51
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 609] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
52
|
Sapieha P, Stahl A, Chen J, Seaward MR, Willett KL, Krah NM, Dennison RJ, Connor KM, Aderman CM, Liclican E, Carughi A, Perelman D, Kanaoka Y, Sangiovanni JP, Gronert K, Smith LEH. 5-Lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of ω-3 polyunsaturated fatty acids. Sci Transl Med 2011; 3:69ra12. [PMID: 21307302 DOI: 10.1126/scitranslmed.3001571] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lipid signaling is dysregulated in many diseases with vascular pathology, including cancer, diabetic retinopathy, retinopathy of prematurity, and age-related macular degeneration. We have previously demonstrated that diets enriched in ω-3 polyunsaturated fatty acids (PUFAs) effectively reduce pathological retinal neovascularization in a mouse model of oxygen-induced retinopathy, in part through metabolic products that suppress microglial-derived tumor necrosis factor-α. To better understand the protective effects of ω-3 PUFAs, we examined the relative importance of major lipid metabolic pathways and their products in contributing to this effect. ω-3 PUFA diets were fed to four lines of mice deficient in each key lipid-processing enzyme (cyclooxygenase 1 or 2, or lipoxygenase 5 or 12/15), retinopathy was induced by oxygen exposure; only loss of 5-lipoxygenase (5-LOX) abrogated the protection against retinopathy of dietary ω-3 PUFAs. This protective effect was due to 5-LOX oxidation of the ω-3 PUFA lipid docosahexaenoic acid to 4-hydroxy-docosahexaenoic acid (4-HDHA). 4-HDHA directly inhibited endothelial cell proliferation and sprouting angiogenesis via peroxisome proliferator-activated receptor γ (PPARγ), independent of 4-HDHA's anti-inflammatory effects. Our study suggests that ω-3 PUFAs may be profitably used as an alternative or supplement to current anti-vascular endothelial growth factor (VEGF) treatment for proliferative retinopathy and points to the therapeutic potential of ω-3 PUFAs and metabolites in other diseases of vasoproliferation. It also suggests that cyclooxygenase inhibitors such as aspirin and ibuprofen (but not lipoxygenase inhibitors such as zileuton) might be used without losing the beneficial effect of dietary ω-3 PUFA.
Collapse
Affiliation(s)
- Przemyslaw Sapieha
- Department of Ophthalmology, Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
54
|
Barrett NA, Rahman OM, Fernandez JM, Parsons MW, Xing W, Austen KF, Kanaoka Y. Dectin-2 mediates Th2 immunity through the generation of cysteinyl leukotrienes. ACTA ACUST UNITED AC 2011; 208:593-604. [PMID: 21357742 PMCID: PMC3058587 DOI: 10.1084/jem.20100793] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The innate signaling pathways for Th2 immunity activated by inhaled antigens are not well defined. We previously identified Dectin-2 as a receptor for glycans in allergen extracts from the house dust mite Dermatophagoides farinae (Df) that mediates cysteinyl leukotriene (cys-LT) generation from pulmonary CD11c+ cells and from GM-CSF-cultured bone marrow cells (BMCs(GM-CSF)). Using lentiviral knockdown of Dectin-2 in BMCs(GM-CSF) and adoptive transfer of Df-pulsed BMCs(GM-CSF) to sensitize naive mice, we now report that Dectin-2 is critical for the development of Df-elicited eosinophilic and neutrophilic pulmonary inflammation and Th2 cytokine generation in the lungs and restimulated lymph nodes. Sensitization with Df-pulsed BMCs(GM-CSF) from LTC(4) synthase (LTC(4)S)-deficient mice or type 1 cys-LT receptor (CysLT1R)-deficient mice demonstrated that both proteins were required for Df-elicited eosinophilic pulmonary inflammation and Th2 cytokine generation in the lungs and restimulated lymph nodes. Direct sensitization and challenge of Ltc4s-/- and Cysltr1-/- mice confirmed that cys-LTs mediate these parameters of Df-elicited Th2 pulmonary inflammation. Thus, the Dectin-2-cys-LT pathway is critical for the induction of Th2 immunity to a major allergen, in part through CysLT1R. These findings identify a previously unrecognized link between a myeloid C-type lectin receptor and Th2 immunity.
Collapse
Affiliation(s)
- Nora A Barrett
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
He P, Laidlaw T, Maekawa A, Kanaoka Y, Xu K, Lam BK. Oxidative stress suppresses cysteinyl leukotriene generation by mouse bone marrow-derived mast cells. J Biol Chem 2011; 286:8277-8286. [PMID: 21233206 DOI: 10.1074/jbc.m110.205567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cysteinyl leukotrienes and oxidative stress have both been implicated in bronchial asthma; however, there is no previous study that focused on the ability of oxidative stress to alter cysteinyl leukotriene generation. In this study, treatment of bone marrow-derived mast cells with prostaglandin D(2) reduced their ability to generate leukotriene (LT) C(4) upon calcium ionophore stimulation but had little effect on LTB(4) generation. This effect could be reproduced by a selective agonist of the DP(2) receptor, 15R-methyl prostaglandin D(2) (15R-D(2)). 15R-D(2) dose-dependently inhibited LTC(4) generation with an IC(50) of 2 μM, and the effect was not altered by a DP(2)/thromboxane antagonist or by a peroxisome proliferator-activated receptor-γ antagonist. 15R-D(2) exerted its suppressive effect via a reduction in intracellular GSH, a mechanism that involved the conjugation of its non-enzymatic breakdown product to GSH. At 10 μM, 15R-D(2) reduced LTC(4) generation to 10%, intracellular GSH to 50%, and LTC(4) synthase (LTC(4)S) activity to 33.5% of untreated cells without altering immunoreactive LTC(4)S protein expression or 5-lipoxygenase activity. The effects of 15R-D(2) on LTC(4)S activity could be partially reversed by reducing reagent. The sulfhydryl-reactive oxidative agent diamide suppressed LTC(4)S activity and induced a reversible formation of covalent dimer LTC(4)S. LTC(4)S bearing a C56S mutation was resistant to the effect of diamide. Covalent dimer LTC(4)S was observed in nasal polyp biopsies, indicating that dimerization and inactivation of LTC(4)S can occur at the site of inflammation. These results suggest a cellular redox regulation of LTC(4)S function through a post-translational mechanism.
