51
|
Germain C, Gnjatic S, Dieu-Nosjean MC. Tertiary Lymphoid Structure-Associated B Cells are Key Players in Anti-Tumor Immunity. Front Immunol 2015; 6:67. [PMID: 25755654 PMCID: PMC4337382 DOI: 10.3389/fimmu.2015.00067] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/02/2015] [Indexed: 12/25/2022] Open
Abstract
It is now admitted that the immune system plays a major role in tumor control. Besides the existence of tumor-specific T cells and B cells, many studies have demonstrated that high numbers of tumor-infiltrating lymphocytes are associated with good clinical outcome. In addition, not only the density but also the organization of tumor-infiltrating immune cells has been shown to determine patient survival. Indeed, more and more studies describe the development within the tumor microenvironment of tertiary lymphoid structures (TLS), whose presence has a positive impact on tumor prognosis. TLS are transient ectopic lymphoid aggregates displaying the same organization and functionality as canonical secondary lymphoid organs, with T-cell-rich and B-cell-rich areas that are sites for the differentiation of effector and memory T cells and B cells. However, factors favoring the emergence of such structures within tumors still need to be fully characterized. In this review, we survey the state of the art of what is known about the general organization, induction, and functionality of TLS during chronic inflammation, and more especially in cancer, with a particular focus on the B-cell compartment. We detail the role played by TLS B cells in anti-tumor immunity, both as antigen-presenting cells and tumor antigen-specific antibody-secreting cells, and raise the question of the capacity of chemotherapeutic and immunotherapeutic agents to induce the development of TLS within tumors. Finally, we explore how to take advantage of our knowledge on TLS B cells to develop new therapeutic tools.
Collapse
Affiliation(s)
- Claire Germain
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| | - Sacha Gnjatic
- Division of Hematology, Oncology and Immunology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Marie-Caroline Dieu-Nosjean
- Laboratory Cancer, Immune Control and Escape, Cordeliers Research Center, INSERM UMRS1138 , Paris , France ; UMRS1138, University Pierre and Marie Curie , Paris , France ; UMRS1138, University Paris Descartes , Paris , France
| |
Collapse
|
52
|
Bunse L, Schumacher T, Sahm F, Pusch S, Oezen I, Rauschenbach K, Gonzalez M, Solecki G, Osswald M, Capper D, Wiestler B, Winkler F, Herold-Mende C, von Deimling A, Wick W, Platten M. Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Invest 2015; 125:593-606. [PMID: 25555220 DOI: 10.1172/jci77780] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/20/2014] [Indexed: 01/28/2023] Open
Abstract
For a targeted cancer vaccine to be effective, the antigen of interest needs to be naturally processed and presented on MHC by the target cell or an antigen-presenting cell (APC) in the tumor stroma. The presence of these characteristics is often assumed based on animal models, evaluation of antigen-overexpressing APCs in vitro, or assays of material-consuming immune precipitation from fresh solid tissue. Here, we evaluated the use of an alternative approach that uses the proximity ligation assay (PLA) to identify the presentation of an MHC class II-restricted antigen in paraffin-embedded tissue sections from patients with brain tumors. This approach required a specific antibody directed against the epitope that was presented. We used an antibody that specifically binds an epitope of mutated isocitrate dehydrogenase type 1 (IDH1R132H), which is frequently expressed in gliomas and other types of tumors. In situ PLA showed that the IDH1R132H epitope colocalizes with MHC class II in IDH1R132H-mutated glioma tissue. Moreover, PLA demonstrated colocalization between the class II epitope-containing melanoma antigen New York esophageal 1 and MHC class II. Collectively, our data suggest that PLA may be a useful tool to acquire information on whether an antigen is presented in situ, and this technique has potential to guide clinical studies that use antigen-specific cancer immunotherapy.
Collapse
|
53
|
Odunsi K, Matsuzaki J, James SR, Mhawech-Fauceglia P, Tsuji T, Miller A, Zhang W, Akers SN, Griffiths EA, Miliotto A, Beck A, Batt CA, Ritter G, Lele S, Gnjatic S, Karpf AR. Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res 2014; 2:37-49. [PMID: 24535937 DOI: 10.1158/2326-6066.cir-13-0126] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cancer-testis/cancer-germline antigen NY-ESO-1 is a vaccine target in epithelial ovarian cancer (EOC), but its limited expression is a barrier to vaccine efficacy. As NY-ESO-1 is regulated by DNA methylation, we hypothesized that DNA methyltransferase (DNMT) inhibitors may augment NY-ESO-1 vaccine therapy. In agreement, global DNA hypomethylation in EOC was associated with the presence of circulating antibodies to NY-ESO-1. Pre-clinical studies using EOC cell lines showed that decitabine treatment enhanced both NY-ESO-1 expression and NY-ESO-1-specific CTL-mediated responses. Based on these observations, we performed a phase I dose-escalation trial of decitabine, as an addition to NY-ESO-1 vaccine and doxorubicin liposome (doxorubicin) chemotherapy, in 12 patients with relapsed EOC. The regimen was safe, with limited and clinically manageable toxicities. Both global and promoter-specific DNA hypomethylation occurred in blood and circulating DNAs, the latter of which may reflect tumor cell responses. Increased NY-ESO-1 serum antibodies and T cell responses were observed in the majority of patients, and antibody spreading to additional tumor antigens was also observed. Finally, disease stabilization or partial clinical response occurred in 6/10 evaluable patients. Based on these encouraging results, evaluation of similar combinatorial chemo-immunotherapy regimens in EOC and other tumor types is warranted.
Collapse
Affiliation(s)
- Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Junko Matsuzaki
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Smitha R James
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | | | - Takemasa Tsuji
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Austin Miller
- Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Wa Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| | - Stacey N Akers
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | | | - Anthony Miliotto
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Amy Beck
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Carl A Batt
- Department of Food Science, Cornell University, Ithaca, NY, 14853
| | - Gerd Ritter
- Ludwig Institute for Cancer Research, NY Branch at Memorial Sloan Kettering, New York, NY, 10021
| | - Shashikant Lele
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, 14263
| | - Sacha Gnjatic
- Tisch Cancer Institute, Mount Sinai School of Medicine, Omaha, NE, 68198
| | - Adam R Karpf
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, 14263 ; Eppley Institute, University of Nebraska Medical Center, Omaha, NE, 68198
| |
Collapse
|
54
|
Domae S, Ono T, Sasaki A. Cancer/testis antigens: A prospective reagent as diagnostic and immunotherapeutic targets for squamous cell carcinoma of the head and neck. JAPANESE DENTAL SCIENCE REVIEW 2014. [DOI: 10.1016/j.jdsr.2014.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
55
|
Soysal SD, Muenst S, Kan-Mitchell J, Huarte E, Zhang X, Wilkinson-Ryan I, Fleming T, Tiriveedhi V, Mohanakumar T, Li L, Herndon J, Oertli D, Goedegebuure SP, Gillanders WE. Identification and translational validation of novel mammaglobin-A CD8 T cell epitopes. Breast Cancer Res Treat 2014; 147:527-37. [PMID: 25212176 DOI: 10.1007/s10549-014-3129-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/06/2014] [Indexed: 12/13/2022]
Abstract
Mammaglobin-A (MAM-A) is a secretory protein that is overexpressed in 80 % of human breast cancers. Its near-universal expression in breast cancer as well as its exquisite tissue specificity makes it an attractive target for a breast cancer prevention vaccine, and we recently initiated a phase 1 clinical trial of a MAM-A DNA vaccine. Previously, we have identified multiple MAM-A CD8 T cell epitopes using a reverse immunology candidate epitope approach based on predicted binding, but to date no attempt has been made to identify epitopes using an unbiased approach. In this study, we used human T cells primed in vitro with autologous dendritic cells expressing MAM-A to systematically identify MAM-A CD8 T cell epitopes. Using this unbiased approach, we identified three novel HLA-A2-restricted MAM-A epitopes. CD8 T cells specific for these epitopes are able to recognize and lyse human breast cancer cells in a MAM-A-specific, HLA-A2-dependent fashion. HLA-A2(+)/MAM-A(+) breast cancer patients have an increased prevalence of CD8 T cells specific for these novel MAM-A epitopes, and vaccination with a MAM-A DNA vaccine significantly increases the number of these CD8 T cells. The identification and translational validation of novel MAM-A epitopes has important implications for the ongoing clinical development of vaccine strategies targeting MAM-A. The novel MAM-A epitopes represent attractive targets for epitope-based vaccination strategies, and can also be used to monitor immune responses. Taken together these studies provide additional support for MAM-A as an important therapeutic target for the prevention and treatment of breast cancer.
Collapse
Affiliation(s)
- S D Soysal
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
PENG YUHUI, XU YIWEI, QIU SIQI, HONG CHAOQUN, ZHAI TIANTIAN, LI ENMIN, XU LIYAN. Combination of autoantibodies against NY-ESO-1 and viral capsid antigen immunoglobulin A for improved detection of nasopharyngeal carcinoma. Oncol Lett 2014; 8:1096-1102. [PMID: 25120665 PMCID: PMC4114591 DOI: 10.3892/ol.2014.2286] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/12/2014] [Indexed: 02/05/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignant tumors in Southern China and Southeast Asia, and early detection remains a challenge. Autoantibodies have been found to precede the manifestations of symptomatic cancer by several months to years, making their identification of particular relevance for early detection. In the present study, the diagnostic value of serum autoantibodies against NY-ESO-1 in NPC patients was evaluated. The study included 112 patients with NPC and 138 normal controls. Serum levels of autoantibodies against NY-ESO-1 and classical Epstein-Barr virus marker, viral capsid antigen immunoglobulin A (VCA-IgA), were measured by enzyme-linked immunosorbent assay. Measurement of autoantibodies against NY-ESO-1 and VCA-IgA demonstrated a sensitivity/specificity of 42.9/94.9% [95% confidence interval (CI), 33.7-52.6/89.4-97.8%] and 55.4/95.7% (95% CI, 45.7-64.7/90.4-98.2%), respectively. The area under receiver operating characteristic curve for autoantibodies against NY-ESO-1 (0.821; 95% CI, 0.771-0.871) was marginally lower than that for VCA-IgA (0.860; 95% CI, 0.810-0.910) in NPC. The combination of autoantibodies against NY-ESO-1 and VCA-IgA yielded an enhanced sensitivity of 80.4% (95% CI, 71.6-87.0%) and a specificity of 90.6% (95% CI, 84.1-94.7%). Moreover, detection of autoantibodies against NY-ESO-1 could differentiate early-stage NPC patients from normal controls. Our results suggest that autoantibodies against NY-ESO-1 may serve as a potential biomarker, as a supplement to VCA-IgA, for the screening and diagnosis of NPC.
