51
|
Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol 2013; 48:301-16. [PMID: 23601011 DOI: 10.3109/10409238.2013.786671] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The small Rho GTPase family of proteins, encompassing the three major G-protein classes Rho, Rac and cell division control protein 42, are key mitogenic signaling molecules that regulate multiple cancer-associated cellular phenotypes including cell proliferation and motility. These proteins are known for their role in the regulation of actin cytoskeletal dynamics, which is achieved through modulating the activity of their downstream effector molecules. The Rho-associated coiled-coil kinase 1 and 2 (ROCK1 and ROCK2) proteins were the first discovered Rho effectors that were primarily established as players in RhoA-mediated stress fiber formation and focal adhesion assembly. It has since been discovered that the ROCK kinases actively phosphorylate a large cohort of actin-binding proteins and intermediate filament proteins to modulate their functions. It is well established that global cellular morphology, as modulated by the three cytoskeletal networks: actin filaments, intermediate filaments and microtubules, is regulated by a variety of accessory proteins whose activities are dependent on their phosphorylation by the Rho-kinases. As a consequence, they regulate many key cellular functions associated with malignancy, including cell proliferation, motility and viability. In this current review, we focus on the role of the ROCK-signaling pathways in disease including cancer.
Collapse
Affiliation(s)
- Alice V Schofield
- St Vincent's Institute of Medical Research, Cytoskeleton and Cancer Unit and Department of Medicine, St Vincent's Hospital, University of Melbourne, Victoria 3065, Australia
| | | |
Collapse
|
52
|
Role of Rho-kinase and its inhibitors in pulmonary hypertension. Pharmacol Ther 2013; 137:352-64. [DOI: 10.1016/j.pharmthera.2012.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 10/27/2012] [Indexed: 11/20/2022]
|
53
|
Fujita S, Okamoto R, Taniguchi M, Ban-Tokuda T, Konishi K, Goto I, Yamamoto Y, Sugimoto K, Takamatsu N, Nakamura M, Shiraki K, Buechler C, Ito M. Identification of bovine hibernation-specific protein complex and evidence of its regulation in fasting and aging. J Biochem 2013; 153:453-61. [PMID: 23389309 DOI: 10.1093/jb/mvt008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hibernation-specific protein (HP) is a plasma protein that regulates hibernation in chipmunks. The HP complex (HP20c) consists of three homologous proteins, HP20, HP25 and HP27, all produced by liver and belonging to the C1q family. To date, HP20c has not been identified in any mammalian species except chipmunk and ground squirrel hibernators. Here, we report a bovine HP20 gene isolated from liver tissue and aortic endothelial cells. Total homology between bovine and chipmunk variants was 63% at the amino acid level. Gene expression was highest in the liver. Western blot revealed HP20 protein in foetal, newborn, calf and adult serum, with highest concentrations in the adult. Similar proteins were detected in sera of other ruminants but not in humans, bears, mice or rats. Bovine HP20 protein was found mainly in ovaries, stomach, heart, kidneys, lungs, testes and prostate, but not in the skeletal muscle. Native HP20 was purified from bovine adult serum as a complex containing 25 and 27 kDa proteins. Mass spectrometry revealed that these proteins are orthologues of chipmunk HP25 and HP27, respectively. Interestingly, bovine HP20 was highly expressed in cattle serum after fasting. Native bovine HP20c may be a useful tool for investigating HP function.
Collapse
Affiliation(s)
- Satoshi Fujita
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active conformation by the direct binding of guanosine triphosphate (GTP)–loaded Rho. In recent years, a number of ROCK isoform-specific binding partners have been found to modulate the kinase activity through direct interactions with the catalytic domain or via altered cellular localization of the kinases. Thus, these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Marie Morgan-Fisher
- Department of Biomedical Sciences, The Faculty of Health and Medical Sciences, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | | | | |
Collapse
|
55
|
Saito T, Hirano M, Ide T, Ichiki T, Koibuchi N, Sunagawa K, Hirano K. Pivotal role of Rho-associated kinase 2 in generating the intrinsic circadian rhythm of vascular contractility. Circulation 2012; 127:104-14. [PMID: 23172836 DOI: 10.1161/circulationaha.112.135608] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND The circadian variation in the incidence of cardiovascular events may be attributable to the circadian changes in vascular contractility. The circadian rhythm of vascular contractility is determined by the interplay between the central and peripheral clocks. However, the molecular mechanism of the vascular intrinsic clock that generates the circadian rhythm of vascular contractility still remains largely unknown. METHODS AND RESULTS The agonist-induced phosphorylation of myosin light chain in cultured smooth muscle cells synchronized by dexamethasone pulse treatment exhibited an apparent circadian oscillation, with a 25.4-hour cycle length. The pharmacological inhibition and knockdown of Rho-associated kinase 2 (ROCK2) abolished the circadian rhythm of myosin light chain phosphorylation. The expression and activity of ROCK2 exhibited a circadian rhythm in phase with that of myosin light chain phosphorylation. A clock gene, RORα, activated the promoter of the ROCK2 gene, whereas its knockdown abolished the rhythmic expression of ROCK2. In the mouse aorta, ROCK2 expression exhibited the circadian oscillation, with a peak at Zeitgeber time 0/24 and a nadir at Zeitgeber time 12. The myofilament Ca(2+) sensitization induced by GTPγS and U46619, a thromboxane A2 analog, at Zeitgeber time 0/24 was greater than that seen at Zeitgeber time 12. The circadian rhythm of ROCK2 expression and myofilament Ca(2+) sensitivity was abolished in staggerer mutant mice, which lack a functional RORα. CONCLUSIONS ROCK2 plays a pivotal role in generating the intrinsic circadian rhythm of vascular contractility by receiving a cue from RORα. The ROCK2-mediated intrinsic rhythm of vascular contractility may underlie the diurnal variation of the incidence of cardiovascular diseases.
Collapse
Affiliation(s)
- Toshiro Saito
- Division of Molecular Cardiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
56
|
Martinsen A, Baeyens N, Yerna X, Morel N. Rho kinase regulation of vasopressin-induced calcium entry in vascular smooth muscle cell: comparison between rat isolated aorta and cultured aortic cells. Cell Calcium 2012; 52:413-21. [PMID: 22883550 DOI: 10.1016/j.ceca.2012.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 01/05/2023]
Abstract
In addition to its role in artery contraction, Rho kinase (ROCK) is reported to be involved in the Ca(2+) response to vasoconstrictor agonist in rat aorta. However the signaling pathway mediated by ROCK had not been investigated so far and it was not known whether ROCK also contributed to Ca(2+) signaling in cultured vascular smooth muscle cells (VSMC), which undergo profound phenotypic changes. Our results showed that in VSMC, ROCK inhibition by Y-27632 or H-1152 had no effect on the Ca(2+) response to vasopressin, while in aorta the vasopressin-induced Ca(2+) entry was significantly decreased. The inhibition of myosin light chain kinase (MLCK) by ML-7 depressed the vasopressin-induced Ca(2+) signal in aorta but not in VSMC. The difference in ROCK sensitivity of vasopressin-induced Ca(2+) entry between aorta and VSMC was not related to an alteration of the RhoA/ROCK pathway. However, MLCK expression and activity were depressed in cultured cells compared to aorta. We concluded that the regulation of vasopressin-induced Ca(2+) entry by ROCK in aorta could involve the myosin cytoskeleton and could be prevented by the downregulation of MLCK in VSMC. These results underline the important differences in Ca(2+) regulation between whole tissue and cultured cells.
Collapse
|
57
|
Kaneko-Kawano T, Takasu F, Naoki H, Sakumura Y, Ishii S, Ueba T, Eiyama A, Okada A, Kawano Y, Suzuki K. Dynamic regulation of myosin light chain phosphorylation by Rho-kinase. PLoS One 2012; 7:e39269. [PMID: 22723981 PMCID: PMC3378528 DOI: 10.1371/journal.pone.0039269] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022] Open
Abstract
Myosin light chain (MLC) phosphorylation plays important roles in various cellular functions such as cellular morphogenesis, motility, and smooth muscle contraction. MLC phosphorylation is determined by the balance between activities of Rho-associated kinase (Rho-kinase) and myosin phosphatase. An impaired balance between Rho-kinase and myosin phosphatase activities induces the abnormal sustained phosphorylation of MLC, which contributes to the pathogenesis of certain vascular diseases, such as vasospasm and hypertension. However, the dynamic principle of the system underlying the regulation of MLC phosphorylation remains to be clarified. Here, to elucidate this dynamic principle whereby Rho-kinase regulates MLC phosphorylation, we developed a mathematical model based on the behavior of thrombin-dependent MLC phosphorylation, which is regulated by the Rho-kinase signaling network. Through analyzing our mathematical model, we predict that MLC phosphorylation and myosin phosphatase activity exhibit bistability, and that a novel signaling pathway leading to the auto-activation of myosin phosphatase is required for the regulatory system of MLC phosphorylation. In addition, on the basis of experimental data, we propose that the auto-activation pathway of myosin phosphatase occurs in vivo. These results indicate that bistability of myosin phosphatase activity is responsible for the bistability of MLC phosphorylation, and the sustained phosphorylation of MLC is attributed to this feature of bistability.
