51
|
Paxillin and ponsin interact in nascent costameres of muscle cells. J Mol Biol 2007; 369:665-82. [PMID: 17462669 DOI: 10.1016/j.jmb.2007.03.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/13/2007] [Accepted: 03/13/2007] [Indexed: 11/30/2022]
Abstract
Muscle differentiation requires the transition from motile myoblasts to sessile myotubes and the assembly of a highly regular contractile apparatus. This striking cytoskeletal remodelling is coordinated with a transformation of focal adhesion-like cell-matrix contacts into costameres. To assess mechanisms underlying this differentiation process, we searched for muscle specific-binding partners of paxillin. We identified an interaction of paxillin with the vinexin adaptor protein family member ponsin in nascent costameres during muscle differentiation, which is mediated by an interaction of the second src homology domain 3 (SH3) domain of ponsin with the proline-rich region of paxillin. To understand the molecular basis of this interaction, we determined the structure of this SH3 domain at 0.83 A resolution, as well as its complex with the paxillin binding peptide at 1.63 A resolution. Upon binding, the paxillin peptide adopts a polyproline-II helix conformation in the complex. Contrary to the charged SH3 binding interface, the peptide contains only non-polar residues and for the first time such an interaction was observed structurally in SH3 domains. Fluorescence titration confirmed the ponsin/paxillin interaction, characterising it further by a weak binding affinity. Transfection experiments revealed further characteristics of ponsin functions in muscle cells: All three SH3 domains in the C terminus of ponsin appeared to synergise in targeting the protein to force-transducing structures. The overexpression of ponsin resulted in altered muscle cell-matrix contact morphology, suggesting its involvement in the establishment of mature costameres. Further evidence for the role of ponsin in the maintenance of mature mechanotransduction sites in cardiomyocytes comes from the observation that ponsin expression was down-regulated in end-stage failing hearts, and that this effect was reverted upon mechanical unloading. These results provide new insights in how low affinity protein-protein interactions may contribute to a fine tuning of cytoskeletal remodelling processes during muscle differentiation and in adult cardiomyocytes.
Collapse
|
52
|
|
53
|
Tatsumi Y, Cho YY, He Z, Mizuno H, Choi HS, Bode AM, Dong Z. Involvement of the paxillin pathway in JB6 Cl41 cell transformation. Cancer Res 2006; 66:5968-74. [PMID: 16740738 PMCID: PMC2239243 DOI: 10.1158/0008-5472.can-05-4664] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Paxillin is a substrate of the Src tyrosine onco-kinase and is involved in cell transformation, cell spreading, migration, and cancer development mediated through the mitogen-activated protein kinase signaling cascades. Here, we showed that paxillin plays a key role in skin cell transformation induced by epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA). To investigate the mechanism of paxillin's role in cell transformation, we established a paxillin knockdown stably transfected cell line by introducing small interfering RNA-paxillin (si-paxillin). The si-paxillin cells displayed a dramatic suppression of cell proliferation and anchorage-independent cell transformation induced by EGF or TPA compared with si-mock control cells. In si-paxillin cells, decreased activator protein-1 (AP-1)-dependent luciferase activity corresponded with suppressed AP-1 DNA binding activity. Importantly, knockdown of paxillin inhibited EGF- or TPA-induced c-Jun phosphorylation at Ser(63) and Ser(73). Furthermore, total c-Jun protein level was dramatically decreased in si-paxillin cells and was dependent on serum deprivation time. The down-regulation of c-Jun was restored in si-paxillin cells by treatment with the proteasome inhibitor lactacystin but not by the lysosome inhibitor leupeptin. These results clearly provided evidence that paxillin regulates c-Jun protein level and plays a key role in cell transformation most likely through the regulation of c-Jun stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zigang Dong
- Requests for reprints: Zigang Dong, Hormel Institute, University of Minnesota, 801 16th Avenue NE Austin, MN 55912. Tel: 507-437-9600; Fax: 507-437-9606; E-mail:
| |
Collapse
|
54
|
Lacal JC. Changing the course of oncogenesis: The development of tyrosine kinase inhibitors. EUROPEAN JOURNAL OF CANCER SUPPLEMENTS 2006. [DOI: 10.1016/j.ejcsup.2006.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
55
|
Affiliation(s)
- Zhimin Feng
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
56
|
Tumbarello DA, Brown MC, Hetey SE, Turner CE. Regulation of paxillin family members during epithelial-mesenchymal transformation: a putative role for paxillin delta. J Cell Sci 2006; 118:4849-63. [PMID: 16219691 DOI: 10.1242/jcs.02615] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epithelial-mesenchymal transformation (EMT) and the resulting induction of cell motility are essential components of tissue remodeling during embryonic development and wound repair, as well as tumor progression to an invasive metastatic phenotype. Paxillin, a multi-domain adaptor and phosphoprotein has previously been implicated in integrin signaling and cell motility. In this report we characterize a novel paxillin gene product, paxillin delta, generated from an evolutionarily conserved internal translation initiation site within the full-length paxillin mRNA. Paxillin delta, which lacks the key phosphorylation sites Y31 and Y118 as well as the ILK and actopaxin binding LD1 motif, exhibits a restricted distribution to epithelial cell types and is downregulated during TGF-beta1-induced EMT of normal murine mammary gland (NMuMG) epithelial cells. Interestingly, Hic-5, a paxillin superfamily member, exhibits a reciprocal protein expression profile to paxillin delta. In addition, paxillin delta expression is maintained following NMuMG differentiation in a 3D collagen I gel while other focal adhesion components are downregulated. Paxillin delta protein expression coincided with reduced paxillin tyrosine phosphorylation in NMuMG cells and paxillin delta overexpression in CHO.K1 cells inhibited adhesion-mediated tyrosine phosphorylation of paxillin. Forced expression of paxillin delta in NMuMG cells suppressed cell migration whereas Hic-5 overexpression stimulated motility. Together our data support a role for paxillin delta as a naturally occurring functional antagonist of paxillin signaling potentially through suppression of a Crk-mediated pathway during processes associated with cell migration.
Collapse
Affiliation(s)
- David A Tumbarello
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
57
|
Abstract
Recent studies have demonstrated that mitogen-activated protein kinases (MAPKs), including Jun N-terminus kinase (JNK), p38 and Erk, play crucial roles in cell migration. JNK, for example, regulates cell migration by phosphorylating paxillin, DCX, Jun and microtubule-associated proteins. Studies of p38 show that this MAPK modulates migration by phosphorylating MAPK-activated protein kinase 2/3 (MAPKAP 2/3), which appears to be important for directionality of migration. Erk governs cell movement by phosphorylating myosin light chain kinase (MLCK), calpain or FAK. Thus, the different kinases in the MAPK family all seem able to regulate cell migration but by distinct mechanisms.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599-7090, USA
| | | | | |
Collapse
|
58
|
Abstract
Molecular scaffold or adaptor proteins facilitate precise spatiotemporal regulation and integration of multiple signaling pathways to effect the optimal cellular response to changes in the immediate environment. Paxillin is a multidomain adaptor that recruits both structural and signaling molecules to focal adhesions, sites of integrin engagement with the extracellular matrix, where it performs a critical role in transducing adhesion and growth factor signals to elicit changes in cell migration and gene expression.
Collapse
Affiliation(s)
- Michael C Brown
- Dept. of Cell and Developmental Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | |
Collapse
|
59
|
Huang C, Borchers CH, Schaller MD, Jacobson K. Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells. ACTA ACUST UNITED AC 2004; 164:593-602. [PMID: 14970194 PMCID: PMC2171993 DOI: 10.1083/jcb.200307081] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell adhesions play an important role in neurite extension. Paxillin, a focal adhesion adaptor protein involved in focal adhesion dynamics, has been demonstrated to be required for neurite outgrowth. However, the molecular mechanism by which paxillin regulates neurite outgrowth is unknown. Here, we show that paxillin is phosphorylated by p38MAPK in vitro and in nerve growth factor (NGF)–induced PC-12 cells. Ser 85 (Ser 83 for endogenous paxillin) is identified as one of major phosphorylation sites by phosphopeptide mapping and mass spectrometry. Moreover, expression of the Ser 85 → Ala mutant of paxillin (paxS85A) significantly inhibits NGF-induced neurite extension of PC-12 cells, whereas expression of wild-type (wt) paxillin does not influence neurite outgrowth. Further experiments indicate that cells expressing paxS85A exhibit small, clustered focal adhesions which are not normally seen in cells expressing wt paxillin. Although wt paxillin and paxS85A have the same ability to bind vinculin and focal adhesion kinase, wt paxillin more efficiently associates with Pyk2 than paxS85A. Thus, phosphorylation of paxillin is involved in NGF-induced neurite extension of PC-12 cells, probably through regulating focal adhesion organization.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, University of North Carolina, 108 Taylor Hall, CB7090 Chapel Hill, NC 27599-7090, USA
| | | | | | | |
Collapse
|
60
|
Abstract
The twenty-first century is beginning with a sharp turn in the field of cancer therapy. Molecular targeted therapies against specific oncogenic events are now possible. The BCR-ABL story represents a notable example of how research from the fields of cytogenetics, retroviral oncology, protein phosphorylation, and small molecule chemical inhibitors can lead to the development of a successful molecular targeted therapy. Imatinib mesylate (Gleevec, STI571, or CP57148B) is a direct inhibitor of ABL (ABL1), ARG (ABL2), KIT, and PDGFR tyrosine kinases. This drug has had a major impact on the treatment of chronic myelogenous leukemia (CML) as well as other blood neoplasias and solid tumors with etiologies based on activation of these tyrosine kinases. Analysis of CML patients resistant to BCR-ABL suppression by Imatinib mesylate coupled with the crystallographic structure of ABL complexed to this inhibitor have shown how structural mutations in ABL can circumvent an otherwise potent anticancer drug. The successes and limitations of Imatinib mesylate hold general lessons for the development of alternative molecular targeted therapies in oncology.