Collapse
Affiliation(s)
- YU-HUI PENG
- Department of Clinical Laboratory, The Cancer Hospital of Shantou University Medical College, P.R. China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - YI-WEI XU
- Department of Clinical Laboratory, The Cancer Hospital of Shantou University Medical College, P.R. China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - SI-QI QIU
- The Breast Center, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - CHAO-QUN HONG
- Department of Oncological Research Lab, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - TIAN-TIAN ZHAI
- Department of Radiation Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - EN-MIN LI
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Li-Yan Xu, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area or Institute of Oncologic Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail: . Dr En-Min Li, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area or Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22, Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| | - LI-YAN XU
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Li-Yan Xu, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area or Institute of Oncologic Pathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail: . Dr En-Min Li, The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area or Department of Biochemistry and Molecular Biology, Shantou University Medical College, 22, Xinling Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| |
Collapse
|
57
|
Giesen E, Jilaveanu LB, Parisi F, Kluger Y, Camp RL, Kluger HM. NY-ESO-1 as a potential immunotherapeutic target in renal cell carcinoma. Oncotarget 2014; 5:5209-17. [PMID: 24970819 PMCID: PMC4170640 DOI: 10.18632/oncotarget.2101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Novel immune therapies targeting tumor specific antigens are being developed. Our purpose was to determine expression of the cancer testes antigen NY-ESO-1 in renal cell carcinoma (RCC), as NY-ESO-1 targeting approaches, particularly adoptive cell therapy, have not been evaluated in this disease. Methods: We employed tissue microarrays containing >300 unique RCC cases and adjacent benign renal tissue to determine NY-ESO-1 expression using a quantitative immunofluorescence method. In addition, we studied NY-ESO-1 expression in 35 matched primary and metastatic RCC specimens to assess concordance between different tumor sites. Results: NY-ESO-1 was highly expressed in a subset of RCCs. Expression in primary RCC specimens was significantly higher than adjacent normal renal tissue (P<0.0001) and higher in clear cell carcinomas than papillary RCC (P<0.0001). Expression levels in metastatic specimens were higher than in matched primary samples (P=0.0018), and the correlation between the two sites was modest (χ2=3.5, p=0.06). Conclusions: Aberrant NY-ESO-1 expression seen in clear cell RCC suggests that NY-ESO-1 targeting approaches should be studied in this disease. Expression is higher in metastatic sites, and discordance between primary and metastatic sites in some patients suggests that patient selection for these therapies should be based on expression in metastatic rather than nephrectomy specimens.
Collapse
Affiliation(s)
- Eva Giesen
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, U.S. These authors contributed equally to this work
| | - Lucia B Jilaveanu
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, U.S. These authors contributed equally to this work
| | - Fabio Parisi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S
| | - Robert L Camp
- Department of Pathology, Yale University School of Medicine, New Haven, CT, U.S
| | - Harriet M Kluger
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, U.S
| |
Collapse
|
58
|
Scheiermann J, Klinman DM. Clinical evaluation of CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Vaccine 2014; 32:6377-89. [PMID: 24975812 DOI: 10.1016/j.vaccine.2014.06.065] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/28/2014] [Accepted: 06/12/2014] [Indexed: 12/13/2022]
Abstract
Synthetic oligonucleotides (ODN) that express unmethylated "CpG motifs" trigger cells that express Toll-like receptor 9. In humans this includes plasmacytoid dendritic cells and B cells. CpG ODN induce an innate immune response characterized by the production of Th1 and pro-inflammatory cytokines. Their utility as vaccine adjuvants was evaluated in a number of clinical trials. Results indicate that CpG ODN improve antigen presentation and the generation of vaccine-specific cellular and humoral responses. This work provides an up-to-date overview of the utility of CpG ODN as adjuvants for vaccines targeting infectious agents and cancer.
Collapse
Affiliation(s)
- Julia Scheiermann
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick MD 21702, United States
| | - Dennis M Klinman
- Cancer and Inflammation Program, National Cancer Institute, NIH, Frederick MD 21702, United States.
| |
Collapse
|
59
|
Zelba H, Weide B, Martens A, Derhovanessian E, Bailur JK, Kyzirakos C, Pflugfelder A, Eigentler TK, Di Giacomo AM, Maio M, Aarntzen EHJG, de Vries J, Sucker A, Schadendorf D, Büttner P, Garbe C, Pawelec G. Circulating CD4+ T cells that produce IL4 or IL17 when stimulated by melan-A but not by NY-ESO-1 have negative impacts on survival of patients with stage IV melanoma. Clin Cancer Res 2014; 20:4390-9. [PMID: 24938524 DOI: 10.1158/1078-0432.ccr-14-1015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We initially observed that the presence of circulating NY-ESO-1- and/or Melan-A-specific T cells in patients with stage IV melanoma was significantly associated with prolonged survival. Here, we report the ways in which the phenotypes and functions of these T cells differentially affect survival in patients preselected for NY-ESO-1 and/or Melan-A reactivity. EXPERIMENTAL DESIGN We assayed functional antigen-reactive T cells recognizing NY-ESO-1 and/or Melan-A after in vitro stimulation using overlapping peptide pools. After restimulation, we assayed six cytokines simultaneously by intracellular cytokine staining. This allowed us to analyze the functional antigen response of both CD4(+) and CD8(+) T cells at the single-cell level. RESULTS We observed that NY-ESO-1 stimulated mainly CD4(+) T cells, whereas Melan-A more often stimulated CD8(+) T cells. NY-ESO-1 reactivity was not associated with an additional impact on survival, whether CD4(+) T cells, CD8(+) T cells, or both types of T cells were responding. In contrast, recognition of Melan-A by CD4(+) T cells was associated with reduced survival in our cohort of patients preselected for NY-ESO-1 and/or Melan-A reactivity (that is, in patients with exceptionally long survival). We further observed a negative effect on survival in patients with CD4(+) T cells producing IL4 and IL17 upon Melan-A stimulation. Their prognosis was comparable to patients without any Melan-A reactivity. CONCLUSIONS The nature and prognostic impact of specific T-cell responses is different according to targeted antigen. Independent from phenotype and functional aspects, NY-ESO-1 reactivity is associated with good prognosis. In terms of Melan-A, antigen-specific CD8(+) but not CD4(+) responses are associated with prolonged survival. Clin Cancer Res; 20(16); 4390-9. ©2014 AACR.
Collapse
Affiliation(s)
- Henning Zelba
- Department of Internal Medicine II, Section for Transplantation Immunology and Immunohematology; Department of Immunology, University of Tübingen, Tübingen;
| | - Benjamin Weide
- Division of Dermatooncology, Department of Dermatology, University Medical Center
| | - Alexander Martens
- Department of Internal Medicine II, Section for Transplantation Immunology and Immunohematology
| | - Evelyna Derhovanessian
- Department of Internal Medicine II, Section for Transplantation Immunology and Immunohematology
| | - Jithendra Kini Bailur
- Department of Internal Medicine II, Section for Transplantation Immunology and Immunohematology
| | - Christina Kyzirakos
- Department of Pediatric Oncology and Hematology, University Children's Hospital
| | - Annette Pflugfelder
- Division of Dermatooncology, Department of Dermatology, University Medical Center
| | - Thomas K Eigentler
- Division of Dermatooncology, Department of Dermatology, University Medical Center
| | - Anna Maria Di Giacomo
- Division of Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Michele Maio
- Division of Medical Oncology and Immunotherapy, University Hospital of Siena, Siena, Italy
| | - Erik H J G Aarntzen
- Nijmegen Centre for Molecular Life Sciences (NCMLS); Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; and
| | | | - Antje Sucker
- Department of Dermatology, University Medical Center, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Medical Center, Essen, Germany
| | - Petra Büttner
- Skin Cancer Research Group, School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Townsville, Australia
| | - Claus Garbe
- Division of Dermatooncology, Department of Dermatology, University Medical Center
| | - Graham Pawelec
- Department of Internal Medicine II, Section for Transplantation Immunology and Immunohematology
| |
Collapse
|
60
|
Pagotto A, Caballero OL, Volkmar N, Devalle S, Simpson AJG, Lu X, Christianson JC. Centrosomal localisation of the cancer/testis (CT) antigens NY-ESO-1 and MAGE-C1 is regulated by proteasome activity in tumour cells. PLoS One 2013; 8:e83212. [PMID: 24340093 PMCID: PMC3858345 DOI: 10.1371/journal.pone.0083212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/31/2013] [Indexed: 02/03/2023] Open
Abstract
The Cancer/Testis (CT) antigen family of genes are transcriptionally repressed in most human tissues but are atypically re-expressed in many malignant tumour types. Their restricted expression profile makes CT antigens ideal targets for cancer immunotherapy. As little is known about whether CT antigens may be regulated by post-translational processing, we investigated the mechanisms governing degradation of NY-ESO-1 and MAGE-C1 in selected cancer cell lines. Inhibitors of proteasome-mediated degradation induced the partitioning of NY-ESO-1 and MAGE-C1 into a detergent insoluble fraction. Moreover, this treatment also resulted in increased localisation of NY-ESO-1 and MAGE-C1 at the centrosome. Despite their interaction, relocation of either NY-ESO-1 or MAGE-C1 to the centrosome could occur independently of each other. Using a series of truncated fragments, the regions corresponding to NY-ESO-191-150 and MAGE-C1900-1116 were established as important for controlling both stability and localisation of these CT antigens. Our findings demonstrate that the steady state levels of NY-ESO-1 and MAGE-C1 are regulated by proteasomal degradation and that both behave as aggregation-prone proteins upon accumulation. With proteasome inhibitors being increasingly used as front-line treatment in cancer, these data raise issues about CT antigen processing for antigenic presentation and therefore immunogenicity in cancer patients.