Collapse
Affiliation(s)
- Ping He
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Tanya Laidlaw
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Akiko Maekawa
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Yoshihide Kanaoka
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Kongyi Xu
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Bing K Lam
- From the Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.
| |
Collapse
|
56
|
Chen M, Lam BK, Luster AD, Zarini S, Murphy RC, Bair AM, Soberman RJ, Lee DM. Joint tissues amplify inflammation and alter their invasive behavior via leukotriene B4 in experimental inflammatory arthritis. THE JOURNAL OF IMMUNOLOGY 2010; 185:5503-11. [PMID: 20876351 DOI: 10.4049/jimmunol.1001258] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mechanisms by which mesenchymal-derived tissue lineages participate in amplifying and perpetuating synovial inflammation in arthritis have been relatively underinvestigated and are therefore poorly understood. Elucidating these processes is likely to provide new insights into the pathogenesis of multiple diseases. Leukotriene B(4) (LTB(4)) is a potent proinflammatory lipid mediator that initiates and amplifies synovial inflammation in the K/BxN model of arthritis. We sought to elucidate mechanisms by which mesenchymal-derived fibroblast-like synoviocytes (FLSs) perpetuate synovial inflammation. We focused on the abilities of FLSs to contribute to LTB(4) synthesis and to respond to LTB(4) within the joint. Using a series of bone marrow chimeras generated from 5-lipoxygenase(-/-) and leukotriene A(4) (LTA(4)) hydrolase(-/-) mice, we demonstrate that FLSs generate sufficient levels of LTB(4) production through transcellular metabolism in K/BxN serum-induced arthritis to drive inflammatory arthritis. FLSs-which comprise the predominant lineage populating the synovial lining-are competent to metabolize exogenous LTA(4) into LTB(4) ex vivo. Stimulation of FLSs with TNF increased their capacity to generate LTB(4) 3-fold without inducing the expression of LTA(4) hydrolase protein. Moreover, LTB(4) (acting via LTB(4) receptor 1) was found to modulate the migratory and invasive activity of FLSs in vitro and also promote joint erosion by pannus tissue in vivo. Our results identify novel roles for FLSs and LTB(4) in joints, placing LTB(4) regulation of FLS biology at the center of a previously unrecognized amplification loop for synovial inflammation and tissue pathology.
Collapse
Affiliation(s)
- Mei Chen
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Pharmacology of AM803, a novel selective five-lipoxygenase-activating protein (FLAP) inhibitor in rodent models of acute inflammation. Eur J Pharmacol 2010; 640:211-8. [DOI: 10.1016/j.ejphar.2010.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 04/12/2010] [Accepted: 05/06/2010] [Indexed: 11/20/2022]
|
58
|
Maekawa A, Xing W, Austen KF, Kanaoka Y. GPR17 regulates immune pulmonary inflammation induced by house dust mites. THE JOURNAL OF IMMUNOLOGY 2010; 185:1846-54. [PMID: 20574000 DOI: 10.4049/jimmunol.1001131] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antagonists of the type 1 cysteinyl leukotriene receptor (CysLT(1)R) are efficacious for bronchoconstriction in humans with bronchial asthma; however, the clinical response to these drugs is heterogeneous. In particular, how CysLT(1)R expression and function are constitutively regulated in vivo is not known. In this study, we show that a seven-transmembrane receptor, GPR17, negatively regulates the CysLT(1)R-mediated inflammatory cell accumulation in the bronchoalveolar lavage fluid and lung, the levels of IgE and specific IgG1 in serum, and Th2/Th17 cytokine expression in the lung after intranasal sensitization and challenge with the house dust mite (extract of Dermatophagoides farinae [Df]) in mice. Sensitization of naive wild-type recipients with Df-pulsed bone marrow-derived dendritic cells of each genotype or sensitization of each genotype with Df-pulsed wild-type bone marrow-derived dendritic cells and Df challenge revealed markedly increased pulmonary inflammatory and serum IgE responses for GPR17-deficient mice as compared with wild-type mice and reduced responses in the genotypes lacking CysLT(1)R. These findings reveal a constitutive negative regulation of CysLT(1)R functions by GPR17 in both the Ag presentation and downstream phases of allergic pulmonary inflammation.
Collapse
Affiliation(s)
- Akiko Maekawa
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
59
|
Queto T, Gaspar-Elsas MI, Masid-de-Brito D, Vasconcelos ZFM, Ferraris FK, Penido C, Cunha FQ, Kanaoka Y, Lam BK, Xavier-Elsas P. Cysteinyl-leukotriene type 1 receptors transduce a critical signal for the up-regulation of eosinophilopoiesis by interleukin-13 and eotaxin in murine bone marrow. J Leukoc Biol 2010; 87:885-93. [PMID: 20219953 DOI: 10.1189/jlb.1108709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IL-13 and eotaxin play important, inter-related roles in asthma models. In the lungs, CysLT, produced by the 5-LO-LTC4S pathway, mediate some local responses to IL-13 and eotaxin; in bone marrow, CysLT enhance IL-5-dependent eosinophil differentiation. We examined the effects of IL-13 and eotaxin on eosinophil differentiation. Semi-solid or liquid cultures were established from murine bone marrow with GM-CSF or IL-5, respectively, and the effects of IL-13, eotaxin, or CysLT on eosinophil colony formation and on eosinophil differentiation in liquid culture were evaluated, in the absence or presence of: a) the 5-LO inhibitor zileuton, the FLAP inhibitor MK886, or the CysLT1R antagonists, montelukast and MK571; b) mutations that inactivate 5-LO, LTC4S, or CysLT1R; and c) neutralizing mAb against eotaxin and its CCR3 receptor. Both cytokines enhanced GM-CSF-dependent eosinophil colony formation and IL-5-stimulated eosinophil differentiation. Although IL-13 did not induce eotaxin production, its effects were abolished by anti-eotaxin and anti-CCR3 antibodies, suggesting up-regulation by IL-13 of responses to endogenous eotaxin. Anti-CCR3 blocked eotaxin completely. The effects of both cytokines were prevented by zileuton, MK886, montelukast, and MK571, as well as by inactivation of the genes coding for 5-LO, LTC4S, and CysLT1R. In the absence of either cytokine, these treatments or mutations had no effect. These findings provide evidence for: a) a novel role of eotaxin and IL-13 in regulating eosinophilopoiesis; and b) a role for CysLTRs in bone marrow cells in transducing cytokine regulatory signals.