Collapse
Affiliation(s)
- Takako Kaneko-Kawano
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Seto M. [Development of Rho kinase inhibitors for pulmonary arterial hypertension]. Nihon Yakurigaku Zasshi 2012; 139:251-255. [PMID: 22728987 DOI: 10.1254/fpj.139.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
59
|
Khromov AS, Momotani K, Jin L, Artamonov MV, Shannon J, Eto M, Somlyo AV. Molecular mechanism of telokin-mediated disinhibition of myosin light chain phosphatase and cAMP/cGMP-induced relaxation of gastrointestinal smooth muscle. J Biol Chem 2012; 287:20975-85. [PMID: 22544752 DOI: 10.1074/jbc.m112.341479] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospho-telokin is a target of elevated cyclic nucleotide concentrations that lead to relaxation of gastrointestinal and some vascular smooth muscles (SM). Here, we demonstrate that in telokin-null SM, both Ca(2+)-activated contraction and Ca(2+) sensitization of force induced by a GST-MYPT1(654-880) fragment inhibiting myosin light chain phosphatase were antagonized by the addition of recombinant S13D telokin, without changing the inhibitory phosphorylation status of endogenous MYPT1 (the regulatory subunit of myosin light chain phosphatase) at Thr-696/Thr-853 or activity of Rho kinase. Cyclic nucleotide-induced relaxation of force in telokin-null ileum muscle was reduced but not correlated with a change in MYPT1 phosphorylation. The 40% inhibited activity of phosphorylated MYPT1 in telokin-null ileum homogenates was restored to nonphosphorylated MYPT1 levels by addition of S13D telokin. Using the GST-MYPT1 fragment as a ligand and SM homogenates from WT and telokin KO mice as a source of endogenous proteins, we found that only in the presence of endogenous telokin, thiophospho-GST-MYPT1 co-precipitated with phospho-20-kDa myosin regulatory light chain 20 and PP1. Surface plasmon resonance studies showed that S13D telokin bound to full-length phospho-MYPT1. Results of a protein ligation assay also supported interaction of endogenous phosphorylated MYPT1 with telokin in SM cells. We conclude that the mechanism of action of phospho-telokin is not through modulation of the MYPT1 phosphorylation status but rather it contributes to cyclic nucleotide-induced relaxation of SM by interacting with and activating the inhibited full-length phospho-MYPT1/PP1 through facilitating its binding to phosphomyosin and thus accelerating 20-kDa myosin regulatory light chain dephosphorylation.
Collapse
Affiliation(s)
- Alexander S Khromov
- Departments of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Ruiz-Loredo AY, López E, López-Colomé AM. Thrombin stimulates stress fiber assembly in RPE cells by PKC/CPI-17-mediated MLCP inactivation. Exp Eye Res 2012; 96:13-23. [DOI: 10.1016/j.exer.2012.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 12/29/2022]
|
61
|
Surma M, Wei L, Shi J. Rho kinase as a therapeutic target in cardiovascular disease. Future Cardiol 2012; 7:657-71. [PMID: 21929346 DOI: 10.2217/fca.11.51] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rho kinase (ROCK) belongs to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and is a major downstream effector of the small GTPase RhoA. ROCK plays central roles in the organization of the actin cytoskeleton and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation and gene expression. Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be functionally redundant, based largely on the major common activators, the high degree of homology within the kinase domain and studies from overexpression with kinase constructs and chemical inhibitors (e.g., Y27632 and fasudil), which inhibit both ROCK1 and ROCK2. Extensive experimental and clinical studies support a critical role for the RhoA/ROCK pathway in the vascular bed in the pathogenesis of cardiovascular diseases, in which increased ROCK activity mediates vascular smooth muscle cell hypercontraction, endothelial dysfunction, inflammatory cell recruitment and vascular remodeling. Recent experimental studies, using ROCK inhibitors or genetic mouse models, indicate that the RhoA/ROCK pathway in myocardium contributes to cardiac remodeling induced by ischemic injury or persistent hypertrophic stress, thereby leading to cardiac decompensation and heart failure. This article, based on recent molecular, cellular and animal studies, focuses on the current understanding of ROCK signaling in cardiovascular diseases and in the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Michelle Surma
- Riley Heart Research Centre, Wells Centre for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
62
|
Ruiz-Loredo AY, López-Colomé AM. New insights into the regulation of myosin light chain phosphorylation in retinal pigment epithelial cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:85-121. [PMID: 22251559 DOI: 10.1016/b978-0-12-394304-0.00008-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retinal pigment epithelium (RPE) plays an essential role in the function of the neural retina and the maintenance of vision. Most of the functions displayed by RPE require a dynamic organization of the acto-myosin cytoskeleton. Myosin II, a main cytoskeletal component in muscle and non-muscle cells, is directly involved in force generation required for organelle movement, selective molecule transport within cell compartments, exocytosis, endocytosis, phagocytosis, and cell division, among others. Contractile processes are triggered by the phosphorylation of myosin II light chains (MLCs), which promotes actin-myosin interaction and the assembly of contractile fibers. Considerable evidence indicates that non-muscle myosin II activation is critically involved in various pathological states, increasing the interest in studying the signaling pathways controlling MLC phosphorylation. Particularly, recent findings suggest a role for non-muscle myosin II-induced contraction in RPE cell transformation involved in the establishment of numerous retinal diseases. This review summarizes the current knowledge regarding myosin function in RPE cells, as well as the signaling networks leading to MLC phosphorylation under pathological conditions. Understanding the molecular mechanisms underlying RPE dysfunction would improve the development of new therapies for the treatment or prevention of different ocular disorders leading to blindness.
Collapse
Affiliation(s)
- Ariadna Yolanda Ruiz-Loredo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico DF, Mexico
| | | |
Collapse
|
63
|
Mori D, Hori M, Murata T, Ohama T, Kishi H, Kobayashi S, Ozaki H. Synchronous phosphorylation of CPI-17 and MYPT1 is essential for inducing Ca(2+) sensitization in intestinal smooth muscle. Neurogastroenterol Motil 2011; 23:1111-22. [PMID: 22004286 DOI: 10.1111/j.1365-2982.2011.01799.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Myosin phosphatase activity is regulated by mechanisms involving the phosphorylation of CPI-17 and MYPT1, primarily based on studies with tonic-type vascular smooth muscles. This study examined how these mechanisms contribute to the regulation of contraction of a phasic-type intestinal smooth muscle. METHODS Phosphorylation levels, tension, and Ca(2+) sensitization was detected in rat ileal smooth muscle. Key Results In rat ileal smooth muscle, phosphorylation level of CPI-17 at Thr(38) and MYPT1 at Thr(853) , but not MYPT1 at Thr(696) , were increased with carbachol (1μmolL(-1) ) accompanied with muscle contraction. The PKC inhibitor Go6976 (1μmol L(-1) ) inhibited the carbachol-induced phosphorylation of CPI-17, whereas the Rho-associated kinase (ROCK) inhibitor, Y-27632 (10μmol L(-1) ) inhibited the carbachol-induced phosphorylation of both CPI-17 and MYPT1. Application of Go6976 or Y-27632 alone inhibited the carbachol-induced contraction; however, the combined application of these inhibitors did not inhibit the contraction in an additive manner. In β-escin-permeabilized ileal strip, treatment with antiphosphorylated antibodies for CPI-17 at Thr(38) and MYPT1 at Thr(853) and Thr(696) alone almost completely abolished the Ca(2+) sensitization due to carbachol with GTP. CONCLUSIONS & INFERENCES In conclusion, receptor stimulation increases the Ca(2+) sensitivity of contractile elements through CPI-17 phosphorylation via the PKC/ROCK pathways and MYPT1 phosphorylation via the ROCK pathway, when these mechanisms operate cooperatively and/or synchronously in intestinal smooth muscle.