Collapse
Affiliation(s)
- Anna Pagotto
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Otavia L. Caballero
- Ludwig Collaborative Group, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Norbert Volkmar
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Sylvie Devalle
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Andrew J. G. Simpson
- Ludwig Collaborative Group, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
- * E-mail:
| | - John C. Christianson
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
| |
Collapse
|
61
|
Iheagwara UK, Beatty PL, Van PT, Ross TM, Minden JS, Finn OJ. Influenza virus infection elicits protective antibodies and T cells specific for host cell antigens also expressed as tumor-associated antigens: a new view of cancer immunosurveillance. Cancer Immunol Res 2013; 2:263-73. [PMID: 24778322 DOI: 10.1158/2326-6066.cir-13-0125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most tumor-associated antigens (TAA) are self-molecules that are abnormally expressed in cancer cells and become targets of antitumor immune responses. Antibodies and T cells specific for some TAAs have been found in healthy individuals and are associated with lowered lifetime risk for developing cancer. Lower risk for cancer has also been associated with a history of febrile viral diseases. We hypothesized that virus infections could lead to transient expression of abnormal forms of self-molecules, some of which are TAAs; facilitated by the adjuvant effects of infection and inflammation, these molecules could elicit specific antibodies, T cells, and lasting immune memory simultaneously with immunity against viral antigens. Such infection-induced immune memory for TAA would be expected to provide life-long immune surveillance of cancer. Using influenza virus infection in mice as a model system, we tested this hypothesis and demonstrated that influenza-experienced mice control 3LL mouse lung tumor challenge better than infection-naive control mice. Using 2D-difference gel electrophoresis and mass spectrometry, we identified numerous molecules, some of which are known TAAs, on the 3LL tumor cells recognized by antibodies elicited by two successive influenza infections. We studied in detail immune responses against glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H4, HSP90, malate dehydrogenase 2, and annexin A2, all of which were overexpressed in influenza-infected lungs and in tumor cells. Finally, we show that immune responses generated through vaccination against peptides derived from these antigens correlated with improved tumor control.
Collapse
Affiliation(s)
- Uzoma K Iheagwara
- Authors' Affiliations: Departments of Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | | | | | | | | | | |
Collapse
|
62
|
Okumura H, Noguchi Y, Uenaka A, Aji T, Ono T, Nakagawa K, Aoe M, Shimizu N, Nakayama E. Identification of an HLA-A24-Restricted OY-TES-1 Epitope Recognized by Cytotoxic T-Cells. Microbiol Immunol 2013; 49:1009-16. [PMID: 16301813 DOI: 10.1111/j.1348-0421.2005.tb03688.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OY-TES-1 was identified as a human homologue of the mouse, guinea pig, and pig proacrosin binding protein sp32 precursor. Differential expression levels of OY-TES-1 mRNA between testis and other normal tissues, and its expression in cancers indicated that OY-TES-1 would be classified as a cancer/testis antigen and considered to be a candidate of target antigen for cancer immunotherapy. In this study, we showed identification of HLA-A24-binding OY-TES-1 peptide, TES(401-409) (KTPFVSPLL) recognized by CD8 T-cells. Purified CD8 T-cells from healthy donors stimulated in vitro with the peptide-pulsed autologous DC and PBMC produced IFNgamma in response to the peptide-pulsed PBMC and showed cytotoxicity against the peptide-pulsed autologous EBV-B specifically. Furthermore, cytotoxicity was also observed against an OY-TES-1 mRNA-expressing tumor line, LK79. The retention time of the fraction in HPLC of the acid eluate from LK79 cells that showed positive sensitization against autologous EBV-B cells in recognition by CD8 CTL was the same as that of the fraction of the TES(401-409) peptide itself, suggesting that the TES(401-409) was a naturally processed peptide on LK79.
Collapse
Affiliation(s)
- Hideo Okumura
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Chen YT, Panarelli NC, Piotti KC, Yantiss RK. Cancer-testis antigen expression in digestive tract carcinomas: frequent expression in esophageal squamous cell carcinoma and its precursor lesions. Cancer Immunol Res 2013; 2:480-6. [PMID: 24795360 DOI: 10.1158/2326-6066.cir-13-0124] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer-testis (CT) antigens are attractive tumor antigens for cancer immunotherapy. They comprise a group of proteins normally expressed in germ cells and aberrantly activated in a variety of human cancers. The protein expression of eight cancer-testis antigens [MAGEA, NY-ESO-1, GAGE, MAGEC1 (CT7), MAGEC2 (CT10), CT45, SAGE1, and NXF2] was evaluated by immunohistochemistry in 61 esophageal carcinomas (40 adenocarcinoma and 21 squamous cell carcinoma), 50 gastric carcinomas (34 diffuse and 16 intestinal type), and 141 colorectal carcinomas. The highest frequency of expression was found in esophageal squamous cell carcinomas: Positive staining for MAGEA, CT45, CT7, SAGE1, GAGE, NXF2, NY-ESO-1, and CT10 was observed in 57%, 38%, 33%, 33%, 29%, 29%, 19%, and 14% of squamous cell carcinomas, respectively. Similar staining patterns were observed in squamous dysplasias. Expression frequencies of cancer-testis antigens were seen in 2% to 24% of gastroesophageal adenocarcinomas and were not significantly different between adenocarcinomas of the stomach versus the esophagus, or between diffuse and intestinal types of gastric adenocarcinomas. Colorectal cancers did not express NY-ESO-1, CT7, CT10, or GAGE, and only infrequently expressed SAGE1 (0.7%) MAGEA (1.4%), CT45 (3.5%), and NXF2 (8.5%). We conclude that cancer-testis antigens are frequently expressed in esophageal squamous neoplasms. Although cancer-testis antigens are generally considered to be expressed later in tumor progression, they are found in squamous dysplasias, suggesting a potential diagnostic role for cancer-testis antigens in the evaluation of premalignant squamous lesions.
Collapse
Affiliation(s)
- Yao-Tseng Chen
- Authors' Affiliations: Ludwig Institute for Cancer Research, New York, New York
| | | | | | | |
Collapse
|
64
|
Baia GS, Caballero OL, Ho JSY, Zhao Q, Cohen T, Binder ZA, Salmasi V, Gallia GL, Quinones-Hinojosa A, Olivi A, Brem H, Burger P, Strausberg RL, Simpson AJG, Eberhart CG, Riggins GJ. NY-ESO-1 expression in meningioma suggests a rationale for new immunotherapeutic approaches. Cancer Immunol Res 2013; 1:296-302. [PMID: 24777967 DOI: 10.1158/2326-6066.cir-13-0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Meningiomas are the most common primary intracranial tumors. Surgical resection remains the treatment of choice for these tumors. However, a significant number of tumors are not surgically accessible, recur, or become malignant, necessitating the repetition of surgery and sometimes radiation. Chemotherapy is rarely used and is generally not recognized as an effective treatment. Cancer/testis (CT) genes represent a unique class of genes, which are expressed by germ cells, normally silenced in somatic cells, but activated in various cancers. CT proteins can elicit spontaneous immune responses in patients with cancer and this feature makes them attractive targets for immunotherapy-based approaches. We analyzed mRNA expression of 37 testis-restricted CT genes in a discovery set of 18 meningiomas by reverse transcription PCR. The overall frequency of expression of CT genes ranged from 5.6% to 27.8%. The most frequently expressed was NY-ESO-1, in 5 patients (27.8%). We subsequently analyzed NY-ESO-1 protein expression in a larger set of meningiomas by immunohistochemistry and found expression in 108 of 110 cases. In some cases, NY-ESO-1 expression was diffused and homogenous, but in most instances it was heterogeneous. Importantly, NY-ESO-1 expression was positively correlated with higher grade and patients presenting with higher levels of NY-ESO-1 staining had significantly worse disease-free and overall survival. We have also shown that NY-ESO-1 expression may lead to humoral immune response in patients with meningioma. Considering the limited treatment options for patients with meningioma, the potential of NY-ESO-1-based immunotherapy should be explored.
Collapse
Affiliation(s)
- Gilson S Baia
- Authors' Affiliations: New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
von Boehmer L, Mattle M, Bode P, Landshammer A, Schäfer C, Nuber N, Ritter G, Old L, Moch H, Schäfer N, Jäger E, Knuth A, van den Broek M. NY-ESO-1-specific immunological pressure and escape in a patient with metastatic melanoma. CANCER IMMUNITY 2013; 13:12. [PMID: 23882157 PMCID: PMC3718732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
During cancer progression, malignant cells may evade immunosurveillance. However, evidence for immunological escape in humans is scarce. We report here the clinical course of a melanoma patient whose initial tumor was positive for the antigens NY-ESO-1, MAGE-C1, and Melan-A. Upon immunization with a recombinant vaccinia/fowlpox NY-ESO-1 construct, the patient experienced a mixed clinical response and spreading of the NY-ESO-1 epitopes in the CD4+ T cell compartment. After NY-ESO-1 protein + CpG immunization, the patient's anti-NY-ESO-1 IgG response increased. Over the following years, progressing lesions were resected and found to be NY-ESO-1-negative while being positive for MAGE-C1, Melan-A, and MHC-I. The fatal, inoperable brain metastasis was analyzed after his death and also proved to be NY-ESO-1-negative, while being positive for MAGE-C1 and Melan-A, as well as MHC-I. We propose that cancer control and cancer escape in this patient were governed by NY-ESO-1-specific immunological pressure. Our findings provide evidence for the existence of immunoediting and immunoescape in this cancer patient.
Collapse
Affiliation(s)
- Lotta von Boehmer
- Department of Oncology, University Hospital Zürich, Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Laske K, Shebzukhov YV, Grosse-Hovest L, Kuprash DV, Khlgatian SV, Koroleva EP, Sazykin AY, Penkov DN, Belousov PV, Stevanovic S, Vass V, Walter S, Eisel D, Schmid-Horch BD, Nedospasov SA, Rammensee HG, Gouttefangeas C. Alternative variants of human HYDIN are novel cancer-associated antigens recognized by adaptive immunity. Cancer Immunol Res 2013; 1:190-200. [PMID: 24777681 DOI: 10.1158/2326-6066.cir-13-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A mutation in the hydin gene has been recently described as one possible mechanism leading to lethal congenital hydrocephalus in mice, and a similar defect is proposed to be involved in an autosomal recessive form of hydrocephalus in human. Here, we report for the first time on the cancer association and immunogenicity of two HYDIN variants in humans. One is a previously described sequence derived from the chromosome 1 gene copy, that is, KIAA1864. The second is encoded by a novel alternative transcript originating from the chromosome 16, which we identified by immunoscreening of a testis-derived cDNA expression library with sera of patients with colorectal cancer, and called MO-TES391. Both variants are targeted by immunoglobulin G antibodies in a significant subset of cancer patients but only rarely in healthy donors. Moreover, we identify HLA-A*0201-restricted sequences derived from MO-TES391 and KIAA1864, which are specifically recognized by human cytotoxic CD8(+) T cells. Taken together, these results suggest frequent and coordinated adaptive immune responses against HYDIN variants in patients with cancer and propose HYDIN as a novel cancer-associated antigen.
