51
|
Majumder P, Baumeister W. Proteasomes: unfoldase-assisted protein degradation machines. Biol Chem 2020; 401:183-199. [PMID: 31665105 DOI: 10.1515/hsz-2019-0344] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 01/05/2023]
Abstract
Proteasomes are the principal molecular machines for the regulated degradation of intracellular proteins. These self-compartmentalized macromolecular assemblies selectively degrade misfolded, mistranslated, damaged or otherwise unwanted proteins, and play a pivotal role in the maintenance of cellular proteostasis, in stress response, and numerous other processes of vital importance. Whereas the molecular architecture of the proteasome core particle (CP) is universally conserved, the unfoldase modules vary in overall structure, subunit complexity, and regulatory principles. Proteasomal unfoldases are AAA+ ATPases (ATPases associated with a variety of cellular activities) that unfold protein substrates, and translocate them into the CP for degradation. In this review, we summarize the current state of knowledge about proteasome - unfoldase systems in bacteria, archaea, and eukaryotes, the three domains of life.
Collapse
Affiliation(s)
- Parijat Majumder
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
52
|
Roth P, Mason WP, Richardson PG, Weller M. Proteasome inhibition for the treatment of glioblastoma. Expert Opin Investig Drugs 2020; 29:1133-1141. [PMID: 32746640 DOI: 10.1080/13543784.2020.1803827] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Glioblastoma is a primary brain tumor with a poor prognosis despite multimodal therapy including surgery, radiotherapy and alkylating chemotherapy. Novel therapeutic options are therefore urgently needed; however, there have been various drug failures in late-stage clinical development. The proteasome represents a key target for anti-cancer therapy as successfully shown in multiple myeloma and other hematologic malignancies. AREAS COVERED This review article summarizes the preclinical and clinical development of proteasome inhibitors in the context of glioblastoma. EXPERT OPINION Early clinical trials with bortezomib ended with disappointing results, possibly because this agent does not cross the blood-brain barrier. In contrast to bortezomib and other proteasome inhibitors, marizomib is a novel drug that displays strong inhibitory properties on all enzymatic subunits of the proteasome and, most importantly, crosses the blood-brain barrier, making it a potentially very active novel agent against intrinsic brain tumors. While preclinical studies have demonstrated significant anti-glioma activity, its clinical benefit has yet to be proven. Exploiting the biological effects of proteasome inhibitors in combination with other therapeutic strategies may represent a key next step in their clinical development.
Collapse
Affiliation(s)
- Patrick Roth
- Department of Neurology, Brain Tumor Center and Comprehensive Cancer Center Zurich, University Hospital and University of Zurich , Zurich, Switzerland
| | - Warren P Mason
- Department of Medicine, Princess Margaret Cancer Centre, University of Toronto , Toronto, ON, Canada
| | - Paul G Richardson
- Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School , Boston, MA, USA
| | - Michael Weller
- Department of Neurology, Brain Tumor Center and Comprehensive Cancer Center Zurich, University Hospital and University of Zurich , Zurich, Switzerland
| |
Collapse
|
53
|
Guzmán-Téllez P, Martínez-Valencia D, Silva-Olivares A, Del Ángel RM, Serrano-Luna J, Shibayama M. Naegleria fowleri and Naegleria gruberi 20S proteasome: identification and characterization. Eur J Cell Biol 2020; 99:151085. [PMID: 32646643 DOI: 10.1016/j.ejcb.2020.151085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022] Open
Abstract
The Naegleria are ubiquitous free-living amoebae and are characterized by the presence of three phases in their biological cycle: trophozoite, cyst and flagellate. Of this genus, only Naegleria fowleri has been reported as pathogenic to humans. The proteasome is a multi-catalytic complex and is considered to be the most important structure responsible for the degradation of intracellular proteins. This structure is related to the maintenance of cellular homeostasis and, in pathogenic microorganisms, to the modulation of their virulence. Until now, the proteasome and its function have not been described for the Naegleria genus. In the current study, using bioinformatic analysis, protein sequences homologous to those reported for the subunits of the 20S proteasome in other organisms were found, and virtual modelling was used to determine their three-dimensional structure. The presence of structural and catalytic subunits of the 20S proteasome was detected by Western and dot blot assays. Its localization was observed by immunofluorescence microscopy to be mainly in the cytoplasm, and a leading role of the chymotrypsin-like catalytic activity was determined using fluorogenic peptidase assays and specific proteasome inhibitors. Finally, the role of the 20S proteasome in the proliferation and differentiation of Naegleria genus trophozoites was demonstrated.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Diana Martínez-Valencia
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Angélica Silva-Olivares
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Rosa M Del Ángel
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Av. IPN 2508, 07360 Mexico City, Mexico.
| |
Collapse
|
54
|
Shi CX, Zhu YX, Bruins LA, Bonolo de Campos C, Stewart W, Braggio E, Stewart AK. Proteasome Subunits Differentially Control Myeloma Cell Viability and Proteasome Inhibitor Sensitivity. Mol Cancer Res 2020; 18:1453-1464. [PMID: 32561655 DOI: 10.1158/1541-7786.mcr-19-1026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
Abstract
We generated eight multiple myeloma cell lines resistant to bortezomib; five acquired PSMB5 mutations. In 1,500 patients such mutations were rare clinically. To better understand disruption of proteasomes on multiple myeloma viability and drug sensitivity, we systematically deleted the major proteasome catalytic subunits. Multiple myeloma cells without PSMB5 were viable. Drug-resistant, PSMB5-mutated cell lines were resensitized to bortezomib by PSMB5 deletion, implying PSMB5 mutation is activating in its drug resistance function. In contrast, PSMB6 knockout was lethal to multiple myeloma cell lines. Depleting PSMB6 prevented splicing of the major catalytic subunits PSMB5, PSMB7, PSMB8, and PSMB10; however, PSMB6 engineered without splicing function or catalytic activity, also restored viability, inferring the contribution of PSMB6 to proteasome structure to be more important than functional activity. Supporting this, bortezomib sensitivity was restored in drug-resistant multiple myeloma cell lines by low level expression of mutated PSMB6 lacking splicing function. Loss of PSMB8 and PSMB9 was neither lethal nor restored bortezomib sensitivity. Significant codependency of PSMB5, PSMB6, and PSMB7 expression was observed. We demonstrated elevated levels of PSMB6 and 7, but not 8 and 9, in some, but not all, serial patient samples exposed to proteasome inhibitors. In summary, we show PSMB6 and PSMB7, but not PSMB5, to be essential for multiple myeloma cell survival, this dependency is structural and that upregulation or activating mutation of PSMB5, 6, and 7 confers proteasome inhibitor resistance, while depletion confers sensitivity. IMPLICATIONS: These findings support modulation of PSMB5, PSMB6, or PSMB7 expression as a new therapeutic strategy.
Collapse
Affiliation(s)
- Chang-Xin Shi
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Yuan Xiao Zhu
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Laura A Bruins
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | | | - William Stewart
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - Esteban Braggio
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona
| | - A Keith Stewart
- Department of Hematology, Mayo Clinic in Arizona, Scottsdale, Arizona. .,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
55
|
Redox States of Protein Cysteines in Pathways of Protein Turnover and Cytoskeleton Dynamics Are Changed with Aging and Reversed by Slc7a11 Restoration in Mouse Lung Fibroblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2468986. [PMID: 32587657 PMCID: PMC7298344 DOI: 10.1155/2020/2468986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Slc7a11 is the key component of system Xc−, an antiporter that imports cystine (CySS) and exports glutamate. It plays an important role in cellular defense against oxidative stress because cysteine (Cys), reduced from CySS, is used for and limits the synthesis of glutathione (GSH). We have shown that downregulation of Slc7a11 is responsible for oxidation of extracellular Cys/CySS redox potential in lung fibroblasts from old mice. However, how age-related change of Slc7a11 expression affects the intracellular redox environment of mouse lung fibroblasts remains unexplored. The purpose of this study is to evaluate the effects of aging on the redox states of intracellular proteins and to examine whether Slc7a11 contributes to the age-dependent effects. Iodoacetyl Tandem Mass Tags were used to differentially label reduced and oxidized forms of Cys residues in primary lung fibroblasts from young and old mice, as well as old fibroblasts transfected with Slc7a11. The ratio of oxidized/reduced forms (i.e., redox state) of a Cys residue was determined via multiplexed tandem mass spectrometry. Redox states of 151 proteins were different in old fibroblasts compared to young fibroblasts. Slc7a11 overexpression restored redox states of 104 (69%) of these proteins. Ingenuity Pathway Analysis (IPA) showed that age-dependent Slc7a11-responsive proteins were involved in pathways of protein translation initiation, ubiquitin-proteasome-mediated degradation, and integrin-cytoskeleton-associated signaling. Gene ontology analysis showed cell adhesion, protein translation, and organization of actin cytoskeleton were among the top enriched terms for biological process. Protein-protein interaction network demonstrated the interactions between components of the three enriched pathways predicted by IPA. Follow-up experiments confirmed that proteasome activity was lower in old cells than in young cells and that upregulation of Slc7a11 expression by sulforaphane restored this activity. This study finds that aging results in changes of redox states of proteins involved in protein turnover and cytoskeleton dynamics, and that upregulating Slc7a11 can partially restore the redox states of these proteins.
Collapse
|
56
|
Niu X, Ma S, Hu Y, Jin C. Backbone 1H, 13C and 15N resonance assignments of the proteasome lid subunit Rpn12 from Saccharomyces cerevisiae. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:147-150. [PMID: 32072453 DOI: 10.1007/s12104-020-09935-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
The 26S proteasome degrades selected polyubiquitinated proteins in the ubiquitin-proteasome system, which is the major pathway for programmed protein degradation in eukaryotic cells. The Saccharomyces cerevisiae Rpn12 locates in the lid of the 19S regulatory particle within the 26S proteasome and plays a role in recruiting the extrinsic ubiquitin receptor Rpn10. Rpn12 contains a N-terminal TPR (tetratrico peptide repeat)-like domain and a C-terminal WH (winged helix) domain. Interaction of Rpn12 with several subunits of 19S has been observed and it may play an important role in the 19S regulatory particle rearrangement after ubiquitylated substrate binding to the proteasome. Herein, we report the resonance assignments of backbone 1H, 13C and 15N atoms of the Saccharomyces cerevisiae Rpn12, which provide valuable information for further studies of the dynamics and interactions of the Rpn12 subunit using NMR techniques.
