis. We found that a mutant strain (mac1Δ) lacking Mac1, a copper-sensing transcription factor that activates copper transport genes during copper deprivation, exhibits increases in quinolinic acid (QA) production and NAD+ levels. Similar phenotypes were also observed in the hst1Δ strain, deficient in the NAD+-dependent histone deacetylase Hst1, which inhibits de novo NAD+ synthesis by repressing BNA gene expression when NAD+ is abundant. Interestingly, the mac1Δ and hst1Δ mutants shared a similar NAD+ metabolism-related gene expression profile, and deleting either MAC1 or HST1 de-repressed the BNA genes. ChIP experiments with the BNA2 promoter indicated that Mac1 works with Hst1-containing repressor complexes to silence BNA expression. The connection of Mac1 and BNA expression suggested that copper stress affects de novo NAD+ synthesis, and we show that copper stress induces both BNA expression and QA production. Moreover, nicotinic acid inhibited de novo NAD+ synthesis through Hst1-mediated BNA repression, hindered the reuptake of extracellular QA, and thereby reduced de novo NAD+ synthesis. In summary, we have identified and characterized novel NAD+ homeostasis factors. These findings will expand our understanding of the molecular basis and regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Christol James Theoga Raj
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Trevor Croft
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Padmaja Venkatakrishnan
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Benjamin Groth
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Gagandeep Dhugga
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Timothy Cater
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| | - Su-Ju Lin
- From the Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
85
|
Zhang N, Sauve AA. Regulatory Effects of NAD + Metabolic Pathways on Sirtuin Activity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 154:71-104. [PMID: 29413178 DOI: 10.1016/bs.pmbts.2017.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAD+ acts as a crucial regulator of cell physiology and as an integral participant in cellular metabolism. By virtue of a variety of signaling activities this central metabolite can exert profound effects on organism health status. Thus, while it serves as a well-known metabolic cofactor functioning as a redox-active substrate, it can also function as a substrate for signaling enzymes, such as sirtuins, poly (ADP-ribosyl) polymerases, mono (ADP-ribosyl) transferases, and CD38. Sirtuins function as NAD+-dependent protein deacetylases (deacylases) and catalyze the reaction of NAD+ with acyllysine groups to remove the acyl modification from substrate proteins. This deacetylation provides a regulatory function and integrates cellular NAD+ metabolism into a large spectrum of cellular processes and outcomes, such as cell metabolism, cell survival, cell cycle, apoptosis, DNA repair, mitochondrial homeostasis and mitochondrial biogenesis, and even lifespan. Increased attention to how regulated and pharmacologic changes in NAD+ concentrations can impact sirtuin activities has motivated openings of new areas of research, including investigations of how NAD+ levels are regulated at the subcellular level, and searches for more potent NAD+ precursors typified by nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN). This review describes current results and thinking of how NAD+ metabolic pathways regulate sirtuin activities and how regulated NAD+ levels can impact cell physiology. In addition, NAD+ precursors are discussed, with attention to how these might be harnessed to generate novel therapeutic options to treat the diseases of aging.
Collapse
Affiliation(s)
- Ning Zhang
- Weill Cornell Medical College, New York, NY, United States
| | | |
Collapse
|
86
|
Abstract
Cellular coenzymes including coenzyme A (CoA), acetyl coenzyme A (acetyl-CoA), coenzymes of redox reactions and of energy, and antioxidants mediate biochemical reactions fundamental to the functioning of all living cells. The redox coenzymes include NAD+ (oxidized nicotinamide adenine dinucleotide), NADH (reduced nicotinamide adenine dinucleotide), NADP+ (oxidized nicotinamide adenine dinucleotide phosphate), and NADPH (reduced nicotinamide adenine dinucleotide phosphate); the energy coenzymes include ATP (adenosine triphosphate), ADP (adenosine diphosphate), and AMP (adenosine monophosphate); and the antioxidants include GSSG (oxidized glutathione) and GSH (reduced glutathione). Their measurement is important to better understand cellular metabolism. Recent advances have pushed the limit of metabolite quantitation using NMR methods to an unprecedented level, which offer a new avenue for analysis of the coenzymes and antioxidants. Unlike the conventional enzyme assays, which need separate protocols for analysis, a simple 1D 1H NMR experiment enables analysis of all these molecular species in one step. In this chapter, we describe protocols for their identification and quantitation in tissue and whole blood using NMR spectroscopy.