Collapse
Affiliation(s)
- Tulio Queto
- Department of Pediatrics, Instituto Fernandes Figueira, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
Eicosanoids, including prostaglandins and leukotrienes, are biologically active lipids that have been implicated in various pathological processes, such as inflammation and cancer. This Review highlights our understanding of the intricate roles of eicosanoids in epithelial-derived tumours and their microenvironment. The knowledge of how these lipids orchestrate the complex interactions between transformed epithelial cells and the surrounding stromal cells is crucial for understanding tumour evolution, progression and metastasis. Understanding the molecular mechanisms underlying the role of prostaglandins and other eicosanoids in cancer progression will help to develop more effective cancer chemopreventive and/or therapeutic agents.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | |
Collapse
|
61
|
Lorrain DS, Bain G, Correa LD, Chapman C, Broadhead AR, Santini AM, Prodanovich P, Darlington JV, Hutchinson JH, King C, Lee C, Baccei C, Li Y, Arruda JM, Evans JF. Pharmacological characterization of 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103), a novel selective 5-lipoxygenase-activating protein inhibitor that reduces acute and chronic inflammation. J Pharmacol Exp Ther 2009; 331:1042-50. [PMID: 19749079 DOI: 10.1124/jpet.109.158089] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Leukotrienes (LTs) are proinflammatory lipid mediators synthesized by the conversion of arachidonic acid (AA) to LTA(4) by the enzyme 5-lipoxygenase (5-LO) in the presence of 5-LO-activating protein (FLAP). 3-[3-tert-Butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103) is a novel selective FLAP inhibitor in development for the treatment of respiratory conditions such as asthma. In a rat ex vivo whole-blood calcium ionophore-induced LTB(4) assay, AM103 (administered orally at 1 mg/kg) displayed >50% inhibition for up to 6 h with a calculated EC(50) of approximately 60 nM. When rat lung was challenged in vivo with calcium ionophore, AM103 inhibited LTB(4) and cysteinyl leukotriene (CysLT) production with ED(50) values of 0.8 and 1 mg/kg, respectively. In this model, the EC(50) derived from plasma AM103 was approximately 330 nM for inhibition of both LTB(4) and CysLT. In an acute inflammation setting, AM103 displayed dose-dependent inhibition of LTB(4), CysLT, and plasma protein extravasation induced by peritoneal zymosan injection. In a model of chronic lung inflammation using ovalbumin-primed and challenged BALB/c mice, AM103 reduced the concentrations of eosinophil peroxidase, CysLTs, and interleukin-5 in the bronchoalveolar lavage fluid. Finally, AM103 increased survival time in mice exposed to a lethal intravenous injection of platelet-activating factor. In summary, AM103 is a novel, potent and selective FLAP inhibitor that has excellent pharmacodynamic properties in vivo and is effective in animal models of acute and chronic inflammation and in a model of lethal shock.
Collapse
|
62
|
Austen KF, Maekawa A, Kanaoka Y, Boyce JA. The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications. J Allergy Clin Immunol 2009; 124:406-14; quiz 415-6. [PMID: 19647860 PMCID: PMC2739263 DOI: 10.1016/j.jaci.2009.05.046] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 05/06/2009] [Accepted: 05/06/2009] [Indexed: 11/18/2022]
Abstract
The intracellular parent of the cysteinyl leukotrienes (cysLTs), leukotriene (LT) C(4), is formed by conjugation of LTA(4) and reduced glutathione by LTC(4) synthase in mast cells, eosinophils, basophils, and macrophages. After extracellular export, LTC(4) is converted to LTD(4) and LTE(4) through sequential enzymatic removal of glutamic acid and then glycine. Only LTE(4) is sufficiently stable to be prominent in biologic fluids, such as urine or bronchoalveolar lavage fluid, of asthmatic individuals and at sites of inflammation in animal models. LTE(4) has received little attention because it binds poorly to the classical type 1 and 2 cysLT receptors and is much less active on normal airways than LTC(4) or LTD(4). However, early studies indicated that LTE(4) caused skin swelling in human subjects as potently as LTC(4) and LTD(4), that airways of asthmatic subjects (particularly those that were aspirin sensitive) were selectively hyperresponsive to LTE(4), and that a potential distinct LTE(4) receptor was present in guinea pig trachea. Recent studies have begun to uncover receptors selective for LTE(4): P2Y(12), an adenosine diphosphate receptor, and CysLT(E)R, which was observed functionally in the skin of mice lacking the type 1 and 2 cysLT receptors. These findings prompt a renewed focus on LTE(4) receptors as therapeutic targets that are not currently addressed by available receptor antagonists.
Collapse
Affiliation(s)
- K. Frank Austen
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, One Jimmy Fund Way, Boston, Massachusetts 02115, Tel: 617-525-1300, Fax: 617-525-1310, E-Mail:
| | - Akiko Maekawa
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, One Jimmy Fund Way, Boston, Massachusetts 02115, Tel: 617-525-1300, Fax: 617-525-1310, E-Mail:
| | - Yoshihide Kanaoka
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, One Jimmy Fund Way, Boston, Massachusetts 02115, Tel: 617-525-1300, Fax: 617-525-1310, E-Mail:
| | - Joshua A. Boyce
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, One Jimmy Fund Way, Boston, Massachusetts 02115, Tel: 617-525-1300, Fax: 617-525-1310, E-Mail:
| |
Collapse
|
63
|
GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4. Proc Natl Acad Sci U S A 2009; 106:11685-90. [PMID: 19561298 DOI: 10.1073/pnas.0905364106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cysteinyl leukotrienes (cys-LTs) are proinflammatory lipid mediators acting on the type 1 cys-LT receptor (CysLT(1)R) to mediate smooth muscle constriction and vascular permeability. GPR17, a G protein-coupled orphan receptor with homology to the P2Y and cys-LT receptors, failed to mediate calcium flux in response to leukotriene (LT) D(4) with stable transfectants. However, in stable cotransfections of 6xHis-tagged GPR17 with Myc-tagged CysLT(1)R, the robust CysLT(1)R-mediated calcium response to LTD(4) was abolished. The membrane expression of the CysLT(1)R analyzed by FACS with anti-Myc Ab was not reduced by the cotransfection, yet both LTD(4)-elicited ERK phosphorylation and the specific binding of [(3)H]LTD(4) to microsomal membranes were fully inhibited. CysLT(1)R and GPR17 expressed in transfected cells were coimmunoprecipitated and identified by Western blots, and confocal immunofluorescence microscopy revealed that GPR17 and CysLT(1)R colocalize on the cell surface of human peripheral blood monocytes. Lentiviral knockdown of GPR17 in mouse bone marrow-derived macrophages (BMMPhis) increased both the membrane expression of CysLT(1)R protein by FACS analysis and the LTD(4)-elicited calcium flux in a dose-dependent manner as compared with control BMMPhis, indicating a negative regulatory function of GPR17 for CysLT(1)R in a primary cell. In IgE-dependent passive cutaneous anaphylaxis, GPR17-deficient mice showed a marked and significant increase in vascular permeability as compared with WT littermates, and this vascular leak was significantly blocked by pretreatment of the mice with the CysLT(1)R antagonist, MK-571. Taken together, our findings suggest that GPR17 is a ligand-independent, constitutive negative regulator for the CysLT(1)R that suppresses CysLT(1)R-mediated function at the cell membrane.