Collapse
Affiliation(s)
- D Mori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, the University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
64
|
Bogatcheva NV, Zemskova MA, Poirier C, Mirzapoiazova T, Kolosova I, Bresnick AR, Verin AD. The suppression of myosin light chain (MLC) phosphorylation during the response to lipopolysaccharide (LPS): beneficial or detrimental to endothelial barrier? J Cell Physiol 2011; 226:3132-46. [PMID: 21302311 DOI: 10.1002/jcp.22669] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sepsis-induced vascular leakage is a major underlying cause of the respiratory dysfunction seen in severe sepsis. Here, we studied the role of MLC phosphorylation in LPS-induced endothelial hyperpermeability and assessed how the changes in phospho-MLC distribution affect LPS-induced barrier dysfunction. We demonstrated that the changes in human lung microvascular endothelial permeability are preceded by the increase in intracellular calcium level, and increase in MYPT and MLC phosphorylation. Using the siRNA approach, we showed that both LPS-induced barrier dysfunction and MLC phosphorylation are attenuated by the depletion of the smooth muscle isoform of MLC kinase (MLCK) and Rho kinase 2 (ROCK2). Surprisingly, pharmacological inhibition of both ROCK1 and 2 with Y-27632 exacerbated LPS-induced drop in transendothelial resistance, although significantly decreasing MLC phosphorylation level. We next studied the involvement of protein kinase A (PKA)-dependent pathways in LPS-induced barrier dysfunction. We showed that LPS decreased the level of PKA-dependent phosphorylation in endothelial cells; and the pretreatment with forskolin or PKA activator bnz-cAMP counteracted this effect. Forskolin and bnz-cAMP also attenuated LPS-induced increase in MLC phosphorylation level. As we have shown earlier (Bogatcheva et al., 2009), forskolin and bnz-cAMP provide protection from LPS-induced barrier dysfunction. We compared the effects of bnz-cAMP and Y-27632 on phospho-MLC distribution and observed that while bnz-cAMP increased the association of the phospho-MLC signal with the cortical structures, Y-27632 decreased this association. These data indicate that an overall decrease in MLC phosphorylation could be either beneficial or detrimental to endothelial barrier, depending on the intracellular locale of major phospho-MLC changes.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | | | | | | | |
Collapse
|
65
|
Seto M, Asano T. [Rho-kinase inhibitors]. Nihon Yakurigaku Zasshi 2011; 138:112-116. [PMID: 21908938 DOI: 10.1254/fpj.138.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
66
|
Zemskov E, Lucas R, Verin AD, Umapathy NS. P2Y receptors as regulators of lung endothelial barrier integrity. J Cardiovasc Dis Res 2011; 2:14-22. [PMID: 21716747 PMCID: PMC3120267 DOI: 10.4103/0975-3583.78582] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Endothelial cells (ECs), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, control such diverse processes as vascular tone, homeostasis, adhesion of platelets, and leukocytes to the vascular wall and permeability of vascular wall for cells and fluids. Mechanisms which govern the highly clinically relevant process of increased EC permeability are under intense investigation. It is well known that loss of this barrier (permeability increase) results in tissue inflammation, the hall mark of inflammatory diseases such as acute lung injury and its severe form, acute respiratory distress syndrome. Little is known about processes which determine the endothelial barrier enhancement or protection against permeability increase. It is now well accepted that extracellular purines and pyrimidines are promising and physiologically relevant barrier-protective agents and their effects are mediated by interaction with cell surface P2Y receptors which belong to the superfamily of G-protein-coupled receptors. The therapeutic potential of P2Y receptors is rapidly expanding field in pharmacology and some selective agonists became recently available. Here, we present an overview of recently identified P2Y receptor agonists that enhance the pulmonary endothelial barrier and inhibit and/or reverse endothelial barrier disruption.
Collapse
Affiliation(s)
- Evgeny Zemskov
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | |
Collapse
|
67
|
Sit ST, Manser E. Rho GTPases and their role in organizing the actin cytoskeleton. J Cell Sci 2011; 124:679-83. [PMID: 21321325 DOI: 10.1242/jcs.064964] [Citation(s) in RCA: 352] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Soon-Tuck Sit
- sGSK Group, A-Star Neuroscience Research Partnership, Proteos Building, 61 Biopolis Drive, Singapore 138673, Singapore
| | | |
Collapse
|
68
|
Chun KH, Choi KD, Lee DH, Jung Y, Henry RR, Ciaraldi TP, Kim YB. In vivo activation of ROCK1 by insulin is impaired in skeletal muscle of humans with type 2 diabetes. Am J Physiol Endocrinol Metab 2011; 300:E536-42. [PMID: 21189360 PMCID: PMC3064006 DOI: 10.1152/ajpendo.00538.2010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To determine whether serine/threonine ROCK1 is activated by insulin in vivo in humans and whether impaired activation of ROCK1 could play a role in the pathogenesis of insulin resistance, we measured the activity of ROCK1 and the protein content of the Rho family in vastus lateralis muscle of lean, obese nondiabetic, and obese type 2 diabetic subjects. Biopsies were taken after an overnight fast and after a 3-h hyperinsulinemic euglycemic clamp. Insulin-stimulated GDR was reduced 38% in obese nondiabetic subjects compared with lean, 62% in obese diabetic subjects compared with lean, and 39% in obese diabetic compared with obese nondiabetic subjects (all comparisons P < 0.001). Insulin-stimulated IRS-1 tyrosine phosphorylation is impaired 41-48% in diabetic subjects compared with lean or obese subjects. Basal activity of ROCK1 was similar in all groups. Insulin increased ROCK1 activity 2.1-fold in lean and 1.7-fold in obese nondiabetic subjects in muscle. However, ROCK1 activity did not increase in response to insulin in muscle of obese type 2 diabetic subjects without change in ROCK1 protein levels. Importantly, insulin-stimulated ROCK1 activity was positively correlated with insulin-mediated GDR in lean subjects (P < 0.01) but not in obese or type 2 diabetic subjects. Moreover, RhoE GTPase that inhibits the catalytic activity of ROCK1 by binding to the kinase domain of the enzyme is notably increased in obese type 2 diabetic subjects, accounting for defective ROCK1 activity. Thus, these data suggest that ROCK1 may play an important role in the pathogenesis of resistance to insulin action on glucose disposal in muscle of obese type 2 diabetic subjects.
Collapse
Affiliation(s)
- Kwang-Hoon Chun
- Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02216, USA
| | | | | | | | | | | | | |
Collapse
|
69
|
Shi J, Zhang L, Wei L. Rho-kinase in development and heart failure: insights from genetic models. Pediatr Cardiol 2011; 32:297-304. [PMID: 21327630 PMCID: PMC3085170 DOI: 10.1007/s00246-011-9920-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/04/2011] [Indexed: 11/26/2022]
Abstract
Rho-kinase (ROCK) belongs to the AGC (protein kinase A/protein kinase G/protein kinase C, PKA/PKG/PKC) family of serine/threonine kinases and is a major downstream effector of small GTPase RhoA. Rho-kinase is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, and proliferation. Two ROCK isoforms, ROCK1 and ROCK2, are assumed to be functionally redundant, based largely on the major common activators, the high degree of homology within the kinase domain, and studies from overexpression with kinase constructs and chemical inhibitors (e.g., Y27632 and fasudil), which inhibit both ROCK1 and ROCK2. Gene targeting and RNA interference approaches allow further dissection of distinct cellular, physiologic, and pathophysiologic functions of the two ROCK isoforms. This review focuses on the current understanding of ROCK isoform biology, with a particular emphasis on their functions in mouse development and the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202-5225, USA
| | | | | |
Collapse
|
70
|
Seok YM, Jin F, Shin HM, Sung SH, Sohn UD, Cho JY, Kim IK. HMC05 attenuates vascular contraction through inhibition of RhoA/Rho-kinase signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:484-489. [PMID: 20965238 DOI: 10.1016/j.jep.2010.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 08/13/2010] [Accepted: 10/08/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY HMC05, an extract from eight different herbal mixtures, has been developed to treat cardiovascular disease. This extract has a vasorelaxant and anti-atherosclerotic action. We hypothesized that HMC05 attenuates vascular contraction through inhibition of the RhoA/Rho-kinase signaling pathway. MATERIALS AND METHODS Rat aortic ring preparations were mounted in organ baths and subjected to contraction and relaxation. Phosphorylation of 20 kDa myosin light chains (MLC(20)) and myosin phosphatase targeting subunit 1 (MYPT1) were examined by immunoblot. We also measured the amount of GTP RhoA as a marker for RhoA activation. RESULTS In endothelium-denuded aortic ring preparations, HMC05 relaxed vascular contraction induced by 6.0 mM NaF, 100 nM phenylephrine, 30 nM thromboxane A(2) agonist U46619 or 1.0 μM protein kinase C (PKC) activator phorbol-12,13-dibutyrate (PDBu) in a decreasing order. HMC05 relaxed aortic ring preparations precontracted with sodium fluoride (NaF) whether endothelium was intact or denuded. Pre-incubation with HMC05 for 30 min dose-dependently inhibited the NaF-induced contractile response. In vascular strips, HMC05 decreased the phosphorylation level of both MLC(20) and MYPT1(Thr855) induced by 6.0 mM NaF. Furthermore, HMC05 decreased the amount of GTP RhoA activated by NaF. CONCLUSIONS HMC05 attenuates vascular contraction through inhibition of the RhoA/Rho-kinase signaling pathway. HMC05 may be useful for the treatment and/or prevention of cardiovascular diseases associated with activation of RhoA/Rho-kinase signaling pathway.