Collapse
|
87
|
Orlandi I, Stamerra G, Vai M. Altered Expression of Mitochondrial NAD + Carriers Influences Yeast Chronological Lifespan by Modulating Cytosolic and Mitochondrial Metabolism. Front Genet 2018; 9:676. [PMID: 30619489 PMCID: PMC6305841 DOI: 10.3389/fgene.2018.00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/04/2018] [Indexed: 01/07/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) represents an essential cofactor in sustaining cellular bioenergetics and maintaining cellular fitness, and has emerged as a therapeutic target to counteract aging and age-related diseases. Besides NAD+ involvement in multiple redox reactions, it is also required as co-substrate for the activity of Sirtuins, a family of evolutionary conserved NAD+-dependent deacetylases that regulate both metabolism and aging. The founding member of this family is Sir2 of Saccharomyces cerevisiae, a well-established model system for studying aging of post-mitotic mammalian cells. In this context, it refers to chronological aging, in which the chronological lifespan (CLS) is measured. In this paper, we investigated the effects of changes in the cellular content of NAD+ on CLS by altering the expression of mitochondrial NAD+ carriers, namely Ndt1 and Ndt2. We found that the deletion or overexpression of these carriers alters the intracellular levels of NAD+ with opposite outcomes on CLS. In particular, lack of both carriers decreases NAD+ content and extends CLS, whereas NDT1 overexpression increases NAD+ content and reduces CLS. This correlates with opposite cytosolic and mitochondrial metabolic assets shown by the two types of mutants. In the former, an increase in the efficiency of oxidative phosphorylation is observed together with an enhancement of a pro-longevity anabolic metabolism toward gluconeogenesis and trehalose storage. On the contrary, NDT1 overexpression brings about on the one hand, a decrease in the respiratory efficiency generating harmful superoxide anions, and on the other, a decrease in gluconeogenesis and trehalose stores: all this is reflected into a time-dependent loss of mitochondrial functionality during chronological aging.
Collapse
Affiliation(s)
- Ivan Orlandi
- SYSBIO Centre for Systems Biology, Milan, Italy.,Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Giulia Stamerra
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| |
Collapse
|
88
|
Molano-Arevalo JC, Gonzalez W, Jeanne Dit Fouque K, Miksovska J, Maitre P, Fernandez-Lima F. Insights from ion mobility-mass spectrometry, infrared spectroscopy, and molecular dynamics simulations on nicotinamide adenine dinucleotide structural dynamics: NAD +vs. NADH. Phys Chem Chem Phys 2018; 20:7043-7052. [PMID: 29473073 DOI: 10.1039/c7cp05602h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is found in all living cells where the oxidized (NAD+) and reduced (NADH) forms play important roles in many enzymatic reactions. However, little is known about NAD+ and NADH conformational changes and kinetics as a function of the cell environment. In the present work, an analytical workflow is utilized to study NAD+ and NADH dynamics as a function of the organic content in solution using fluorescence lifetime spectroscopy and in the gas-phase using trapped ion mobility spectrometry coupled to mass spectrometry (TIMS-MS) and infrared multiple photon dissociation (IRMPD) spectroscopy. NAD solution time decay studies showed a two-component distribution, assigned to changes from a "close" to "open" conformation with the increase of the organic content. NAD gas-phase studies using nESI-TIMS-MS displayed two ion mobility bands for NAD+ protonated and sodiated species, while four and two ion mobility bands were observed for NADH protonated and sodiated species, respectively. Changes in the mobility profiles were observed for NADH as a function of the starting solution conditions and the time after desolvation, while NAD+ profiles showed no dependence. IRMPD spectroscopy of NAD+ and NADH protonated species in the 800-1800 and 3200-3700 cm-1 spectral regions showed common and signature bands between the NAD forms. Candidate structures were proposed for NAD+ and NADH kinetically trapped intermediates of the protonated and sodiated species, based on their collision cross sections and IR profiles. Results showed that NAD+ and NADH species exist in open, stack, and closed conformations and that the driving force for conformational dynamics is hydrogen bonding of the N-H-O and O-H-O forms with ribose rings.