Collapse
Affiliation(s)
- Stephane Wong
- Molecular Biology Interdepartmental PhD Program/UCLA, Los Angeles, California 90095-1662, USA.
| | | |
Collapse
|
61
|
Heredia L, Lin R, Vigo FS, Kedikian G, Busciglio J, Lorenzo A. Deposition of amyloid fibrils promotes cell-surface accumulation of amyloid β precursor protein. Neurobiol Dis 2004; 16:617-29. [PMID: 15262274 DOI: 10.1016/j.nbd.2004.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 04/09/2004] [Accepted: 04/19/2004] [Indexed: 12/21/2022] Open
Abstract
Amyloid beta protein (Abeta) deposition and neuronal degeneration are characteristic pathological features of Alzheimer's disease (AD). In vitro, Abeta fibrils (fAbeta) induce neuronal degeneration reminiscent to AD, but the mechanism of neurotoxicity is unknown. Here we show that amyloid fibrils increase the level of cell-surface full-length amyloid beta precursor protein (h-AbetaPP) and secreted AbetaPP (s-AbetaPP). Pulse-chase analysis indicated that fAbeta selectively inhibited the turnover of cell-surface AbetaPP, without altering its intracellular levels. FAbeta-induced AbetaPP accumulation was not abrogated by cycloheximide, suggesting that increased protein synthesis is not critically required. Abeta fibrils sequester s-AbetaPP from the culture medium and promote its accumulation at the cell surface, indicating that binding of Abeta fibrils mediates AbetaPP accumulation. A time course analysis of Abeta treatment showed that AbetaPP level is elevated before significant cell death can be detected, while other toxic insults do not augment AbetaPP level, suggesting that AbetaPP may be specifically involved in early stages of Abeta-induced neurodegeneration. Finally, Abeta fibrils promote clustering of h-AbetaPP in abnormal focal adhesion-like (FA-like) structures that mediate neuronal dystrophy, increasing its association with the cytoskeleton. These results indicate that the interaction of Abeta fibrils with AbetaPP is an early event in the mechanism of Abeta-induced neurodegeneration that may play a significant role in AD pathogenesis.
Collapse
Affiliation(s)
- Lorena Heredia
- Laboratory of Experimental Neuropathology, Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC/CONICET, Córdoba, 5000 Argentina
| | | | | | | | | | | |
Collapse
|
62
|
Romanova LY, Hashimoto S, Chay KO, Blagosklonny MV, Sabe H, Mushinski JF. Phosphorylation of paxillin tyrosines 31 and 118 controls polarization and motility of lymphoid cells and is PMA-sensitive. J Cell Sci 2004; 117:3759-68. [PMID: 15252114 DOI: 10.1242/jcs.01206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tyrosine phosphorylation of paxillin regulates actin cytoskeleton-dependent changes in cell morphology and motility in adherent cells. In this report we investigated the involvement of paxillin tyrosine phosphorylation in the regulation of actin cytoskeleton-dependent polarization and motility of a non-adherent IL-3-dependent murine pre-B lymphocytic cell line Baf3. We also assessed the effect of phorbol myristate acetate (PMA), a phorbol ester analogous to those currently in clinical trials for the treatment of leukemia, on paxillin phosphorylation. Using tyrosine-to-phenylalanine phosphorylation mutants of paxillin and phosphospecific antibody we demonstrated that IL-3 stimulated phosphorylation of paxillin tyrosine residues 31 and 118, whereas the tyrosines 40 and 181 were constitutively phosphorylated. Phosphorylation of paxillin residues 31 and 118 was required for cell polarization and motility. In the presence of IL-3, PMA dramatically reduced the phosphorylation of residues 31 and 118, which was accompanied by inhibition of cell polarization and motility. This PMA effect was partially recapitulated by expression of exogenous tyrosine 31 and 118 mutants of paxillin. We also demonstrated that PMA inhibited the IL-3-induced and activation-dependent tyrosine phosphorylation of focal adhesion kinase. Thus, our results indicate that phosphorylation of paxillin tyrosine residues 31 and 118 regulates actin-dependent polarization and motility of pre-B Baf3 cells, both of which could be inhibited by PMA. They also suggest that inhibition of upstream signaling by PMA contributes to the decrease of paxillin phosphorylation and subsequent changes in cell morphology.
Collapse
Affiliation(s)
- Larisa Y Romanova
- Molecular Genetics Section, Laboratory of Genetics, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
63
|
Okuda K, Sato Y, Sonoda Y, Griffin JD. The TEL/ARG Leukemia Oncogene Promotes Viability and Hyperresponsiveness to Hematopoietic Growth Factors. Int J Hematol 2004; 79:138-46. [PMID: 15005341 DOI: 10.1532/ijh97.03125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The TEL/ARG oncogene associated with acute myeloid leukemia is formed by the t(1;12)(q25;p13) reciprocal translocation, which fuses part of the TEL gene to the tyrosine kinase, c-ARG. In an effort to determine the biological effects and investigate signaling of the TEL/ARG fusion protein, multiple sublines of Ba/F3 cells were generated in which a TEL/ARG complementary DNA was expressed under the control of a tetracycline-inducible promoter. Treatment of these cells with doxycycline, a tetracycline analogue, rapidly induced expression of the TEL/ARG protein. TEL/ARG was heavily phosphorylated on tyrosine residues and was also found to rapidly induce tyrosine phosphorylation of multiple cellular proteins, including rasGAP, CBL, STAT5, PI3K, SHP2, Dok, and SHC. The Ba/F3-tet-TEL/ARG cells remained interleukin (IL)-3 dependent without doxycycline but with doxycycline displayed a marked reduction in cell death in the absence of IL-3. TEL/ ARG cells also displayed an enhanced proliferative response to IL-3 and to insulin-like growth factor 1. At least in Ba/F3 cells, although the growth rate was much lower compared to that with IL-3, TEL/ARG appeared to induce some cell proliferation as an immediate consequence. Nonetheless, the hyperresponsiveness to growth factors reported here is more likely to contribute to the pathogenesis of leukemia.
Collapse
Affiliation(s)
- Keiko Okuda
- Department of Health Sciences and Preventive Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | |
Collapse
|
64
|
Shikata Y, Birukov KG, Birukova AA, Verin A, Garcia JGN. Involvement of site-specific FAK phosphorylation in sphingosine-1 phosphate- and thrombin-induced focal adhesion remodeling: role of Src and GIT. FASEB J 2004; 17:2240-9. [PMID: 14656986 DOI: 10.1096/fj.03-0198com] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sphingosine-1 phosphate (S1P) and thrombin are agents with profound but divergent effects on vascular endothelial cell (EC) barrier properties. We have previously reported that S1P-induced focal adhesion (FA) remodeling involves interactions between focal adhesion kinase (FAK), paxillin, and G-protein-coupled receptor kinase-interacting proteins GIT1 and GIT2 and suggested a critical involvement of focal adhesions in the EC barrier regulation. In this study, we examined redistribution of FA proteins (FAK, paxillin, GIT1, and GIT2) and site-specific FAK tyrosine phosphorylation in human pulmonary artery endothelial cells stimulated with thrombin. In contrast to S1P, which we have shown to induce peripheral translocation of FA proteins associated with cortical actin ring formation, thrombin caused the redistribution of FA proteins to the ends of the newly formed massive stress fibers. S1P and thrombin induced distinct patterns of FAK site-specific phosphorylation with the FAK Y576 phosphorylation site targeted by SIP challenge and phosphorylation of three FAK sites (Y397, Y576, and Y925) in response to thrombin stimulation. Pharmacological inhibition of Src with Src-specific inhibitor PP2 abolished S1P-induced translocation of FA proteins, cortical actin ring formation, and FAK [Y576] phosphorylation. However, PP2 failed to alter thrombin-induced morphological changes and exhibited only partial inhibition of FAK site-specific tyrosine phosphorylation. These observations highlight the differential mechanisms of focal adhesion protein complex remodeling and FAK activation by S1P and thrombin and link differential FA remodeling to EC barrier regulation.
Collapse
Affiliation(s)
- Yasushi Shikata
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
65
|
Sorenson CM. Interaction of bcl-2 with Paxillin through its BH4 domain is important during ureteric bud branching. J Biol Chem 2003; 279:11368-74. [PMID: 14699151 DOI: 10.1074/jbc.m310079200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
bcl-2 protects cells from apoptosis initiated by a variety of stimuli including loss of cell adhesion. Mice deficient in bcl-2 (bcl-2-/-) develop renal hypoplastic/cystic dysplasia, a condition that leads to significant morbidity and mortality in children. The precise mechanism of action of bcl-2 has not been elucidated. bcl-2 may merely facilitate survival of precursor cells and/or may play a more "active" role during morphogenesis by interacting with other proteins such as paxillin. Recent work in this laboratory demonstrated that bcl-2 directly associates with paxillin. The data presented here demonstrate that the bcl-2 homology 4 (BH4) domain, specifically amino acids 17-31, is necessary for the bcl-2 interaction with paxillin. Paxillin also associated with the BH4 domains of more closely related bcl-2 family members, bcl-xL and bcl-w, compared with that from the non-mammalian homologue ced9. Tyrosines 21 and 28 in the bcl-2 BH4 domain were essential for interaction with paxillin. In embryonic kidney organ culture, incubation with the bcl-2 BH4 domain resulted in inhibition of ureteric bud branching. Therefore, these data suggest that the interaction of bcl-2 with paxillin plays an important role during nephrogenesis.