Collapse
Affiliation(s)
- Xiaogang Niu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Shuaipeng Ma
- College of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Yunfei Hu
- Wuhan Institute of Physics and Mathematics, CAS, Wuhan, 430071, China
| | - Changwen Jin
- College of Life Sciences, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
57
|
The Ubiquitin System in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:195-221. [PMID: 32274758 DOI: 10.1007/978-3-030-38266-7_8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, most prevalent in the elderly population and has a significant impact on individuals and their family as well as the health care system and the economy. While the number of patients affected by various forms of dementia including AD is on the increase, there is currently no cure. Although genome-wide association studies have identified genetic markers for familial AD, the molecular mechanisms underlying the initiation and development of both familial and sporadic AD remain poorly understood. Most neurodegenerative diseases and in particular those associated with dementia have been defined as proteinopathies due to the presence of intra- and/or extracellular protein aggregates in the brain of affected individuals. Although loss of proteostasis in AD has been known for decades, it is only in recent years that we have come to appreciate the role of ubiquitin-dependent mechanisms in brain homeostasis and in brain diseases. Ubiquitin is a highly versatile post-translational modification which regulates many aspects of protein fate and function, including protein degradation by the Ubiquitin-Proteasome System (UPS), autophagy-mediated removal of damaged organelles and proteins, lysosomal turnover of membrane proteins and of extracellular molecules brought inside the cell through endocytosis. Amyloid-β (Aβ) fragments as well as hyperphosphorylation of Tau are hallmarks of AD, and these are found in extracellular plaques and intracellular fibrils in the brain of individuals with AD, respectively. Yet, whether it is the oligomeric or the soluble species of Aβ and Tau that mediate toxicity is still unclear. These proteins impact on mitochondrial energy metabolism, inflammation, as well as a number of housekeeping processes including protein degradation through the UPS and autophagy. In this chapter, we will discuss the role of ubiquitin in neuronal homeostasis as well as in AD; summarise crosstalks between the enzymes that regulate protein ubiquitination and the toxic proteins Tau and Aβ; highlight emerging molecular mechanisms in AD as well as future strategies which aim to exploit the ubiquitin system as a source for next-generation therapeutics.
Collapse
|
58
|
Sari G, Okat Z, Sahin A, Karademir B. Proteasome Inhibitors in Cancer Therapy and their Relation to Redox Regulation. Curr Pharm Des 2019; 24:5252-5267. [PMID: 30706779 DOI: 10.2174/1381612825666190201120013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 01/25/2019] [Indexed: 01/23/2023]
Abstract
Redox homeostasis is important for the maintenance of cell survival. Under physiological conditions, redox system works in a balance and involves activation of many signaling molecules. Regulation of redox balance via signaling molecules is achieved by different pathways and proteasomal system is a key pathway in this process. Importance of proteasomal system on signaling pathways has been investigated for many years. In this direction, many proteasome targeting molecules have been developed. Some of them are already in the clinic for cancer treatment and some are still under investigation to highlight underlying mechanisms. Although there are many studies done, molecular mechanisms of proteasome inhibitors and related signaling pathways need more detailed explanations. This review aims to discuss redox status and proteasomal system related signaling pathways. In addition, cancer therapies targeting proteasomal system and their effects on redox-related pathways have been summarized.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.,Department of Genetics and Bioengineering, Faculty of Engineering, Okan University, 34959, Tuzla, I stanbul, Turkey
| | - Zehra Okat
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ali Sahin
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, Faculty of Medicine / Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| |
Collapse
|
59
|
Caloric restriction rescues yeast cells from alpha-synuclein toxicity through autophagic control of proteostasis. Aging (Albany NY) 2019; 10:3821-3833. [PMID: 30530923 PMCID: PMC6326672 DOI: 10.18632/aging.101675] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/18/2018] [Indexed: 01/31/2023]
Abstract
α-Synuclein (SNCA) is a presynaptic protein that is associated with the pathophysiology of synucleinopathies, including Parkinson's disease. SNCA is a naturally aggregation-prone protein, which may be degraded by the ubiquitin-proteasome system (UPS) and by lysosomal degradation pathways. Besides being a target of the proteolytic systems, SNCA can also alter the function of these pathways further, contributing to the progression of neurodegeneration. Deterioration of UPS and autophagy activities with aging further aggravates this toxic cycle. Caloric restriction (CR) is still the most effective non-genetic intervention promoting lifespan extension. It is known that CR-mediated lifespan extension is linked to the regulation of proteolytic systems, but the mechanisms underlying CR rescue of SNCA toxicity remain poorly understood. This study shows that CR balances UPS and autophagy activities during aging. CR enhances UPS activity, reversing the decline of the UPS activity promoted by SNCA, and keeps autophagy at homeostatic levels. Maintenance of autophagy at homeostatic levels appears to be relevant for UPS activity and for the mechanism underlying rescue of cells from SNCA-mediated toxicity by CR.
Collapse
|
60
|
Xie SC, Dick LR, Gould A, Brand S, Tilley L. The proteasome as a target for protozoan parasites. Expert Opin Ther Targets 2019; 23:903-914. [PMID: 31679410 DOI: 10.1080/14728222.2019.1685981] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The proteasome is a multi-subunit enzyme complex responsible for the turnover of short-lived, abnormal or damaged proteins in eukaryotic cells. As organisms that undergo rapid growth and cell division, protozoan parasites exist on the knife-edge of proteotoxic catastrophe and thus rely heavily on their protein quality control machinery for survival. Because of this, the proteasome has recently emerged as a desirable drug target.Area covered: This review focuses on efforts to identify protozoan parasite-specific proteasome inhibitors using substrate profiling, library screening, and in vitro evolution of resistance approaches to inform medicinal chemistry. Targeting the parasite's 20S proteasome chymotrypsin-like (β5) activity and selectively inhibiting protein turnover in parasites compared to human cells are critical properties of potent, selective inhibitors.Expert opinion: Proteasome inhibitors have the potential for rapid action against all stages, all species and all strains of plasmodium and kinetoplastid parasites. Given the high level of conservation of proteasome active sites in eukaryotes, an important challenge is achieving inhibitors that show sufficient selectivity while maintaining properties consistent with drug development.
Collapse
Affiliation(s)
- Stanley C Xie
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | | | - Alexandra Gould
- Oncology Chemistry, Takeda Pharmaceuticals International Co., Cambridge, MA, USA
| | - Stephen Brand
- Medicines for Malaria Venture, CH-1215 Geneva 15, Switzerland
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
61
|
Skorda A, Sklirou AD, Sakellaropoulos T, Gianniou DD, Kastritis E, Terpos E, Tsitsilonis OE, Florea BI, Overkleeft HS, Dimopoulos MA, Alexopoulos LG, Trougakos IP. Non-lethal proteasome inhibition activates pro-tumorigenic pathways in multiple myeloma cells. J Cell Mol Med 2019; 23:8010-8018. [PMID: 31568628 PMCID: PMC6850931 DOI: 10.1111/jcmm.14653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a haematological malignancy being characterized by clonal plasma cell proliferation in the bone marrow. Targeting the proteasome with specific inhibitors (PIs) has been proven a promising therapeutic strategy and PIs have been approved for the treatment of MM and mantle‐cell lymphoma; yet, while outcome has improved, most patients inevitably relapse. As relapse refers to MM cells that survive therapy, we sought to identify the molecular responses induced in MM cells after non‐lethal proteasome inhibition. By using bortezomib (BTZ), epoxomicin (EPOX; a carfilzomib‐like PI) and three PIs, namely Rub999, PR671A and Rub1024 that target each of the three proteasome peptidases, we found that only BTZ and EPOX are toxic in MM cells at low concentrations. Phosphoproteomic profiling after treatment of MM cells with non‐lethal (IC10) doses of the PIs revealed inhibitor‐ and cell type‐specific readouts, being marked by the activation of tumorigenic STAT3 and STAT6. Consistently, cytokine/chemokine profiling revealed the increased secretion of immunosuppressive pro‐tumorigenic cytokines (IL6 and IL8), along with the inhibition of potent T cell chemoattractant chemokines (CXCL10). These findings indicate that MM cells that survive treatment with therapeutic PIs shape a pro‐tumorigenic immunosuppressive cellular and secretory bone marrow microenvironment that enables malignancy to relapse.
Collapse
Affiliation(s)
- Aikaterini Skorda
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Despoina D Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania E Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Bogdan I Florea
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, The Netherlands
| | - Herman S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Leiden, The Netherlands
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Leonidas G Alexopoulos
- School of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
62
|
Toste Rêgo A, da Fonseca PCA. Characterization of Fully Recombinant Human 20S and 20S-PA200 Proteasome Complexes. Mol Cell 2019; 76:138-147.e5. [PMID: 31473102 PMCID: PMC6863390 DOI: 10.1016/j.molcel.2019.07.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
Abstract
Proteasomes are essential in all eukaryotic cells. However, their function and regulation remain considerably elusive, particularly those of less abundant variants. We demonstrate the human 20S proteasome recombinant assembly and confirmed the recombinant complex integrity biochemically and with a 2.6 Å resolution cryo-EM map. To assess its competence to form higher-order assemblies, we prepared and analyzed recombinant human 20S-PA200, a poorly characterized nuclear complex. Its 3.0 Å resolution cryo-EM structure reveals the PA200 unique architecture; the details of its intricate interactions with the proteasome, resulting in unparalleled proteasome α ring rearrangements; and the molecular basis for PA200 allosteric modulation of the proteasome active sites. Non-protein cryo-EM densities could be assigned to PA200-bound inositol phosphates, and we speculate regarding their functional role. Here we open extensive opportunities to study the fundamental properties of the diverse and distinct eukaryotic proteasome variants and to improve proteasome targeting under different therapeutic conditions. Recombinant human 20S proteasomes and 20S-PA200 complexes are characterized Cryo-EM reveals intricate 20S-PA200 interactions and PA200-bound cofactors PA200 binding is allosterically communicated to the proteolytic active sites Basis to fully characterize the function and regulation of proteasome variants
Collapse
Affiliation(s)
- Ana Toste Rêgo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Paula C A da Fonseca
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
63
|
Schipper-Krom S, Sanz AS, van Bodegraven EJ, Speijer D, Florea BI, Ovaa H, Reits EA. Visualizing Proteasome Activity and Intracellular Localization Using Fluorescent Proteins and Activity-Based Probes. Front Mol Biosci 2019; 6:56. [PMID: 31482094 PMCID: PMC6710370 DOI: 10.3389/fmolb.2019.00056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The proteasome is a multi-catalytic molecular machine that plays a key role in the degradation of many cytoplasmic and nuclear proteins. The proteasome is essential and proteasome malfunction is associated with various disease pathologies. Proteasome activity depends on its catalytic subunits which are interchangeable and also on the interaction with the associated regulatory cap complexes. Here, we describe and compare various methods that allow the study of proteasome function in living cells. Methods include the use of fluorescently tagged proteasome subunits and the use of activity-based proteasome probes. These probes can be used in both biochemical assays and in microscopy-based experiments. Together with tagged proteasomes, they can be used to study proteasome localization, dynamics, and activity.