Collapse
|
89
|
Lei B, Huang Y, Zhou Z, Zhao Y, Thapa AJ, Li W, Cai W, Deng Y. Circular RNA hsa_circ_0076248 promotes oncogenesis of glioma by sponging miR-181a to modulate SIRT1 expression. J Cell Biochem 2018; 120:6698-6708. [PMID: 30506951 PMCID: PMC6587862 DOI: 10.1002/jcb.27966] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Glioma is one of the most common primary malignancies of the central nervous system, which has aggressive clinical behavior and a poorer prognosis. MicroRNAs (miRs) are a class of small noncoding RNAs that function as mediators of gene expression, which can be sponged by circRNA provided with a closed circular structure. Dysregulations of circular RNAs (circRNAs) and miRs have been implicated in the development and progression of glioma. In the current study, we investigated the role of circular RNA hsa_circ_0076248 in mediating the oncogenesis of glioma by sponging miR‐181a to modulate silent information regulator 1 (SIRT1) expression in vitro and in vivo. The quantitative real‐time polymerase chain reaction results showed that the expression of miR‐181a was significantly decreased in glioma tissues and cell lines compared with normal brain tissues and normal gliocyte, respectively, and the expression of hsa_circ_0076248 and SIRT1 demonstrated the opposite. Bioinformatics analysis identified hsa_circ_0076248 could sponge miR‐181a, and miR‐181a could target the mRNA of SIRT1. Our results verified that downregulating hsa_circ_0076248 or upregulating miR‐181a could depress the proliferation and invasion of glioma in vitro and in vivo. The experiment also showed that downregulating hsa_circ_0076248 or upregulating miR‐181a could remarkably promote the temozolomide chemotherapy sensitivity. Furthermore, Western blot analysis testified that downregulating hsa_circ_0076248 or upregulating miR‐181a could promote the expression of p53 and SIRT1. In summary, our study sheds light on the regulatory mechanism of hsa_circ_0076248 in glioma growth and invasion via sponging miR‐181a, which downregulates the SIRT1 expression and also suggests that hsa_circ_0076248, miR‐181a, and SIRT1 may serve as potential therapeutic targets for glioma.
Collapse
Affiliation(s)
- Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yutao Huang
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiwei Zhou
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiying Zhao
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ashish Jung Thapa
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenpeng Li
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wangqing Cai
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
90
|
Shan H, Sun J, Shi M, Liu X, Shi Z, Yu W, Gu Y. Generation and characterization of a site-specific antibody for SIRT1 O-GlcNAcylated at serine 549. Glycobiology 2018; 28:482-487. [PMID: 29688431 DOI: 10.1093/glycob/cwy040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022] Open
Abstract
O-linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies thousands of proteins. However, the roles and mechanisms of O-GlcNAcylation have been clarified in only a few proteins, and one of the main reasons for this is the lack of site-specific anti-O-GlcNAc antibodies. Recently, we found that SIRT1, which is an NAD+-dependent deacetylase, is O-GlcNAcylated at the serine 549 site (S549) and plays a cytoprotective role under stress. However, the mechanism underlying the roles of SIRT1 O-GlcNAcylation remains unclear. Here, we describe a site-specific antibody for SIRT1 O-GlcNAcylated at S549, named SIRT1-549-O. This antibody can be used for immunoprecipitation and western blotting assays, and it can be used to recognize the endogenous levels of both human and mouse SIRT1 O-GlcNAcylation. Therefore, this antibody not only provides an effective method to further understand the roles of SIRT1 O-GlcNAcylation but also makes it possible to discover the genetic and pharmacological factors that could regulate SIRT1 activity by modulating its O-GlcNAcylation.