Collapse
Affiliation(s)
- Christine M Sorenson
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792, USA.
| |
Collapse
|
66
|
MESH Headings
- Antineoplastic Agents/therapeutic use
- Benzamides
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, abl/genetics
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Signal Transduction
- Stem Cell Transplantation
- Transcription, Genetic
Collapse
Affiliation(s)
- John M Goldman
- Department of Haematology, Faculty of Medicine, Hammersmith Hospital, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
67
|
Nishihara T, Miura Y, Tohyama Y, Mizutani C, Hishita T, Ichiyama S, Uchiyama T, Tohyama K. Effects of the Tyrosine Kinase Inhibitor Imatinib Mesylate on a Bcr-Abl-Positive Cell Line: Suppression of Autonomous Cell Growth but No Effect on Decreased Adhesive Property and Morphological Changes. Int J Hematol 2003; 78:233-40. [PMID: 14604282 DOI: 10.1007/bf02983800] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expression of the Bcr-Abl oncoprotein alters various aspects of hematopoietic cells. We investigated the effects of a Bcr-Abl tyrosine kinase inhibitor, imatinib mesylate, on the proliferation, adhesive properties, and morphology of a Bcr-Abl-transferred cell line, TF-1 Bcr-Abl, in comparison with parental TF-1. First, the factor-independent growth of TF-1 Bcr-Abl was inhibited in the presence of imatinib mesylate, but this inhibition was overcome by addition of exogenous granulocyte-macrophage colony-stimulating factor. Imatinib mesylate remarkably reduced tyrosine phosphorylation of Bcr-Abl, Cbl, and Crkl in a time-dependent manner, and their complex formation also was affected. Imatinib mesylate inhibited activation of Stat5 rather than the MEK-ERK1/2 pathway. TF-1 Bcr-Abl cells exhibited a round shape, unlike TF-1, and the adhesive property to fibronectin was much lower than that of TF-1. Although the Bcr-Abl oncoprotein may be involved negatively in cell adhesion, the decreased adhesion and altered morphology of TF-1 Bcr-Abl cells were minimally affected by imatinib mesylate and seemed independent of Bcr-Abl kinase activity. The present data indicated that the Bcr-Abl-specific kinase inhibitor cannot control Bcr-Abl-induced cell alterations other than autonomous growth.
Collapse
Affiliation(s)
- Toshio Nishihara
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Sancéau J, Truchet S, Bauvois B. Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing's sarcoma cells. J Biol Chem 2003; 278:36537-46. [PMID: 12847101 DOI: 10.1074/jbc.m304300200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enhanced expression of (pro)matrix metalloproteinase-9 (MMP-9) is associated with human tumor invasion and/or metastasis. COH cells derived from a highly invasive and metastatic Ewing's sarcoma constitutively express proMMP-9. Transfection of a double stranded RNA that targets the MMP-9 mRNA into COH cells depleted the corresponding mRNA and protein as demonstrated by reverse transcriptase-PCR, enzyme-linked immunosorbent assay, and gelatin zymography. proMMP-9 extinction resulted in the following: (i) decreased spreading on extracellular matrix (fibronectin, laminin, collagen IV)-coated surfaces, (ii) inhibition of migration toward fibronectin, and (iii) induced aggregation, which was specifically disrupted by a function-blocking E-cadherin antibody. MMP-9 knockdown concomitantly resulted in increased levels of surface E-cadherin, redistribution at the plasma membrane of beta-catenin, and its physical association with E-cadherin. Moreover, induction of E-cadherin-mediated adhesion was associated with RhoA activation and changes in paxillin cytoskeleton. Finally, an inhibitor of gelatinolytic activity of pro-MMP9 did not reduce COH cell migration confirming that the enzymatic property of COH MMP-9 was not required for migration toward fibronectin. Overall, our observations define a novel critical role for proMMP-9 in providing a cellular switch between stationary and migratory cell phases.
Collapse
Affiliation(s)
- Josiane Sancéau
- Unité 365 INSERM, Institut Curie, 75248 Paris cedex 05, France
| | | | | |
Collapse
|
69
|
Deininger MWN, Druker BJ. Specific targeted therapy of chronic myelogenous leukemia with imatinib. Pharmacol Rev 2003; 55:401-23. [PMID: 12869662 DOI: 10.1124/pr.55.3.4] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by the Philadelphia translocation that fuses BCR sequences from chromosome 22 upstream of the ABL gene on chromosome 9. The chimerical Bcr-Abl protein expressed by CML cells has constitutive tyrosine kinase activity, which is essential for the pathogenesis of the disease. Imatinib, an ATP-competitive selective inhibitor of Bcr-Abl, has unprecedented efficacy for the treatment of CML. Most patients with early stage disease achieve durable complete hematological and complete cytogenetic remissions, with minimal toxicity. In contrast, responses are less stable in patients with advanced CML. This review highlights the pathogenesis of CML, its clinical features, and the development of imatinib as a specific molecularly targeted therapy. Aspects of disease monitoring and side effects are covered as well as resistance to imatinib and strategies to overcome resistance, such as alternative signal transduction inhibitors and drug combinations. Perspectives for further development are also discussed.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Benzamides
- Clinical Trials as Topic
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Piperazines/administration & dosage
- Piperazines/adverse effects
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrimidines/administration & dosage
- Pyrimidines/adverse effects
- Stem Cells
- Transplantation, Homologous
Collapse
Affiliation(s)
- Michael W N Deininger
- BMT/Leukemia Center, Oregon Health and Science University, Mailcode L592, 3181 S.W. Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
70
|
Coghill ID, Brown S, Cottle DL, McGrath MJ, Robinson PA, Nandurkar HH, Dyson JM, Mitchell CA. FHL3 is an actin-binding protein that regulates alpha-actinin-mediated actin bundling: FHL3 localizes to actin stress fibers and enhances cell spreading and stress fiber disassembly. J Biol Chem 2003; 278:24139-52. [PMID: 12704194 DOI: 10.1074/jbc.m213259200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Four and a half LIM domain (FHL) proteins are members of the LIM protein superfamily. Several FHL proteins function as co-activators of CREM/CREB transcription factors and the androgen receptor. FHL3 is highly expressed in skeletal muscle, but its function is unknown. FHL3 localized to the nucleus in C2C12 myoblasts and, following integrin engagement, exited the nucleus and localized to actin stress fibers and focal adhesions. In mature skeletal muscle FHL3 was found at the Z-line. Actin was identified as a potential FHL3 binding partner in yeast two-hybrid screening of a skeletal muscle library. FHL3 complexed with actin both in vitro and in vivo as shown by glutathione S-transferase pull-down assays and co-immunoprecipitation of recombinant and endogenous proteins. FHL3 promoted cell spreading and when overexpressed in spread C2C12 cells disrupted actin stress fibers. Increased FHL3 expression was detected in highly motile cells migrating into an artificial wound, compared with non-motile cells. The molecular mechanism by which FHL3 induced actin stress fiber disassembly was demonstrated by low speed actin co-sedimentation assays and electron microscopy. FHL3 inhibited alpha-actinin-mediated actin bundling. These studies reveal FHL3 as a significant regulator of actin cytoskeletal dynamics in skeletal myoblasts.
Collapse
Affiliation(s)
- Imogen D Coghill
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Minamide A, Boden SD, Viggeswarapu M, Hair GA, Oliver C, Titus L. Mechanism of bone formation with gene transfer of the cDNA encoding for the intracellular protein LMP-1. J Bone Joint Surg Am 2003; 85:1030-9. [PMID: 12783998 DOI: 10.2106/00004623-200306000-00007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND LIM mineralization protein-1 (LMP-1), an intracellular protein, is thought to induce secretion of soluble factors that convey its osteoinductive activity. Although evidence suggests that LMP-1 may be a critical regulator of osteoblast differentiation in vitro and in vivo, little is known about its mechanism of action. The purpose of the present study was to identify candidates for the induced secreted factors and to describe the time sequence of histological changes during bone formation induced by LMP-1. METHODS Human lung carcinoma (A549) cells were used to determine if LMP-1 overexpression would induce expression of bone morphogenetic proteins (BMPs) in vitro. Cultured A549 cells were infected with recombinant replication-deficient human type-5 adenovirus containing the LMP-1 or LacZ cDNA. Cells were subjected to immunohistochemical analysis after forty-eight hours. Finally, sixteen athymic rats received subcutaneous implants consisting of collagen disks loaded with human buffy-coat cells that were infected with one of the above two viruses. Rats were killed at intervals, and explants were studied with histological and immunohistochemical analyses. RESULTS In vitro experiments with A549 cells showed that AdLMP-1-infected cells express elevated levels of BMP-2, BMP-4, BMP-6, BMP-7, and TGF-beta1 (transforming growth factor-beta 1) protein. Human buffy-coat cells infected with AdLMP-1 also demonstrated increased levels of BMP-4 and BMP-7 protein seventy-two hours after ectopic implantation in athymic rats, confirming the in vitro hypothesis. CONCLUSIONS The osteoinductive properties of LMP-1 involve synthesis of several BMPs and the recruitment of host cells that differentiate and participate in direct membranous bone formation.