Collapse
Affiliation(s)
- Sabine Schipper-Krom
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alicia Sanz Sanz
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emma J. van Bodegraven
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bogdan I. Florea
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, Netherlands
| | - Eric A. Reits
- Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
64
|
Morozov AV, Karpov VL. Proteasomes and Several Aspects of Their Heterogeneity Relevant to Cancer. Front Oncol 2019; 9:761. [PMID: 31456945 PMCID: PMC6700291 DOI: 10.3389/fonc.2019.00761] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/29/2019] [Indexed: 01/19/2023] Open
Abstract
The life of every organism is dependent on the fine-tuned mechanisms of protein synthesis and breakdown. The degradation of most intracellular proteins is performed by the ubiquitin proteasome system (UPS). Proteasomes are central elements of the UPS and represent large multisubunit protein complexes directly responsible for the protein degradation. Accumulating data indicate that there is an intriguing diversity of cellular proteasomes. Different proteasome forms, containing different subunits and attached regulators have been described. In addition, proteasomes specific for a particular tissue were identified. Cancer cells are highly dependent on the proper functioning of the UPS in general, and proteasomes in particular. At the same time, the information regarding the role of different proteasome forms in cancer is limited. This review describes the functional and structural heterogeneity of proteasomes, their association with cancer as well as several established and novel proteasome-directed therapeutic strategies.
Collapse
Affiliation(s)
- Alexey V. Morozov
- Laboratory of Regulation of Intracellular Proteolysis, W.A. Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | |
Collapse
|
65
|
Marshall RS, Vierstra RD. Dynamic Regulation of the 26S Proteasome: From Synthesis to Degradation. Front Mol Biosci 2019; 6:40. [PMID: 31231659 PMCID: PMC6568242 DOI: 10.3389/fmolb.2019.00040] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/09/2019] [Indexed: 01/12/2023] Open
Abstract
All eukaryotes rely on selective proteolysis to control the abundance of key regulatory proteins and maintain a healthy and properly functioning proteome. Most of this turnover is catalyzed by the 26S proteasome, an intricate, multi-subunit proteolytic machine. Proteasomes recognize and degrade proteins first marked with one or more chains of poly-ubiquitin, the addition of which is actuated by hundreds of ligases that individually identify appropriate substrates for ubiquitylation. Subsequent proteasomal digestion is essential and influences a myriad of cellular processes in species as diverse as plants, fungi and humans. Importantly, dysfunction of 26S proteasomes is associated with numerous human pathologies and profoundly impacts crop performance, thus making an understanding of proteasome dynamics critically relevant to almost all facets of human health and nutrition. Given this widespread significance, it is not surprising that sophisticated mechanisms have evolved to tightly regulate 26S proteasome assembly, abundance and activity in response to demand, organismal development and stress. These include controls on transcription and chaperone-mediated assembly, influences on proteasome localization and activity by an assortment of binding proteins and post-translational modifications, and ultimately the removal of excess or damaged particles via autophagy. Intriguingly, the autophagic clearance of damaged 26S proteasomes first involves their modification with ubiquitin, thus connecting ubiquitylation and autophagy as key regulatory events in proteasome quality control. This turnover is also influenced by two distinct biomolecular condensates that coalesce in the cytoplasm, one attracting damaged proteasomes for autophagy, and the other reversibly storing proteasomes during carbon starvation to protect them from autophagic clearance. In this review, we describe the current state of knowledge regarding the dynamic regulation of 26S proteasomes at all stages of their life cycle, illustrating how protein degradation through this proteolytic machine is tightly controlled to ensure optimal growth, development and longevity.
Collapse
Affiliation(s)
- Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
66
|
Optimization of MALDI-TOF mass spectrometry imaging for the visualization and comparison of peptide distributions in dry-cured ham muscle fibers. Food Chem 2019; 283:275-286. [DOI: 10.1016/j.foodchem.2018.12.126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/29/2018] [Accepted: 12/29/2018] [Indexed: 01/02/2023]
|
67
|
Ding Q, Zhu H. Upregulation of PSMB8 and cathepsins in the human brains of dementia with Lewy bodies. Neurosci Lett 2019; 678:131-137. [PMID: 29775672 DOI: 10.1016/j.neulet.2018.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
Proteasome and lysosome are responsible for the homeostasis of proteins, lipids and carbohydrates in cells. Numerous reports indicate the proteolytic pathways have altered functions during neurodegeneration and aging. Dementia with Lewy bodies (DLB) is one of the leading forms of dementia, and the proteolytic alteration in DLB has not yet been fully investigated. This study shows that the components of proteasome and lysosome had selectively altered gene expression and enzymatic functions. Specifically, PSMB8, an inducible proteasomal β subunit, had elevated mRNA level and protein level in DLB brain compared with age-matched controls. The proteasomal caspase-like peptidase showed significant decreased activity in DLB brains and the trypsin-like/chemotrypsin-like activities did not reach statistical significance. Lysosomal cathepsin B and D had elevated mRNA levels while only cathepsin B showed elevated enzymatic activity in DLB brains. This data indicate that the alteration of proteolytic pathways is highly selective and comprehensive. Further study to elucidate the correlation between neurodegenerative development and the alteration of proteolytic pathways would be important for therapeutic development.
Collapse
Affiliation(s)
- Qunxing Ding
- Department of Biological Sciences, Kent State University at East Liverpool, East Liverpool, OH 43920, USA.
| | - Haiyan Zhu
- Department of Biological Sciences, Kent State University at East Liverpool, East Liverpool, OH 43920, USA
| |
Collapse
|
68
|
Lehrbach NJ, Ruvkun G. Endoplasmic reticulum-associated SKN-1A/Nrf1 mediates a cytoplasmic unfolded protein response and promotes longevity. eLife 2019; 8:44425. [PMID: 30973820 PMCID: PMC6459674 DOI: 10.7554/elife.44425] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/29/2019] [Indexed: 01/21/2023] Open
Abstract
Unfolded protein responses (UPRs) safeguard cellular function during proteotoxic stress and aging. In a previous paper (Lehrbach and Ruvkun, 2016) we showed that the ER-associated SKN-1A/Nrf1 transcription factor activates proteasome subunit expression in response to proteasome dysfunction, but it was not established whether SKN-1A/Nrf1 adjusts proteasome capacity in response to other proteotoxic insults. Here, we reveal that misfolded endogenous proteins and the human amyloid beta peptide trigger activation of proteasome subunit expression by SKN-1A/Nrf1. SKN-1A activation is protective against age-dependent defects caused by accumulation of misfolded and aggregation-prone proteins. In a C. elegans Alzheimer’s disease model, SKN-1A/Nrf1 slows accumulation of the amyloid beta peptide and delays adult-onset cellular dysfunction. Our results indicate that SKN-1A surveys cellular protein folding and adjusts proteasome capacity to meet the demands of protein quality control pathways, revealing a new arm of the cytosolic UPR. This regulatory axis is critical for healthy aging and may be a target for therapeutic modulation of human aging and age-related disease.
Collapse
Affiliation(s)
- Nicolas J Lehrbach
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
69
|
Zhang W, Zhao C, Hu Y, Jin C. NMR 1H, 13C, 15N backbone and side chain resonance assignment of the N-terminal domain of yeast proteasome lid subunit Rpn5. BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:1-4. [PMID: 30229448 DOI: 10.1007/s12104-018-9840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The 26S proteasome is responsible for the selective, ATP-dependent degradation of polyubiquitinated proteins in eukaryotic cells. It consists of a 20S barrel-shaped core particle capped by two 19S regulatory particle at both ends. The Rpn5 subunit is a non-ATPase subunit located in the lid subcomplex of the 19S regulatory particle and is identified to inhibit the Rpn11 deubiquitinase activity in the isolated lid. The protein contains a C-terminal proteasome-CSN-eIF3 (PCI) domain and an N-terminal α-solenoid domain, the latter has been shown to be highly flexible in the isolated lid and may participate in interactions with different subunits of the proteasome. We herein report the 1H, 13C and 15N atoms chemical shift assignments of the N-terminal domain (residues 1-136) of Saccharomyces cerevisiae Rpn5, which provide the basis for further studies of the structure, dynamics and interactions of the Rpn5 subunit by NMR technique.
Collapse
Affiliation(s)
- Wenbo Zhang
- College of Life Sciences, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Cong Zhao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Yunfei Hu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Changwen Jin
- College of Life Sciences, Peking University, Beijing, 100871, China.
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China.