Collapse
Affiliation(s)
- Hui Shan
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Jiahui Sun
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Minghui Shi
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Xue Liu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Zhu Shi
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Ministry of Education; School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao, China
| |
Collapse
|
91
|
Elevated dosage of Ulp1 disrupts telomeric silencing in Saccharomyces cerevisiae. Mol Biol Rep 2018; 45:2481-2489. [DOI: 10.1007/s11033-018-4415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
|
92
|
Clark-Knowles KV, Dewar-Darch D, Jardine KE, Coulombe J, Daneshmand M, He X, McBurney MW. Modulating SIRT1 activity variously affects thymic lymphoma development in mice. Exp Cell Res 2018; 371:83-91. [PMID: 30059665 DOI: 10.1016/j.yexcr.2018.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/25/2018] [Accepted: 07/26/2018] [Indexed: 12/30/2022]
Abstract
SIRT1 is a protein deacetylase with a broad range of biological functions, many of which are known to be important in carcinogenesis, however much of the literature regarding the role of SIRT1 in cancer remains conflicting. In this study we assessed the effect of SIRT1 on the initiation and progression of thymic T cell lymphomas. We employed mouse strains in which SIRT1 activity was absent or could be reversibly modulated in conjunction with thymic lymphoma induction using either the N-nitroso-N-methylurea (NMU) carcinogenesis or the nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) transgene. Decreased SIRT1 activity reduced the development of thymic lymphomas in the NMU-treated mice but was permissive for the formation of lung adenomas. Conversely, in the NPM-ALK transgenic mice, decreased SIRT1 activity had a modest promoting effect in the development of thymic lymphomas. The results of the work presented here add to the growing body of evidence that sirt1 is neither an outright oncogene nor a tumor suppressor. These opposing results in two models of the same disease suggest that the influence of sirt1 on carcinogenesis may lie in a role in tumor surveillance.
Collapse
Affiliation(s)
| | - Danielle Dewar-Darch
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Karen E Jardine
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Josée Coulombe
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Manijeh Daneshmand
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Xiaohong He
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Michael W McBurney
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Canada; Department of Medicine, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
93
|
A novel small-molecule activator of Sirtuin-1 induces autophagic cell death/mitophagy as a potential therapeutic strategy in glioblastoma. Cell Death Dis 2018; 9:767. [PMID: 29991742 PMCID: PMC6039470 DOI: 10.1038/s41419-018-0799-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 01/24/2023]
Abstract
Sirtuin-1 (SIRT1), the mammalian ortholog of yeast Sir2p, is well known to be a highly conserved NAD+-dependent protein deacetylase that has been emerging as a key cancer target. Autophagy, an evolutionarily conserved, multi-step lysosomal degradation process, has been implicated in cancer. Accumulating evidence has recently revealed that SIRT1 may act as a tumor suppressor in several types of cancer, and thus activating SIRT1 would represent a possible therapeutic strategy. Thus, in our study, we identified that SIRT1 was a key prognostic factor in brain cancer based upon The Cancer Genome Atlas and tissue microarray analyses. Subsequently, we screened a series of potential small-molecule activators of SIRT1 from Drugbank, and found the best candidate compound F0911-7667 (hereafter, named Comp 5), which showed a good deacetylase activity for SIRT1 rather than other Sirtuins. In addition, we demonstrated that Comp 5-induced autophagic cell death via the AMPK-mTOR-ULK complex in U87MG and T98G cells. Interestingly, Comp 5-induced mitophagy by the SIRT1–PINK1–Parkin pathway. Further iTRAQ-based proteomics analyses revealed that Comp 5 could induce autophagy/mitophagy by downregulating 14-3-3γ, catalase, profilin-1, and HSP90α. Moreover, we showed that Comp 5 had a therapeutic potential on glioblastoma (GBM) and induced autophagy/mitophagy by activating SIRT1 in vivo. Together, these results demonstrate a novel small-molecule activator of SIRT1 that induces autophagic cell death/mitophagy in GBM cells, which would be utilized to exploit this compound as a leading drug for future cancer therapy.