Collapse
Affiliation(s)
- Young Mi Seok
- Department of Pharmacology, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
71
|
Zhou Q, Gensch C, Liao JK. Rho-associated coiled-coil-forming kinases (ROCKs): potential targets for the treatment of atherosclerosis and vascular disease. Trends Pharmacol Sci 2011; 32:167-73. [PMID: 21242007 DOI: 10.1016/j.tips.2010.12.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/06/2010] [Accepted: 12/20/2010] [Indexed: 12/30/2022]
Abstract
ROCKs are important regulators of the actin cytoskeleton. Because changes in the actin cytoskeleton underlie vascular contractility and remodeling, inflammatory cell recruitment, and cell proliferation, it is likely that the Rho/ROCK pathway will play a central role in mediating vascular function. Indeed, increased ROCK activity is observed in cerebral and coronary vasospasm, hypertension, vascular inflammation, arteriosclerosis, and atherosclerosis. Recent experimental and clinical studies suggest that inhibition of ROCK could be a promising target for the treatment of cardiovascular disease. For example, inhibition of ROCK might be the underlying mechanism by which statins or HMG-CoA reductase inhibitors exert their therapeutic benefits beyond cholesterol reduction. In this review we summarize current understanding of the crucial role of RhoA/ROCK pathway in the regulation of vascular function and discuss its therapeutic potential in the treatment of atherosclerosis and vascular disease.
Collapse
Affiliation(s)
- Qian Zhou
- Vascular Medicine Research Unit, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
72
|
Ruiz-Loredo AY, López E, López-Colomé AM. Thrombin promotes actin stress fiber formation in RPE through Rho/ROCK-mediated MLC phosphorylation. J Cell Physiol 2011; 226:414-23. [PMID: 20672289 DOI: 10.1002/jcp.22347] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The retinal pigment epithelium (RPE) forms the outer blood-retina barrier (BRB). Most retinal diseases involve BRB breakdown, whereupon thrombin contained in serum directly contacts the RPE. Thrombin is known to promote actin stress fiber formation, an important determinant in eye diseases involving the epithelial-mesenchymal transition (EMT) and migration of RPE cells, such as proliferative vitreoretinopathy. We analyzed thrombin effect on signaling pathways leading to myosin light chain (MLC) phosphorylation and actin stress fiber formation in primary cultures of rat RPE cells, in order to support a role for thrombin in RPE transdifferentiation. MLC phosphorylation was measured by Western blot; actin cytoskeleton was visualized using immunofluorescent phalloidin, and Rho GTPase activation was assessed by ELISA. We showed that thrombin/PAR-1 induces the time- and dose-dependent phosphorylation of MLC through the activation of Rho/ROCK and myosin light chain kinase (MLCK). ROCK increased phospho-MLC by phosphorylating MLC and by inhibiting MLC phosphatase. Thrombin effect was abolished by the ROCK inhibitor Y-27632, whereas MLCK inhibitor ML-7 and PLC-β inhibitor U73122 attenuated MLC phosphorylation by ≈50%, suggesting the activation of MLCK by PLC-β-mediated calcium increase. Additionally, thrombin-induced MLC phosphorylation was blocked by the inhibitory PKCζ pseudosubstrate, wortmannin, and LY294002, indicating IP(3)/PKCζ involvement in the control of MLC phosphorylation. Moreover, we demonstrated that thrombin effect on MLC induces actin stress fiber formation, since this effect was prevented by inhibiting the pathways leading to MLC phosphorylation. We conclude that thrombin stimulation of MLC phosphorylation and actin stress fiber formation may be involved in thrombin-induced RPE cell transformation subsequent to BRB dysfunction.
Collapse
Affiliation(s)
- Ariadna Yolanda Ruiz-Loredo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | | | | |
Collapse
|
73
|
Seok YM, Choi YW, Kim GD, Kim HY, Takuwa Y, Kim IK. Effects of gomisin A on vascular contraction in rat aortic rings. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:45-56. [DOI: 10.1007/s00210-010-0571-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/08/2010] [Indexed: 01/06/2023]
|
74
|
Mbikou P, Fajmut A, Brumen M, Roux E. Contribution of Rho kinase to the early phase of the calcium-contraction coupling in airway smooth muscle. Exp Physiol 2010; 96:240-58. [PMID: 20870731 DOI: 10.1113/expphysiol.2010.054635] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated theoretically and experimentally the role of Rho kinase (RhoK) in Ca(2+)-contraction coupling in rat airways. Isometric contraction was measured on tracheal, extrapulmonary and intrapulmonary bronchial rings. Intracellular [Ca(2+)] was recorded in freshly isolated tracheal myocytes. Stimulation by carbachol (0.3 and 10 μm) and 50 mm external KCl induced a short-time, Hill-shaped contraction obtained within 90 s, followed by a sustained or an additional delayed contraction. Responses of [Ca(2+)](i) to acetylcholine consisted in a fast peak followed by a plateau and, in 42% of the cells, superimposed Ca(2+) oscillations. The RhoK inhibitor Y27632 (10 μm) did not alter the [Ca(2+)](i) response. Whatever the agonist, Y27632 did not modify the basal tension but decreased the amplitude of the short-duration response, without altering the additional delayed contraction. The Myosin Light Chain Phosphatase (MLCP) inhibitor calyculin A increased the basal tension and abolished the effect of RhoK. KN93 (Ca(2+)-calmodulin-dependent protein kinase II inhibitor) and DIDS (inhibitor of Ca(2+)-activated Cl(-) channels) had no influence on the RhoK effect. We built a theoretical model of Ca(2+)-dependent active/inactive RhoK ratio and subsequent RhoK-dependent MLCP inactivation, which was further coupled with a four-state model of the contractile apparatus and Ca(2+)-dependent MLCK activation. The model explains the time course of the short-duration contraction and the role of RhoK by Ca(2+)-dependent activation of MLCK and RhoK, which inactivates MLCP. Oscillatory and non-oscillatory [Ca(2+)](i) responses result in a non-oscillatory contraction, the amplitude of which is encoded by the plateau value and oscillation frequency. In conclusion, Ca(2+)-dependent but CaMK II-independent RhoK activation contributes to the early phase of the contractile response via MLCP inhibition.
Collapse
Affiliation(s)
- Prisca Mbikou
- Laboratoire de Physiologie Cellulaire Respiratoire, INSERM U885, Université Victor Segalen Bordeaux 2, 146 rue Léo-Saignat, Bordeaux cedex, France
| | | | | | | |
Collapse
|
75
|
Alvarez SM, Miner AS, Browne BM, Ratz PH. Failure of Bay K 8644 to induce RhoA kinase-dependent calcium sensitization in rabbit blood vessels. Br J Pharmacol 2010; 160:1326-37. [PMID: 20590624 PMCID: PMC2938805 DOI: 10.1111/j.1476-5381.2010.00751.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE RhoA kinase (ROCK) participates in K(+) depolarization (KCl)-induced Ca(2+) sensitization of contraction. Whether constitutive, depolarization- or Ca(2+)-activated ROCK plays the major role in this signalling system remains to be determined. Here, we determined whether Bay K 8644, a dihydropyridine that promotes Ca(2+) channel clusters to operate in a persistent Ca(2+) influx mode, could cause ROCK-dependent Ca(2+) sensitization. EXPERIMENTAL APPROACH Renal and femoral artery rings from New Zealand white rabbits were contracted with Bay K 8644. Tissues were frozen and processed to measure active RhoA and ROCK substrate (myosin phosphatase targeting subunit, MYPT1) and myosin light chain (MLC) phosphorylation, or loaded with fura-2 to measure intracellular free Ca(2+) ([Ca(2+)](i)). Effects of selective inhibitors of contraction were assessed in resting (basal) tissues and those contracted with Bay K 8644. KEY RESULTS Bay K 8644 produced strong increases in [Ca(2+)](i), MLC phosphorylation and tension, but not in MYPT1 phosphorylation. ROCK inhibition by H-1152 abolished basal MYPT1-pT853, diminished basal MLC phosphorylation and inhibited Bay K 8644-induced increases in MLC phosphorylation and tension. MLC kinase inhibition by wortmannin abolished Bay K 8644-induced contraction and increase in MLC phosphorylation but did not inhibit basal MYPT1-pT853. H-1152 and wortmannin had no effect on MYPT1-pT696, but 1 microM staurosporine inhibited basal MYPT1-pT853, MYPT1-pT696 and MLC phosphorylation. CONCLUSIONS AND IMPLICATIONS These data suggest that the constitutive activities of ROCK and a staurosporine-sensitive kinase regulate basal phosphorylation of MYPT1, which participates along with activation of MLC kinase in determining the strength of contraction induced by the Ca(2+) agonist, Bay K 8644.