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
70
|
Comparative proteomic analysis provides new insight into differential transmission of two begomoviruses by a whitefly. Virol J 2019; 16:32. [PMID: 30857562 PMCID: PMC6413443 DOI: 10.1186/s12985-019-1138-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
Background Viruses in the genus Begomovirus (Family Geminiviridae) include many important economic plant viruses transmitted by whiteflies of the Bemisia tabaci species complex. In general, different begomoviruses may be acquired and transmitted by the same whitefly species with different efficiencies. For example, the species Mediterranean (MED) in this whitefly species complex transmits tomato yellow leaf curl virus (TYLCV) at a higher efficiency than papaya leaf curl China virus (PaLCuCNV). However, the proteomic responses of whitefly to the infection of different begomoviruses remain largely unknown. Methods We used iTRAQ-based proteomics coupled with RT-qPCR to investigate and compare responses of the MED whitefly to the infection of TYLCV and PaLCuCNV. Results Totally, 259, 395 and 74 differently expressed proteins (DEPs) were identified in the comparisons of TYLCV-infected vs. un-infected, PaLCuCNV-infected vs. un-infected, and TYLCV-infected vs. PaLCuCNV-infected whiteflies, respectively. These proteins appear associated with catabolic process, metabolic process, transport, defense response, cell cycle, and receptor. The comparisons of TYLCV-infected vs. un-infected and PaLCuCNV-infected vs. un-infected shared some similar DEPs, indicating possible involvement of laminin subunit alpha, dystroglycan, integrin alpha-PS2 and cuticle proteins in viral transport as well as the role of putative defense proteins 3 and PITH in anti-viral response. However, 20S proteasome subunits associated with regulation of virus degradation and accumulation were up-regulated in PaLCuCNV-infected but not in TYLCV-infected whiteflies, which may be related to the constraints of PaLCuCNV accumulation in MED. Conclusions These findings provide valuable clues for unravelling the roles of some whitefly proteins in begomovirus transmission. Electronic supplementary material The online version of this article (10.1186/s12985-019-1138-4) contains supplementary material, which is available to authorized users.
Collapse
|
71
|
Xin BT, Huber EM, de Bruin G, Heinemeyer W, Maurits E, Espinal C, Du Y, Janssens M, Weyburne ES, Kisselev AF, Florea BI, Driessen C, van der Marel GA, Groll M, Overkleeft HS. Structure-Based Design of Inhibitors Selective for Human Proteasome β2c or β2i Subunits. J Med Chem 2019; 62:1626-1642. [PMID: 30657666 PMCID: PMC6378654 DOI: 10.1021/acs.jmedchem.8b01884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Subunit-selective
proteasome inhibitors are valuable tools to assess
the biological and medicinal relevance of individual proteasome active
sites. Whereas the inhibitors for the β1c, β1i, β5c,
and β5i subunits exploit the differences in the substrate-binding
channels identified by X-ray crystallography, compounds selectively
targeting β2c or β2i could not yet be rationally designed
because of the high structural similarity of these two subunits. Here,
we report the development, chemical synthesis, and biological screening
of a compound library that led to the identification of the β2c-
and β2i-selective compounds LU-002c (4; IC50 β2c: 8 nM, IC50 β2i/β2c: 40-fold)
and LU-002i (5; IC50 β2i: 220 nM, IC50 β2c/β2i: 45-fold), respectively. Co-crystal
structures with β2 humanized yeast proteasomes visualize protein–ligand
interactions crucial for subunit specificity. Altogether, organic
syntheses, activity-based protein profiling, yeast mutagenesis, and
structural biology allowed us to decipher significant differences
of β2 substrate-binding channels and to complete the set of
subunit-selective proteasome inhibitors.
Collapse
Affiliation(s)
- Bo-Tao Xin
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Gerjan de Bruin
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Wolfgang Heinemeyer
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Elmer Maurits
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Christofer Espinal
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Yimeng Du
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Marissa Janssens
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Emily S Weyburne
- Department of Molecular and Systems Biology and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , 1 Medical Centre Drive HB7936 , Lebanon , New Hampshire 03756 , United States
| | - Alexei F Kisselev
- Department of Molecular and Systems Biology and Norris Cotton Cancer Center , Geisel School of Medicine at Dartmouth , 1 Medical Centre Drive HB7936 , Lebanon , New Hampshire 03756 , United States
| | - Bogdan I Florea
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Christoph Driessen
- Department of Hematology and Oncology , Kantonsspital St. Gallen , 9007 St. Gallen , Switzerland
| | - Gijsbert A van der Marel
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie , Technische Universität München , 85748 Garching , Germany
| | - Herman S Overkleeft
- Gorlaeus Laboratories , Leiden Institute of Chemistry and Netherlands Proteomics Centre , Einsteinweg 55 , 2333 CC Leiden , Netherlands
| |
Collapse
|
72
|
Han JJ, Yang X, Wang Q, Tang L, Yu F, Huang X, Wang Y, Liu JX, Xie Q. The β5 subunit is essential for intact 26S proteasome assembly to specifically promote plant autotrophic growth under salt stress. THE NEW PHYTOLOGIST 2019; 221:1359-1368. [PMID: 30346042 DOI: 10.1111/nph.15471] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
The ubiquitin 26S proteasome (26SP) system efficiently degrades many key regulators of plant development. 26SP consists of two subcomplexes: the catalytic 20S core particle (CP) and the 19S regulatory particle (RP). Previous studies have focused on 19S RP; whether there is a specific subunit in 20S CP that has a stress-related biological function in plants is unclear. PBE1, one of the β5 subunits of Arabidopsis proteasome CP, is essential for the assembly and proteolytic activity of 26SP in salt-stressed seedlings. The expression of PBE1 is stress-induced. During the transition from seed germination to autotrophic growth in salt-stressed seedlings, loss of PBE1 function results specifically in arrest in developmental transition but not in germination and post-germination growth. PBE1 is also important for other types of proteasome stress and Endoplasmic Reticulum (ER) stress. PBE1 modulates the protein level of the transcription factor ABI5 and thereby down-regulates the expression of several genes downstream of this key regulator which are known to be essential for plant growth under stress. Collectively, our results showed PBE1-mediated intact proteasome assembly that is essential for successful autotrophic growth, and revealed how PBE1 mediated stress proteasome functions to control both proteasome activity and abscisic acid (ABA)-mediated stress signaling in plants.
Collapse
Affiliation(s)
- Jia-Jia Han
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Xiaoyuan Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
73
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, et alHemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Show More Authors] [Citation(s) in RCA: 750] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Proteasome Inhibition in Multiple Myeloma: Head-to-Head Comparison of Currently Available Proteasome Inhibitors. Cell Chem Biol 2019; 26:340-351.e3. [PMID: 30612952 DOI: 10.1016/j.chembiol.2018.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022]
Abstract
Proteasome inhibitors (PIs) are a backbone of multiple myeloma (MM) therapy. The proteasome harbors six proteolytically active subunits (β1, β2, β5), while β5 was identified as rate-limiting and is a primary target of clinically available PIs. The most effective pattern of subunit inhibition provided by these PIs for cytotoxic activity in MM is unknown. A head-to-head comparison of clinically available PIs shows that in the clinically relevant setting only the co-inhibition of β1 or β2 with β5 activity achieves meaningful functional proteasome inhibition and cytotoxicity, while the selective β2/β5 inhibition of both constitutive and immunoproteasome is the most cytotoxic. In the long-term setting, selective inhibition of β5 subunit is sufficient to induce cytotoxicity in PI-sensitive, but not in PI-resistant MM, and the β5/β2 co-inhibition is the most cytotoxic in PI-resistant MM. These results give a rational basis for selecting individual PIs for the treatment of MM.
Collapse
|
75
|
Abstract
Proteasomes are a class of protease that carry out the degradation of a specific set of cellular proteins. While essential for eukaryotic life, proteasomes are found only in a small subset of bacterial species. In this chapter, we present the current knowledge of bacterial proteasomes, detailing the structural features and catalytic activities required to achieve proteasomal proteolysis. We describe the known mechanisms by which substrates are doomed for degradation, and highlight potential non-degradative roles for components of bacterial proteasome systems. Additionally, we highlight several pathways of microbial physiology that rely on proteasome activity. Lastly, we explain the various gaps in our understanding of bacterial proteasome function and emphasize several opportunities for further study.
Collapse
Affiliation(s)
- Samuel H Becker
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA
| | - Huilin Li
- Van Andel Research Institute, Cryo-EM Structural Biology Laboratory, 333 Bostwick Ave, NE, Grand Rapids, MI, 4950, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, Room 312, New York, NY, 10016, USA.
| |
Collapse
|
76
|
Li J, Zhang Y, Da Silva Sil Dos Santos B, Wang F, Ma Y, Perez C, Yang Y, Peng J, Cohen SM, Chou TF, Hilton ST, Deshaies RJ. Epidithiodiketopiperazines Inhibit Protein Degradation by Targeting Proteasome Deubiquitinase Rpn11. Cell Chem Biol 2018; 25:1350-1358.e9. [PMID: 30146242 DOI: 10.1016/j.chembiol.2018.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/23/2018] [Accepted: 07/25/2018] [Indexed: 01/20/2023]
Abstract
The 26S proteasome is the major proteolytic machine for breaking down cytosolic and nuclear proteins in eukaryotes. Due to the lack of a suitable assay, it is difficult to measure routinely and quantitatively the breakdown of proteins by the 26S proteasome in vitro. In the present study, we developed an assay to monitor proteasome-mediated protein degradation. Using this assay, we discovered that epidithiodiketopiperazine (ETPs) blocked the degradation of our model substrate in vitro. Further characterization revealed that ETPs inhibited proteasome function by targeting the essential proteasomal deubiquitinase Rpn11 (POH1/PSMD14). ETPs also inhibited other JAMM (JAB1/MPN/Mov34 metalloenzyme) proteases such as Csn5 and AMSH. An improved ETP with fewer non-specific effects, SOP11, stabilized a subset of proteasome substrates in cells, induced the unfolded protein response, and led to cell death. SOP11 represents a class of Rpn11 inhibitor and provides an alternative route to develop proteasome inhibitors.