Collapse
|
94
|
Hoggard TA, Chang F, Perry KR, Subramanian S, Kenworthy J, Chueng J, Shor E, Hyland EM, Boeke JD, Weinreich M, Fox CA. Yeast heterochromatin regulators Sir2 and Sir3 act directly at euchromatic DNA replication origins. PLoS Genet 2018; 14:e1007418. [PMID: 29795547 PMCID: PMC5991416 DOI: 10.1371/journal.pgen.1007418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/06/2018] [Accepted: 05/15/2018] [Indexed: 01/23/2023] Open
Abstract
Most active DNA replication origins are found within euchromatin, while origins within heterochromatin are often inactive or inhibited. In yeast, origin activity within heterochromatin is negatively controlled by the histone H4K16 deacetylase, Sir2, and at some heterochromatic loci also by the nucleosome binding protein, Sir3. The prevailing view has been that direct functions of Sir2 and Sir3 are confined to heterochromatin. However, growth defects in yeast mutants compromised for loading the MCM helicase, such as cdc6-4, are suppressed by deletion of either SIR2 or SIR3. While these and other observations indicate that SIR2,3 can have a negative impact on at least some euchromatic origins, the genomic scale of this effect was unknown. It was also unknown whether this suppression resulted from direct functions of Sir2,3 within euchromatin, or was an indirect effect of their previously established roles within heterochromatin. Using MCM ChIP-Seq, we show that a SIR2 deletion rescued MCM complex loading at ~80% of euchromatic origins in cdc6-4 cells. Therefore, Sir2 exhibited a pervasive effect at the majority of euchromatic origins. Using MNase-H4K16ac ChIP-Seq, we show that origin-adjacent nucleosomes were depleted for H4K16 acetylation in a SIR2-dependent manner in wild type (i.e. CDC6) cells. In addition, we present evidence that both Sir2 and Sir3 bound to nucleosomes adjacent to euchromatic origins. The relative levels of each of these molecular hallmarks of yeast heterochromatin–SIR2-dependent H4K16 hypoacetylation, Sir2, and Sir3 –correlated with how strongly a SIR2 deletion suppressed the MCM loading defect in cdc6-4 cells. Finally, a screen for histone H3 and H4 mutants that could suppress the cdc6-4 growth defect identified amino acids that map to a surface of the nucleosome important for Sir3 binding. We conclude that heterochromatin proteins directly modify the local chromatin environment of euchromatic DNA replication origins. When a cell divides, it must copy or “replicate” its DNA. DNA replication starts at chromosomal regions called origins when a collection of replication proteins gains local access to unwind the two DNA strands. Chromosomal DNA is packaged into a protein-DNA complex called chromatin and there are two major structurally and functionally distinct types. Euchromatin allows DNA replication proteins to access origin DNA, while heterochromatin inhibits their access. The prevalent view has been that the heterochromatin proteins required to inhibit origins are confined to heterochromatin. In this study, the conserved heterochromatin proteins, Sir2 and Sir3, were shown to both physically and functionally associate with the majority of origins in euchromatin. This observation raises important questions about the chromosomal targets of heterochromatin proteins, and how and why the majority of origins exist within a potentially repressive chromatin structure.
Collapse
Affiliation(s)
- Timothy A. Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI, United States of America
| | - FuJung Chang
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Kelsey Rae Perry
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI, United States of America
- Integrated Program in Biochemistry, School of Medicine and Public Health and College of Agricultural Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Sandya Subramanian
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Jessica Kenworthy
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Julie Chueng
- Integrated Program in Biochemistry, School of Medicine and Public Health and College of Agricultural Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Erika Shor
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Edel M. Hyland
- School of Biological Sciences, Medical Biology Center, Queen’s University, Belfast, United Kingdom
| | - Jef D. Boeke
- Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics and NYU Langone Health, New York, NY, United States of America
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI, United States of America
- * E-mail: (MW); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, Madison, WI, United States of America
- Integrated Program in Biochemistry, School of Medicine and Public Health and College of Agricultural Sciences, University of Wisconsin, Madison, WI, United States of America
- * E-mail: (MW); (CAF)
| |
Collapse
|
95
|
Mourits VP, Wijkmans JC, Joosten LA, Netea MG. Trained immunity as a novel therapeutic strategy. Curr Opin Pharmacol 2018; 41:52-58. [PMID: 29702467 DOI: 10.1016/j.coph.2018.04.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/12/2018] [Indexed: 01/13/2023]
Abstract
Recent studies have shown that upon certain vaccinations or infections human innate immune cells can undergo extensive metabolic and epigenetic reprogramming, which results in enhanced immune responses upon heterologous re-infection, a process termed trained immunity. Trained immunity has also been shown to be inappropriately activated in inflammatory diseases. This provides the potential for identifying novel therapeutic targets: potentiation of trained immunity could protect from secondary infections and reverse immunotolerant states, while inhibition of trained immunity might reduce excessive immune activation in chronic inflammatory conditions. By targeting specific mechanisms of trained immunity on either immunologic, metabolic or epigenetic level, novel therapeutic approaches could be developed.