Collapse
|
64
|
Buczynski MW, Dumlao DS, Dennis EA. Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology. J Lipid Res 2009; 50:1015-38. [PMID: 19244215 PMCID: PMC2681385 DOI: 10.1194/jlr.r900004-jlr200] [Citation(s) in RCA: 400] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 02/23/2009] [Indexed: 11/20/2022] Open
Abstract
Eicosanoids have been implicated in a vast number of devastating inflammatory conditions, including arthritis, atherosclerosis, pain, and cancer. Currently, over a hundred different eicosanoids have been identified, with many having potent bioactive signaling capacity. These lipid metabolites are synthesized de novo by at least 50 unique enzymes, many of which have been cloned and characterized. Due to the extensive characterization of eicosanoid biosynthetic pathways, this field provides a unique framework for integrating genomics, proteomics, and metabolomics toward the investigation of disease pathology. To facilitate a concerted systems biology approach, this review outlines the proteins implicated in eicosanoid biosynthesis and signaling in human, mouse, and rat. Applications of the extensive genomic and lipidomic research to date illustrate the questions in eicosanoid signaling that could be uniquely addressed by a thorough analysis of the entire eicosanoid proteome.
Collapse
Affiliation(s)
| | | | - Edward A. Dennis
- Department of Chemistry and Biochemistry, Department of Pharmacology, and School of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
65
|
Transcellular biosynthesis of cysteinyl leukotrienes in vivo during mouse peritoneal inflammation. Proc Natl Acad Sci U S A 2009; 106:8296-301. [PMID: 19416808 DOI: 10.1073/pnas.0903851106] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Leukotrienes (LTs) are lipid mediators of inflammation formed by enzymatic oxidation of arachidonic acid. One intriguing aspect of LT production is transcellular biosynthesis: cells expressing 5-lipoxygenase (5LO) form LTA(4) and transfer it to cells expressing LTA(4) hydrolase (LTA(4)H) or LTC(4) synthase (LTC(4)S) to produce LTB(4) or LTC(4). This process has been demonstrated in vivo for LTB(4), but not for cysteinyl LTs (cysLTs). We examined transcellular cysLT synthesis during zymosan-induced peritonitis, using bone marrow transplants with transgenic mice deficient in key enzymes of LT synthesis and analyzing all eicosanoids by liquid chromatography/tandem mass spectrometry. WT mice time-dependently produced LTB(4) and cysLTs (LTC(4), LTD(4), and LTE(4)). 5LO(-/-) mice were incapable of producing LTs. WT bone marrow cells restored this biosynthetic ability, but 5LO(-/-) bone marrow did not rescue LT synthesis in irradiated WT mice, demonstrating that bone marrow-derived cells are the ultimate source of all LTs in this model. Total levels of 5LO-derived products were comparable in LTA(4)H(-/-) and WT mice, but were reduced in LTC(4)S(-/-) animals. No differences in prostaglandin production were observed between these transgenic or chimeric mice. Bone marrow cells from LTA(4)H(-/-) or LTC(4)S(-/-) mice injected into 5LO(-/-) mice restored the ability to synthesize LTB(4) and cysLTs, providing unequivocal evidence of efficient transcellular biosynthesis of cysLTs. These results highlight the potential relevance of transcellular exchange of LTA(4) for the synthesis of LTs mediating biological activities during inflammatory events in vivo.
Collapse
|
66
|
Jiang Y, Borrelli L, Bacskai BJ, Kanaoka Y, Boyce JA. P2Y6 receptors require an intact cysteinyl leukotriene synthetic and signaling system to induce survival and activation of mast cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:1129-37. [PMID: 19124756 DOI: 10.4049/jimmunol.182.2.1129] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cysteinyl leukotrienes (cys-LTs) induce inflammatory responses through type 1 (CysLT1R) and type 2 (CysLT2R) cys-LT receptors and activate mast cells in vitro. We previously demonstrated that cys-LTs cross-desensitized IL-4-primed primary human mast cells (hMCs) to stimulation with the nucleotide uridine diphosphate (UDP). We now report that hMCs, mouse bone marrow-derived mast cells (mBMMCs), and the human MC line LAD2 all express UDP-selective P2Y6 receptors that cooperate with CysLT1R to promote cell survival and chemokine generation by a pathway involving reciprocal ligand-mediated cross-talk. Leukotriene (LT) D4, the most potent CysLT1R ligand, and UDP both induced phosphorylation of ERK and prolonged the survival of cytokine-starved hMCs and mBMMCs. ERK activation and cytoprotection in response to either ligand were attenuated by treatment of the cells with a selective P2Y6 receptor antagonist (MRS2578), which did not interfere with signaling through recombinant CysLT1R. Surprisingly, both UDP and LTD4-mediated ERK activation and cytoprotection were absent in mBMMCs lacking CysLT1R and the biosynthetic enzyme LTC4 synthase, implying a requirement for a cys-LT-mediated autocrine loop. In IL-4-primed LAD2 cells, LTD4 induced the generation of MIP-1beta, a response blocked by short hairpin RNA-mediated knockdown of CysLT1R or P2Y6 receptors, but not of CysLT2R. Thus, CysLT1R and P2Y6 receptors, which are coexpressed on many cell types of innate immunity, reciprocally amplify one another's function in mast cells through endogenous ligands.
Collapse
Affiliation(s)
- Yongfeng Jiang
- Department of Medicine, Harvard Medical School and Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
67
|
Barrett NA, Maekawa A, Rahman OM, Austen KF, Kanaoka Y. Dectin-2 recognition of house dust mite triggers cysteinyl leukotriene generation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:1119-28. [PMID: 19124755 DOI: 10.4049/jimmunol.182.2.1119] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
House dust mites are a significant source of airborne allergen worldwide, but there is little understanding of how they so potently generate allergic inflammation. We found that extracts from the house dust mites Dermatophagoides farinae (Df) and Dermatophagoides pteronyssinus and from the mold Aspergillus fumigatus stimulated a rapid and robust production of cysteinyl leukotrienes (cys-LTs), proinflammatory lipid mediators, from mouse bone marrow-derived dendritic cells (BMDCs). Con A affinity chromatography of the Df extract revealed that the relevant ligand is a glycan(s), suggesting stimulation via a dendritic cell (DC) lectin receptor. Cys-LT production in BMDCs from wild-type mice was inhibited by spleen tyrosine kinase (Syk) inhibitors and was abolished in BMDCs from FcRgamma-/- mice, implicating either Dectin-2 or DC immunoactivating receptor. Transfection of each receptor in bone marrow-derived mast cells revealed that only Dectin-2 mediates cys-LT production by Df, Dermatophagoides pteronyssinus, and Aspergillus fumigatus. Lentiviral knockdown of Dectin-2 in BMDCs attenuated Df extract-elicited cys-LT generation, thereby identifying Dectin-2 as the receptor. Lung CD11c+ cells, but not peritoneal or alveolar macrophages, also generated cys-LTs in response to Df. These findings place Dectin-2 among the C-type lectin receptors that activate arachidonic acid metabolism and identify the Dectin-2/FcRgamma/Syk/cys-LT axis as a novel mechanism by which three potent indoor allergens may activate innate immune cells to promote allergic inflammation.