Collapse
Affiliation(s)
- Jing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Box 114-96, Pasadena, CA 91125, USA; Amgen Discovery Research, One Amgen Center Drive MS 29-M-B, Thousand Oaks, CA 91320, USA.
| | - Yaru Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Box 114-96, Pasadena, CA 91125, USA; Amgen Discovery Research, One Amgen Center Drive MS 29-M-B, Thousand Oaks, CA 91320, USA
| | | | - Feng Wang
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA
| | - Yuyong Ma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Christian Perez
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Yanling Yang
- Departments of Structural Biology and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Tsui-Fen Chou
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA 90502, USA
| | - Stephen T Hilton
- UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Box 114-96, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 26335, USA; Amgen Discovery Research, One Amgen Center Drive MS 29-M-B, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
77
|
Nguyen KT, Mun SH, Lee CS, Hwang CS. Control of protein degradation by N-terminal acetylation and the N-end rule pathway. Exp Mol Med 2018; 50:1-8. [PMID: 30054456 PMCID: PMC6063864 DOI: 10.1038/s12276-018-0097-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 11/10/2022] Open
Abstract
Nα-terminal acetylation (Nt-acetylation) occurs very frequently and is found in most proteins in eukaryotes. Despite the pervasiveness and universality of Nt-acetylation, its general functions in terms of physiological outcomes remain largely elusive. However, several recent studies have revealed that Nt-acetylation has a significant impact on protein stability, activity, folding patterns, cellular localization, etc. In addition, Nt-acetylation marks specific proteins for degradation by a branch of the N-end rule pathway, a subset of the ubiquitin-mediated proteolytic system. The N-end rule associates a protein's in vivo half-life with its N-terminal residue or modifications on its N-terminus. This review provides a current understanding of intracellular proteolysis control by Nt-acetylation and the N-end rule pathway.
Collapse
Affiliation(s)
- Kha The Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sang-Hyeon Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Chang-Seok Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Cheol-Sang Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
78
|
Ahmed R, Kodgire S, Santhakumari B, Patil R, Kulkarni M, Zore G. Serum responsive proteome reveals correlation between oxidative phosphorylation and morphogenesis in Candida albicans ATCC10231. J Proteomics 2018; 185:25-38. [PMID: 29959084 DOI: 10.1016/j.jprot.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
To understand the impact of fetal bovine serum (FBS) on metabolism and cellular architecture in addition to morphogenesis, we have identified FBS responsive proteome of Candida albicans. FBS induced 34% hyphae and 60% pseudohyphae in C. albicans at 30 °C while 98% hyphae at 37 °C. LC-MS/MS analysis revealed that 285 proteins modulated significantly in response to FBS at 30 °C and 37 °C. Out of which 152 were upregulated and 62 were downregulated at 30 °C while 18 were up and 53 were downregulated at 37 °C. Functional annotation suggests that FBS may inhibit glycolysis and fermentative pathway and enhance oxidative phosphorylation (OxPhos), TCA cycle, amino acid and fatty acid metabolism indicating a use of alternative energy source by C. albicans. OxPhos inhibition assay using sodium azide corroborated the correlation between inhibition of glycolysis and enhanced OxPhos with pseudohyphae formation. C. albicans induced hyphae in response to FBS irrespective of down regulation of Ras1,Asr1/Asr2, indicates the possible involvement of MAPK and cAMP-PKA independent pathway. The Cell wall of cells grown in presence of FBS at 30 °C was rich in mannan, Beta 1,3-glucan and chitin while membranes were rich in ergosterol compared to those grown at 37 °C. SIGNIFICANCE OF THE STUDY This is the first study suggesting a correlation between OxPhos and morphogenesis especially pseudohyphae formation in C. albicans. Our data also indicate that fetal bovine serum (FBS) induced morphogenesis is multifactorial and may involve MAPK and cAMP-PKA independent pathway. In addition to morphogenesis, our study provides an insight in to the modulation of metabolism and cellular architecture of C. albicans in response to FBS.
Collapse
Affiliation(s)
- Radfan Ahmed
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - Santosh Kodgire
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India
| | - B Santhakumari
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune 411007, MS, India.
| | - Mahesh Kulkarni
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, MS, India.
| | - Gajanan Zore
- School of Life Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, MS, India.
| |
Collapse
|
79
|
Rut W, Poręba M, Kasperkiewicz P, Snipas SJ, Drąg M. Selective Substrates and Activity-Based Probes for Imaging of the Human Constitutive 20S Proteasome in Cells and Blood Samples. J Med Chem 2018; 61:5222-5234. [DOI: 10.1021/acs.jmedchem.8b00026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marcin Poręba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Scott J. Snipas
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Marcin Drąg
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
80
|
Ding Y, Chen X, Wang B, Yu B, Ge J, Shi X. Quercetin suppresses the chymotrypsin-like activity of proteasome via inhibition of MEK1/ERK1/2 signaling pathway in hepatocellular carcinoma HepG2 cells. Can J Physiol Pharmacol 2018; 96:521-526. [PMID: 29394494 DOI: 10.1139/cjpp-2017-0655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasomal system is a promising target for cancer treatment. Quercetin (Que), a flavonoid compound with antitumor ability, displays the inhibitory effect on proteasome activity. However, the underlying molecular mechanisms are ill defined. The present study found that Que treatment significantly reduced the chymotrypsin-like protease activity of proteasome whereas the trypsin- and caspase-like protease activities remained unchanged in HepG2 cancer cells, along with activation of p38 MAPK and JNK and reduction of ERK1/2 phosphorylation. Que-reduced proteasome activity could not be reverted by inhibition of p38 MAPK and JNK signaling pathway. In addition, MEK1 overexpression or knockdown upregulated or downregulated the chymotrypsin-like protease activity of proteasome, respectively. Both Que and MEK1/ERK1/2 inhibitor attenuated the expression levels of proteasome β subunits. These results indicate that Que-induced suppression of MEK1/ERK1/2 signaling and subsequent reduction of proteasome β subunits is responsible for its inhibitory impacts on proteasome activity.
Collapse
Affiliation(s)
- Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoyan Chen
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Wang
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Yu
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianhui Ge
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaokang Shi
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
- Department of Hepatobiliary & Laparascopic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
81
|
Defective immuno- and thymoproteasome assembly causes severe immunodeficiency. Sci Rep 2018; 8:5975. [PMID: 29654304 PMCID: PMC5899138 DOI: 10.1038/s41598-018-24199-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
By N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated the mutant mouse line TUB6 that is characterised by severe combined immunodeficiency (SCID) and systemic sterile autoinflammation in homozygotes, and a selective T cell defect in heterozygotes. The causative missense point mutation results in the single amino acid exchange G170W in multicatalytic endopeptidase complex subunit-1 (MECL-1), the β2i-subunit of the immuno- and thymoproteasome. Yeast mutagenesis and crystallographic data suggest that the severe TUB6-phenotype compared to the MECL-1 knockout mouse is caused by structural changes in the C-terminal appendage of β2i that prevent the biogenesis of immuno- and thymoproteasomes. Proteasomes are essential for cell survival, and defective proteasome assembly causes selective death of cells expressing the mutant MECL-1, leading to the severe immunological phenotype. In contrast to the immunosubunits β1i (LMP2) and β5i (LMP7), mutations in the gene encoding MECL-1 have not yet been assigned to human disorders. The TUB6 mutant mouse line exemplifies the involvement of MECL-1 in immunopathogenesis and provides the first mouse model for primary immuno- and thymoproteasome-associated immunodeficiency that may also be relevant in humans.
Collapse
|
82
|
Molecular responses to therapeutic proteasome inhibitors in multiple myeloma patients are donor-, cell type- and drug-dependent. Oncotarget 2018; 9:17797-17809. [PMID: 29707147 PMCID: PMC5915155 DOI: 10.18632/oncotarget.24882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/06/2018] [Indexed: 02/04/2023] Open
Abstract
Proteasome is central to proteostasis network functionality and its over-activation represents a hallmark of advanced tumors; thus, its selective inhibition provides a strategy for the development of novel antitumor therapies. In support, proteasome inhibitors, e.g. Bortezomib or Carfilzomib have demonstrated clinical efficacy against hematological cancers. Herein, we studied proteasome regulation in peripheral blood mononuclear cells and erythrocytes isolated from healthy donors or from Multiple Myeloma patients treated with Bortezomib or Carfilzomib. In healthy donors we found that peripheral blood mononuclear cells express higher, as compared to erythrocytes, basal proteasome activities, as well as that proteasome activities decline during aging. Studies in cells isolated from Multiple Myeloma patients treated with proteasome inhibitors revealed that in most (but, interestingly enough, not all) patients, proteasome activities decline in both cell types during therapy. In peripheral blood mononuclear cells, most proteostatic genes expression patterns showed a positive correlation during therapy indicating that proteostasis network modules likely respond to proteasome inhibition as a functional unit. Finally, the expression levels of antioxidant, chaperone and aggresomes removal/autophagy genes were found to inversely associate with patients' survival. Our studies will support a more personalized therapeutic approach in hematological malignancies treated with proteasome inhibitors.
Collapse
|
83
|
Abstract
The ubiquitin-proteasome system (UPS) controls cellular functions by maintenance of a functional proteome and degradation of key regulatory proteins. Central to the UPS is the proteasome that adjusts the abundance of numerous proteins, thereby safeguarding their activity or initiating regulatory events. Here, we demonstrate that the essential Saccharomyces cerevisiae protein Yjr141w/Ipa1 (Important for cleavage and PolyAdenylation) belongs to the HECT_2 (homologous to E6-AP carboxyl terminus_2) family. We found that five cysteine residues within the HECT_2 family signature and the C-terminus are essential for Ipa1 activity. Furthermore, Ipa1 interacts with several ubiquitin-conjugating enzymes in vivo and localizes to the cytosol and nucleus. Importantly, Ipa1 has an impact on proteasome activity, which is indicated by the activation of the Rpn4 regulon as well as by decreased turnover of destabilized proteasome substrates in an IPA1 mutant. These changes in proteasome activity might be connected to reduced maturation or modification of proteasomal core particle proteins. Our results highlight the influence of Ipa1 on the UPS. The conservation within the HECT_2 family and the connection of the human HECT_2 family member to an age-related degeneration disease might suggest that HECT_2 family members share a conserved function linked to proteasome activity.