Collapse
Affiliation(s)
- S M Alvarez
- Departments of Biochemistry and Molecular Biology and Pediatrics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | | | | | | |
Collapse
|
76
|
Wirth A. Rho kinase and hypertension. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1276-84. [PMID: 20460153 DOI: 10.1016/j.bbadis.2010.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 04/16/2010] [Accepted: 05/01/2010] [Indexed: 11/26/2022]
Abstract
Arterial hypertension is a multifactorial disease that is characterised by increased peripheral vascular resistance often accompanied by smooth muscle cell hypertrophy and proliferation. Rho kinases (ROCKs) are the most extensively studied effectors of the small G-protein RhoA and abnormalities in RhoA/ROCK signalling have been observed in various cardiovascular disease including hypertension. The RhoA/ROCK-pathway is a key player in different smooth muscle cell functions including contractility, proliferation and migration. Furthermore, there is extensive crosstalk between RhoA/ROCK- and NO-signalling. Therefore, not only ROCK inhibitors but also NO-donators or pleiotropic agents like statins exert their beneficial effects on the cardiovascular system at least in part via Rho/Rho-kinase.
Collapse
Affiliation(s)
- Angela Wirth
- Max-Planck-Institute for Heart and Lung Research, Dept. of Pharmacology, Ludwigstraße 43, 61231 Bad Nauheim, Germany.
| |
Collapse
|
77
|
Role of Rho-kinase in mediating contraction of chicken embryo femoral arteries. J Comp Physiol B 2010; 180:427-35. [PMID: 19936759 PMCID: PMC2820664 DOI: 10.1007/s00360-009-0420-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/09/2009] [Accepted: 11/03/2009] [Indexed: 01/05/2023]
Abstract
Rho-kinase-dependent Ca2+ sensitization is an essential process for contraction of mammalian vascular smooth muscle but the information about its effects in non-mammalian vessels is scarce. We aimed to investigate, using the Rho-kinase inhibitor hydroxyfasudil, the potential role of the Rho-kinase pathway of Ca2+ sensitization in depolarization- and agonist-mediated contraction of chicken embryo (at day 19 of the 21 days of incubation) femoral arteries. Contraction elicited by KCl (125 mM) comprised two phases (phasic and tonic contraction), both of which were abolished in the absence of extracellular Ca2+. Hydroxyfasudil (10 microM) left the initial phasic component nearly intact but abolished the tonic component. Hydroxyfasudil also induced a marked impairment of the contractions elicited by phenylephrine (PE), the thromboxane A2 mimetic U46619, and endothelin-1. In contrast, inhibition of protein kinase C (PKC) by chelerythrine did not affect KCl- or PE-induced contractions, indicating lack of participation of PKC-mediated Ca2+ sensitization. Incubation under chronic hypoxia (15% O2 from day 0) impaired embryonic growth but did not significantly affect hydroxyfasudil-mediated relaxation. In summary, our findings are indicative of a role for Rho-kinase activity in depolarization- and agonist-induced force generation in chicken embryo femoral arteries.
Collapse
|
78
|
Morwick T, Büttner FH, Cywin CL, Dahmann G, Hickey E, Jakes S, Kaplita P, Kashem MA, Kerr S, Kugler S, Mao W, Marshall D, Paw Z, Shih CK, Wu F, Young E. Hit to lead account of the discovery of bisbenzamide and related ureidobenzamide inhibitors of Rho kinase. J Med Chem 2010; 53:759-77. [PMID: 20000469 DOI: 10.1021/jm9014263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A highly selective series of bisbenzamide inhibitors of Rho-associated coiled-coil forming protein kinase (ROCK) and a related ureidobenzamide series, both identified by high throughput screening (HTS), are described. Details of the hit validation and lead generation process, including structure-activity relationship (SAR) studies, a selectivity assessment, target-independent profiling (TIP) results, and an analysis of functional activity using a rat aortic ring assay are discussed.
Collapse
Affiliation(s)
- Tina Morwick
- Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06801-0368, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Puetz S, Lubomirov LT, Pfitzer G. Regulation of smooth muscle contraction by small GTPases. Physiology (Bethesda) 2010; 24:342-56. [PMID: 19996365 DOI: 10.1152/physiol.00023.2009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Next to changes in cytosolic [Ca(2+)], members of the Rho subfamily of small GTPases, in particular Rho and its effector Rho kinase, also known as ROK or ROCK, emerged as key regulators of smooth muscle function in health and disease. In this review, we will focus on the regulation of the contractile machinery by Rho/ROK signaling and its interaction with PKC and cyclic nucleotide signaling. We will briefly discuss the emerging evidence that remodeling of cortical actin is necessary for contraction.
Collapse
Affiliation(s)
- Sandra Puetz
- Institut für Vegetative Physiologie, Universitaet Koeln, Koeln, Germany,
| | | | | |
Collapse
|
80
|
Wang Y, Liang D, Wang S, Qiu Z, Chu X, Chen S, Li L, Nie X, Zhang R, Wang Z, Zhu D. Role of the G-protein and tyrosine kinase--Rho/ROK pathways in 15-hydroxyeicosatetraenoic acid induced pulmonary vasoconstriction in hypoxic rats. J Biochem 2010; 147:751-64. [DOI: 10.1093/jb/mvq010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
81
|
Katayama T, Watanabe M, Tanaka H, Hino M, Miyakawa T, Ohki T, Ye LH, Xie C, Yoshiyama S, Nakamura A, Ishikawa R, Tanokura M, Oiwa K, Kohama K. Stimulatory effects of arachidonic acid on myosin ATPase activity and contraction of smooth muscle via myosin motor domain. Am J Physiol Heart Circ Physiol 2010; 298:H505-14. [DOI: 10.1152/ajpheart.00577.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have been searching for a mechanism to induce smooth muscle contraction that is not associated with phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin (Nakamura A, Xie C, Zhang Y, Gao Y, Wang HH, Ye LH, Kishi H, Okagaki T, Yoshiyama S, Hayakawa K, Ishikawa R, Kohama K. Biochem Biophys Res Commun 369: 135–143, 2008). In this article, we report that arachidonic acid (AA) stimulates ATPase activity of unphosphorylated smooth muscle myosin with maximal stimulation (Rmax) of 6.84 ± 0.51 relative to stimulation by the vehicle and with a half-maximal effective concentration (EC50) of 50.3 ± 4.2 μM. In the presence of actin, Rmax was 1.72 ± 0.08 and EC50 was 26.3 ± 2.3 μM. Our experiments with eicosanoids consisting of the AA cascade suggested that they neither stimulated nor inhibited the activity. Under conditions that did not allow RLC to be phosphorylated, AA stimulated contraction of smooth muscle tissue with an Rmax of 1.45 ± 0.07 and an EC50 of 27.0 ± 4.4 μM. In addition to the ATPase activities of the myosin, AA stimulated those of heavy meromyosin, subfragment 1 (S1), S1 from which the RLC was removed, and a recombinant heavy chain consisting of the myosin head. The stimulatory effects of AA on these preparations were about twofold. The site of AA action was indicated to be the step-releasing inorganic phosphate (Pi) from the reaction intermediate of the myosin-ADP-Pi complex. The enhancement of Pi release by AA was supported by computer simulation indicating that AA docked in the actin-binding cleft of the myosin motor domain. The stimulatory effect of AA was detectable with both unphosphorylated myosin and the myosin in which RLC was fully phosphorylated. The AA effect on both myosin forms was suggested to cause excess contraction such as vasospasm.