Collapse
Affiliation(s)
- Nora A Barrett
- Department of Medicine, Harvard Medical School, and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
68
|
Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors. Proc Natl Acad Sci U S A 2008; 105:16695-700. [PMID: 18931305 DOI: 10.1073/pnas.0808993105] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cysteinyl leukotrienes (cys-LTs) are a family of potent lipid mediators of inflammation derived from arachidonic acid. Activation of certain cell types results in the biosynthesis and export of leukotriene (LT) C(4), which then undergoes extracellular metabolism to LTD(4) and LTE(4). LTE(4), the most stable cys-LT, is only a weak agonist for the defined type 1 and type 2 cys-LT receptors (CysLT(1)R and CysLT(2)R, respectively). We had recognized a greater potency for LTE(4) than LTC(4) or LTD(4) in constricting guinea pig trachea in vitro and comparable activity in eliciting a cutaneous wheal and flare response in humans. Thus, we hypothesized that a vascular permeability response to LTE(4) in mice lacking both the CysLT(1)R and CysLT(2)R could establish the existence of a separate LTE(4) receptor. We now report that the intradermal injection of LTE(4) into the ear of mice deficient in both CysLT(1)R and CysLT(2)R elicits a vascular leak that exceeds the response to intradermal injection of LTC(4) or LTD(4), and that this response is inhibited by pretreatment of the mice with pertussis toxin or a Rho kinase inhibitor. LTE(4) is approximately 64-fold more potent in the CysLT(1)R/CysLT(2)R double-deficient mice than in sufficient mice. The administration of a CysLT(1)R antagonist augmented the permeability response of the CysLT(1)R/CysLT(2)R double-deficient mice to LTC(4), LTD(4), and LTE(4). Our findings establish the existence of a third receptor, CysLT(E)R, that responds preferentially to LTE(4), the most abundant cys-LT in biologic fluids, and thus reveal a new target for therapeutic intervention.
Collapse
|
69
|
Ma KF, Yang HY, Chen Z, Qi LY, Zhu DY, Lou YJ. Enhanced expressions and activations of leukotriene C4 synthesis enzymes in D-galactosamine/lipopolysaccharide-induced rat fulminant hepatic failure model. World J Gastroenterol 2008; 14:2748-56. [PMID: 18461660 PMCID: PMC2709038 DOI: 10.3748/wjg.14.2748] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression and activity of leukotriene C4 (LTC4) synthesis enzymes and their underlying relationship with cysteinyl leukotriene (cys-LT) generation in a rat fulminant hepatic failure (FHF) model induced by D-galactosamine/lipopolysaccharide (D-GalN/ LPS).
METHODS: Rats were treated with D-GalN (300 mg/kg) plus LPS (0.1 mg/kg) for 1, 3, 6, and 12 h. Enzyme immunoassay was used to determine the hepatic cys-LT content. Reverse transcription-polymerase chain reaction (RT-PCR), Western blot or immunohistochemical assay were employed to assess the expression or location of LTC4 synthesis enzymes, which belong to membrane associated proteins in eicosanoid and glutathione (MAPEG) metabolism superfamily. Activity of LTC4 synthesis enzymes was evaluated by determination of the products of LTA4 after incubation with liver microsomes using high performance liquid chromatography (HPLC).
RESULTS: Livers were injured after treatment with D-GalN/LPS, accompanied by cys-LT accumulation at the prophase of liver injury. Both LTC4 synthase (LTC4S) and microsomal glutathione-S-transferase (mGST) 2 were expressed in the rat liver, while the latter was specifically located in hepatocytes. Their mRNA and protein expressions were up-regulated at an earlier phase after treatment with D-GalN/LPS. Meantime, a higher activity of LTC4 synthesis enzymes was detected, although the activity of LTC4S played the main role in this case.
CONCLUSION: The expression and activity of both LTC4S and mGST2 are up regulated in a rat FHF model, which are, at least, partly responsible for cys-LT hepatic accumulation.
Collapse
|
70
|
Abstract
I have spent my entire professional life at Harvard Medical School, beginning as a medical student. I have enjoyed each day of a diverse career in four medical subspecialties while following the same triad of preclinical areas of investigation—cysteinyl leukotrienes, mast cells, and complement—with occasional translational opportunities. I did not envision a career with a predominant preclinical component. Such a path simply evolved because I chose instinctively at multiple junctures to follow what proved to be propitious opportunities. My commentary notes some of the highlights for each area of interest and the mentors, collaborators, and trainees whose counsel has been immensely important at particular intervals or over an extended period.
Collapse
Affiliation(s)
- K Frank Austen
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|
71
|
Austen KF. The cysteinyl leukotrienes: where do they come from? What are they? Where are they going? Nat Immunol 2008; 9:113-5. [PMID: 18204420 DOI: 10.1038/ni0208-113] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cysteinyl leukotrienes are established mediators of bronchial asthma and have agonist roles analogous to those of histamine in allergic rhinitis. We now know that the substance originally termed slow-reacting substance of anaphylaxis was composed of three cysteinyl leukotrienes that act in the inflammatory response via receptors on smooth muscle and on bone marrow-derived inflammatory cells. K. Frank Austen describes the work culminating in the identification, biosynthesis and functional characterization of these moieties.
Collapse
Affiliation(s)
- K Frank Austen
- Department of Medicine, Harvard Medical School and the Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|
72
|
Yuhki KI, Ushikubi F, Naraba H, Ueno A, Kato H, Kojima F, Narumiya S, Sugimoto Y, Matsushita M, Oh-ishi S. Prostaglandin I2 Plays a Key Role in Zymosan-Induced Mouse Pleurisy. J Pharmacol Exp Ther 2008; 325:601-9. [DOI: 10.1124/jpet.107.134494] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
73
|
Cysteinyl leukotrienes mediate the enhancing effects of indomethacin and aspirin on eosinophil production in murine bone marrow cultures. Br J Pharmacol 2007; 153:528-35. [PMID: 18037915 DOI: 10.1038/sj.bjp.0707586] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Prostaglandin E(2) (PGE(2)) suppresses, while indomethacin and aspirin enhance, eosinophil production in murine liquid bone-marrow cultures. Because cysteinyl leukotrienes (cys-LTs) enhance human eosinophil colony formation, we investigated whether the effects of indomethacin and aspirin on murine bone-marrow were due to blockade of PGE(2) production alone, or involved further promotion of cys-LTs production/signalling. EXPERIMENTAL APPROACH BALB/c liquid bone-marrow cultures were established with IL-5, alone or associated with indomethacin, aspirin, or cys-LTs. The effects of preventing cys-LT production or signalling were assessed. KEY RESULTS Indomethacin and aspirin counteracted the suppression of eosinophil production by exogenous PGE(2). LTD(4), LTC(4) and LTE(4) enhanced IL-5-dependent eosinophil production and further counteracted the effect of exogenous PGE(2). The 5-lipoxygenase activating protein (FLAP) inhibitor, MK886, a leukotriene synthesis inhibitor, zileuton, the CysLT(1) receptor antagonists, MK571 and montelukast, or inactivation of the LTC(4) synthase gene, abolished effects of indomethacin and aspirin. MK886 and zileuton were ineffective but MK571 and montelukast were effective, against LTD(4). Indomethacin, aspirin and LTD(4) failed to enhance eosinophil production in bone-marrow from CysLT1 receptor-deficient mice. Indomethacin, aspirin and LTD(4) no longer counteracted the effects of exogenous PGE(2) in the presence of MK571 and montelukast. MK886, MK571 and montelukast had no effect by themselves, or in association with PGE(2). CONCLUSIONS AND IMPLICATIONS Dependence on the FLAP/5-lipoxygenase/LTC(4) synthase pathway and receptor signalling shows that cyclo-oxygenase inhibitors act here through endogenous cys-LTs. While PGE(2) does not act by suppressing cys-LT production, cys-LTs override PGE(2) signalling. Eosinophil production is therefore coordinately regulated by both pathways.