Collapse
Affiliation(s)
- Karoline Laske
- Authors' Affiliations: Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Komatsu N, Jackson HM, Chan KF, Oveissi S, Cebon J, Itoh K, Chen W. Fine-mapping naturally occurring NY-ESO-1 antibody epitopes in melanoma patients’ sera using short overlapping peptides and full-length recombinant protein. Mol Immunol 2013; 54:465-71. [DOI: 10.1016/j.molimm.2013.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/25/2022]
|
68
|
Balafoutas D, zur Hausen A, Mayer S, Hirschfeld M, Jaeger M, Denschlag D, Gitsch G, Jungbluth A, Stickeler E. Cancer testis antigens and NY-BR-1 expression in primary breast cancer: prognostic and therapeutic implications. BMC Cancer 2013; 13:271. [PMID: 23731661 PMCID: PMC3700769 DOI: 10.1186/1471-2407-13-271] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/22/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Cancer-testis antigens (CTA) comprise a family of proteins, which are physiologically expressed in adult human tissues solely in testicular germ cells and occasionally placenta. However, CTA expression has been reported in various malignancies. CTAs have been identified by their ability to elicit autologous cellular and or serological immune responses, and are considered potential targets for cancer immunotherapy. The breast differentiation antigen NY-BR-1, expressed specifically in normal and malignant breast tissue, has also immunogenic properties. Here we evaluated the expression patterns of CTAs and NY-BR-1 in breast cancer in correlation to clinico-pathological parameters in order to determine their possible impact as prognostic factors. METHODS The reactivity pattern of various mAbs (6C1, MA454, M3H67, 57B, E978, GAGE #26 and NY-BR-1 #5) were assessed by immunohistochemistry in a tissue micro array series of 210 randomly selected primary invasive breast cancers in order to study the diversity of different CTAs (e.g. MAGE-A, NY-ESO-1, GAGE) and NY-BR-1. These expression data were correlated to clinico-pathological parameters and outcome data including disease-free and overall survival. RESULTS Expression of at least one CTA was detectable in the cytoplasm of tumor cells in 37.2% of the cases. NY-BR-1 expression was found in 46.6% of tumors, respectively. Overall, CTA expression seemed to be linked to adverse prognosis and M3H67 immunoreactivity specifically was significantly correlated to shorter overall and disease-free survival (p=0.000 and 0.024, respectively). CONCLUSIONS Our findings suggest that M3H67 immunoreactivity could serve as potential prognostic marker in primary breast cancer patients. The exclusive expression of CTAs in tumor tissues as well as the frequent expression of NY-BR-1 could define new targets for specific breast cancer therapies.
Collapse
Affiliation(s)
- Dimitrios Balafoutas
- Department of Obstetrics and Gynecology, University Hospital Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| | - Axel zur Hausen
- Department of Pathology, GROW- School for Oncology and Developmental Biology, Maastricht University Medical Center, Postbus 5800, Maastricht 6202 AZ, The Netherlands
| | - Sebastian Mayer
- Department of Obstetrics and Gynecology, University Hospital Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, University Hospital Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Jaeger
- Department of Obstetrics and Gynecology, University Hospital Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| | - Dominik Denschlag
- Department of Obstetrics and Gynecology, University Hospital Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| | - Gerald Gitsch
- Department of Obstetrics and Gynecology, University Hospital Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| | - Achim Jungbluth
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, BOX 32, New York, NY 10021-6007, USA
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, University Hospital Freiburg, Hugstetterstraße 55, Freiburg 79106, Germany
| |
Collapse
|
69
|
HLA-restricted NY-ESO-1 peptide immunotherapy for metastatic castration resistant prostate cancer. Invest New Drugs 2013; 32:235-242. [PMID: 23609828 DOI: 10.1007/s10637-013-9960-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/26/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Given the immunogenicity of NY-ESO-1 peptides in prostate cancer, a phase I clinical trial was designed to evaluate HLA class-I and class-II restricted NY-ESO-1 peptides in metastatic castration-resistant prostate cancer (mCRPC). METHODS Patients with progressive mCRPC, Zubrod Performance Status ≤2, PSA ≥10 ng/ml who had appropriate HLA class I (A2) and class II haplotypes (DR4, DP4) were eligible. Three groups with 3 patients each received the vaccine subcutaneously every 2 weeks for 6 doses. Group 1 received a peptide presented by an HLA class I haplotype (HLA-A2), Group 2 with a peptide presented by HLA class II haplotype (DR4, DP4), and Group 3 with peptides presented by both Class I and II haplotypes. Androgen-deprivation was continued. Owing to a myocardial infarction, the protocol was amended to omit the use of GM-CSF. RESULTS Fourteen patients were evaluable for toxicities and 9 received all 6 doses and were evaluable for efficacy. One death from myocardial infarction following GM-CSF occurred in a patient with generalized myalgias. After omitting GM-CSF, no grade >2 toxicities were observed. Among 9 patients evaluable for efficacy, the median PSA doubling time pre-therapy and during therapy were 3.1 and 4.92 months, respectively. NY-ESO-1 specific T-cell response observed by ELISPOT appeared more frequent in docetaxel-naïve patients (4 of 4) than docetaxel-pretreated patients (2 of 5). CONCLUSION In men with mCRPC, individualized HLA class-I and/or class-II restricted NY-ESO-1 peptides were tolerable, appeared to slow PSA doubling time and yielded antigen-specific T-cell responses more often in chemonaïve patients.
Collapse
|
70
|
Tumor cells in multiple myeloma patients inhibit myeloma-reactive T cells through carcinoembryonic antigen-related cell adhesion molecule-6. Blood 2013; 121:4493-503. [PMID: 23603913 DOI: 10.1182/blood-2012-05-429415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although functionally competent cytotoxic, T cells are frequently observed in malignant diseases, they possess little ability to react against tumor cells. This phenomenon is particularly apparent in multiple myeloma. We here demonstrate that cytotoxic T cells reacted against myeloma antigens when presented by autologous dendritic cells, but not by myeloma cells. We further show by gene expression profiling and flow cytometry that, similar to many other malignant tumors, freshly isolated myeloma cells expressed several carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) at varying proportions. Binding and crosslinking of CEACAM-6 by cytotoxic T cells inhibited their activation and resulted in T-cell unresponsiveness. Blocking of CEACAM-6 on the surface of myeloma cells by specific monoclonal antibodies or CEACAM-6 gene knock down by short interfering RNA restored T-cell reactivity against malignant plasma cells. These findings suggest that CEACAM-6 plays an important role in the regulation of CD8+ T-cell responses against multiple myeloma; therefore, therapeutic targeting of CEACAM-6 may be a promising strategy to improve myeloma immunotherapy.
Collapse
|
71
|
Abstract
The identification of cancer testis (CT) antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1), melanoma antigen family A, 3 (MAGE-A3), and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) in various malignancies, and presents our current understanding of CT antigen based immunotherapy.
Collapse
Affiliation(s)
| | - Fanqi Bai
- Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA
| | - Kenneth G Lucas
- Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA
| |
Collapse
|
72
|
Thakral D, Coman MM, Bandyopadhyay A, Martin S, Riley JL, Kavathas PB. The human CD8β M-4 isoform dominant in effector memory T cells has distinct cytoplasmic motifs that confer unique properties. PLoS One 2013; 8:e59374. [PMID: 23533620 PMCID: PMC3606432 DOI: 10.1371/journal.pone.0059374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/14/2013] [Indexed: 11/23/2022] Open
Abstract
The CD8 co-receptor influences T cell recognition and responses in both anti-tumor and anti-viral immunity. During evolution in the ancestor of humans and chimpanzees, the CD8B gene acquired two additional exons. As a result, in humans, there are four CD8β splice variants (M1 to M4) that differ in their cytoplasmic tails. The M-1 isoform which is the equivalent of murine CD8β, is predominantly expressed in naïve T cells, whereas, the M-4 isoform is predominantly expressed in effector memory T cells. The characteristics of the M-4 isoform conferred by its unique 36 amino acid cytoplasmic tail are not known. In this study, we identified a dihydrophobic leucine-based receptor internalization motif in the cytoplasmic tail of M-4 that regulated its cell surface expression and downregulation after activation. Further the M-4 cytoplasmic tail was able to associate with ubiquitinated targets in 293T cells and mutations in the amino acids NPW, a potential EH domain binding site, either enhanced or inhibited the interaction. In addition, the M-4 tail was itself mono-ubiquitinated on a lysine residue in both 293T cells and a human T cell line. When peripheral blood human T cells expressed CD8αβ M-4, the frequency of MIP-1β secreting cells responding to antigen presenting cells was two-fold higher as compared to CD8αβ M-1 expressing T cells. Thus, the cytoplasmic tail of the CD8β M-4 isoform has unique characteristics, which likely contributed to its selective expression and function in human effector memory T cells.
Collapse
Affiliation(s)
- Deepshi Thakral
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Maria M. Coman
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Arunima Bandyopadhyay
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sunil Martin
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - James L. Riley
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Paula B. Kavathas
- Departments of Laboratory Medicine and Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
73
|
McCoy MJ, Nowak AK, van der Most RG, Dick IM, Lake RA. Peripheral CD8(+) T cell proliferation is prognostic for patients with advanced thoracic malignancies. Cancer Immunol Immunother 2013; 62:529-39. [PMID: 23069871 PMCID: PMC11029143 DOI: 10.1007/s00262-012-1360-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/02/2012] [Indexed: 01/16/2023]
Abstract
There is a complex interplay between the immune system and a developing tumor that is manifest in the way that the balance of T cell subsets in the local tumor environment reflects clinical outcome. Tumor infiltration by CD8(+) T cells and regulatory T cells (Treg) is associated with improved and reduced survival, respectively, in many cancer types. However, little is known of the prognostic value of immunological parameters measured in peripheral blood. In this study, peripheral CD8(+) T cells and Treg from 43 patients with malignant mesothelioma or advanced non-small-cell lung cancer scheduled to commence palliative chemotherapy were assessed by flow cytometry and evaluated for association with patient survival. Patients had a higher proportion of peripheral Treg, proliferating CD8(+) T cells and CD8(+) T cells with an activated effector phenotype compared with age-matched healthy controls. Higher proportions of Treg and proliferating CD8(+) T cells were both associated with poor survival in univariate analyses (hazard ratio [HR] 3.81, 95 % CI 1.69-8.57; p < 0.01 and HR 2.86, 95 % CI 1.26-6.50; p < 0.05, respectively). CD8(+) T cell proliferation was independently predictive of reduced survival in multivariate analysis (HR 2.58, 95 % CI 1.01-6.61; p < 0.05). These findings suggest that peripheral CD8(+) T cell proliferation can be a useful prognostic marker in patients with thoracic malignancies planned for palliative chemotherapy.