Collapse
Affiliation(s)
- Akihito Minamide
- Department of Orthopaedic Surgery, Emory Spine Center, Emory University School of Medicine, 2165 North Decatur Road, Decatur, GA 30033, USA
| | | | | | | | | | | |
Collapse
|
72
|
Diagne I, Hall SM, Kogaki S, Kielty CM, Haworth SG. Paxillin-associated focal adhesion involvement in perinatal pulmonary arterial remodelling. Matrix Biol 2003; 22:193-205. [PMID: 12782145 DOI: 10.1016/s0945-053x(03)00011-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Birth is followed by remodelling of the actin cytoskeleton of pulmonary arterial smooth muscle cells, then by extracellular matrix deposition. Hypothesising that the cell/matrix adhesions would also be remodelled, we investigated the expression, localisation and biochemical characteristics of the focal adhesion protein paxillin in vivo, in vessels from normal and pulmonary hypertensive neonatal piglets. Initially we showed that in intact porcine pulmonary arteries exposed to cytochalasin D there was a reduction filamentous actin accompanied by a reduction in paxillin-associated focal adhesions, similar to that seen in cultured pulmonary arterial smooth muscle cells. Vessels from normal and hypoxic animals were found to have two isoforms of paxillin, of 60 and 66 kDa with pI values of 6.7-4.2. Transient changes occurred during the first 14 days of life. Between birth and 6 days there was a reduction in the amount of both paxillin isoforms, a shift to more acidic pI values and an increase in paxillin phosphorylation. Simultaneously, immunostaining showed a transient reduction in paxillin expression, a change temporally and spatially associated with a previously demonstrated reduction in actin. Findings are consistent with an immediate postnatal spatial reorganisation of paxillin-associated focal adhesions. Paxillin content and remodelling was abnormal in pulmonary hypertensive arteries, the response varying according to postnatal age.
Collapse
MESH Headings
- Actins/physiology
- Aging/metabolism
- Animals
- Animals, Newborn/metabolism
- Cells, Cultured
- Chronic Disease
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Cytoskeleton/physiology
- Fetus/metabolism
- Fluorescent Antibody Technique
- Focal Adhesions/physiology
- Hypoxia/metabolism
- Immunohistochemistry/methods
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/metabolism
- Paxillin
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphorylation
- Pulmonary Artery/cytology
- Pulmonary Artery/growth & development
- Pulmonary Artery/physiology
- RNA, Messenger/metabolism
- Staining and Labeling
- Swine
Collapse
Affiliation(s)
- Ibrahima Diagne
- Vascular Biology & Pharmacology Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | | | | | | | |
Collapse
|
73
|
Shikata Y, Birukov KG, Garcia JGN. S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. J Appl Physiol (1985) 2003; 94:1193-203. [PMID: 12482769 DOI: 10.1152/japplphysiol.00690.2002] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) enhances human pulmonary endothelial monolayer integrity via Rac GTPase-dependent formation of a cortical actin ring (Garcia et al. J Clin Invest 108: 689-701, 2001). The mechanisms underlying this response are not well understood but may involve rapid redistribution of focal adhesions (FA) as attachment sites for actin filaments. We evaluate the effects of S1P on the redistribution of paxillin, FA kinase (FAK), and the G protein-coupled receptor kinase-interacting proteins (GITs). S1P induced Rac GTPase activation and cortical actin ring formation at physiological concentrations (0.5 microM), whereas 5 microM S1P caused prominent stress fiber formation and activation of Rho and Rac GTPases. S1P (0.5 microM) stimulated the tyrosine phosphorylation of FAK Y(576), and paxillin was linked to FA disruption and redistribution to the cell periphery. Furthermore, S1P induced a transient association of GIT1 with paxillin and redistribution of the GIT2-paxillin complex to the cell cortical area without affecting GIT2-paxillin association. These results suggest a role of FA rearrangement in S1P-mediated barrier enhancement via Rac- and GIT-mediated processes.
Collapse
Affiliation(s)
- Yasushi Shikata
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
74
|
Salazar EP, Hunger-Glaser I, Rozengurt E. Dissociation of focal adhesion kinase and paxillin tyrosine phosphorylation induced by bombesin and lysophosphatidic acid from epidermal growth factor receptor transactivation in Swiss 3T3 cells. J Cell Physiol 2003; 194:314-24. [PMID: 12548551 DOI: 10.1002/jcp.10204] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tyrosine phosphorylation of the nonreceptor tyrosine kinase p125 focal adhesion kinase (FAK) and the adapter protein paxillin is rapidly increased by multiple agonists, including bombesin (BOM) and lysophosphatidic acid (LPA), through heptahelical G protein-coupled receptors (GPCRs). The pathways involved remain incompletely understood. The experiments presented here were designed to test the role of epidermal growth factor receptor (EGFR) transactivation in the rapid increase of tyrosine phosphorylation of FAK and paxillin induced by GPCR agonists. Our results show that treatment with the selective EGFR tyrosine kinase inhibitor AG 1478, at concentrations that completely blocked the increase in tyrosine phosphorylation of these proteins induced by EGF, did not affect the stimulation of tyrosine phosphorylation of either FAK or paxillin induced by multiple GPCR agonists including LPA, BOM, vasopressin, bradykinin, and endothelin. Similar results were obtained when Swiss 3T3 cells were treated with another highly specific inhibitor of the EGF receptor kinase activity, PD-158780. Collectively, our results clearly dissociate EGFR transactivation from the tyrosine phosphorylation of FAK and paxillin induced by multiple GPCR agonists.
Collapse
Affiliation(s)
- Eduardo Perez Salazar
- Department of Medicine, School of Medicine and Molecular Biology Institute, University of California, Los Angeles, California 90095-178622, USA
| | | | | |
Collapse
|
75
|
Stanglmaier M, Warmuth M, Kleinlein I, Reis S, Hallek M. The interaction of the Bcr-Abl tyrosine kinase with the Src kinase Hck is mediated by multiple binding domains. Leukemia 2003; 17:283-9. [PMID: 12592324 DOI: 10.1038/sj.leu.2402778] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2002] [Accepted: 08/05/2002] [Indexed: 11/09/2022]
Abstract
Bcr-Abl is found in more than 95% of cases with CML. The mechanism of Bcr-Abl-induced transformation is not fully understood. Bcr-Abl is a constitutively active tyrosine kinase with transforming capacity for hematopoietic cells. We demonstrated recently that the Src kinase Hck interacts directly with Bcr-Abl by a kinase-independent mechanism. Moreover, the inhibition of the Hck kinase seems to block some of the transforming effects of Bcr-Abl. To identify the binding domains mediating this interaction of Hck with Bcr-Abl, we co-expressed different plasmid and baculovirus vectors containing mutants or single domains of Bcr-Abl and/or Hck in COS7 and Sf9 cells. At least four independent binding regions for Hck were identified in Bcr-Abl, one in Bcr, one in the region comprising the SH3 and SH2 domain of Abl, one in the SH1 domain of Abl, and one in the C-terminal domain of Abl. In the Hck kinase, deletion of the SH2 and/or the SH3 region abolished binding to Bcr-Abl. In contrast, deletion of the Hck SH1 domain enhanced binding of Hck to Abl and Bcr-Abl. In conclusion, the results indicate that the interaction of Bcr-Abl with Hck is mediated by a novel, complex mechanism that involves multiple domains of Bcr-Abl and the SH2 and SH3 domains of Hck.
Collapse
Affiliation(s)
- M Stanglmaier
- GSF - National Institute of Health and Environment, Klinische Kooperationsgruppe für Gentherapie, Marchioninistrasse 25, 81377 München, Germany
| | | | | | | | | |
Collapse
|
76
|
Abstract
For any tumor to become cancerous, various genetic mutations and biologic alterations must occur in the cell that in combination render it a malignant neoplasm. Small cell lung cancer (SCLC) is a neoplasm associated with several molecular and cellular abnormalities. SCLC is associated with early and frequent metastasis as well as a poor ultimate response to chemotherapy. New and novel therapies based on understanding the mechanisms of transformation are needed. SCLC is associated with multiple chromosomal abnormalities, the most common of which is chromosome 3p deletion, as well as with abnormal oncogenes and tumor-suppressor genes. Along with the genetic alterations, SCLC has been shown to overexpress various cell surface receptors, including receptor tyrosine kinases (RTKs), G-protein-coupled receptors, integrins, and others. Some downstream molecules are also activated, such as phosphatidylinositol 3'-kinase, and would serve as good candidates for therapeutic strategies.
Collapse
Affiliation(s)
- Martin Sattler
- Department of Medical Oncology, Division of Thoracic Oncology Program, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
77
|
Aberrant activation of focal adhesion proteins mediates fibrillar amyloid beta-induced neuronal dystrophy. J Neurosci 2003. [PMID: 12533609 DOI: 10.1523/jneurosci.23-02-00493.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal dystrophy is a pathological hallmark of Alzheimer's disease (AD) that is not observed in other neurodegenerative disorders that lack amyloid deposition. Treatment of cortical neurons with fibrillar amyloid beta (Abeta) peptides induces progressive neuritic dystrophy accompanied by a marked loss of synaptophysin immunoreactivity (Grace et al., 2002). Here, we report that fibrillar Abeta-induced neuronal dystrophy is mediated by the activation of focal adhesion (FA) proteins and the formation of aberrant FA structures adjacent to Abeta deposits. In the AD brain, activated FA proteins are observed associated with the majority of senile plaques. Clustered integrin receptors and activated paxillin (phosphorylated at Tyr-31) and focal adhesion kinase (phosphorylated at Tyr-297) are mainly detected in dystrophic neurites surrounding Abeta plaque cores, where they colocalize with hyperphosphorylated tau. Deletion experiments demonstrated that the presence of the LIM domains in the paxillin C terminus and the recruitment of the protein-Tyr phosphatase (PTP)-PEST to the FA complex are required for Abeta-induced neuronal dystrophy. Therefore, both paxillin and PTP-PEST appear to be critical elements in the generation of the dystrophic response. Paxillin is a scaffolding protein to which other FA proteins bind, leading to the formation of the FA contact and initiation of signaling cascades. PTP-PEST plays a key role in the dynamic regulation of focal adhesion contacts in response to extracellular cues. Thus, in the AD brain, fibrillar Abeta may induce neuronal dystrophy by triggering a maladaptive plastic response mediated by FA protein activation and tau hyperphosphorylation.