Collapse
Affiliation(s)
- Takeshi Katayama
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | | | - Hideyuki Tanaka
- Department of Research Science, Gunma University School of Health Sciences, Gunma
| | - Mizuki Hino
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | - Takashi Ohki
- Department of Physics, School of Science and Engineering, Waseda University, Tokyo
| | - Li-Hong Ye
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
- Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China; and
| | - Ce Xie
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Shinji Yoshiyama
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Akio Nakamura
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Ryoki Ishikawa
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo
| | | | - Kazuhiro Kohama
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Gunma
- Department of Biological Sciences, Marshall University, Huntington, West Virginia
| |
Collapse
|
82
|
Xie Z, Gong MC, Su W, Xie D, Turk J, Guo Z. Role of calcium-independent phospholipase A2beta in high glucose-induced activation of RhoA, Rho kinase, and CPI-17 in cultured vascular smooth muscle cells and vascular smooth muscle hypercontractility in diabetic animals. J Biol Chem 2010; 285:8628-38. [PMID: 20086008 DOI: 10.1074/jbc.m109.057711] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous studies suggest that high glucose-induced RhoA/Rho kinase/CPI-17 activation is involved in diabetes-associated vascular smooth muscle hypercontractility. However, the upstream signaling that links high glucose and RhoA/Rho kinase/CPI-17 activation is unknown. Here we report that calcium-independent phospholipase A(2)beta (iPLA(2)beta) is required for high glucose-induced RhoA/Rho kinase/CPI-17 activation and thereby contributes to diabetes-associated vascular smooth muscle hypercontractility. We demonstrate that high glucose increases iPLA(2)beta mRNA, protein, and iPLA(2) activity in a time-dependent manner. Protein kinase C is involved in high glucose-induced iPLA(2)beta protein up-regulation. Inhibiting iPLA(2)beta activity with bromoenol lactone or preventing its expression by genetic deletion abolishes high glucose-induced RhoA/Rho kinase/CPI-17 activation, and restoring expression of iPLA(2)beta in iPLA(2)beta-deficient cells also restores high glucose-induced CPI-17 phosphorylation. Pharmacological and genetic inhibition of 12/15-lipoxygenases has effects on high glucose-induced CPI-17 phosphorylation similar to iPLA(2)beta inhibition. Moreover, increases in iPLA(2) activity and iPLA(2)beta protein expression are also observed in both type 1 and type 2 diabetic vasculature. Pharmacological and genetic inhibition of iPLA(2)beta, but not iPLA(2)gamma, diminishes diabetes-associated vascular smooth muscle hypercontractility. In summary, our results reveal a novel mechanism by which high glucose-induced, protein kinase C-mediated iPLA(2)beta up-regulation activates the RhoA/Rho kinase/CPI-17 via 12/15-lipoxygenases and thereby contributes to diabetes-associated vascular smooth muscle hypercontractility.
Collapse
Affiliation(s)
- Zhongwen Xie
- Department of Physiology, University of Kentucky School of Medicine, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
83
|
|
84
|
|
85
|
RATTAN SATISH, PHILLIPS BENJAMINR, MAXWELL PINCKNEYJ. RhoA/Rho-kinase: pathophysiologic and therapeutic implications in gastrointestinal smooth muscle tone and relaxation. Gastroenterology 2010; 138:13-8.e1-3. [PMID: 19931260 PMCID: PMC5599165 DOI: 10.1053/j.gastro.2009.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- SATISH RATTAN
- Department of Medicine, Division of Gastroenterology & Hepatology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA
| | - BENJAMIN R. PHILLIPS
- Department of Surgery, Division of Colon and Rectal Surgery, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA
| | - PINCKNEY J. MAXWELL
- Department of Surgery, Division of Colon and Rectal Surgery, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
86
|
Hubchak SC, Sparks EE, Hayashida T, Schnaper HW. Rac1 promotes TGF-beta-stimulated mesangial cell type I collagen expression through a PI3K/Akt-dependent mechanism. Am J Physiol Renal Physiol 2009; 297:F1316-23. [PMID: 19726546 DOI: 10.1152/ajprenal.00345.2009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transforming growth factor (TGF)-beta is a central mediator in the progression of glomerulosclerosis, leading to accumulation of aberrant extracellular matrix proteins and inappropriate expression of smooth muscle alpha-actin in the kidney. Previously, we reported that disrupting the cytoskeleton diminished TGF-beta-stimulated type I collagen accumulation in human mesangial cells. As cytoskeletal signaling molecules, including the Rho-family GTPases, have been implicated in fibrogenesis, we sought to determine the respective roles of RhoA and Rac1 in HMC collagen I expression. TGF-beta1 activated both RhoA and Rac1 within 5 min of treatment, and this activation was dependent on the kinase activity of the type I TGF-beta receptor. TGF-beta1-stimulated induction of type I collagen mRNA expression and promoter activity was diminished by inhibiting Rac1 activity and was increased by a constitutively active Rac1 mutant, whereas inhibiting RhoA activity had no such effect. Rac1 activation required phosphatidylinositol-3-kinase (PI3K) activity. Furthermore, the PI3K antagonist, LY294002, reduced TGF-beta1-stimulated COL1A2 promoter activity and Rac1 activation. It also partially blocked active Rac1-stimulated collagen promoter activity, suggesting that PI3K activity contributes to both TGF-beta activation of Rac1 and signal propagation downstream of Rac1. Thus, while both Rac1 and RhoA are rapidly activated in response to TGF-beta1 in human mesangial cells, only Rac1 activation enhances events that contribute to mesangial cell collagen expression, through a positive feedback loop involving PI3K.
Collapse
Affiliation(s)
- Susan C Hubchak
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
87
|
Lartey J, López Bernal A. RHO protein regulation of contraction in the human uterus. Reproduction 2009; 138:407-24. [DOI: 10.1530/rep-09-0160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The state of contraction in smooth muscle cells of the human uterus is dependent on the interaction of activated forms of actin and myosin. Ras homology (RHO) proteins are small monomeric GTP-binding proteins that regulate actin polymerisation and myosin phosphorylation in smooth muscle cells. Their action is determined by their level of expression, GTP-bound state, intracellular localisation and phosphorylated status. Agonist activated RHO proteins bind to effector kinases such as RHO kinase (ROCK) and diaphanous proteins (DIAPH) to regulate smooth muscle contraction by two mechanisms: ROCK activates smooth muscle myosin either by direct phosphorylation at Ser19/Thr18 or through inhibition of myosin phosphatase which is a trimeric protein regulated by ROCK and by other protein kinases. Actin-polymerising proteins such as DIAPH homolog 1 increase filamentous actin assembly to enhance acto-myosin cross bridge formation and contraction. This review explores recent advances in RHO protein signalling in human myometrium and proposes areas of further research to investigate the involvement of these proteins in the regulation of uterine contractility in pregnancy and labour.
Collapse
|
88
|
Mustafa S, Vasudevan H, Yuen VG, McNeill JH. Renal expression of arachidonic acid metabolizing enzymes and RhoA/Rho kinases in fructose insulin resistant hypertensive rats. Mol Cell Biochem 2009; 333:203-9. [PMID: 19633817 DOI: 10.1007/s11010-009-0220-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/09/2009] [Indexed: 01/29/2023]
Abstract
Fructose feeding has been shown to induce insulin resistance and hypertension. Renal protein expression for the cytochrome P (CYP) 450 arachidonic acid metabolizing enzymes has been shown to be altered in other models of diet-induced hypertension. Of special interest is CYP4A, which produces the potent vasoconstrictor, 20-hydroxyeicosatetraenoic acid and CYP2C, which catalyzes the formation of the potent dilators epoxyeicosatrienoic acids as well as soluble epoxide hydrolase (sEH) which metabolizes the latter to dihydroxyeicosatrienoic acids. The RhoA/Rho kinase (ROCK) signaling pathway is downstream of arachidonic acid and is reported to mediate metabolic-cardio-renal dysfunctions in some experimental models of insulin resistance and diabetes. The aim of the present study was to determine the expression of CYP4A, CYP2C23, CYP2C11, sEH, RhoA, ROCK-1, ROCK-2, and phospho-Lin-11/Isl-1/Mec-3 kinase (LIMK) in kidneys of fructose-fed (F) rats. Male Wistar rats were fed a high fructose diet for 8 weeks. Body weight, systolic blood pressure, insulin sensitivity, and renal expression of the aforementioned proteins were assessed. No change was observed in the body weight of F rats; however, euglycemia and hyperinsulinemia implicating impaired glucose tolerance and significant elevation in systolic blood pressure were observed. Renal expression of CYP4A and CYP2C23 was significantly increased while that of CYP2C11 and sEH was not changed in F rats. Equal expression for RhoA in both control and F rats and an enhanced level of ROCK-1 and ROCK-2 constitutively activate 130 kDa cleavage fragments as well as phospho-LIMK. These data suggest that the kidneys could be actively participating in the pathogenesis of insulin resistance-induced hypertension through the arachidonic acid CYP 450-RhoA/Rho kinase pathway(s).