Collapse
Affiliation(s)
- Melanie J McCoy
- School of Medicine and Pharmacology, The University of Western Australia, M503, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | | | | | | | | |
Collapse
|
74
|
A Pilot Study of Anti-CTLA4 Antibody Ipilimumab in Patients with Synovial Sarcoma. Sarcoma 2013; 2013:168145. [PMID: 23554566 PMCID: PMC3608267 DOI: 10.1155/2013/168145] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/27/2013] [Indexed: 02/07/2023] Open
Abstract
Background. Patients with recurrent synovial sarcomas have few options for systemic therapy. Since they express large amounts of endogenous CT (cancer testis) antigens such as NY-ESO-1, we investigated the clinical activity of single agent anti-CTLA4 antibody ipilimumab in patients with advanced or metastatic synovial sarcoma. Methods. A Simon two-stage phase II design was used to determine if there was sufficient activity to pursue further. The primary endpoint was tumor response rate by RECIST 1.0. Patients were treated with ipilimumab 3 mg/kg intravenously every 3 weeks for three cycles and then restaged. Retreatment was possible for patients receiving an extra three-week break from therapy. Sera and peripheral blood mononuclear cells were collected before and during therapy to assess NY-ESO-1-specific immunity. Results. Six patients were enrolled and received 1–3 cycles of ipilimumab. All patients showed clinical or radiological evidence of disease progression after no more than three cycles of therapy, for a RECIST response rate of 0%. The study was stopped for slow accrual, lack of activity, and lack of immune response. There was no evidence of clinically significant either serologic or delayed type hypersensitivity responses to NY-ESO-1 before or after therapy. Conclusion. Despite high expression of CT antigens by synovial sarcomas of patients treated in this study, there was neither clinical benefit nor evidence of anti-CT antigen serological responses. Assessment of the ability of synovial sarcoma cell lines to present cancer-germ cell antigens may be useful in determining the reason for the observed lack of immunological or clinical activity.
Collapse
|
75
|
The cancer-testis antigen NY-ESO-1 is highly expressed in myxoid and round cell subset of liposarcomas. Mod Pathol 2013; 26:282-8. [PMID: 22936067 DOI: 10.1038/modpathol.2012.133] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Liposarcomas are a heterogenous group of fat-derived sarcomas, and surgery with or without chemoradiation therapy remains the main stay of treatment. NY-ESO-1 is a cancer-testis antigen expressed in various cancers where it can induce both cellular and humoral immunity. Immunotherapy has shown promise in clinical trials involving NY-ESO-1-expressing tumors. Gene expression studies have shown upregulation of the gene for NY-ESO-1, CTAG1B, in myxoid and round cell liposarcomas. Herein, we evaluated the expression of NY-ESO-1 among liposarcoma subtypes by quantitative real-time PCR, western blot analysis, and immunohistochemistry. Frozen tissue for quantitative real-time PCR and western blot analysis was obtained for the following liposarcoma subtypes (n=15): myxoid and round cell (n=8); well-differentiated (n=4), and dedifferentiated (n=3). Formalin-fixed paraffin-embedded blocks were obtained for the following liposarcoma subtypes (n=44): myxoid and round cell (n=18); well-differentiated (n=10); dedifferentiated (n=10); and pleomorphic (n=6). Full sections were stained with monoclonal antibody NY-ESO-1, and staining was assessed for intensity (1-3+), percentage of tumor positivity, and location. In all, 7/8 (88%) and 16/18 (89%) myxoid and round cell expressed CTAG1B and NY-ESO-1 by quantitative real-time PCR and immunohistochemistry, respectively. Western blot correlated with mRNA expression levels. By immunohistochemistry, 94% (15/16) of positive cases stained homogenously with 2-3+ intensity. Also, 3/6 (50%) pleomorphic liposarcomas demonstrated a range of staining: 1+ intensity in 50% of cells; 2+ intensity in 5% of cells; and 3+ intensity in 90% of cells. One case of dedifferentiated liposarcoma showed strong, diffuse staining (3+ intensity in 75% of cells). Our study shows that both CTAG1B mRNA and protein are overexpressed with high frequency in myxoid and round cell liposarcoma, enabling the potential use of targeted immunotherapy in the treatment of this malignancy.
Collapse
|
76
|
Hanafusa T, Mohamed AEA, Domae S, Nakayama E, Ono T. Serological identification of Tektin5 as a cancer/testis antigen and its immunogenicity. BMC Cancer 2012; 12:520. [PMID: 23151147 PMCID: PMC3522552 DOI: 10.1186/1471-2407-12-520] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/08/2012] [Indexed: 01/31/2023] Open
Abstract
Background Identification of new cancer antigens is necessary for the efficient diagnosis and immunotherapy. A variety of tumor antigens have been identified by several methodologies. Among those antigens, cancer/testis (CT) antigens have became promising targets. Methods The serological identification of antigens by the recombinant expression cloning (SEREX) methodology has been successfully used for the identification of cancer/testis (CT) antigens. We performed the SEREX analysis of colon cancer. Results We isolated a total of 60 positive cDNA clones comprising 38 different genes. They included 2 genes with testis-specific expression profiles in the UniGene database, such as TEKT5 and a CT-like gene, A kinase anchoring protein 3 (AKAP3). Quantitative real-time RT-PCR analysis showed that the expression of TEKT5 was restricted to the testis in normal adult tissues. In malignant tissues, TEKT5 was aberrantly expressed in a variety of cancers, including colon cancer. A serological survey of 101 cancer patients with different cancers by ELISA revealed antibodies to TEKT5 in 13 patients, including colon cancer. None of the 16 healthy donor serum samples were reactive in the same test. Conclusion We identified candidate new CT antigen of colon cancer, TEKT5. The findings indicate that TEKT5 is immunogenic in humans, and suggest its potential use as diagnostic as well as an immunotherapeutic reagent for cancer patients.
Collapse
Affiliation(s)
- Tadashi Hanafusa
- Department of Radiation Research, Advanced Science Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | | | | | | | | |
Collapse
|
77
|
Song MH, Ha JM, Shin DH, Lee CH, Old L, Lee SY. KP-CoT-23 (CCDC83) is a novel immunogenic cancer/testis antigen in colon cancer. Int J Oncol 2012; 41:1820-6. [PMID: 22923163 DOI: 10.3892/ijo.2012.1601] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/16/2012] [Indexed: 11/06/2022] Open
Abstract
Cancer/testis (CT) antigens are considered target molecules for cancer immunotherapy. To identify novel CT antigens, immunoscreening of a testicular cDNA library was performed using serum obtained from a colon cancer patient who was immunized with a new dendritic cell vaccine. We isolated 64 positive cDNA clones comprised of 40 different genes, designated KP-CoT-1 through KP-CoT-40. Three of these putative antigens, including KP-CoT-23 (CCDC83), had testis-specific expression profiles in the Unigene database. RT-PCR analysis showed that the expression of 2 KP-Cot-23 variants was restricted to the testis in normal adult tissues. In addition, KP-CoT-23 variants were frequently expressed in a variety of tumors and cancer cell lines, including colon cancer. A serological western blot assay showed IgG antibodies to the KP-CoT-23 protein in 26 of 37 colon cancer patients and in 4 of 21 healthy patients. These data suggest that KP-CoT-23 is a novel CT antigen that may be useful for the diagnosis and immunotherapy of cancer.
Collapse
Affiliation(s)
- Myung-Ha Song
- Department of Biochemistry, School of Medicine, Pusan National University, Yangsan‑si, Gyeongsangnam‑do 626-770, Republic of Korea
| | | | | | | | | | | |
Collapse
|
78
|
Karbach J, Neumann A, Brand K, Wahle C, Siegel E, Maeurer M, Ritter E, Tsuji T, Gnjatic S, Old LJ, Ritter G, Jäger E. Phase I clinical trial of mixed bacterial vaccine (Coley's toxins) in patients with NY-ESO-1 expressing cancers: immunological effects and clinical activity. Clin Cancer Res 2012; 18:5449-59. [PMID: 22847809 DOI: 10.1158/1078-0432.ccr-12-1116] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Mixed bacterial vaccine (MBV, Coley's toxins) is a historical, vaguely defined preparation of heat-inactivated Streptococcus pyogenes and Serratia marcescens used as nonspecific immunotherapy in the treatment of cancer. The mechanism of action is suspected to have an immunologic basis, yet it is poorly defined up to now. We developed a new, biochemically well defined and current good manufacturing practice-compliant MBV preparation, which has been investigated in patients with NY-ESO-1 expressing cancers. EXPERIMENTAL DESIGN Patients received MBV subcutaneously at a starting dose of 250 EU (endotoxin units) twice a week. The MBV dose was escalated in each patient until a body temperature of 38°C to 39.5°C was induced or up to the maximum dose of 547.000 EU. Changes in serum cytokine levels were determined and immune responses to NY-ESO-1 were evaluated. Tumor response was assessed according to RECIST. RESULTS Twelve patients were enrolled and 11 of them developed fever after the administration of MBV. Ten of 12 patients showed a consistent increase in serum IL-6 levels with the highest levels coinciding with the highest body temperature. A subgroup of patients showed increasing levels of TNF-α, IFN-γ, and IL1-β. A patient with metastatic bladder cancer showed a partial tumor response strongly correlated with MBV-induced fever and highly elevated levels of several cytokines. CONCLUSIONS MBV at fever-inducing dose levels can lead to a massive induction of immunoregulatory cytokines that may be involved in inducing tumor regressions. We propose to further explore the role of MBV as a potent immune modulator at higher dose levels and in conjunction with antigen-specific cancer vaccines.