Collapse
|
78
|
Barnes DJ, Melo JV. Cytogenetic and molecular genetic aspects of chronic myeloid leukaemia. Acta Haematol 2003; 108:180-202. [PMID: 12432215 DOI: 10.1159/000065655] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chronic myeloid leukaemia (CML) is caused by the product of the BCR-ABL oncogene, located on the Philadelphia (Ph) chromosome. BCR-ABL is generated as a result of a reciprocal t(9;22) chromosomal translocation. The mechanisms responsible for this illegitimate recombination event remain elusive but are presumed to require a close spatial association of the translocation partners (chromosomes 9 and 22). BCR-ABL fusion transcripts can be detected by a sensitive reverse transcription-polymerase chain reaction (RT-PCR) in the leucocytes of some healthy individuals suggesting that chromosomal translocations may occur frequently in the general population. The presence of BCR-ABL fusion transcripts does not imply that the individual will inevitably develop CML since other conditions must be favourable for expansion of the abnormal clone. Breakpoints in the ABL gene occur within a 5' segment. BCR-ABL fusion transcripts lack ABL exon a1 and consist of BCR exons fused directly to ABL exon a2. The breakpoints in the BCR gene on chromosome 22 are found within three defined regions. Depending on the position of the BCR breakpoint, fusion genes are generated that encode 190-, 210- or 230-kD forms of the Bcr-Abl tyrosine kinase. Since the ABL component of the fusion gene is largely invariant, it follows that variability in disease phenotype may be due to protein sequences encoded by the translocation partner, BCR. Different disease phenotypes are associated with each of the three Bcr-Abl oncoproteins, p190(Bcr-Abl), p210(Bcr-Abl )and p230(Bcr-Abl). Mechanisms associated with malignant transformation include altered cellular adhesion, activation of mitogenic signalling pathways, inhibition of apoptosis and proteasomal degradation of physiologically important cellular proteins. CML is subject to an inexorable progression from an 'indolent' chronic phase to a terminal blast crisis. Disease progression is presumed to be associated with the phenomenon of genomic instability.
Collapse
MESH Headings
- Apoptosis
- Chromosome Breakage
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Peptide Hydrolases/metabolism
- Signal Transduction
- Translocation, Genetic
Collapse
Affiliation(s)
- David J Barnes
- Department of Haematology, Faculty of Medicine, Imperial College of Science, Technology & Medicine, Hammersmith Hospital, London, UK
| | | |
Collapse
|
79
|
Salesse S, Verfaillie CM. Mechanisms underlying abnormal trafficking and expansion of malignant progenitors in CML: BCR/ABL-induced defects in integrin function in CML. Oncogene 2002; 21:8605-11. [PMID: 12476307 DOI: 10.1038/sj.onc.1206088] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephanie Salesse
- Stem Cell Institute, Cancer Center, Minneapolis, Minnesota, MN 55455, USA
| | | |
Collapse
|
80
|
Bäckesjö CM, Vargas L, Superti-Furga G, Smith CI. Phosphorylation of Bruton's tyrosine kinase by c-Abl. Biochem Biophys Res Commun 2002; 299:510-5. [PMID: 12445832 DOI: 10.1016/s0006-291x(02)02643-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bruton's tyrosine kinase (Btk) is necessary for B-lymphocyte development. Mutation in the gene coding for Btk causes X-linked agammaglobulinemia (XLA) in humans. Similar to Btk, c-Abl is a tyrosine kinase shuttling between the cytoplasm and the nucleus where it is involved in different functions depending on the localization. In this report we describe for the first time that c-Abl and Btk physically interact and that c-Abl can phosphorylate tyrosine 223 in the SH3 domain of Btk. Interestingly, the Btk sequence matched a v-Abl substrate [correction] identified from a randomized peptide library and was also highly related to a number of previously found c-Abl substrates.
Collapse
Affiliation(s)
- Carl Magnus Bäckesjö
- Clinical Research Center, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden.
| | | | | | | |
Collapse
|
81
|
Sawada K, Morishige KI, Tahara M, Ikebuchi Y, Kawagishi R, Tasaka K, Murata Y. Lysophosphatidic acid induces focal adhesion assembly through Rho/Rho-associated kinase pathway in human ovarian cancer cells. Gynecol Oncol 2002; 87:252-9. [PMID: 12468322 DOI: 10.1006/gyno.2002.6831] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The level of lysophosphatidic acid (LPA) is elevated in patients with ovarian cancer, and LPA has been reported to have a pivotal role in cancer dissemination. In the current study, the effect of LPA on the motility of ovarian cancer cells was investigated. METHODS We analyzed the effects of LPA on the migration activity, the focal adhesion formation, and the tyrosine phosphorylation of focal adhesion proteins in human ovarian cancer cell lines Caov-3 and OVCAR-3. Inhibitors of the small GTPase Rho, one of its downstream effectors (Rho-associated kinase (ROCK)), myosin light chain kinase (MLCK), and myosin light chain (MLC) phosphatase were used to examine the mechanism of LPA-induced cellular effects. RESULTS LPA enhanced the migration of ovarian cancer cells and facilitated their invasion. Rho and ROCK played essential roles in the migratory process, as evidenced by the inhibition of migration and focal adhesion formation of cancer cells by Clostridium botulinum C3 exoenzyme (C3), an inhibitor of Rho, or Y-27632, an inhibitor of ROCK. LPA also evoked the formation of focal adhesions and tyrosine phosphorylation of focal adhesion kinase and paxillin, all of which were inhibited by C3 or Y-27632. CONCLUSION These results suggest that LPA induced the migration of ovarian cancer cells, at least in part, through accelerated formation of focal adhesions mediated by Rho/ROCK-induced actomyosin contractility. This study may provide the basis for new therapies to control the metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
82
|
Ambroise Y, Yaspan B, Ginsberg MH, Boger DL. Inhibitors of cell migration that inhibit intracellular paxillin/alpha4 binding: a well-documented use of positional scanning libraries. CHEMISTRY & BIOLOGY 2002; 9:1219-26. [PMID: 12445772 DOI: 10.1016/s1074-5521(02)00246-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Screening combinatorial libraries for inhibition of Paxillin binding to the cytoplasmic tail of the integrin alpha4 provided the first inhibitors of this protein-protein interaction implicated in enhanced rates of cell migration and chronic inflammation. The preparation of substructure analogs of the lead identified features required for activity, those available for modification, and those that may be removed. The most potent lead structure was shown to inhibit alpha(4)beta(1)-mediated human Jurkat T cell migration in a dose-dependent manner, validating the intracellular Paxillin/alpha4 interaction as a useful and unique target for therapeutic intervention. Moreover, the lead structure emerged from a library that was prepared in two formats: (1) a traditional small mixture format composed of 100 mixtures of 10 compounds and (2) a positional scanning library. Their parallel testing provided the rare opportunity to critically compare two approaches.
Collapse
Affiliation(s)
- Yves Ambroise
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
83
|
Ptasznik A, Urbanowska E, Chinta S, Costa MA, Katz BA, Stanislaus MA, Demir G, Linnekin D, Pan ZK, Gewirtz AM. Crosstalk between BCR/ABL oncoprotein and CXCR4 signaling through a Src family kinase in human leukemia cells. J Exp Med 2002; 196:667-78. [PMID: 12208881 PMCID: PMC2193994 DOI: 10.1084/jem.20020519] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Revised: 06/24/2002] [Accepted: 07/22/2002] [Indexed: 11/13/2022] Open
Abstract
Stromal-derived factor (SDF)-1 and its G protein-coupled receptor, CXCR4, regulate stem/progenitor cell migration and retention in the marrow and are required for hematopoiesis. We show here an interaction between CXCR4 and the Src-related kinase, Lyn, in normal progenitors. We demonstrate that CXCR4-dependent stimulation of Lyn is associated with the activation of phosphatidylinositol 3-kinase (PI3-kinase). This chemokine signaling, which involves a Src-related kinase and PI3-kinase, appears to be a target for BCR/ABL, a fusion oncoprotein expressed only in leukemia cells. We show that the binding of phosphorylated BCR/ABL to Lyn results in the constitutive activation of Lyn and PI3-kinase, along with a total loss of responsiveness of these kinases to SDF-1 stimulation. Inhibition of BCR/ABL tyrosine kinase with STI571 restores Lyn responsiveness to SDF-1 signaling. Thus, BCR/ABL perturbs Lyn function through a tyrosine kinase-dependent mechanism. Accordingly, the blockade of Lyn tyrosine kinase inhibits both BCR/ABL-dependent and CXCR4-dependent cell movements. Our results demonstrate, for the first time, that Lyn-mediated pathological crosstalk exists between BCR/ABL and the CXCR4 pathway in leukemia cells, which disrupts chemokine signaling and chemotaxis, and increases the ability of immature cells to escape from the marrow. These results define a Src tyrosine kinases-dependent mechanism whereby BCR/ABL (and potentially other oncoproteins) dysregulates G protein-coupled receptor signaling and function of mammalian precursors.