Collapse
|
84
|
Gravett AM, Trautwein N, Stevanović S, Dalgleish AG, Copier J. Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells. Oncoimmunology 2018; 7:e1438107. [PMID: 29930882 PMCID: PMC5990974 DOI: 10.1080/2162402x.2018.1438107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/05/2023] Open
Abstract
The antigenic makeup of tumour cells can have a profound effect on the progression of cancer and success of immunotherapies. Therefore, one strategy to improve the efficacy of cancer treatments is to augment the antigens displayed by tumours. The present study explores how the recognition of tumour cells may be altered by non-cytotoxic concentrations of gemcitabine (GEM). Testing a panel of chemotherapeutics in human cancer cell lines in vitro, it was found that GEM increased surface expression of HLA-A,B,C and that underlying this were specific increases in β-2-microglobulin and immunoproteasome subunit proteins. Furthermore, the peptide antigen repertoire displayed on HLA class I was altered, revealing a number of novel antigens, many of which that were derived from proteins involved in the DNA-damage response. Changes in the nature of the peptide antigens eluted from HLA-A,B,C after GEM treatment consisted of amino acid anchor-residue modifications and changes in peptide length which rendered peptides likely to favour alternative HLA-alleles and increased their predicted immunogenicity. Signalling through the MAPK/ERK and NFκB/RelB pathways was associated with these changes. These data may explain observations made in previous in vivo studies, advise as to which antigens should be used in future vaccination protocols and reinforce the idea that chemotherapy and immunotherapy could be used in combination.
Collapse
Affiliation(s)
- A M Gravett
- Institute for infection and immunity, St George's, University of London, London, UK
| | - N Trautwein
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - S Stevanović
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - A G Dalgleish
- Institute for infection and immunity, St George's, University of London, London, UK
| | - J Copier
- Institute for infection and immunity, St George's, University of London, London, UK
| |
Collapse
|
85
|
Ma X, Lee S, Fei X, Fang G, Huynh T, Chong Y, Chai Z, Ge C, Zhou R. Inhibition of the proteasome activity by graphene oxide contributes to its cytotoxicity. Nanotoxicology 2018; 12:185-200. [DOI: 10.1080/17435390.2018.1425503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Xiaochuan Ma
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Sangyun Lee
- Computational Biology Center, IBM Thomas J. Watson Research Center, New York, NY, USA
| | - Xingshu Fei
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ge Fang
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Tien Huynh
- Computational Biology Center, IBM Thomas J. Watson Research Center, New York, NY, USA
| | - Yu Chong
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Zhifang Chai
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Cuicui Ge
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ruhong Zhou
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Computational Biology Center, IBM Thomas J. Watson Research Center, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| |
Collapse
|
86
|
Milder degenerative effects of Carfilzomib vs. Bortezomib in the Drosophila model: a link to clinical adverse events. Sci Rep 2017; 7:17802. [PMID: 29259189 PMCID: PMC5736585 DOI: 10.1038/s41598-017-17596-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Proteasome inhibitors, e.g. Bortezomib (BTZ) and Carfilzomib (CFZ), have demonstrated clinical efficacy against haematological cancers. Interestingly, several adverse effects are less common, compared to BTZ, in patients treated with CFZ. As the molecular details of these observations remain not well understood we assayed the pathophysiological effects of CFZ vs. BTZ in the Drosophila experimental model. Mass Spectrometry analyses showed that neither CFZ nor BTZ are hydrolysed in flies’ tissues, while at doses inducing similar inhibition of the rate limiting for protein breakdown chymotrypsin-like (CT-L) proteasomal activity, CFZ treatment resulted in less intense increase of oxidative stress or activation of antioxidant and proteostatic modules. Also, despite comparable cardiotoxicity likely due to disrupted mitochondrial function, CFZ did not affect developmental processes, showed minimal neuromuscular defects and reduced to a lesser extent flies’ healthspan. Studies in flies, human cancer cell lines and blood cells isolated from Multiple Myeloma patients treated with CFZ or BTZ revealed, that the increased BTZ toxicity likely relates to partial co-inhibition of the caspase-like (C-L) proteasomal activity Supportively, co-treating flies with CFZ and a C-L selective proteasome inhibitor exacerbated CFZ-mediated toxicity. Our findings provide a reasonable explanation for the differential adverse effects of CFZ and BTZ in the clinic.
Collapse
|
87
|
Cerruti F, Jocollè G, Salio C, Oliva L, Paglietti L, Alessandria B, Mioletti S, Donati G, Numico G, Cenci S, Cascio P. Proteasome stress sensitizes malignant pleural mesothelioma cells to bortezomib-induced apoptosis. Sci Rep 2017; 7:17626. [PMID: 29247244 PMCID: PMC5732203 DOI: 10.1038/s41598-017-17977-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Based on promising results in preclinical models, clinical trials have been performed to evaluate the efficacy of the first-in-class proteasome inhibitor bortezomib towards malignant pleural mesothelioma (MPM), an aggressive cancer arising from the mesothelium of the serous cavities following exposure to asbestos. Unexpectedly, only minimal therapeutic benefits were observed, thus implicating that MPM harbors inherent resistance mechanisms. Identifying the molecular bases of this primary resistance is crucial to develop novel pharmacologic strategies aimed at increasing the vulnerability of MPM to bortezomib. Therefore, we assessed a panel of four human MPM lines with different sensitivity to bortezomib, for functional proteasome activity and levels of free and polymerized ubiquitin. We found that highly sensitive MPM lines display lower proteasome activity than more bortezomib-resistant clones, suggesting that reduced proteasomal capacity might contribute to the intrinsic susceptibility of mesothelioma cells to proteasome inhibitors-induced apoptosis. Moreover, MPM equipped with fewer active proteasomes accumulated polyubiquitinated proteins, at the expense of free ubiquitin, a condition known as proteasome stress, which lowers the cellular apoptotic threshold and sensitizes mesothelioma cells to bortezomib-induced toxicity as shown herein. Taken together, our data suggest that an unfavorable load-versus-capacity balance represents a critical determinant of primary apoptotic sensitivity to bortezomib in MPM.
Collapse
Affiliation(s)
- Fulvia Cerruti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Genny Jocollè
- Medical Oncology Unit, Ospedale U. Parini, Viale Ginevra 3, 11100, Aosta, Italy
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Laura Oliva
- San Raffaele Scientific Institute, Division of Genetics and Cell Biology, Via Olgettina 60, 20132, Milan, Italy
| | - Luca Paglietti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Beatrice Alessandria
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Silvia Mioletti
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy
| | - Giovanni Donati
- Thoracic Surgery Unit, Ospedale U. Parini, Viale Ginevra 3, 11100, Aosta, Italy
| | - Gianmauro Numico
- Medical Oncology, Azienda Ospedaliera SS Antonio e Biagio e C Arrigo, Via Venezia 16, 15121, Alessandria, Italy
| | - Simone Cenci
- San Raffaele Scientific Institute, Division of Genetics and Cell Biology, Via Olgettina 60, 20132, Milan, Italy
| | - Paolo Cascio
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini 2, 10095, Grugliasco, Turin, Italy.
| |
Collapse
|
88
|
Structural insights on the dynamics of proteasome formation. Biophys Rev 2017; 10:597-604. [PMID: 29243089 DOI: 10.1007/s12551-017-0381-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
Abstract
Molecular organization in biological systems comprises elaborately programmed processes involving metastable complex formation of biomolecules. This is exemplified by the formation of the proteasome, which is one of the largest and most complicated biological supramolecular complexes. This biomolecular machinery comprises approximately 70 subunits, including structurally homologous, but functionally distinct, ones, thereby exerting versatile proteolytic functions. In eukaryotes, proteasome formation is non-autonomous and is assisted by assembly chaperones, which transiently associate with assembly intermediates, operating as molecular matchmakers and checkpoints for the correct assembly of proteasome subunits. Accumulated data also suggest that eukaryotic proteasome formation involves scrap-and-build mechanisms. However, unlike the eukaryotic proteasome subunits, the archaeal subunits show little structural divergence and spontaneously assemble into functional machinery. Nevertheless, the archaeal genomes encode homologs of eukaryotic proteasome assembly chaperones. Recent structural and functional studies of these proteins have advanced our understanding of the evolution of molecular mechanisms involved in proteasome biogenesis. This knowledge, in turn, provides a guiding principle in designing molecular machineries using protein engineering approaches and de novo synthesis of artificial molecular systems.
Collapse
|
89
|
Vigneron N, Ferrari V, Stroobant V, Abi Habib J, Van den Eynde BJ. Peptide splicing by the proteasome. J Biol Chem 2017; 292:21170-21179. [PMID: 29109146 DOI: 10.1074/jbc.r117.807560] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteasome is the major protease responsible for the production of antigenic peptides recognized by CD8+ cytolytic T cells (CTL). These peptides, generally 8-10 amino acids long, are presented at the cell surface by major histocompatibility complex (MHC) class I molecules. Originally, these peptides were believed to be solely derived from linear fragments of proteins, but this concept was challenged several years ago by the isolation of anti-tumor CTL that recognized spliced peptides, i.e. peptides composed of fragments distant in the parental protein. The splicing process was shown to occur in the proteasome through a transpeptidation reaction involving an acyl-enzyme intermediate. Here, we review the steps that led to the discovery of spliced peptides as well as the recent advances that uncover the unexpected importance of spliced peptides in the composition of the MHC class I repertoire.
Collapse
Affiliation(s)
- Nathalie Vigneron
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Violette Ferrari
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Vincent Stroobant
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Joanna Abi Habib
- From the Ludwig Institute for Cancer Research.,the de Duve Institute, Université catholique de Louvain, and
| | - Benoit J Van den Eynde
- From the Ludwig Institute for Cancer Research, .,the de Duve Institute, Université catholique de Louvain, and.,WELBIO (Walloon Excellence in Life Sciences and Biotechnology), B-1200 Brussels, Belgium
| |
Collapse
|
90
|
Gaczynska M, Osmulski PA. Targeting Protein-Protein Interactions in the Ubiquitin-Proteasome Pathway. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:123-165. [PMID: 29412995 DOI: 10.1016/bs.apcsb.2017.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) is a major venue for controlled intracellular protein degradation in Eukaryota. The machinery of several hundred proteins is involved in recognizing, tagging, transporting, and cleaving proteins, all in a highly regulated manner. Short-lived transcription factors, misfolded translation products, stress-damaged polypeptides, or worn-out long-lived proteins, all can be found among the substrates of UPP. Carefully choreographed protein-protein interactions (PPI) are involved in each step of the pathway. For many of the steps small-molecule inhibitors have been identified and often they directly or indirectly target PPI. The inhibitors may destabilize intracellular proteostasis and trigger apoptosis. So far this is the most explored option used as an anticancer strategy. Alternatively, substrate-specific polyubiquitination may be regulated for a precise intervention aimed at a particular metabolic pathway. This very attractive opportunity is moving close to clinical application. The best known drug target in UPP is the proteasome: the end point of the journey of a protein destined for degradation. The proteasome alone is a perfect object to study the mechanisms and roles of PPI on many levels. This giant protease is built from multisubunit modules and additionally utilizes a service from transient protein ligands, for example, delivering substrates. An elaborate set of PPI within the highest-order proteasome assembly is involved in substrate recognition and processing. Below we will outline PPI involved in the UPP and discuss the growing prospects for their utilization in pharmacological interventions.