Collapse
Affiliation(s)
- Julia Karbach
- Klinik für Onkologie und Hämatologie, Krankenhaus Nordwest, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
NY-ESO-1 cancer testis antigen demonstrates high immunogenicity in triple negative breast cancer. PLoS One 2012; 7:e38783. [PMID: 22761704 PMCID: PMC3386262 DOI: 10.1371/journal.pone.0038783] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/10/2012] [Indexed: 12/31/2022] Open
Abstract
PURPOSE NY-ESO-1 cancer testis (CT) antigen is an attractive candidate for immunotherapy as a result of its high immunogenicity. The aim of this study was to explore the potential for NY-ESO-1 antigen directed immunotherapy in triple negative breast cancer (TNBC) by determining the frequency of expression by immunohistochemistry (IHC) and the degree of inherent immunogenicity to NY-ESO-1. EXPERIMENTAL DESIGN 168 TNBC and 47 ER+/HER2- primary breast cancer specimens were used to determine NY-ESO-1 frequency by IHC. As previous studies have shown that patients with a robust innate humoral immune response to CT antigens are more likely to develop CD8 T-cell responses to NY-ESO-1 peptides, we evaluated the degree to which patients with NY-ESO-1 expression had inherent immunogenicity by measuring antibodies. The relationship between NY-ESO-1 expression and CD8+ T lymphocytes was also examined. RESULTS The frequency of NY-ESO-1 expression in the TNBC cohort was 16% versus 2% in ER+/HER2- patients. A higher NY-ESO-1 score was associated with a younger age at diagnosis in the TNBC patients with NY-ESO-1 expression (p = 0.026). No differences in OS (p = 0.278) or PFS (p = 0.238) by NY-ESO-1 expression status were detected. Antibody responses to NY-ESO-1 were found in 73% of TNBC patients whose tumors were NY-ESO-1 positive. NY-ESO-1 positive patients had higher CD8 counts than negative patients (p = 0.018). CONCLUSION NY-ESO-1 is expressed in a substantial subset of TNBC patients and leads to a high humoral immune response in a large proportion of these individuals. Given these observations, patients with TNBC may benefit from targeted therapies directed against NY-ESO-1.
Collapse
|
80
|
Weder P, Schumacher TNM, Spits H, Luiten RM. Testing for HLA/peptide tetramer-binding to the T cell receptor complex on human T lymphocytes. RESULTS IN IMMUNOLOGY 2012; 2:88-96. [PMID: 24371571 DOI: 10.1016/j.rinim.2012.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
HLA/peptide tetramers are frequently used for ex vivo monitoring of disease- or vaccine-induced T cell immune responses and for T cell epitope identification. However, when low-levels HLA/peptide tetramer-positive T cell populations are encountered, it is difficult to ascertain whether this represents a true T cell receptor (TCR)-mediated interaction or background signal. To address this issue, we have developed a method for both HLA class I and class II tetramer assays to confirm tetramer-binding to the TCR/CD3 complex. Preincubation of T cells with anti-CD3 mAb SPV-T3b and subsequent crosslinking interferes with the binding of HLA/peptide tetramers to the TCR/CD3 complex and thereby indicates to what extent HLA/peptide tetramer binds through interaction with TCR/CD3 complex. SPV-T3b pretreatment results in a 2- to 10-fold decrease in tetramer-binding intensity to antigen-specific CD8+ or CD4+ T cells, whereas background reactivity of HLA/peptide tetramers containing HIV-derived peptide in HIV-negative donors remained unchanged. SPV-T3b pretreatment forms a valuable tool to verify tetramer-based detection of antigen-specific T cells during the monitoring of immune responses in clinical studies.
Collapse
Affiliation(s)
- Pauline Weder
- Division of Immunology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Ton N M Schumacher
- Division of Immunology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Hergen Spits
- Tytgat Institute for Liver and Instestinal Research, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Rosalie M Luiten
- Dept. of Dermatology and The Netherlands Institute for Pigment Disorders, Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
81
|
Ohue Y, Eikawa S, Okazaki N, Mizote Y, Isobe M, Uenaka A, Fukuda M, Old LJ, Oka M, Nakayama E. Spontaneous antibody, and CD4 and CD8 T-cell responses against XAGE-1b (GAGED2a) in non-small cell lung cancer patients. Int J Cancer 2012; 131:E649-58. [DOI: 10.1002/ijc.27359] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 10/26/2011] [Indexed: 11/12/2022]
|
82
|
Wang M, Zhu Y, Wang J, Lv T, Jin B. Identification of three novel CTL epitopes within nucleocapsid protein of Hantaan virus. Viral Immunol 2011; 24:449-54. [PMID: 22111596 DOI: 10.1089/vim.2011.0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Hantaan virus (HTNV) is a member of the Hantavirus genus that causes human hemorrhagic fever with renal syndrome (HFRS) in humans. The CTL response seems to play a key role in control of viral infection, but only a few HTNV epitopes recognized by the CTLs have been reported. Herein, we screened a panel of overlapping peptides covering the HTNV nucleocapsid protein by ELISPOT assays for those that can elicit IFN-γ production in vitro. Three novel CD8(+) CTL epitopes, N197-205 (RYRTAVCGL), N245-253 (KLLPDTAAV), and N258-266 (GPATNRDYL), were defined on the nucleocapsid protein and were found to be restricted by various HLA alleles including A11, A24, and B7. The epitopes were highly conserved among the reported HTNV strains and other hantanviruses, including Dobrava-Belgrade virus and Seoul virus, supporting their potential use in vaccine designs.
Collapse
Affiliation(s)
- Meiliang Wang
- Center for Experimental Medicine, Lanzhou General Hospital, Lanzhou Military Command, Lanzhou, China.
| | | | | | | | | |
Collapse
|
83
|
Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S A 2011; 108:16723-8. [PMID: 21933959 DOI: 10.1073/pnas.1110814108] [Citation(s) in RCA: 270] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ipilimumab, a monoclonal antibody against cytotoxic T lymphocyte antigen 4 (CTLA-4), has been shown to improve survival in patients with advanced metastatic melanoma. It also enhances immunity to NY-ESO-1, a cancer/testis antigen expressed in a subset of patients with melanoma. To characterize the association between immune response and clinical outcome, we first analyzed NY-ESO-1 serum antibody by ELISA in 144 ipilimumab-treated patients with melanoma and found 22 of 140 (16%) seropositive at baseline and 31 of 144 (22%) seropositive following treatment. These NY-ESO-1-seropositive patients had a greater likelihood of experiencing clinical benefit 24 wk after ipilimumab treatment than NY-ESO-1-seronegative patients (P = 0.02, relative risk = 1.8, two-tailed Fisher test). To understand why some patients with NY-ESO-1 antibody failed to experience clinical benefit, we analyzed NY-ESO-1-specific CD4(+) and CD8(+) T-cell responses by intracellular multicytokine staining in 20 NY-ESO-1-seropositive patients and found a surprising dissociation between NY-ESO-1 antibody and CD8 responses in some patients. NY-ESO-1-seropositive patients with associated CD8(+) T cells experienced more frequent clinical benefit (10 of 13; 77%) than those with undetectable CD8(+) T-cell response (one of seven; 14%; P = 0.02; relative risk = 5.4, two-tailed Fisher test), as well as a significant survival advantage (P = 0.01; hazard ratio = 0.2, time-dependent Cox model). Together, our data suggest that integrated NY-ESO-1 immune responses may have predictive value for ipilimumab treatment and argue for prospective studies in patients with established NY-ESO-1 immunity. The current findings provide a strong rationale for the clinical use of modulators of immunosuppression with concurrent approaches to favor tumor antigen-specific immune responses, such as vaccines or adoptive transfer, in patients with cancer.
Collapse
|
84
|
Tsuji T, Matsuzaki J, Ritter E, Miliotto A, Ritter G, Odunsi K, Old LJ, Gnjatic S. Split T cell tolerance against a self/tumor antigen: spontaneous CD4+ but not CD8+ T cell responses against p53 in cancer patients and healthy donors. PLoS One 2011; 6:e23651. [PMID: 21858191 PMCID: PMC3155555 DOI: 10.1371/journal.pone.0023651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 07/22/2011] [Indexed: 12/20/2022] Open
Abstract
Analyses of NY-ESO-1-specific spontaneous immune responses in cancer patients revealed that antibody and both CD4+ and CD8+ T cell responses were induced together in cancer patients. To explore whether such integrated immune responses are also spontaneously induced for other tumor antigens, we have evaluated antibody and T cell responses against self/tumor antigen p53 in ovarian cancer patients and healthy individuals. We found that 21% (64/298) of ovarian cancer patients but no healthy donors showed specific IgG responses against wild-type p53 protein. While none of 12 patients with high titer p53 antibody showed spontaneous p53-specific CD8+ T cell responses following a single in vitro sensitization, significant p53-specific IFN-γ producing CD4+ T cells were detected in 6 patients. Surprisingly, similar levels of p53-specific CD4+ T cells but not CD8+ T cells were also detected in 5/10 seronegative cancer patients and 9/12 healthy donors. Importantly, p53-specific CD4+ T cells in healthy donors originated from a CD45RA− antigen-experienced T cell population and recognized naturally processed wild-type p53 protein. These results raise the possibility that p53-specific CD4+ T cells reflect abnormalities in p53 occurring in normal individuals and that they may play a role in processes of immunosurveillance or immunoregulation of p53-related neoplastic events.
Collapse
Affiliation(s)
- Takemasa Tsuji
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Junko Matsuzaki
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Erika Ritter
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Anthony Miliotto
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Gerd Ritter
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Lloyd J. Old
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Sacha Gnjatic
- Ludwig Institute for Cancer Research Ltd., New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail: .
| |
Collapse
|
85
|
Abstract
The immune system can identify and destroy nascent tumor cells in a process termed cancer immunosurveillance, which functions as an important defense against cancer. Recently, data obtained from numerous investigations in mouse models of cancer and in humans with cancer offer compelling evidence that particular innate and adaptive immune cell types, effector molecules, and pathways can sometimes collectively function as extrinsic tumor-suppressor mechanisms. However, the immune system can also promote tumor progression. Together, the dual host-protective and tumor-promoting actions of immunity are referred to as cancer immunoediting. In this review, we discuss the current experimental and human clinical data supporting a cancer immunoediting process that provide the fundamental basis for further study of immunity to cancer and for the rational design of immunotherapies against cancer.