Collapse
Affiliation(s)
- Andrzej Ptasznik
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6100, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Shet AS, Jahagirdar BN, Verfaillie CM. Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia 2002; 16:1402-11. [PMID: 12145676 DOI: 10.1038/sj.leu.2402577] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2001] [Accepted: 08/31/2001] [Indexed: 11/09/2022]
Abstract
Chronic myelogenous leukemia (CML), characterized by the BCR-ABL gene rearrangement, has been extensively studied. Significant progress has been made in the area of BCR-ABL-mediated intracellular signaling, which has led to a better understanding of BCR-ABL-mediated clinical features in chronic phase CML. Disease progression and blast crisis CML is associated with characteristic non-random cytogenetic and molecular events. These can be viewed as increased oncogenic activity or loss of tumor suppressor activity. However, what causes transformation and disease progression to blast crisis is only poorly understood. This is in part due to the lack of a good in vivo model of chronic phase CML even though animal models developed over the last few years have started to provide insights into blast crisis development. Thus, additional in vitro and in vivo studies will be needed to provide a complete understanding of the contribution of BCR-ABL and other genes to disease progression and to improve therapeutic approaches for blast crisis CML.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blast Crisis/genetics
- Blast Crisis/pathology
- Cell Differentiation
- Chromosome Aberrations
- DNA Repair
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/physiology
- Genes, Tumor Suppressor
- Hematopoietic Stem Cells/pathology
- Humans
- Immunologic Surveillance
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Knockout
- Models, Animal
- Models, Biological
- Neoplastic Stem Cells/pathology
- Oncogenes
- Signal Transduction
Collapse
Affiliation(s)
- A S Shet
- Stem Cell Institute and Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
85
|
Cheng K, Kurzrock R, Qiu X, Estrov Z, Ku S, Dulski KM, Wang JYJ, Talpaz M. Reduced focal adhesion kinase and paxillin phosphorylation in BCR-ABL-transfected cells. Cancer 2002; 95:440-50. [PMID: 12124845 DOI: 10.1002/cncr.10670] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND BCR-ABL formation is critical to oncogenic transformation in chronic myelogenous leukemia and has been implicated as a key event leading to alterations in cytoskeletal structures and adhesion in the leukemic cells. The authors therefore investigated the effect of p210(BCR-ABL) on actin polymerization as well as on the expression and phosphorylation state of the adhesion proteins paxillin and focal adhesion kinase (FAK). METHODS Transfection with BCR-ABL constructs abrogated the ability of NIH 3T3 fibroblasts to adhere and the cells underwent striking morphologic changes. RESULTS Scanning electron microscopy revealed that the cells lost their elongated appearance and became rounded. This alteration was associated with significantly reduced actin polymerization. In addition, steady-state levels of paxillin and FAK protein were increased. However, while the overall level of phosphotyrosines was also increased, the amount of tyrosine phosphorylated paxillin and FAK was reduced in the BCR-ABL-transfected cells as compared to the parental cells. Culture on extracellular fibronectin matrix partially reversed the morphologic changes and resulted in a return, albeit incomplete, of filamentous actin in BCR-ABL-transfected 3T3 fibroblasts. In addition, phosphorylation of paxillin and FAK in the BCR-ABL-transfected NIH 3T3 cells was restored. CONCLUSIONS The authors conclude that, in the current system, transfection of BCR-ABL attenuates FAK and paxillin phosphorylation and reduces actin polymerization, events accompanied by significant alterations in cellular morphology. The observation that exposure of the cells to fibronectin partially reverses all these changes suggests that the focal adhesion proteins and actin structures nevertheless remain responsive to signaling from the outside.
Collapse
Affiliation(s)
- Keding Cheng
- Department of Bioimmunotherapy, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Era T. Bcr-Abl is a "molecular switch" for the decision for growth and differentiation in hematopoietic stem cells. Int J Hematol 2002; 76:35-43. [PMID: 12138893 DOI: 10.1007/bf02982716] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal disorder originating in the pluripotent hematopoietic stem cell (HSC), the hallmark of which is the constitutively activated p210-type of Bcr-Abl tyrosine kinase protein. Studies in recent years have helped us to understand the molecular processes involved in the initiation and progression of CML. Although a great amount of knowledge has been accumulated, the effect of Bcr-Abl on the HSC is still unclear. We have developed an in vitro system that mirrors the chronic phase of CML with a combination of in vitro embryonic stem cell differentiation and tetracycline-inducible Bcr-Abl expression. Enforced Bcr-Abl expression was sufficient to increase the number of both multilineage progenitors and myeloid progenitors. The current system is powerful for analyzing the genetic changes in hematopoietic development. This review focuses on how Bcr-Abl affects HSCs and how Bcr-Abl expression alters the properties of HSCs.
Collapse
Affiliation(s)
- Takumi Era
- Stem Cell Biology Group, RIKEN Center for Development Biology, Kobe City, Hyogo, Japan.
| |
Collapse
|
87
|
Liu S, Kiosses WB, Rose DM, Slepak M, Salgia R, Griffin JD, Turner CE, Schwartz MA, Ginsberg MH. A fragment of paxillin binds the alpha 4 integrin cytoplasmic domain (tail) and selectively inhibits alpha 4-mediated cell migration. J Biol Chem 2002; 277:20887-94. [PMID: 11919182 DOI: 10.1074/jbc.m110928200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha(4) integrins play important roles in embryogenesis, hematopoiesis, cardiac development, and the immune responses. The alpha(4) integrin subunit is indispensable for these biological processes, possibly because the alpha(4) subunit regulates cellular functions differently from other integrin alpha subunits. We have previously reported that the alpha(4) cytoplasmic domain directly and tightly binds paxillin, an intracellular signaling adaptor molecule, and this interaction accounts for some of the unusual functional responses to alpha(4) integrin-mediated cell adhesion. We also have identified a conserved 9-amino acid region (Glu(983)-Tyr(991)) in the alpha(4) cytoplasmic domain that is sufficient for paxillin binding, and an alanine substitution at either Glu(983) or Tyr(991) within this region disrupted the alpha(4)-paxillin interaction and reversed the effects of the alpha(4) cytoplasmic domain on cell spreading and migration. In the current study, we have mapped the alpha(4)-binding site within paxillin using mutational analysis, and examined its effects on the alpha(4) tail-mediated functional responses. Here we report that sequences between residues Ala(176) and Asp(275) of paxillin are sufficient for binding to the alpha(4) tail. We found that the alpha(4) tail, paxillin, and FAT, the focal adhesion targeting domain of pp125(FAK), could form a ternary complex and that the alpha(4)-binding paxillin fragment, P(Ala(176)-Asp(275)), specifically blocked paxillin binding to the alpha(4) tail more efficiently than it blocked binding to FAT. Furthermore, when expressed in cells, this alpha(4)-binding paxillin fragment specifically inhibited the alpha(4) tail-stimulated cell migration. Thus, paxillin binding to the alpha(4) tail leads to enhanced cell migration and inhibition of the alpha(4)-paxillin interaction selectively blocks the alpha4-dependent cellular responses.
Collapse
Affiliation(s)
- Shouchun Liu
- Department of Vascular Biology and Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Chay KO, Park SS, Mushinski JF. Linkage of caspase-mediated degradation of paxillin to apoptosis in Ba/F3 murine pro-B lymphocytes. J Biol Chem 2002; 277:14521-9. [PMID: 11825902 DOI: 10.1074/jbc.m111639200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned the complete cDNA from mouse paxillin, a 68-kDa adapter protein found in focal adhesions. We found that paxillin was degraded by caspases in Ba/F3 cell apoptosis induced by withdrawal of interleukin-3 (IL-3), a survival factor for this cell, and by ionizing radiation. Also, paxillin was degraded in vitro by incubation with recombinant caspase-3. Western blot analyses of degradation products of overexpressed green fluorescence protein-tagged paxillin and site-specific mutants demonstrated that Asp-102 and Asp-301 were early caspase cleavage sites, and Asp-5, Asp-146, Asp-165, and Asp-222 were late cleavage sites. Overexpression of paxillin delayed apoptosis of Ba/F3 after IL-3 withdrawal. Furthermore, this anti-apoptotic effect of paxillin was augmented by a triple mutation in aspartic acids at caspase cleavage sites. These results suggest that paxillin plays a critical role in cell survival signaling and that the cleavage of paxillin by caspases might be an important event for focal adhesion disassembly during cell apoptosis, contributing to detachment, rounding, and death.
Collapse
Affiliation(s)
- Kee-Oh Chay
- Laboratory of Genetics, NCI, National Institutes of Health, Bethesda, Maryland 20852, USA
| | | | | |
Collapse
|
89
|
Denhez F, Wilcox-Adelman SA, Baciu PC, Saoncella S, Lee S, French B, Neveu W, Goetinck PF. Syndesmos, a syndecan-4 cytoplasmic domain interactor, binds to the focal adhesion adaptor proteins paxillin and Hic-5. J Biol Chem 2002; 277:12270-4. [PMID: 11805099 DOI: 10.1074/jbc.m110291200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Syndecan-4 and integrins are the primary transmembrane receptors of focal adhesions in cells adherent to extracellular matrix molecules. Syndesmos is a cytoplasmic protein that interacts specifically with the cytoplasmic domain of syndecan-4, and it co-localizes with syndecan-4 in focal contacts. In the present study we sought possible interactors with syndesmos. We find that syndesmos interacts with the focal adhesion adaptor protein paxillin. The binding of syndesmos to paxillin is direct, and these interactions are triggered by the activation of protein kinase C. Syndesmos also binds the paxillin homolog, Hic-5. The connection of syndecan-4 with paxillin through syndesmos parallels the connection between paxillin and integrins and may thus reflect the cooperative signaling of these two receptors in the assembly of focal adhesions and actin stress fibers.