Collapse
Affiliation(s)
- Maria Gaczynska
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| | - Pawel A Osmulski
- Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
91
|
Inhibitory effects of local anesthetics on the proteasome and their biological actions. Sci Rep 2017; 7:5079. [PMID: 28698635 PMCID: PMC5506043 DOI: 10.1038/s41598-017-04652-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 05/18/2017] [Indexed: 11/30/2022] Open
Abstract
Local anesthetics (LAs) inhibit endoplasmic reticulum-associated protein degradation, however the mechanisms remain elusive. Here, we show that the clinically used LAs pilsicainide and lidocaine bind directly to the 20S proteasome and inhibit its activity. Molecular dynamic calculation indicated that these LAs were bound to the β5 subunit of the 20S proteasome, and not to the other active subunits, β1 and β2. Consistently, pilsicainide inhibited only chymotrypsin-like activity, whereas it did not inhibit the caspase-like and trypsin-like activities. In addition, we confirmed that the aromatic ring of these LAs was critical for inhibiting the proteasome. These LAs stabilized p53 and suppressed proliferation of p53-positive but not of p53-negative cancer cells.
Collapse
|
92
|
Morris EP, da Fonseca PCA. High-resolution cryo-EM proteasome structures in drug development. Acta Crystallogr D Struct Biol 2017; 73:522-533. [PMID: 28580914 PMCID: PMC5458494 DOI: 10.1107/s2059798317007021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
With the recent advances in biological structural electron microscopy (EM), protein structures can now be obtained by cryo-EM and single-particle analysis at resolutions that used to be achievable only by crystallographic or NMR methods. We have explored their application to study protein-ligand interactions using the human 20S proteasome, a well established target for cancer therapy that is also being investigated as a target for an increasing range of other medical conditions. The map of a ligand-bound human 20S proteasome served as a proof of principle that cryo-EM is emerging as a realistic approach for more general structural studies of protein-ligand interactions, with the potential benefits of extending such studies to complexes that are unfavourable to other methods and allowing structure determination under conditions that are closer to physiological, preserving ligand specificity towards closely related binding sites. Subsequently, the cryo-EM structure of the Plasmodium falciparum 20S proteasome, with a new prototype specific inhibitor bound, revealed the molecular basis for the ligand specificity towards the parasite complex, which provides a framework to guide the development of highly needed new-generation antimalarials. Here, the cryo-EM analysis of the ligand-bound human and P. falciparum 20S proteasomes is reviewed, and a complete description of the methods used for structure determination is provided, including the strategy to overcome the bias orientation of the human 20S proteasome on electron-microscope grids and details of the icr3d software used for three-dimensional reconstruction.
Collapse
Affiliation(s)
- Edward P. Morris
- Division of Structural Biology, The Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, England
| | | |
Collapse
|
93
|
Kurimoto E, Satoh T, Ito Y, Ishihara E, Okamoto K, Yagi‐Utsumi M, Tanaka K, Kato K. Crystal structure of human proteasome assembly chaperone PAC4 involved in proteasome formation. Protein Sci 2017; 26:1080-1085. [PMID: 28263418 PMCID: PMC5405420 DOI: 10.1002/pro.3153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/12/2023]
Abstract
The 26S proteasome is a large protein complex, responsible for degradation of ubiquinated proteins in eukaryotic cells. Eukaryotic proteasome formation is a highly ordered process that is assisted by several assembly chaperones. The assembly of its catalytic 20S core particle depends on at least five proteasome-specific chaperones, i.e., proteasome-assembling chaperons 1-4 (PAC1-4) and proteasome maturation protein (POMP). The orthologues of yeast assembly chaperones have been structurally characterized, whereas most mammalian assembly chaperones are not. In the present study, we determined a crystal structure of human PAC4 at 1.90-Å resolution. Our crystallographic data identify a hydrophobic surface that is surrounded by charged residues. The hydrophobic surface is complementary to that of its binding partner, PAC3. The surface also exhibits charge complementarity with the proteasomal α4-5 subunits. This will provide insights into human proteasome-assembling chaperones as potential anticancer drug targets.
Collapse
Affiliation(s)
- Eiji Kurimoto
- Faculty of PharmacyMeijo UniversityTempaku‐kuNagoya468‐8503Japan
| | - Tadashi Satoh
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- JST, PRESTOMizuho‐kuNagoya467‐8603Japan
| | - Yuri Ito
- Faculty of PharmacyMeijo UniversityTempaku‐kuNagoya468‐8503Japan
| | - Eri Ishihara
- Faculty of PharmacyMeijo UniversityTempaku‐kuNagoya468‐8503Japan
| | - Kenta Okamoto
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- Present address: The laboratory of Molecular Biophysics, Department of Cell and Molecular BiologyUppsala UniversityHusargatan 3Uppsala75123Sweden
| | - Maho Yagi‐Utsumi
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural SciencesMyodaijiOkazakiAichi444‐8787Japan
| | - Keiji Tanaka
- Laboratory of Protein MetabolismTokyo Metropolitan Institute of Medical ScienceSetagaya‐kuTokyo156‐8506Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical SciencesNagoya City UniversityMizuho‐kuNagoya467‐8603Japan
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural SciencesMyodaijiOkazakiAichi444‐8787Japan
| |
Collapse
|
94
|
Chhabra S. Novel Proteasome Inhibitors and Histone Deacetylase Inhibitors: Progress in Myeloma Therapeutics. Pharmaceuticals (Basel) 2017; 10:E40. [PMID: 28398261 PMCID: PMC5490397 DOI: 10.3390/ph10020040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
The unfolded protein response is responsible for the detection of misfolded proteins and the coordination of their disposal and is necessary to maintain the cellular homoeostasis. Multiple myeloma cells secrete large amounts of immunoglobulins, proteins that need to be correctly folded by the chaperone system. If this process fails, the misfolded proteins have to be eliminated by the two main garbage-disposal systems of the cell: proteasome and aggresome. The blockade of either of these systems will result in accumulation of immunoglobulins and other toxic proteins in the cytoplasm and cell death. The simultaneous inhibition of the proteasome, by proteasome inhibitors (PIs) and the aggresome, by histone deacetylase inhibitors (HDACi) results in a synergistic increase in cytotoxicity in myeloma cell lines. This review provides an overview of mechanisms of action of second-generation PIs and HDACi in multiple myeloma (MM), the clinical results currently observed with these agents and assesses the potential therapeutic impact of the different agents in the two classes. The second-generation PIs offer benefits in terms of increased efficacy, reduced neurotoxicity as off-target effect and may overcome resistance to bortezomib because of their different chemical structure, mechanism of action and biological properties. HDACi with anti-myeloma activity in clinical development discussed in this review include vorinostat, panobinostat and selective HDAC6 inhibitor, ricolinostat.
Collapse
Affiliation(s)
- Saurabh Chhabra
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI 53226, USA.
| |
Collapse
|
95
|
Wedelolactone Acts as Proteasome Inhibitor in Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18040729. [PMID: 28353647 PMCID: PMC5412315 DOI: 10.3390/ijms18040729] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/20/2017] [Accepted: 03/25/2017] [Indexed: 11/17/2022] Open
Abstract
Wedelolactone is a multi-target natural plant coumestan exhibiting cytotoxicity towards cancer cells. Although several molecular targets of wedelolactone have been recognized, the molecular mechanism of its cytotoxicity has not yet been elucidated. In this study, we show that wedelolactone acts as an inhibitor of chymotrypsin-like, trypsin-like, and caspase-like activities of proteasome in breast cancer cells. The proteasome inhibitory effect of wedelolactone was documented by (i) reduced cleavage of fluorogenic proteasome substrates; (ii) accumulation of polyubiquitinated proteins and proteins with rapid turnover in tumor cells; and (iii) molecular docking of wedelolactone into the active sites of proteasome catalytic subunits. Inhibition of proteasome by wedelolactone was independent on its ability to induce reactive oxygen species production by redox cycling with copper ions, suggesting that wedelolactone acts as copper-independent proteasome inhibitor. We conclude that the cytotoxicity of wedelolactone to breast cancer cells is partially mediated by targeting proteasomal protein degradation pathway. Understanding the structural basis for inhibitory mode of wedelolactone might help to open up new avenues for design of novel compounds efficiently inhibiting cancer cells.
Collapse
|
96
|
Mitchell LA, Wang A, Stracquadanio G, Kuang Z, Wang X, Yang K, Richardson S, Martin JA, Zhao Y, Walker R, Luo Y, Dai H, Dong K, Tang Z, Yang Y, Cai Y, Heguy A, Ueberheide B, Fenyö D, Dai J, Bader JS, Boeke JD. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 2017; 355. [DOI: 10.1126/science.aaf4831] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
INTRODUCTION
Total synthesis of designer chromosomes and genomes is a new paradigm for the study of genetics and biological systems. The Sc2.0 project is building a designer yeast genome from scratch to test and extend the limits of our biological knowledge. Here we describe the design, rapid assembly, and characterization of synthetic chromosome VI (synVI). Further, we investigate the phenotypic, transcriptomic, and proteomic consequences associated with consolidation of three synthetic chromosomes–synVI, synIII, and synIXR—into a single poly-synthetic strain.