Collapse
Affiliation(s)
- Sally Mustafa
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia, 2146 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
89
|
Liu T, Guevara OE, Warburton RR, Hill NS, Gaestel M, Kayyali US. Modulation of HSP27 alters hypoxia-induced endothelial permeability and related signaling pathways. J Cell Physiol 2009; 220:600-10. [PMID: 19373869 DOI: 10.1002/jcp.21773] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This manuscript describes how the permeability of pulmonary artery microvascular endothelial cell (RPMEC) monolayer is elevated by hypoxia and the role played by HSP27 phosphorylation. p38 MAP kinase activation leading to HSP27 phosphorylation was previously shown by our laboratory to alter the actin cytoskeleton and tethering properties of RPMEC. This effect was independent of hypoxia-induced contractility which was ROCK-dependent rather than HSP27-dependent. Results described here show that increased HSP27 phosphorylation not only does not underlie hypoxia-induced permeability, but may actually augment the endothelial barrier. Hypoxia causes gap formation between RPMEC and increases MLC2 phosphorylation. The phosphorylation of MYPT1, which inhibits MLC2 phosphatase, is also increased in hypoxia. In addition, FAK phosphorylation, which alters focal adhesion signaling, is increased in hypoxia. Overexpressing phosphomimicking HSP27 (pmHSP27), which induces significant actin stress fiber formation, surprisingly renders RPMEC resistant to hypoxia- or TGFbeta-induced permeability. siRNA against pmHSP27 reverses the increased actin stress fiber formation in pmHSP27-overexpressing cells, and disrupting actin stress fibers in pmHSP27-overexpressing RPMEC renders them more susceptible to hypoxia. Finally, hypoxia-induced gap formation, as well as phosphorylation of MLC2, MYPT1 and FAK are almost abolished by overexpressing pmHSP27 in RPMEC. These effects of pmHSP27 overexpression might represent decreased cytoskeletal plasticity and increased tethering which counteracts permeability-inducing contractility. Thus hypoxia activates two pathways one leading to contractility and increased permeability, the other leading to actin stress fibers, stronger adhesion, and reduced permeability. Altering HSP27 phosphorylation, which tips the balance towards decreased permeability, might be targeted in managing endothelial barrier dysfunction.
Collapse
Affiliation(s)
- Tiegang Liu
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
Blood vessels respond to changes in mechanical load from circulating blood in the form of shear stress and mechanical strain as the result of heart propulsions by changes in intracellular signaling leading to changes in vascular tone, production of vasoactive molecules, and changes in vascular permeability, gene regulation, and vascular remodeling. In addition to hemodynamic forces, microvasculature in the lung is also exposed to stretch resulting from respiratory cycles during autonomous breathing or mechanical ventilation. Among various cell signaling pathways induced by mechanical forces and reported to date, a role of reactive oxygen species (ROS) produced by vascular cells receives increasing attention. ROS play an essential role in signal transduction and physiologic regulation of vascular function. However, in the settings of chronic hypertension, inflammation, or acute injury, ROS may trigger signaling events that further exacerbate smooth muscle hypercontractility and vascular remodeling associated with hypertension and endothelial barrier dysfunction associated with acute lung injury and pulmonary edema. These conditions are also characterized by altered patterns of mechanical stimulation experienced by vasculature. This review will discuss signaling pathways regulated by ROS and mechanical stretch in the pulmonary and systemic vasculature and will summarize functional interactions between cyclic stretch- and ROS-induced signaling in mechanochemical regulation of vascular structure and function.
Collapse
Affiliation(s)
- Konstantin G Birukov
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
91
|
Ratz PH, Miner AS, Barbour SE. Calcium-independent phospholipase A2 participates in KCl-induced calcium sensitization of vascular smooth muscle. Cell Calcium 2009; 46:65-72. [PMID: 19487023 DOI: 10.1016/j.ceca.2009.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/15/2009] [Accepted: 05/04/2009] [Indexed: 01/14/2023]
Abstract
In vascular smooth muscle, KCl not only elevates intracellular free Ca(2+) ([Ca(2+)](i)), myosin light chain kinase activity and tension (T), but also can inhibit myosin light chain phosphatase activity by activation of rhoA kinase (ROCK), resulting in Ca(2+) sensitization (increased T/[Ca(2+)](i) ratio). Precisely how KCl causes ROCK-dependent Ca(2+) sensitization remains to be determined. Using Fura-2-loaded isometric rings of rabbit artery, we found that the Ca(2+)-independent phospholipase A(2) (iPLA(2)) inhibitor, bromoenol lactone (BEL), reduced the KCl-induced tonic but not early phasic phase of T and potentiated [Ca(2+)](i), reducing Ca(2+) sensitization. The PKC inhibitor, GF-109203X (> or =3 microM) and the pseudo-substrate inhibitor of PKCzeta produced a response similar to BEL. BEL reduced basal and KCl-stimulated myosin phosphatase phosphorylation. Whereas BEL and H-1152 produced strong inhibition of KCl-induced tonic T (approximately 50%), H-1152 did not induce additional inhibition of tissues already inhibited by BEL, suggesting that iPLA(2) links KCl stimulation with ROCK activation. The cPLA(2) inhibitor, pyrrolidine-1, inhibited KCl-induced tonic increases in [Ca(2+)](i) but not T, whereas the inhibitor of 20-HETE production, HET0016, acted like the ROCK inhibitor H-1152 by causing Ca(2+) desensitization. These data support a model in which iPLA(2) activity regulates Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, USA.
| | | | | |
Collapse
|
92
|
Shin HK, Salomone S, Ayata C. Targeting cerebrovascular Rho-kinase in stroke. Expert Opin Ther Targets 2009; 12:1547-64. [PMID: 19007322 DOI: 10.1517/14728220802539244] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Rho and Rho-associated kinase (ROCK) play pivotal roles in pathogenesis of vascular diseases including stroke. ROCK is expressed in all cell types relevant to stroke, and regulates a range of physiological processes. OBJECTIVE To provide an overview of ROCK as an experimental therapeutic target in cerebral ischemia, and the translational opportunities and obstacles in the prophylaxis and treatment of stroke. METHODS Relevant literature was reviewed. RESULTS ROCK activity is upregulated in chronic vascular risk factors such as diabetes, hyperlipidemia and hypertension, and more acutely by cerebral ischemia. ROCK activation is predicted to increase the risk of cerebral ischemia, and worsen the ischemic tissue outcome and functional recovery. Evidence suggests that ROCK inhibition is protective in models of cerebral ischemia. The benefit is mediated through multiple mechanisms. CONCLUSION ROCK is a promising therapeutic target in all stages of stroke.
Collapse
Affiliation(s)
- Hwa Kyoung Shin
- Pusan National University, Medical Research Center for Ischemic Tissue Regeneration, 10 Ami-dong, 1-Ga, Seo-Gu, Busan 602-739, Korea
| | | | | |
Collapse
|
93
|
Wang Y, Zheng XR, Riddick N, Bryden M, Baur W, Zhang X, Surks HK. ROCK isoform regulation of myosin phosphatase and contractility in vascular smooth muscle cells. Circ Res 2009; 104:531-40. [PMID: 19131646 DOI: 10.1161/circresaha.108.188524] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abnormal vascular smooth muscle cell (VSMC) contraction plays an important role in vascular diseases. The RhoA/ROCK signaling pathway is now well recognized to mediate vascular smooth muscle contraction in response to vasoconstrictors by inhibiting myosin phosphatase (MLCP) activity and increasing myosin light chain phosphorylation. Two ROCK isoforms, ROCK1 and ROCK2, are expressed in many tissues, yet the isoform-specific roles of ROCK1 and ROCK2 in vascular smooth muscle and the mechanism of ROCK-mediated regulation of MLCP are not well understood. In this study, ROCK2, but not ROCK1, bound directly to the myosin binding subunit of MLCP, yet both ROCK isoforms regulated MLCP and myosin light chain phosphorylation. Despite that both ROCK1 and ROCK2 regulated MLCP, the ROCK isoforms had distinct and opposing effects on VSMC morphology and ROCK2, but not ROCK1, had a predominant role in VSMC contractility. These data support that although the ROCK isoforms both regulate MLCP and myosin light chain phosphorylation through different mechanisms, they have distinct roles in VSMC function.