Collapse
Affiliation(s)
- Fabienne Denhez
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Liu Y, Hair GA, Boden SD, Viggeswarapu M, Titus L. Overexpressed LIM mineralization proteins do not require LIM domains to induce bone. J Bone Miner Res 2002; 17:406-14. [PMID: 11874232 DOI: 10.1359/jbmr.2002.17.3.406] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rat LIM mineralization protein 1 (LMP-1, an LIM domain protein) mediates bone morphogenetic protein 6 (BMP-6) induction of bone nodule formation in fetal rat calvarial osteoblast (ROB) cultures. We have isolated the complementary DNA (cDNA) for the human homologue of LMP-1 from an adult human heart cDNA library and showed that when overexpressed it is osteoinductive in the same culture system. The recently revised cDNA sequence of Enigma, the protein product of which binds to the insulin receptor and the tyrosine kinase receptor ret, now matches the nucleotide sequence of human LMP-1 (hLMP-1). A truncated, 223 amino acid (AA) LMP-1(t) protein has identical effects as the full-length protein, despite the deletion of the LIM domains. Two splice variants of human LMP-1 have been detected. Human LMP-2 has a 119-base pair (bp) deletion between bp 325 and 444 and a 17-bp insertion at bp 444. The resulting derived protein contains 423 AA with the LIM domains intact and does not induce bone formation when overexpressed in ROB cultures. Human LMP-3 has the same 17 nucleotide insertion at bp 444, resulting in a shift in the reading frame that causes a stop codon to occur at bp 505-507. The resulting 153 AA protein does not have the LIM domains, but overexpression of hLMP-3 induces bone formation in osteoblast cultures. These findings suggest that the LIM domains are not required for LMPs to induce bone formation. In addition, a small region (36 AA) of the LMP-1 protein may be required for bone formation.
Collapse
Affiliation(s)
- Yunshan Liu
- Department of Orthopaedic Surgery, Emory University School of Medicine, Decatur, Georgia, USA
| | | | | | | | | |
Collapse
|
91
|
Aoto H, Sasaki H, Ishino M, Sasaki T. Nuclear translocation of cell adhesion kinase beta/proline-rich tyrosine kinase 2. Cell Struct Funct 2002; 27:47-61. [PMID: 11937718 DOI: 10.1247/csf.27.47] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell adhesion kinase beta (CAKbeta/PYK2) is a protein-tyrosine kinase of the focal adhesion kinase (FAK) family. Whereas FAK predominantly localizes at focal adhesions, CAK beta localizes at the perinuclear region in fibroblasts. Here we expressed in cultured cells two point mutants of CAKbeta, P717A and P859A, each of which had lost one of its two PXXP motifs, the ligand sequence for SH3 domains, found at the CAKbeta C-terminal region. We observed a remarkable change in the subcellular distribution of the P859A mutant; while that of the P717A mutant was the same as the wild type. The P859A mutant localized exclusively in the cell nucleus in all cell lines examined. Wild-type CAKbeta also accumulated in the nucleus when cells were treated with an inhibitor of the nuclear export of proteins. These results indicate that CAK beta shuttles between the cytoplasm and the nucleus. On nuclear accumulation of P859A-CAKbeta, a CAKbeta-binding protein, Hic-5, also accumulated in the nucleus. P859A-CAKbeta and co-expressed Hic-5 formed nuclear speckles, in which one other CAK beta-binding protein, p130(Cas), was also concentrated. These findings on nuclear translocation of CAK beta imply that CAKbeta may regulate nuclear processes such as transcription, particularly because Hic-5 was recently shown to be a coactivator of nuclear receptors.
Collapse
Affiliation(s)
- Hiroshi Aoto
- Department of Biochemistry, Cancer Research Institute, Sapporo Medical University, Japan.
| | | | | | | |
Collapse
|
92
|
Iwasaki T, Nakata A, Mukai M, Shinkai K, Yano H, Sabe H, Schaefer E, Tatsuta M, Tsujimura T, Terada N, Kakishita E, Akedo H. Involvement of phosphorylation of Tyr-31 and Tyr-118 of paxillin in MM1 cancer cell migration. Int J Cancer 2002; 97:330-5. [PMID: 11774284 DOI: 10.1002/ijc.1609] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrated previously that rat ascites hepatoma MM1 cells require both lysophosphatidic acid (LPA) and fibronectin (FN) for phagokinetic motility and transcellular migration and that these events are regulated through the RhoA-ROCK pathway. It remains to be elucidated, however, how the signals from both LPA and FN are integrated into cell migration. To examine this, total cellular lysates after stimulation with LPA or FN were subjected to time-course immunoblot analysis with anti-phosphotyrosine antibodies (Abs). Consequently, tyrosine-phosphorylation of paxillin was obviously persistent after stimulation with FN + LPA as compared to after stimulation with either alone. Tyrosine-phosphorylated paxillin comprised 2 components; slowly and fast migrating ones. Immunoblotting of anti-paxillin immunoprecipitates with phosphorylation site-specific Abs revealed the following: tyrosine-phosphorylation was enhanced preferentially on a slowly migrating component after stimulation with FN + LPA; this component contained phosphorylation at both tyrosine residue (Y) 31 and Y118; and phosphorylation of paxillin at Y181 was constitutive and not augmented by stimulation with either FN or LPA. Amiloride, an inhibitor of the Na+/H+ antiporter downstream of ROCK, suppressed cell motility and correspondingly paxillin tyrosine-phosphorylation at both Y31 and Y118. Paxillin phosphorylation weakly induced by FN alone, insufficient for cell migration, was not inhibited by amiloride. These results demonstrate that LPA collaborates with FN for persistent tyrosine phosphorylation of paxillin at both Y31 and Y118, regulated by the Na+/H+ antiporter downstream of ROCK and that this phosphorylated paxillin is essential for MM1 cancer cell migration.
Collapse
Affiliation(s)
- Teruo Iwasaki
- First Department of Pathology, Hyogo College of Medicine, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Kuroda N, Guo L, Toi M, Naruse K, Miyazaki E, Hayashi Y, Yoshikawa C, Ashida S, Shuin T, Enzan H. Paxillin: application of immunohistochemistry to the diagnosis of chromophobe renal cell carcinoma and oncocytoma. Appl Immunohistochem Mol Morphol 2001; 9:315-8. [PMID: 11759057 DOI: 10.1097/00129039-200112000-00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Paxillin is a cytoskeletal protein that was recently identified as a component of focal adhesions and links between F-actin and integrin. In this study, 91 renal tumors--65 conventional renal cell carcinomas (RCCs), 14 papillary RCCs, 6 chromophobe RCCs, 4 collecting duct carcinomas, 2 oncocytomas--were investigated for the immunohistochemical expression of paxillin. In a normal kidney, paxillin was predominantly expressed in the cytoplasm of distal tubules, loops of Henle, collecting ducts, and vascular smooth muscle cells. In all of the chromophobe RCCs and oncocytomas, strong expression of paxillin was observed in the tumor cytoplasm. In contrast to these tumors, conventional RCCs, papillary RCCs, and collecting duct carcinomas showed negative reactions for paxillin except for one case in each subgroup with weak reactivity. An immunoblot analysis confirmed the presence of paxillin in healthy kidney, chromophobe RCC, and oncocytoma. These data suggest that paxillin possibly plays a role in signal transductions as a focal adhesion intervening between tumor cells and the extracellular matrix in renal tumors with collecting duct phenotypes such as chromophobe RCCs and oncocytomas, but not in conventional RCCs. In addition, paxillin may be an available marker in distinguishing chromophobe RCCs from conventional or papillary RCCs.
Collapse
Affiliation(s)
- N Kuroda
- First Department of Pathology, Kochi Medical School, Nankoku City, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Schaller MD, Schaefer EM. Multiple stimuli induce tyrosine phosphorylation of the Crk-binding sites of paxillin. Biochem J 2001; 360:57-66. [PMID: 11695992 PMCID: PMC1222202 DOI: 10.1042/0264-6021:3600057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paxillin is a focal-adhesion-associated, tyrosine-phosphorylated protein. In cells transformed by the src, crk or BCR-Abl oncogenes, the phosphotyrosine content of paxillin is elevated. In normal cells paxillin functions in signalling following integrin-dependent cell adhesion or exposure to a number of stimuli, including growth factors and neuropeptides. These stimuli induce tyrosine phosphorylation of paxillin, regulating the association of Src homology 2 domain-containing signalling molecules with paxillin. There are multiple sites of tyrosine phosphorylation on paxillin. To elucidate the role of paxillin in transducing signals in response to various stimuli, it is essential to identify all of the sites of phosphorylation on paxillin and to define which residues are phosphorylated in response to distinct stimuli. We describe two new sites of tyrosine phosphorylation on paxillin, residues at positions 40 and 88. Using paxillin variants with phenylalanine substitutions at phosphorylation sites and phospho-specific paxillin antibodies, tyrosine phosphorylation of paxillin in response to distinct stimuli was examined. The results demonstrate that Tyr(31) and Tyr(118), which are binding sites for Crk, are major sites of tyrosine phosphorylation following cell adhesion or stimulation with platelet-derived growth factor or angiotensin II. Thus multiple stimuli may elicit similar signalling events downstream of paxillin.