Collapse
|
74
|
Jiang Y, Borrelli LA, Kanaoka Y, Bacskai BJ, Boyce JA. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood 2007; 110:3263-70. [PMID: 17693579 PMCID: PMC2200919 DOI: 10.1182/blood-2007-07-100453] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cysteinyl leukotrienes (cys-LTs) induce inflammation through 2 G protein-coupled receptors (GPCRs), CysLT(1) and CysLT(2), which are coexpressed by most myeloid cells. Cys-LTs induce proliferation of mast cells (MCs), transactivate c-Kit, and phosphorylate extracellular signal-regulated kinase (ERK). Although MCs express CysLT(2), their responses to cys-LTs are blocked by antagonists of CysLT(1). We demonstrate that CysLT(2) interacts with CysLT(1), and that knockdown of CysLT(2) increases CysLT(1) surface expression and CysLT(1)-dependent proliferation of cord blood-derived human MCs (hMCs). Cys-LT-mediated responses were absent in MCs from mice lacking CysLT(1) receptors, but enhanced by the absence of CysLT(2) receptors. CysLT(1) and CysLT(2) receptors colocalized to the plasma membranes and nuclei of a human MC line, LAD2. Antibody-based fluorescent lifetime imaging microscopy confirmed complexes containing both receptors based on fluorescence energy transfer. Negative regulation of CysLT(1)-induced mitogenic signaling responses of MCs by CysLT(2) demonstrates physiologically relevant functions for GPCR heterodimers on primary cells central to inflammation.
Collapse
Affiliation(s)
- Yongfeng Jiang
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
75
|
Ago H, Kanaoka Y, Irikura D, Lam BK, Shimamura T, Austen KF, Miyano M. Crystal structure of a human membrane protein involved in cysteinyl leukotriene biosynthesis. Nature 2007; 448:609-12. [PMID: 17632548 DOI: 10.1038/nature05936] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/17/2007] [Indexed: 11/09/2022]
Abstract
The cysteinyl leukotrienes, namely leukotriene (LT)C4 and its metabolites LTD4 and LTE4, the components of slow-reacting substance of anaphylaxis, are lipid mediators of smooth muscle constriction and inflammation, particularly implicated in bronchial asthma. LTC4 synthase (LTC4S), the pivotal enzyme for the biosynthesis of LTC4 (ref. 10), is an 18-kDa integral nuclear membrane protein that belongs to a superfamily of membrane-associated proteins in eicosanoid and glutathione metabolism that includes 5-lipoxygenase-activating protein, microsomal glutathione S-transferases (MGSTs), and microsomal prostaglandin E synthase 1 (ref. 13). LTC4S conjugates glutathione to LTA4, the endogenous substrate derived from arachidonic acid through the 5-lipoxygenase pathway. In contrast with MGST2 and MGST3 (refs 15, 16), LTC4S does not conjugate glutathione to xenobiotics. Here we show the atomic structure of human LTC4S in a complex with glutathione at 3.3 A resolution by X-ray crystallography and provide insights into the high substrate specificity for glutathione and LTA4 that distinguishes LTC4S from other MGSTs. The LTC4S monomer has four transmembrane alpha-helices and forms a threefold symmetric trimer as a unit with functional domains across each interface. Glutathione resides in a U-shaped conformation within an interface between adjacent monomers, and this binding is stabilized by a loop structure at the top of the interface. LTA4 would fit into the interface so that Arg 104 of one monomer activates glutathione to provide the thiolate anion that attacks C6 of LTA4 to form a thioether bond, and Arg 31 in the neighbouring monomer donates a proton to form a hydroxyl group at C5, resulting in 5(S)-hydroxy-6(R)-S-glutathionyl-7,9-trans-11,14-cis-eicosatetraenoic acid (LTC4). These findings provide a structural basis for the development of LTC4S inhibitors for a proinflammatory pathway mediated by three cysteinyl leukotriene ligands whose stability and potency are different and by multiple cysteinyl leukotriene receptors whose functions may be non-redundant.
Collapse
Affiliation(s)
- Hideo Ago
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Leukotrienes are metabolites of arachidonic acid derived from the action of 5-LO (5-lipoxygenase). The immediate product of 5-LO is LTA4 (leukotriene A4), which is enzymatically converted into either LTB4 (leukotriene B4) by LTA4 hydrolase or LTC4 (leukotriene C4) by LTC4 synthase. The regulation of leukotriene production occurs at various levels, including expression of 5-LO, translocation of 5-LO to the perinuclear region and phosphorylation to either enhance or inhibit the activity of 5-LO. Several other proteins, including cPLA2α (cytosolic phospholipase A2α) and FLAP (5-LO-activating protein) also assemble at the perinuclear region before production of LTA4. LTC4 synthase is an integral membrane protein that is present at the nuclear envelope; however, LTA4 hydrolase remains cytosolic. Biologically active LTB4 is metabolized by ω-oxidation carried out by specific cytochrome P450s (CYP4F) followed by β-oxidation from the ω-carboxy position and after CoA ester formation. Other specific pathways of leukotriene metabolism include the 12-hydroxydehydrogenase/15-oxo-prostaglandin-13-reductase that forms a series of conjugated diene metabolites that have been observed to be excreted into human urine. Metabolism of LTC4 occurs by sequential peptide cleavage reactions involving a γ-glutamyl transpeptidase that forms LTD4 (leukotriene D4) and a membrane-bound dipeptidase that converts LTD4 into LTE4 (leukotriene E4) before ω-oxidation. These metabolic transformations of the primary leukotrienes are critical for termination of their biological activity, and defects in expression of participating enzymes may be involved in specific genetic disease.