Collapse
Affiliation(s)
- Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Leo Ab Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| |
Collapse
|
96
|
Sieverman KJ, Rine J. Impact of Homologous Recombination on Silent Chromatin in Saccharomyces cerevisiae. Genetics 2018; 208:1099-1113. [PMID: 29339409 PMCID: PMC5844325 DOI: 10.1534/genetics.118.300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Specialized chromatin domains repress transcription of genes within them and present a barrier to many DNA-protein interactions. Silent chromatin in the budding yeast Saccharomyces cerevisiae, akin to heterochromatin of metazoans and plants, inhibits transcription of PolII- and PolIII-transcribed genes, yet somehow grants access to proteins necessary for DNA transactions like replication and homologous recombination. In this study, we adapted a novel assay to detect even transient changes in the dynamics of transcriptional silencing at HML after it served as a template for homologous recombination. Homologous recombination specifically targeted to HML via double-strand-break formation at a homologous locus often led to transient loss of transcriptional silencing at HML Interestingly, many cells could template homology-directed repair at HML without an obligate loss of silencing, even in recombination events with extensive gene conversion tracts. In a population of cells that experienced silencing loss following recombination, transcription persisted for 2-3 hr after all double-strand breaks were repaired. mRNA levels from cells that experienced recombination-induced silencing loss did not approach the amount of mRNA seen in cells lacking transcriptional silencing. Thus, silencing loss at HML after homologous recombination was short-lived and limited.
Collapse
Affiliation(s)
- Kathryn J Sieverman
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, California 94720
| | - Jasper Rine
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California at Berkeley, California 94720
| |
Collapse
|
97
|
Pivotal roles of PCNA loading and unloading in heterochromatin function. Proc Natl Acad Sci U S A 2018; 115:E2030-E2039. [PMID: 29440488 DOI: 10.1073/pnas.1721573115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In Saccharomyces cerevisiae, heterochromatin structures required for transcriptional silencing of the HML and HMR loci are duplicated in coordination with passing DNA replication forks. Despite major reorganization of chromatin structure, the heterochromatic, transcriptionally silent states of HML and HMR are successfully maintained throughout S-phase. Mutations of specific components of the replisome diminish the capacity to maintain silencing of HML and HMR through replication. Similarly, mutations in histone chaperones involved in replication-coupled nucleosome assembly reduce gene silencing. Bridging these observations, we determined that the proliferating cell nuclear antigen (PCNA) unloading activity of Elg1 was important for coordinating DNA replication forks with the process of replication-coupled nucleosome assembly to maintain silencing of HML and HMR through S-phase. Collectively, these data identified a mechanism by which chromatin reassembly is coordinated with DNA replication to maintain silencing through S-phase.
Collapse
|
98
|
Abstract
Nicotinic acid and nicotinamide, collectively referred to as niacin, are nutritional precursors of the bioactive molecules nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP). NAD and NADP are important cofactors for most cellular redox reactions, and as such are essential to maintain cellular metabolism and respiration. NAD also serves as a cosubstrate for a large number of ADP-ribosylation enzymes with varied functions. Among the NAD-consuming enzymes identified to date are important genetic and epigenetic regulators, e.g., poly(ADP-ribose)polymerases and sirtuins. There is rapidly growing knowledge of the close connection between dietary niacin intake, NAD(P) availability, and the activity of NAD(P)-dependent epigenetic regulator enzymes. It points to an exciting role of dietary niacin intake as a central regulator of physiological processes, e.g., maintenance of genetic stability, and of epigenetic control mechanisms modulating metabolism and aging. Insight into the role of niacin and various NAD-related diseases ranging from cancer, aging, and metabolic diseases to cardiovascular problems has shifted our view of niacin as a vitamin to current views that explore its potential as a therapeutic.