RATIONALE
A host of Sc2.0 chromosomes, including synVI, have now been constructed in discrete strains. With debugging steps, where the number of bugs scales with chromosome length, all individual synthetic chromosomes have been shown to power yeast cells to near wild-type (WT) fitness. Testing the effects of Sc2.0 chromosome consolidation to uncover possible synthetic genetic interactions and/or perturbations of native cellular networks as the number of designer changes increases is the next major step for the Sc2.0 project.
RESULTS
SynVI was rapidly assembled using nine sequential steps of SwAP-In (switching auxotrophies progressively by integration), yielding a ~240-kb synthetic chromosome designed to Sc2.0 specifications. We observed partial silencing of the left- and rightmost genes on synVI, each newly positioned subtelomerically relative to their locations on native VI. This result suggests that consensus core X elements of Sc2.0 universal telomere caps are insufficient to fully buffer telomere position effects. The synVI strain displayed a growth defect characterized by an increased frequency of glycerol-negative colonies. The defect mapped to a synVI design feature in the essential
PRE4
gene (
YFR050C
), encoding the β7 subunit of the 20
S
proteasome. Recoding 10 codons near the 3′ end of the
PRE4
open reading frame (ORF) caused a ~twofold reduction in Pre4 protein level without affecting RNA abundance. Reverting the codons to the WT sequence corrected both the Pre4 protein level and the phenotype. We hypothesize that the formation of a stem loop involving recoded codons underlies reduced Pre4 protein level.
Sc2.0 chromosomes (synI to synXVI) are constructed individually in discrete strains and consolidated into poly-synthetic (poly-syn) strains by “endoreduplication intercross.” Consolidation of synVI with synthetic chromosomes III (synIII) and IXR (synIXR) yields a triple-synthetic (triple-syn) strain that is ~6% synthetic overall—with almost 70 kb deleted, including 20 tRNAs, and more than 12 kb recoded. Genome sequencing of double-synthetic (synIII synVI, synIII synIXR, synVI synIXR) and triple-syn (synIII synVI synIXR) cells indicates that suppressor mutations are not required to enable coexistence of Sc2.0 chromosomes. Phenotypic analysis revealed a slightly slower growth rate for the triple-syn strain only; the combined effect of tRNA deletions on different chromosomes might underlie this result. Transcriptome and proteome analyses indicate that cellular networks are largely unperturbed by the existence of multiple synthetic chromosomes in a single cell. However, a second bug on synVI was discovered through proteomic analysis and is associated with alteration of the
HIS2
transcription start as a consequence of tRNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-syn strain “omics” analyses.
CONCLUSION
Analyses of phenotypes, transcriptomics, and proteomics of synVI and poly-syn strains reveal, in general, WT cell properties and the existence of rare bugs resulting from genome editing. Deletion of subtelomeres can lead to gene silencing, recoding deep within an ORF can yield a translational defect, and deletion of elements such as tRNA genes can lead to a complex transcriptional output. These results underscore the complementarity of transcriptomics and proteomics to identify bugs, the consequences of designer changes in Sc2.0 chromosomes. The consolidation of Sc2.0 designer chromosomes into a single strain appears to be exceptionally well tolerated by yeast. A predictable exception to this is the deletion of tRNAs, which will be restored on a separate neochromosome to avoid synthetic lethal genetic interactions between deleted tRNA genes as additional synthetic chromosomes are introduced.
Debugging synVI and characterization of poly-synthetic yeast cells.
(
A
) The second Sc2.0 chromosome to be constructed, synVI, encodes a “bug” that causes a variable colony size, dubbed a “glycerol-negative growth-suppression defect.” (
B
) Synonymous changes in the essential
PRE4
ORF lead to a reduced protein level, which underlies the growth defect. (
C
) The poly-synthetic strain synIII synVI synIXR directs growth of yeast cells to near WT fitness levels.
Collapse
Affiliation(s)
- Leslie A. Mitchell
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Ann Wang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Giovanni Stracquadanio
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Zheng Kuang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Xuya Wang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Kun Yang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah Richardson
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J. Andrew Martin
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yu Zhao
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Roy Walker
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Yisha Luo
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, UK
| | | | - Kang Dong
- GenScript, Piscataway, NJ 08854, USA
| | - Zuojian Tang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yanling Yang
- Proteomics Resource Center, Office of Collaborative Science, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yizhi Cai
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Adriana Heguy
- Genome Technology Center, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Proteomics Resource Center, Office of Collaborative Science, New York University Langone School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Junbiao Dai
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Joel S. Bader
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jef D. Boeke
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| |
Collapse
|
97
|
Howell LA, Tomko RJ, Kusmierczyk AR. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11515-017-1439-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
98
|
Lu X, Xiang Y, Yang G, Zhang L, Wang H, Zhong S. Transcriptomic characterization of zebrafish larvae in response to mercury exposure. Comp Biochem Physiol C Toxicol Pharmacol 2017; 192:40-49. [PMID: 27939723 DOI: 10.1016/j.cbpc.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/21/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022]
Abstract
Mercury is a widespread toxicant in aquatic environment that can cause deleterious effects on fish. Although a number of mercury-regulated genes have been investigated in adult fish, the transcriptional responses of fish larvae to acute mercury exposure are not well understood. In this study, RNA sequencing was used to examine the transcriptional changes in developing zebrafish larvae under a low concentration of mercuric chloride exposure from 24 to 120hpf. Our initial results showed that a total of 142.59 million raw reads were obtained from sequencing libraries and about 86% of the processed reads were mapped to the reference genome of zebrafish. Differential expression analysis identified 391 up- and 87 down-regulated genes. Gene ontology enrichment analysis revealed that most of the differential expressed genes are closely related to the regulation of cellular process, metabolic process, multicellular organismal process, biological regulation, pigmentation, and response to stimulus. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis demonstrated that antigen processing and presentation was the most significantly enriched pathway. Moreover, we characterized a novel and sensitive mercury-induced ABCB (ATP- binding cassette B subfamily) transporter gene - abcb5. This gene is localized on zebrafish chromosome 16 and contains a 4014bp open-reading frame. The deduced polypeptide is composed of 1337 amino acids and possesses most of functional domains and critical residues defined in human and mouse ABCB5/Abcb5. Functional analysis in vitro demonstrated that overexpression of zebrafish abcb5 gene can significantly decrease the cytotoxicity of mercury in LLC-PK1 cells, implying it is a potential efflux transporter of mercury. Thus, these findings provide useful insights to help further understand the transcriptional response and detoxification ability of zebrafish larvae following acute exposure to mercury.
Collapse
Affiliation(s)
- Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization of Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei, China.
| | - Ying Xiang
- School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China.
| | - Guohua Yang
- School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China.
| | - Lang Zhang
- School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China.
| | - Hui Wang
- School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei, China.
| | - Shan Zhong
- School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, Hubei, China.
| |
Collapse
|
99
|
Weyburne ES, Wilkins OM, Sha Z, Williams DA, Pletnev AA, de Bruin G, Overkleeft HS, Goldberg AL, Cole MD, Kisselev AF. Inhibition of the Proteasome β2 Site Sensitizes Triple-Negative Breast Cancer Cells to β5 Inhibitors and Suppresses Nrf1 Activation. Cell Chem Biol 2017; 24:218-230. [PMID: 28132893 DOI: 10.1016/j.chembiol.2016.12.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/27/2016] [Accepted: 12/28/2016] [Indexed: 11/26/2022]
Abstract
The proteasome inhibitors carfilzomib (Cfz) and bortezomib (Btz) are used successfully to treat multiple myeloma, but have not shown clinical efficacy in solid tumors. Here we show that clinically achievable inhibition of the β5 site of the proteasome by Cfz and Btz does not result in loss of viability of triple-negative breast cancer cell lines. We use site-specific inhibitors and CRISPR-mediated genetic inactivation of β1 and β2 to demonstrate that inhibiting a second site of the proteasome, particularly the β2 site, sensitizes cell lines to Btz and Cfz in vitro and in vivo. Inhibiting both β5 and β2 suppresses production of the soluble, active form of the transcription factor Nrf1 and prevents the recovery of proteasome activity through induction of new proteasomes. These findings provide a strong rationale for the development of dual β5 and β2 inhibitors for the treatment of solid tumors.
Collapse
Affiliation(s)
- Emily S Weyburne
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Owen M Wilkins
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Zhe Sha
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David A Williams
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | - Gerjan de Bruin
- Gorlaeus Laboratories, Leiden Institute of Chemistry, 2333 CC Leiden, the Netherlands
| | - Hermann S Overkleeft
- Gorlaeus Laboratories, Leiden Institute of Chemistry, 2333 CC Leiden, the Netherlands
| | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael D Cole
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Department of Genetics, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Alexei F Kisselev
- Department of Pharmacology and Toxicology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.
| |
Collapse
|
100
|
Oliveri V, Lanza V, Milardi D, Viale M, Maric I, Sgarlata C, Vecchio G. Amino- and chloro-8-hydroxyquinolines and their copper complexes as proteasome inhibitors and antiproliferative agents. Metallomics 2017; 9:1439-1446. [DOI: 10.1039/c7mt00156h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
5-Aminomethyl-8-hydroquinoline and its copper(ii) complex look very promising in inhibiting cell growth and proteasome activity.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche
- Università degli Studi di Catania
- Viale A. Doria 6
- 95125 Catania
- Italy
| | - Valeria Lanza
- Istituto di Biostrutture e Bioimmagini
- CNR
- Via P. Gaifami 18
- 95126 Catania
- Italy
| | - Danilo Milardi
- Istituto di Biostrutture e Bioimmagini
- CNR
- Via P. Gaifami 18
- 95126 Catania
- Italy
| | - Maurizio Viale
- Ospedale Policlinico San Martino
- U.O.C. Bioterapie
- Lgo R. Benzi 10
- 16132, Genova
- Italy
| | - Irena Maric
- Ospedale Policlinico San Martino
- U.O.C. Bioterapie
- Lgo R. Benzi 10
- 16132, Genova
- Italy
| | - Carmelo Sgarlata
- Dipartimento di Scienze Chimiche
- Università degli Studi di Catania
- Viale A. Doria 6
- 95125 Catania
- Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche
- Università degli Studi di Catania
- Viale A. Doria 6
- 95125 Catania
- Italy
| |
Collapse
|