Collapse
Affiliation(s)
- Robert C Murphy
- Department of Pharmacology, Mail Stop 8303, University of Colorado at Denver and Health Sciences Center, 12801 E. 17th Avenue, P.O. Box 6511, Aurora, CO 80045-0511, USA
| | | |
Collapse
|
77
|
Abstract
When activated by specific antigen, complement, or other transmembrane stimuli, mast cells (MCs) generate three eicosanoids: prostaglandin (PG)D(2), leukotriene (LT)B(4), and LTC(4), the parent molecule of the cysteinyl leukotrienes (cysLTs). These diverse lipid mediators, which are generated from a single cell membrane-associated precursor, arachidonic acid, can initiate, amplify, or dampen inflammatory responses and influence the magnitude, duration, and nature of subsequent immune responses. PGD(2) and cysLTs, which were originally recognized for their bronchoconstricting and vasoactive properties, also serve diverse and pivotal functions in effector cell trafficking, antigen presentation, leukocyte activation, matrix deposition, and fibrosis. LTB(4) is a powerful chemoattractant for neutrophils and certain lymphocyte subsets. Thus, MCs can contribute to each of these processes through eicosanoid generation. Additionally, MCs express G-protein-coupled receptors specific for cysLTs, LTB(4), and another eicosanoid, PGE(2). Each of these receptors can regulate MC functions in vivo by autocrine and paracrine mechanisms. This review focuses on the biologic functions for MC-associated eicosanoids, the regulation of their production, and the mechanisms by which eicosanoids may regulate MC function in host defense and disease.
Collapse
Affiliation(s)
- Joshua A Boyce
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
78
|
Wada M, DeLong CJ, Hong YH, Rieke CJ, Song I, Sidhu RS, Yuan C, Warnock M, Schmaier AH, Yokoyama C, Smyth EM, Wilson SJ, FitzGerald GA, Garavito RM, Sui DX, Regan JW, Smith WL. Enzymes and receptors of prostaglandin pathways with arachidonic acid-derived versus eicosapentaenoic acid-derived substrates and products. J Biol Chem 2007; 282:22254-66. [PMID: 17519235 DOI: 10.1074/jbc.m703169200] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dietary fish oil containing omega 3 highly unsaturated fatty acids has cardioprotective and anti-inflammatory effects. Prostaglandins (PGs) and thromboxanes are produced in vivo both from the omega 6 fatty acid arachidonic acid (AA) and the omega 3 fatty acid eicosapentaenoic acid (EPA). Certain beneficial effects of fish oil may result from altered PG metabolism resulting from increases in the EPA/AA ratios of precursor phospholipids. Here we report in vitro specificities of prostanoid enzymes and receptors toward EPA-derived, 3-series versus AA-derived, 2-series prostanoid substrates and products. The largest difference was seen with PG endoperoxide H synthase (PGHS)-1. Under optimal conditions purified PGHS-1 oxygenates EPA with only 10% of the efficiency of AA, and EPA significantly inhibits AA oxygenation by PGHS-1. Two- to 3-fold higher activities or potencies with 2-series versus 3-series compounds were observed with PGHS-2, PGD synthases, microsomal PGE synthase-1 and EP1, EP2, EP3, and FP receptors. Our most surprising observation was that AA oxygenation by PGHS-2 is only modestly inhibited by EPA (i.e. PGHS-2 exhibits a marked preference for AA when EPA and AA are tested together). Also unexpectedly, TxA(3) is about equipotent to TxA(2) at the TP alpha receptor. Our biochemical data predict that increasing phospholipid EPA/AA ratios in cells would dampen prostanoid signaling with the largest effects being on PGHS-1 pathways involving PGD, PGE, and PGF. Production of 2-series prostanoids from AA by PGHS-2 would be expected to decrease in proportion to the compensatory decrease in the AA content of phospholipids that would result from increased incorporation of omega 3 fatty acids such as EPA.
Collapse
Affiliation(s)
- Masayuki Wada
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Yang SL, Huang X, Chen HF, Xu D, Chen LJ, Kong Y, Lou YJ. Increased leukotriene c4 synthesis accompanied enhanced leukotriene c4 synthase expression and activities of ischemia-reperfusion-injured liver in rats. J Surg Res 2007; 140:36-44. [PMID: 17397868 DOI: 10.1016/j.jss.2006.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 10/06/2006] [Accepted: 11/06/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hepatic ischemia-reperfusion (I/R) injury is an important clinical issue and relates to cysteinyl leukotrienes (LTs), the first committed synthesis step of which is that LTC4 synthesis enzymes including leukotriene C4 synthase (LTC4S), microsomal glutathione-S-transferase (mGST)2, and mGST3-catalyzed LTA4 and reduced glutathione (GSH), to generate LTC4. However, the mechanisms of LTC4 generation during hepatic I/R are far from being elucidated. MATERIALS AND METHODS Adult male Sprague Dawley rats were divided into two groups: sham group (control) and I/R group. Liver was subjected to 60 min of partial hepatic ischemia followed by 5 h of reperfusion; saline was administered intravenously. LTC4 content, the activities, and expressions of LTC4 synthesis enzymes were examined with reversed phase high-performance liquid chromatography, reverse transcriptase-polymerase chain reaction, immunoblot, and immunohistochemistry, respectively. Liver damage was assessed by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) measurements and histological observation. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in liver tissue were used to evaluate lipid peroxidation, and oxidative stress was estimated by the reduced GSH level in liver tissue in the pathological process. RESULTS Compared with control, LTC4 content, the LTC4 synthesis enzymes' activities, and the mRNA and protein expressions of LTC4S were significantly increased, while the mRNA expressions of mGST2 and mGST3 were declined obviously in rat liver during I/R (P < 0.05); most hepatocytes and sinusoidal endothelial cells expressed intensively LTC4S in an I/R-sensitive manner. This was accompanied by the increase in serum ALT and AST levels together with liver tissue MDA content (P < 0.05), the decrease in liver tissue GSH level, and SOD activity (P < 0.05), as well as histological damage. There were no differences in the protein expression of mGST3 between control and I/R groups. CONCLUSIONS These results demonstrated that hepatic I/R injury up-regulated the mRNA and protein expressions of LTC4S in hepatocytes and sinusoidal endothelial cells and enhanced the activities of the LTC4 synthesis enzymes. It suggests that LTC4 accumulation after hepatic I/R can be caused partially by LTC4S expression up-regulation and the LTC4 synthesis enzymes' activities augment to which LTC4S rather than mGST2 or mGST3 may mainly contribute.