Collapse
Affiliation(s)
- Matthew D Vesely
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
86
|
Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers. PLoS One 2011; 6:e17876. [PMID: 21437249 PMCID: PMC3060908 DOI: 10.1371/journal.pone.0017876] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/12/2011] [Indexed: 12/02/2022] Open
Abstract
Background Cancer/testis (CT) antigens are protein antigens normally expressed only in germ cells of testis, and yet are expressed in a proportion of a wide variety of human cancers. CT antigens can elicit spontaneous immune responses in cancer patients with CT-positive cancers, and CT antigen-based therapeutic cancer vaccine trials are ongoing for “CT-rich” tumors. Although some previous studies found breast cancer to be “CT-poor”, our recent analysis identified increased CT mRNA transcripts in the ER-negative subset of breast cancer. Methodology/Principal Findings In this study, we performed a comprehensive immunohistochemical study to investigate the protein expression of eight CT genes in 454 invasive ductal carcinomas, including 225 ER/PR/HER2-negative (triple-negative) carcinomas. We found significantly more frequent expression of all eight CT antigens in ER-negative cancers, and five of them—MAGEA, CT7, NY-ESO-1, CT10 and CT45, were expressed in 12–24% of ER-negative cancers, versus 2–6% of ER-positive cancers (p<0.001 to 0.003). In comparison, GAGE, SAGE1 and NXF2 were only expressed in 3–5% of ER-negative and 0–2% of ER-positive cancers. ER-negative cancers were also more likely to simultaneously co-express multiple CT antigens, with 27% (34/125) of ER-negative, CT-positive tumors expressing three or more CT antigens. HER2 status had no consistent effect on CT expression, and triple-negative carcinomas showed similar frequencies of MAGEA and NY-ESO-1 expression as ER-negative/HER2-positive carcinomas. More frequent CT expression was also found in tumors with higher nuclear grade (p<0.001 to p = 0.01) and larger in size (>2 cm). Conclusions/Significance CT antigens are preferentially expressed in hormone receptor-negative and high-grade breast cancer. Considering the limited treatment options for ER/PR/HER2 triple-negative breast cancer, the potential of CT-based immunotherapy should be explored.
Collapse
|
87
|
Fratta E, Coral S, Covre A, Parisi G, Colizzi F, Danielli R, Nicolay HJM, Sigalotti L, Maio M. The biology of cancer testis antigens: putative function, regulation and therapeutic potential. Mol Oncol 2011; 5:164-82. [PMID: 21376678 DOI: 10.1016/j.molonc.2011.02.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 12/14/2022] Open
Abstract
Cancer testis antigens (CTA) are a large family of tumor-associated antigens expressed in human tumors of different histological origin, but not in normal tissues except for testis and placenta. This tumor-restricted pattern of expression, together with their strong in vivo immunogenicity, identified CTA as ideal targets for tumor-specific immunotherapeutic approaches, and prompted the development of several clinical trials of CTA-based vaccine therapy. Driven by this practical clinical interest, a more detailed characterization of CTA biology has been recently undertaken. So far, at least 70 families of CTA, globally accounting for about 140 members, have been identified. Most of these CTA are expressed during spermatogenesis, but their function is still largely unknown. Epigenetic events, particularly DNA methylation, appear to be the primary mechanism regulating CTA expression in both normal and transformed cells, as well as in cancer stem cells. In view of the growing interest in CTA biology, the aim of this review is to provide the most recent information on their expression, regulation and function, together with a brief summary of the major clinical trials involving CTA as therapeutic agents. The pharmacologic modulation of CTA expression profiles on neoplastic cells by DNA hypomethylating drugs will also be discussed as a feasible approach to design new combination therapies potentially able to improve the clinical efficacy of currently adopted CTA-based immunotherapeutic regimens in cancer patients.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, Via Franco Gallini 2, 33081 Aviano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Jorritsma A, Schumacher TNM, Haanen JBAG. Immunotherapeutic strategies: the melanoma example. Immunotherapy 2011; 1:679-90. [PMID: 20635992 DOI: 10.2217/imt.09.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
T-cell-based immunotherapy can be induced by nonspecific activation, by antigen-specific immunization, or by adoptive immunotherapy. In this review, progress in these areas is discussed as based on data from clinical trials for the treatment of metastatic melanoma. Nonspecific immunotherapy has been shown to result in low, but in some cases significant, levels of objective tumor responses, and is often associated with autoimmune reactions. Antigen-specific targeting of tumors via vaccination has only resulted in low to very low levels of objective responses, and these strategies seem to have most value when the T-cell repertoire is not affected by tolerance. Finally, adoptive immunotherapy can be applied by in vitro expansion of autologous lymphocytes that have escaped tolerance or by genetic transfer of allogeneic T-cell receptors (TCRs). Autologous adoptive T-cell transfer has resulted in a very high frequency of clinical responses when combined with chemotherapy and IL-2 administration in single-center studies. Although TCR gene transfer has, until now, only resulted in a low frequency of clinical responses, it does have a broader application potential, and optimization of this strategy is likely to improve its efficacy.
Collapse
Affiliation(s)
- Annelies Jorritsma
- Division of Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
89
|
Targeted cancer therapy: dendritic cell metabolism. Ther Deliv 2011; 2:133-6. [PMID: 22833938 DOI: 10.4155/tde.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
90
|
Karbach J, Neumann A, Atmaca A, Wahle C, Brand K, von Boehmer L, Knuth A, Bender A, Ritter G, Old LJ, Jäger E. Efficient in vivo priming by vaccination with recombinant NY-ESO-1 protein and CpG in antigen naive prostate cancer patients. Clin Cancer Res 2010; 17:861-70. [PMID: 21163871 DOI: 10.1158/1078-0432.ccr-10-1811] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE NY-ESO-1, one of the most immunogenic tumor antigens, is expressed in 15% to 25% of metastatic prostate cancers. The immunological and clinical effects of vaccination with recombinant NY-ESO-1 protein combined with CpG as adjuvant were evaluated. EXPERIMENTAL DESIGN In a phase I clinical study, patients with advanced prostate cancer were vaccinated with recombinant NY-ESO-1 protein (100 μg) mixed with CpG 7909 (2.5 mg) every 3 weeks intradermally for 4 doses. Objectives of the study were the safety of the vaccine and changes of specific humoral and cellular immunological responses to NY-ESO-1 in relation to detectable NY-ESO-1 expression in the individual tumor. RESULTS All 12 baseline sero-negative patients developed high-titer NY-ESO-1 antibody responses. B-cell epitope mapping identified NY-ESO-1 p91-110 to be recognized most frequently by vaccine-induced antibodies. Two patients developed significant antibody titers against the adjuvant CpG. NY-ESO-1-specific CD4+ and/or CD8+ T-cell responses were induced in 9 patients (69%). Five of these 9 patients did not express NY-ESO-1 in the autologous tumor. Postvaccine CD8+ T-cell clones recognized and lyzed HLA-matched tumor cell lines in an antigen-specific manner. CONCLUSION Our data provide clear evidence for the capacity of NY-ESO-1 protein/CpG vaccine to induce integrated antigen-specific immune responses in vivo and to efficiently prime CD8+ T-cell responses in NY-ESO-1 antigen-negative patients. Our results may also support further clinical vaccination protocols with NY-ESO-1 protein not only focused on the treatment of existing cancer, but also to prevent further development of NY-ESO-1 positive cancers in vivo.
Collapse
Affiliation(s)
- Julia Karbach
- II. Medizinische Klinik, Hämatologie - Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Tsuji T, Matsuzaki J, Kelly MP, Ramakrishna V, Vitale L, He LZ, Keler T, Odunsi K, Old LJ, Ritter G, Gnjatic S. Antibody-Targeted NY-ESO-1 to Mannose Receptor or DEC-205 In Vitro Elicits Dual Human CD8+ and CD4+ T Cell Responses with Broad Antigen Specificity. THE JOURNAL OF IMMUNOLOGY 2010; 186:1218-27. [DOI: 10.4049/jimmunol.1000808] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
92
|
Widenmeyer M, Shebzukhov Y, Haen SP, Schmidt D, Clasen S, Boss A, Kuprash DV, Nedospasov SA, Stenzl A, Aebert H, Wernet D, Stevanović S, Pereira PL, Rammensee HG, Gouttefangeas C. Analysis of tumor antigen-specific T cells and antibodies in cancer patients treated with radiofrequency ablation. Int J Cancer 2010; 128:2653-62. [PMID: 20715115 DOI: 10.1002/ijc.25601] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/20/2010] [Indexed: 01/22/2023]
Abstract
Radiofrequency (RF) ablation is a minimally invasive technique routinely applied for the treatment of primary and secondary liver tumors. It induces cell death by thermal coagulative necrosis of tumor tissues, whereas cellular metabolism can still take place in a transition zone surrounding the necrotic area. An increase in heat shock protein expression occurs shortly after treatment, suggesting that the induction of activating signals may stimulate the host immune system. In addition, various effects on immune effectors have also been observed, including stimulation of tumor-directed T lymphocytes. Here, we prospectively assessed the activation of tumor antigen-specific antibodies, as well as antigen-specific CD4(+) and CD8(+) T cells in patients suffering from primary or secondary malignancies and treated by RF ablation with or without concomitant chemotherapy. An increase of antibodies (in 4 patients of 49), CD4(+) T cells or CD8(+) T cells (in 2 patients of 49) could be detected several weeks to months following intervention. These findings suggest that in addition to the local control of tumor growth, RF ablation can provide the appropriate conditions for activating tumor-antigen specific immune responses.
Collapse
Affiliation(s)
- Melanie Widenmeyer
- Department of Immunology, Institute for Cell Biology, Eberhard Karls University, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Three novel NY-ESO-1 epitopes bound to DRB1*0803, DQB1*0401 and DRB1*0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients. Vaccine 2010; 28:5338-46. [PMID: 20665979 DOI: 10.1016/j.vaccine.2010.05.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87-100, DQB1*0401-restricted NY-ESO-1 95-107 and DRB1*0803-restricted NY-ESO-1 124-134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination.
Collapse
|
94
|
Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. THE JOURNAL OF EXPERIMENTAL MEDICINE 2010. [PMID: 20819923 DOI: 10.1084/jem.20100637.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The paradoxical coexistence of spontaneous tumor antigen-specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1-specific CD8(+) T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1-specific CD8(+) T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1(+) NY-ESO-1-specific CD8(+) T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3(+)PD-1(+) NY-ESO-1-specific CD8(+) T cells are more dysfunctional than Tim-3(-)PD-1(+) and Tim-3(-)PD-1(-) NY-ESO-1-specific CD8(+) T cells, producing less IFN-γ, TNF, and IL-2. Tim-3-Tim-3L blockade enhanced cytokine production by NY-ESO-1-specific CD8(+) T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3-Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1-specific CD8(+) T cells upon prolonged antigen stimulation and acted in synergy with PD-1-PD-L1 blockade. Collectively, our findings support the use of Tim-3-Tim-3L blockade together with PD-1-PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.