Collapse
Affiliation(s)
- M D Schaller
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
95
|
Han J, Liu S, Rose DM, Schlaepfer DD, McDonald H, Ginsberg MH. Phosphorylation of the integrin alpha 4 cytoplasmic domain regulates paxillin binding. J Biol Chem 2001; 276:40903-9. [PMID: 11533025 DOI: 10.1074/jbc.m102665200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha4 integrins are essential for embryogenesis, hematopoiesis, inflammation, and immune response possibly because alpha4 integrins have distinct signaling properties from other integrins. Specifically, the alpha4 cytoplasmic domain binds tightly to paxillin, a signaling adaptor protein, leading to increased cell migration and an altered cytoskeletal organization that results in reduced cell spreading. The alpha4 tail contains potential phosphorylation sites clustered in its core paxillin binding region. We now report that the alpha4 tail is phosphorylated in vitro and in vivo. Furthermore, Ser(988) is a major phosphorylation site. Using antibodies specific for Ser(988)-phosphorylated alpha4, we found the stoichiometry of alpha4 phosphorylation varied in different cells. However, >60% of alpha4 was phosphorylated in Jurkat T cells. Phosphorylation at Ser(988) blocked paxillin binding to the alpha4 tail. A phosphorylation-mimicking mutant of alpha4 (alpha4S988D) blocked paxillin binding and reversed the inhibitory effect of alpha4 on cell spreading. Consequently, alpha4 phosphorylation is a biochemical mechanism to modulate paxillin binding to alpha4 integrins with consequent regulation of alpha4 integrin-dependent cellular functions.
Collapse
Affiliation(s)
- J Han
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
96
|
Liu S, Slepak M, Ginsberg MH. Binding of Paxillin to the alpha 9 Integrin Cytoplasmic Domain Inhibits Cell Spreading. J Biol Chem 2001; 276:37086-92. [PMID: 11477105 DOI: 10.1074/jbc.m105114200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha(9)beta(1) integrin is a member of the beta(1) integrin family, plays an important role in extravasation of neutrophils at sites of acute inflammation, and is required for the normal development of the lymphatic system. The alpha(9) and alpha(4) integrin subunits are most closely related and form a subfamily of integrin alpha subunits. Previously, we have reported that the alpha(4) cytoplasmic domain directly and tightly binds paxillin, an intracellular signaling adaptor molecule. This interaction accounts for some of the unusual functional responses to alpha(4) integrin-mediated cell adhesion, including stimulation of cell migration and inhibition of cell spreading and focal adhesion formation. In the current studies, we have examined the interaction between the alpha(9) cytoplasmic domain and paxillin. Here we report that the alpha(9) cytoplasmic domain binds paxillin directly and tightly and that the alpha(9)-paxillin association inhibits cell spreading. We have identified amino acid residues in the alpha(9) cytoplasmic domain, Trp(999) and Trp(1001), that are critical for paxillin binding, and alanine substitution of either Trp(999) or Trp(1001) blocks paxillin binding. Furthermore, these mutations also reverse the effect of the alpha(9) cytoplasmic domain on cell spreading. Thus, the alpha(9) and alpha(4) integrin subunits form a paxillin-binding subfamily of integrin alpha subunits, and direct binding of paxillin to the alpha(9) cytoplasmic domain mediates some of the biological activities of the alpha(9)beta(1) integrin.
Collapse
Affiliation(s)
- S Liu
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|
97
|
Rottner K, Krause M, Gimona M, Small JV, Wehland J. Zyxin is not colocalized with vasodilator-stimulated phosphoprotein (VASP) at lamellipodial tips and exhibits different dynamics to vinculin, paxillin, and VASP in focal adhesions. Mol Biol Cell 2001; 12:3103-13. [PMID: 11598195 PMCID: PMC60159 DOI: 10.1091/mbc.12.10.3103] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Actin polymerization is accompanied by the formation of protein complexes that link extracellular signals to sites of actin assembly such as membrane ruffles and focal adhesions. One candidate recently implicated in these processes is the LIM domain protein zyxin, which can bind both Ena/vasodilator-stimulated phosphoprotein (VASP) proteins and the actin filament cross-linking protein alpha-actinin. To characterize the localization and dynamics of zyxin in detail, we generated both monoclonal antibodies and a green fluorescent protein (GFP)-fusion construct. The antibodies colocalized with ectopically expressed GFP-VASP at focal adhesions and along stress fibers, but failed to label lamellipodial and filopodial tips, which also recruit Ena/VASP proteins. Likewise, neither microinjected, fluorescently labeled zyxin antibodies nor ectopically expressed GFP-zyxin were recruited to these latter sites in live cells, whereas both probes incorporated into focal adhesions and stress fibers. Comparing the dynamics of zyxin with that of the focal adhesion protein vinculin revealed that both proteins incorporated simultaneously into newly formed adhesions. However, during spontaneous or induced focal adhesion disassembly, zyxin delocalization preceded that of either vinculin or paxillin. Together, these data identify zyxin as an early target for signals leading to adhesion disassembly, but exclude its role in recruiting Ena/VASP proteins to the tips of lamellipodia and filopodia.
Collapse
Affiliation(s)
- K Rottner
- Department of Cell Biology, Gesellschaft für Biotechnologische Forschung, D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
98
|
Abstract
Paxillin is a focal adhesion-associated, phosphotyrosine-containing protein that may play a role in several signaling pathways. Paxillin contains a number of motifs that mediate protein-protein interactions, including LD motifs, LIM domains, an SH3 domain-binding site and SH2 domain-binding sites. These motifs serve as docking sites for cytoskeletal proteins, tyrosine kinases, serine/threonine kinases, GTPase activating proteins and other adaptor proteins that recruit additional enzymes into complex with paxillin. Thus paxillin itself serves as a docking protein to recruit signaling molecules to a specific cellular compartment, the focal adhesions, and/or to recruit specific combinations of signaling molecules into a complex to coordinate downstream signaling. The biological function of paxillin coordinated signaling is likely to regulate cell spreading and motility.
Collapse
Affiliation(s)
- M D Schaller
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, NC 27599, USA.
| |
Collapse
|
99
|
Damiano JS, Hazlehurst LA, Dalton WS. Cell adhesion-mediated drug resistance (CAM-DR) protects the K562 chronic myelogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition, cytotoxic drugs, and gamma-irradiation. Leukemia 2001; 15:1232-9. [PMID: 11480565 DOI: 10.1038/sj.leu.2402179] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Integrin-mediated cellular adhesion to extracellular matrix (ECM) components is an important determinant of chemotherapeutic response of human myeloma cells. Here, we demonstrate that when K562 chronic myelogenous leukemia (CML) cells are adhered to fibronectin (FN), they become resistant to apoptosis induced by the BCR/ABL inhibitors AG957 and STI-571, as well as DNA damaging agents and gamma-irradiation. This phenomenon, termed cell adhesion-mediated drug resistance (CAM-DR), was induced by adhesion through the alpha5beta1 (VLA-5) integrin. Phosphotyrosine analysis demonstrates that anti-apoptotic signaling through integrins in K562 cells is independent of the tyrosine kinases activated by BCR/ABL, with the possible exception of an unknown 80 kDa protein. Cytoprotection of FN-adhered CML cells indicates that tumor-ECM interactions may be critical for the emergence of drug-resistant tumor populations and treatment failure in this disease. Antagonists of beta1 integrin-mediated adhesion or corresponding signal transduction elements may sensitize CML cells to chemotherapy and prevent resistance to the novel BCR/ABL kinase inhibitors being used for the treatment of this disease.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis/drug effects
- Apoptosis/genetics
- Apoptosis/radiation effects
- Cell Adhesion
- Drug Resistance, Neoplasm
- Genes, abl/genetics
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/radiotherapy
- Receptors, Fibronectin/genetics
- Signal Transduction/genetics
Collapse
Affiliation(s)
- J S Damiano
- Department of Interdisciplinary Oncology, H Lee Moffitt Cancer Center and Research Institute, University of South Florida Tampa 33612, USA
| | | | | |
Collapse
|
100
|
Sommerfeldt DW, McLeod KJ, Rubin CT, Hadjiargyrou M. Differential phosphorylation of paxillin in response to surface-bound serum proteins during early osteoblast adhesion. Biochem Biophys Res Commun 2001; 285:355-63. [PMID: 11444850 DOI: 10.1006/bbrc.2001.5198] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An early signaling event during the adhesion and spreading of cells is integrin-mediated tyrosine phosphorylation of the cytoskeletal adaptor protein paxillin and the non-receptor tyrosine kinase pp125(FAK) at focal contacts. To determine the influence of surface-charge and -adsorbed adhesion proteins on this signaling pathway, paxillin phosphorylation was examined during attachment of MC3T3-E1 osteoblast-like cell onto charged and uncharged polystyrene, and on adsorbed layers of serum proteins, fibronectin (Fn), vitronectin (Vn), a mixture of Fn and Vn, and albumin. Paxillin phosphorylation was induced 2.4-fold (P < 0.05) on charged vs uncharged polystyrene only in the presence of serum proteins. Activation of paxillin via Fn or Vn alone, or in combination, resulted in significantly lower phosphorylation signals compared to whole serum (41 +/- 6.9%, P < 0.05, 45 +/- 5.9%, P < 0.05, and 76 +/- 9.8%, P < 0.075, respectively). Confocal laser microscopy confirmed increased co-localization of phosphotyrosine and paxillin at protruding lamellopodia of spreading osteoblasts on charged vs uncharged serum-pretreated polystyrene. Taken together, these data suggest that subtle differences in surface characteristics mediate effects on adhering cells via adsorbed serum proteins involving the cytoskeletal adaptor protein paxillin.
Collapse
Affiliation(s)
- D W Sommerfeldt
- Department of Orthopaedics and Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|