Collapse
Affiliation(s)
- James B Kirkland
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
99
|
Croft T, James Theoga Raj C, Salemi M, Phinney BS, Lin SJ. A functional link between NAD + homeostasis and N-terminal protein acetylation in Saccharomyces cerevisiae. J Biol Chem 2018; 293:2927-2938. [PMID: 29317496 DOI: 10.1074/jbc.m117.807214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite participating in cellular redox chemistry and signaling, and the complex regulation of NAD+ metabolism is not yet fully understood. To investigate this, we established a NAD+-intermediate specific reporter system to identify factors required for salvage of metabolically linked nicotinamide (NAM) and nicotinic acid (NA). Mutants lacking components of the NatB complex, NAT3 and MDM20, appeared as hits in this screen. NatB is an Nα-terminal acetyltransferase responsible for acetylation of the N terminus of specific Met-retained peptides. In NatB mutants, increased NA/NAM levels were concomitant with decreased NAD+ We identified the vacuolar pool of nicotinamide riboside (NR) as the source of this increased NA/NAM. This NR pool is increased by nitrogen starvation, suggesting NAD+ and related metabolites may be trafficked to the vacuole for recycling. Supporting this, increased NA/NAM release in NatB mutants was abolished by deleting the autophagy protein ATG14 We next examined Tpm1 (tropomyosin), whose function is regulated by NatB-mediated acetylation, and Tpm1 overexpression (TPM1-oe) was shown to restore some NatB mutant defects. Interestingly, although TPM1-oe largely suppressed NA/NAM release in NatB mutants, it did not restore NAD+ levels. We showed that decreased nicotinamide mononucleotide adenylyltransferase (Nma1/Nma2) levels probably caused the NAD+ defects, and NMA1-oe was sufficient to restore NAD+ NatB-mediated N-terminal acetylation of Nma1 and Nma2 appears essential for maintaining NAD+ levels. In summary, our results support a connection between NatB-mediated protein acetylation and NAD+ homeostasis. Our findings may contribute to understanding the molecular basis and regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Trevor Croft
- Department of Microbiology and Molecular Genetics, College of Biological Sciences
| | | | - Michelle Salemi
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Brett S Phinney
- Proteomic Core Facility, University of California, Davis, California 95616
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences.
| |
Collapse
|
100
|
Shin AN, Han L, Dasgupta C, Huang L, Yang S, Zhang L. SIRT1 increases cardiomyocyte binucleation in the heart development. Oncotarget 2018; 9:7996-8010. [PMID: 29487709 PMCID: PMC5814276 DOI: 10.18632/oncotarget.23847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/05/2017] [Indexed: 12/17/2022] Open
Abstract
SIRT1 regulates cell senescence. We investigated a novel role of SIRT1 in the regulation of cardiomyocyte terminal differentiation in the developing heart. Retinoic acid (RA)-induced binucleation of H9c2 cells was associated with increased SIRT1 expression. Inhibition of SIRT1 activity or expression significantly decreased RA-induced binucleation. SIRT1 expression was minimal in the fetal heart and significantly upregulated in the hearts of postnatal day 7 (P7) rat pups. In contrast, heart-specific miR-133a expression was high in the fetal heart but significantly reduced in P7 pup hearts. The miR-133a promoter contains a canonical HRE element and hypoxia upregulated miR-133a gene expression in the heart. SIRT1 mRNA 3′UTR has miR-133a binding sequences and miR-133a and hypoxia suppressed SIRT1 expression in cardiomyocytes. Of importance, inhibition of SIRT1 significantly reduced binucleated cardiomyocytes in the hearts of P7 pups. Taken together, the present study reveals a novel role of SIRT1 and its regulation by miR-133a in cardiomyocyte terminal differentiation of the developing heart, and suggests a potential therapeutic strategy that may impact cardiac function later in life.
Collapse
Affiliation(s)
- Alexandra N Shin
- The Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA.,Department of Biological Sciences, California Baptist University, Riverside, California, USA
| | - Limin Han
- The Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Chiranjib Dasgupta
- The Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Lei Huang
- The Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Shumei Yang
- Department of Chemistry and Biochemistry, California State University, San Bernardino, California, USA
| | - Lubo Zhang
- The Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|