Collapse
Affiliation(s)
- Julien Fourcade
- Department of Medicine and Division of Hematology/Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Gjerstorff MF, Burns J, Ditzel HJ. Cancer-germline antigen vaccines and epigenetic enhancers: future strategies for cancer treatment. Expert Opin Biol Ther 2010; 10:1061-75. [PMID: 20420535 DOI: 10.1517/14712598.2010.485188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IMPORTANCE OF THE FIELD Immunotherapy holds great potential for disseminated cancer, and cancer-germline (CG) antigens are among the most promising tumor targets. They are widely expressed in different cancer types and are essentially tumor-specific, since their expression in normal tissues is largely restricted to immune-privileged sites. Although the therapeutic potential of these antigens may be compromised by their highly heterogeneous expression in many tumors and low frequency in some cancers, recent developments suggest that tumor-cell-selective enhancement of CG antigen gene expression can be achieved using epigenetic modifiers. AREAS COVERED IN THIS REVIEW We provide an overview of the potential of CG antigens as targets for cancer immunotherapy, including advantages and disadvantages. We also discuss the current state of development of CG antigen vaccines, and the potential synergistic effect of combining CG antigen immunotherapeutic strategies with epigenetic modifiers. WHAT THE READER WILL GAIN The reader will gain an overview of the past, present and future role of CG antigens in cancer immunotherapy. TAKE HOME MESSAGE Chemoimmunotherapy using epigenetic drugs and CG antigen vaccines may be a useful approach for treating cancer.
Collapse
|
96
|
Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, Kirkwood JM, Kuchroo V, Zarour HM. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. ACTA ACUST UNITED AC 2010; 207:2175-86. [PMID: 20819923 PMCID: PMC2947081 DOI: 10.1084/jem.20100637] [Citation(s) in RCA: 1004] [Impact Index Per Article: 71.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The paradoxical coexistence of spontaneous tumor antigen–specific immune responses with progressive disease in cancer patients furthers the need to dissect the molecular pathways involved in tumor-induced T cell dysfunction. In patients with advanced melanoma, we have previously shown that the cancer-germline antigen NY-ESO-1 stimulates spontaneous NY-ESO-1–specific CD8+ T cells that up-regulate PD-1 expression. We also observed that PD-1 regulates NY-ESO-1–specific CD8+ T cell expansion upon chronic antigen stimulation. In the present study, we show that a fraction of PD-1+ NY-ESO-1–specific CD8+ T cells in patients with advanced melanoma up-regulates Tim-3 expression and that Tim-3+PD-1+ NY-ESO-1–specific CD8+ T cells are more dysfunctional than Tim-3−PD-1+ and Tim-3−PD-1− NY-ESO-1–specific CD8+ T cells, producing less IFN-γ, TNF, and IL-2. Tim-3–Tim-3L blockade enhanced cytokine production by NY-ESO-1–specific CD8+ T cells upon short ex vivo stimulation with cognate peptide, thus enhancing their functional capacity. In addition, Tim-3–Tim-3L blockade enhanced cytokine production and proliferation of NY-ESO-1–specific CD8+ T cells upon prolonged antigen stimulation and acted in synergy with PD-1–PD-L1 blockade. Collectively, our findings support the use of Tim-3–Tim-3L blockade together with PD-1–PD-L1 blockade to reverse tumor-induced T cell exhaustion/dysfunction in patients with advanced melanoma.
Collapse
Affiliation(s)
- Julien Fourcade
- Department of Medicine and Division of Hematology/Oncology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Akers SN, Odunsi K, Karpf AR. Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol 2010; 6:717-32. [PMID: 20465387 DOI: 10.2217/fon.10.36] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cancer germline (CG; also known as cancer-testis) antigen genes are normally expressed in germ cells and trophoblast tissues and are aberrantly expressed in a variety of human malignancies. CG antigen genes have high clinical relevance as they encode a class of immunogenic and highly selective tumor antigens. CG antigen-directed immunotherapy is undergoing clinical evaluation for the treatment of a number of solid tumor malignancies and has been demonstrated to be safe, provoke immune responses and be of therapeutic benefit. Achieving an improved understanding of the mechanisms of CG antigen gene regulation will facilitate the continued development of targeted therapeutic approaches against tumors expressing these antigens. Substantial evidence suggests epigenetic mechanisms, particularly DNA methylation, as a primary regulator of CG antigen gene expression in normal and cancer cells as well as in stem cells. The roles of sequence-specific transcription factors and signal transduction pathways in controlling CG antigen gene expression are less clear but are emerging. A combinatorial therapeutic approach involving epigenetic modulatory drugs and CG antigen immunotherapy is suggested based on these data and is being actively pursued. In this article, we review the mechanisms of CG antigen gene regulation and discuss the implications of these mechanisms for the development of cancer immunotherapy approaches targeting CG antigens.
Collapse
Affiliation(s)
- Stacey N Akers
- Department of Gynecological Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | |
Collapse
|
98
|
Lin Y, Gallardo HF, Ku GY, Li H, Manukian G, Rasalan TS, Xu Y, Terzulli SL, Old LJ, Allison JP, Houghton AN, Wolchok JD, Yuan J. Optimization and validation of a robust human T-cell culture method for monitoring phenotypic and polyfunctional antigen-specific CD4 and CD8 T-cell responses. Cytotherapy 2010; 11:912-22. [PMID: 19903103 DOI: 10.3109/14653240903136987] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND AIMS Monitoring cellular immune responses is one prerequisite for the rational development of cancer vaccines. METHODS We describe an extensive effort to optimize and validate quantitatively an in vitro T-cell culture method by determining the phenotype and function of both CD4(+) and CD8(+) T cells, including measurement of the phenotype markers CCR7, CD45RA, CD28 and CD27 and the functional markers interferon (IFN)-gamma, interleukin (IL)-2, macrophage inflammatory protein (MIP)-1beta, tumor necrosis factor (TNF)-alpha and CD107a. RESULTS Autologous peripheral blood mononuclear cells (PBMC) were potent stimulators that expanded antigen (Ag)-specific CD8(+) T cells during short-term culture with the addition of IL-2 and IL-15 cytokines. Polyfunctional Ag-specific CD4(+) and CD8(+) T cells were detectable using this method. CONCLUSIONS Our culture system represents a robust human T-cell culture protocol that permits phenotypic, quantitative and qualitative evaluation of vaccine-induced CD4(+) and CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Yun Lin
- Ludwig Center for Cancer Immunotherapy, Immunology Program, Sloan-Kettering Institute, Newy York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Natsume A, Kondo Y, Ito M, Motomura K, Wakabayashi T, Yoshida J. Epigenetic aberrations and therapeutic implications in gliomas. Cancer Sci 2010; 101:1331-6. [PMID: 20384628 PMCID: PMC11159342 DOI: 10.1111/j.1349-7006.2010.01545.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 12/24/2022] Open
Abstract
Almost all cancer cells have multiple epigenetic abnormalities, which combine with genetic changes to affect many cellular processes, including cell proliferation and invasion, by silencing tumor-suppressor genes. In this review, we focus on the epigenetic mechanisms of DNA hypomethylation and CpG island hypermethylation in gliomas. Aberrant hypermethylation in promoter CpG islands has been recognized as a key mechanism involved in the silencing of cancer-associated genes and occurs at genes with diverse functions related to tumorigenesis and tumor progression. Such promoter hypermethylation can modulate the sensitivity of glioblastomas to drugs and radiotherapy. As an example, the methylation of the O6-methylguanine DNA methyltransferase (MGMT) promoter is a specific predictive biomarker of tumor responsiveness to chemotherapy with alkylating agents. Further, we reviewed reports on pyrosequencing - a simple technique for the accurate and quantitative analysis of DNA methylation. We believe that the quantification of MGMT methylation by pyrosequencing might enable the selection of patients who are most likely to benefit from chemotherapy. Finally, we also evaluated the potential of de novo NY-ESO-1, the most immunogenic cancer/testis antigen (CTA) discovered thus far, as an immunotherapy target. The use of potent epigenetics-based therapy for cancer cells might restore the abnormally regulated epigenomes to a more normal state through epigenetic reprogramming. Thus, epigenetic therapy may be a promising and potent treatment for human neoplasia.
Collapse
Affiliation(s)
- Atsushi Natsume
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
100
|
Almstedt M, Blagitko-Dorfs N, Duque-Afonso J, Karbach J, Pfeifer D, Jäger E, Lübbert M. The DNA demethylating agent 5-aza-2'-deoxycytidine induces expression of NY-ESO-1 and other cancer/testis antigens in myeloid leukemia cells. Leuk Res 2010; 34:899-905. [PMID: 20381863 DOI: 10.1016/j.leukres.2010.02.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 01/20/2010] [Accepted: 02/05/2010] [Indexed: 11/19/2022]
Abstract
Azanucleoside DNA-hypomethylating agents have remarkable clinical activity in myelodysplastic syndromes and acute myeloid leukemia (AML), particularly at low, non-cytotoxic doses favoring hypomethylation over cytotoxicity. Cancer/testis antigens (CTAs) encoding immunogenic proteins are not expressed in almost all normal tissues and many tumor types, but are consistently derepressed by epigenetically active agents in various cancer cell lines. Since the expression of CTA genes is usually very low or absent in myeloid leukemias, we treated various AML cell lines with 5-aza-2'-deoxycytidine (DAC) and quantified mRNA expression of the CTAs NY-ESO-1, MAGEA1, MAGEA3 and MAGEB2. Consistent time- and dose-dependent reactivation of all 4 CTA genes was observed, with maximum mRNA levels 72-144h after treatment start. As determined by RNA microarray analyses, numerous other CTA genes (all located on the X-chromosome) were also derepressed in a time-dependent fashion by DAC. NY-ESO-1 derepression was confirmed at the protein level. By Elispot and chromium release assays we showed that the de novo expressed NY-ESO-1 protein was naturally processed and presented in a time- and dose-dependent fashion up to 8 days after the start of DAC treatment, and converted the cell lines susceptible to antigen-specific recognition by CD8+ T-cell clones. In conclusion, NY-ESO-1 and numerous other CTAs localized on the X-chromosome are readily and transiently derepressed in AML cell lines treated with DAC. The susceptibility of DAC-treated AML cell lines to antigen-specific T-cell recognition has clear implications for future clinical trials combining DAC and specific immunotherapy in AML.
Collapse
MESH Headings
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/genetics
- Antimetabolites, Antineoplastic/pharmacology
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Chromosomes, Human, X/genetics
- DNA Methylation/drug effects
- DNA, Neoplasm/drug effects
- Decitabine
- Gene Expression Regulation, Leukemic/drug effects
- Genes, X-Linked/drug effects
- HL-60 Cells/drug effects
- HL-60 Cells/metabolism
- Humans
- Leukemia, Monocytic, Acute/pathology
- Leukemia, Myeloid, Acute/pathology
- Melanoma-Specific Antigens
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Multiple Myeloma/pathology
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Neoplasm/biosynthesis
- U937 Cells/drug effects
- U937 Cells/metabolism
Collapse
Affiliation(s)
- Maika Almstedt
- Department of Medicine, Division Hematology and Oncology, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|