Collapse
Affiliation(s)
- Yuepeng Wang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Vaasa A, Viil I, Enkvist E, Viht K, Raidaru G, Lavogina D, Uri A. High-affinity bisubstrate probe for fluorescence anisotropy binding/displacement assays with protein kinases PKA and ROCK. Anal Biochem 2008; 385:85-93. [PMID: 19017524 DOI: 10.1016/j.ab.2008.10.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/03/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
The bisubstrate fluorescent probe ARC-583 (Adc-Ahx-(D-Arg)(6)-d-Lys(5-TAMRA)-NH2) and its application for the characterization of both ATP- and protein/peptide substrate-competitive inhibitors of protein kinases PKA (cyclic AMP-dependent protein kinase) and ROCK (rho kinase) in fluorescence polarization-based assay are described. High affinity of the probe (K(D)=0.48 nM toward PKA) enables its application for the characterization of inhibitors with nanomolar and micromolar potency and determination of the active concentration of the kinase in individual experiments as well as in the high-throughput screening format. The probe can be used for the assessment of protein-protein interactions (e.g., between regulatory and catalytic subunits of PKA) and as a cyclic AMP biosensor.
Collapse
Affiliation(s)
- Angela Vaasa
- Institute of Chemistry, University of Tartu, 2 Jakobi St., 51014 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
95
|
Wen W, Liu W, Yan J, Zhang M. Structure basis and unconventional lipid membrane binding properties of the PH-C1 tandem of rho kinases. J Biol Chem 2008; 283:26263-73. [PMID: 18640982 DOI: 10.1074/jbc.m803417200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho kinase (ROCK), a downstream effector of Rho GTPase, is a serine/threonine protein kinase that regulates many crucial cellular processes via control of cytoskeletal structures. The C-terminal PH-C1 tandem of ROCKs has been implicated to play an autoinhibitory role by sequestering the N-terminal kinase domain and reducing its kinase activity. The binding of lipids to the pleckstrin homology (PH) domain not only regulates the localization of the protein but also releases the kinase domain from the close conformation and thereby activates its kinase activity. However, the molecular mechanism governing the ROCK PH-C1 tandem-mediated lipid membrane interaction is not known. In this study, we demonstrate that ROCK is a new member of the split PH domain family of proteins. The ROCK split PH domain folds into a canonical PH domain structure. The insertion of the atypical C1 domain in the middle does not alter the structure of the PH domain. We further show that the C1 domain of ROCK lacks the diacylglycerol/phorbol ester binding pocket seen in other canonical C1 domains. Instead, the inserted C1 domain and the PH domain function cooperatively in binding to membrane bilayers via the unconventional positively charged surfaces on each domain. Finally, the analysis of all split PH domains with known structures indicates that split PH domains represent a unique class of tandem protein modules, each possessing distinct structural and functional features.
Collapse
Affiliation(s)
- Wenyu Wen
- Department of Biochemistry, Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | |
Collapse
|
96
|
Schaafsma D, Gosens R, Zaagsma J, Halayko AJ, Meurs H. Rho kinase inhibitors: A novel therapeutical intervention in asthma? Eur J Pharmacol 2008; 585:398-406. [DOI: 10.1016/j.ejphar.2008.01.056] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 01/11/2008] [Accepted: 01/24/2008] [Indexed: 01/05/2023]
|
97
|
Abstract
Actomyosin-based cortical contractility is a common feature of eukaryotic cells and is involved in cell motility, cell division, and apoptosis. In nonmuscle cells, oscillations in contractility are induced by microtubule depolymerization during cell spreading. We developed an ordinary differential equation model to describe this behavior. The computational model includes 36 parameters. The values for all but two of the model parameters were taken from experimental measurements found in the literature. Using these values, we demonstrate that the model generates oscillatory behavior consistent with current experimental observations. The rhythmic behavior occurs because of the antagonistic effects of calcium-induced contractility and stretch-activated calcium channels. The model makes several experimentally testable predictions: 1), buffering intracellular calcium increases the period and decreases the amplitude of cortical oscillations; 2), increasing the number or activity of stretch activated channels leads to an increase in period and amplitude of cortical oscillations; 3), inhibiting Ca(2+) pump activity increases the period and amplitude of oscillations; and 4), a threshold exists for the calcium concentration below which oscillations cease.
Collapse
|
98
|
McNamara PJ, Murthy P, Kantores C, Teixeira L, Engelberts D, van Vliet T, Kavanagh BP, Jankov RP. Acute vasodilator effects of Rho-kinase inhibitors in neonatal rats with pulmonary hypertension unresponsive to nitric oxide. Am J Physiol Lung Cell Mol Physiol 2008; 294:L205-13. [DOI: 10.1152/ajplung.00234.2007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary hypertension (PHT) in neonates is often refractory to the current best therapy, inhaled nitric oxide (NO). The utility of a new class of pulmonary vasodilators, Rho-kinase (ROCK) inhibitors, has not been examined in neonatal animals. Our objective was to examine the activity and expression of RhoA/ROCK in normal and injured pulmonary arteries and to determine the short-term pulmonary hemodynamic (assessed by pulse wave Doppler) effects of ROCK inhibitors (15 mg/kg ip Y-27632 or 30 mg/kg ip fasudil) in two neonatal rat models of chronic PHT with pulmonary vascular remodeling (chronic hypoxia, 0.13 FiO2, or 1 mg·kg−1·day−1 ip chronic bleomycin for 14 days from birth). Activity of the RhoA/ROCK pathway and ROCK expression were increased in hypoxia- and bleomycin-induced PHT. In both models, severe PHT [characterized by raised pulmonary vascular resistance (PVR) and impaired right ventricular (RV) performance] did not respond acutely to inhaled NO (20 ppm for 15 min) or to a single bolus of a NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1; 2 μg/kg ip). In contrast, a single intraperitoneal bolus of either ROCK inhibitor (Y-27632 or fasudil) completely normalized PVR but had no acute effect on RV performance. ROCK-mediated vasoconstriction appears to play a key role in chronic PHT in our two neonatal rat models. Inhibitors of ROCK have potential as a testable therapy in neonates with PHT that is refractory to NO.
Collapse
|
99
|
Abstract
Rho kinases (ROCKs) are the first and the best-characterized effectors of the small G-protein RhoA. In addition to their effect on actin organization, or through this effect, ROCKs have been found to regulate a wide range of fundamental cell functions such as contraction, motility, proliferation, and apoptosis. Abnormal activation of the RhoA/ROCK pathway has been observed in major cardiovascular disorders such as atherosclerosis, restenosis, hypertension, pulmonary hypertension, and cardiac hypertrophy. This review, based on recent molecular, cellular, and animal studies, focuses on the current understanding of ROCK signaling and its roles in cardiovascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM U-533-Institut du Thorax, Faculté des Sciences, Nantes, France
| | | | | |
Collapse
|
100
|
MLC-kinase/phosphatase control of Ca2+ signal transduction in airway smooth muscles. J Theor Biol 2007; 252:474-81. [PMID: 18005997 DOI: 10.1016/j.jtbi.2007.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/04/2007] [Accepted: 10/05/2007] [Indexed: 11/23/2022]
Abstract
In airway smooth muscles, kinase/phosphatase-dependent phosphorylation and dephosphorylation of the myosin light chain (MLC) have been revealed by many authors as important steps in calcium (Ca(2+)) signalling pathway from the variation of Ca(2+) concentration in cytosol to the force development. Here, a theoretical analysis of the control action of MLC-kinase (MLCK) and MLC-phosphatase (MLCP) in Ca(2+) signalling is presented and related to the general control principles of these enzymes, which were previously studied by Reinhart Heinrich and his co-workers. The kinetic scheme of the mathematical model considers interactions among Ca(2+), calmodulin (CaM) and MLCK and the well-known 4-state actomyosin latch bridge model, whereby a link between them is accomplished by the conservation relation of all species of MLCK. The mathematical model predicts the magnitude and velocity of isometric force in smooth muscles upon transient biphasic Ca(2+) signal. The properties of signal transduction in the system such as the signalling time, signal duration and signal amplitude, which are reflected in the properties of force developed, are studied by the principles of the metabolic control theory. The analysis of our model predictions confirms as shown by Reinhart Heinrich and his co-workers that MLCK controls the amplitude of signal more than its duration, whereas MLCP controls both. Finally, the simulations of elevated total content of MLCK, a typical feature of bronchial muscles of asthmatic subjects and spontaneously hypertensive rats as well as potentiation of MLCP catalytic activity, are carried out and are discussed in view of an increase in the force magnitude.
Collapse
|