Collapse
Affiliation(s)
- Shu-Long Yang
- Institute of Pharmacology--Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
80
|
Thompson MD, Takasaki J, Capra V, Rovati GE, Siminovitch KA, Burnham WM, Hudson TJ, Bossé Y, Cole DEC. G-protein-coupled receptors and asthma endophenotypes: the cysteinyl leukotriene system in perspective. Mol Diagn Ther 2007; 10:353-66. [PMID: 17154652 DOI: 10.1007/bf03256212] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genetic variation in specific G-protein coupled receptors (GPCRs) is associated with a spectrum of respiratory disease predispositions and drug response phenotypes. Although certain GPCR gene variants can be disease-causing through the expression of inactive, overactive, or constitutively active receptor proteins, many more GPCR gene variants confer risk for potentially deleterious endophenotypes. Endophenotypes are traits, such as bronchiole hyperactivity, atopy, and aspirin intolerant asthma, which have a strong genetic component and are risk factors for a variety of more complex outcomes that may include disease states. GPCR genes implicated in asthma endophenotypes include variants of the cysteinyl leukotriene receptors (CYSLTR1 and CYSLTR2), and prostaglandin D2 receptors (PTGDR and CRTH2), thromboxane A2 receptor (TBXA2R), beta2-adrenergic receptor (ADRB2), chemokine receptor 5 (CCR5), and the G protein-coupled receptor associated with asthma (GPRA). This review of the contribution of variability in these genes places the contribution of the cysteinyl leukotriene system to respiratory endophenotypes in perspective. The genetic variant(s) of receptors that are associated with endophenotypes are discussed in the context of the extent to which they contribute to a disease phenotype or altered drug efficacy.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, and Department of Medical Genetics and Microbiology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Austen KF. Additional functions for the cysteinyl leukotrienes recognized through studies of inflammatory processes in null strains. Prostaglandins Other Lipid Mediat 2007; 83:182-7. [PMID: 17481553 DOI: 10.1016/j.prostaglandins.2007.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Until recently, the cysteinyl leukotrienes, initially termed, slow reacting substance of anaphylaxis, were viewed entirely as effectors of smooth muscle constriction of bronchial airways to impair air flow and of microvasculature to evoke a plasma leak. The development of mice with targeted disruption of the synthesis of the cysteinyl leukotrienes or of their receptor-mediated action has within the last 5 years uncovered new functions in chronic inflammation and in regulation of the adaptive immune response. As innate host responses precede antigen presentation and then follow antigen specific recognition, it is not surprising that we find that the cysteinyl leukotrienes are implicated in both afferent and efferent cell-based immune responses, chronic inflammatory cell responses, and, as originally recognized, in acute smooth muscle constriction.
Collapse
Affiliation(s)
- K Frank Austen
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
82
|
Yang SL, Lou YJ. Sodium nitroprusside decreased leukotriene C4 generation by inhibiting leukotriene C4 synthase expression and activity in hepatic ischemia-reperfusion injured rats. Biochem Pharmacol 2006; 73:724-35. [PMID: 17194456 DOI: 10.1016/j.bcp.2006.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Revised: 11/01/2006] [Accepted: 11/13/2006] [Indexed: 12/13/2022]
Abstract
The effects of NO on LTC4 generation during hepatic ischemia-reperfusion (I/R) are largely unclear. Sprague-Dawley rats were divided into control, I/R and sodium nitroprusside (SNP, 2.5, 5 and 10 microg/kg/min)+I/R groups. Liver was subjected to I/R injury, saline or SNP administered intravenously. The protein expressions of LTC4 synthesis enzymes including LTC4 synthase (LTC4S), microsomal glutathione-S-transferase (mGST)2 and mGST3 were detected with immunoblotting, the LTC4 synthesis enzymes' activities and LTC4 content were measured by RP-HPLC, the mRNA expressions of inducible nitric oxide synthase (iNOS) and endogenous nitric oxide synthase (eNOS) in liver were measured by RT-PCR. Tissue injuries were assessed by serum ALT and AST and histological changes. Serum NO(2)(-) and liver tissue GSH were also examined. Compared with I/R group, SNP markedly decreased LTC4 content, LTC4S protein and iNOS mRNA levels, and the LTC4 synthesis enzymes' activities (P<0.05), but significantly enhanced eNOS mRNA expression in liver (P<0.05). The decline in serum ALT, AST and NO(2)(-) levels (P<0.05) together with hepatic GSH elevation (P<0.05) in SNP+I/R groups were also observed. LTC4S expression in hepatocytes and sinusoidal endothelial cells in SNP+I/R groups was lower than that in I/R group. But no significant differences in the protein expressions of mGST3 and mGST2 existed between control, I/R and SNP+I/R groups (P>0.05). These results demonstrated that the decline in LTC4 production by SNP treatment during hepatic I/R could be partially resulted from SNP down-regulating the protein expression of LTC4S rather than mGST2 or mGST3 and its inhibiting the LTC4 synthesis enzymes' activities.
Collapse
Affiliation(s)
- Shu-Long Yang
- Institute of Pharmacology-Toxicology and Biochemical Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
83
|
Jiang Y, Kanaoka Y, Feng C, Nocka K, Rao S, Boyce JA. Cutting Edge: Interleukin 4-Dependent Mast Cell Proliferation Requires Autocrine/Intracrine Cysteinyl Leukotriene-Induced Signaling. THE JOURNAL OF IMMUNOLOGY 2006; 177:2755-9. [PMID: 16920908 DOI: 10.4049/jimmunol.177.5.2755] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reactive mastocytosis (RM) in epithelial surfaces is a consistent Th2-associated feature of allergic disease. RM fails to develop in mice lacking leukotriene (LT) C4 synthase (LTC4S), which is required for cysteinyl leukotriene (cys-LT) production. We now report that IL-4, which induces LTC4S expression by mast cells (MCs), requires cys-LTs, the cys-LT type 1 receptor (CysLT1), and Gi proteins to promote MC proliferation. LTD4 (10-1000 nM) enhanced proliferation of human MCs in a CysLT1-dependent, pertussis toxin-sensitive manner. LTD4-induced phosphorylation of ERK required transactivation of c-kit. IL-4-driven comitogenesis was likewise sensitive to pertussis toxin or a CysLT1-selective antagonist and was attenuated by treatment with leukotriene synthesis inhibitors. Mouse MCs lacking LTC4S or CysLT1 showed substantially diminished IL-4-induced comitogenesis. Thus, IL-4 induces proliferation in part by inducing LTC4S and cys-LT generation, which causes CysLT1 to transactivate c-kit in RM.
Collapse
Affiliation(s)
- Yongfeng Jiang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
84
|
Balestrieri B, Arm JP. Group V sPLA2: classical and novel functions. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:1280-8. [PMID: 16945583 DOI: 10.1016/j.bbalip.2006.07.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/20/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Group V sPLA(2) is unique among the family of secretory sPLA(2) enzymes in being able to bind to cell membranes through both interfacial-binding and through binding to proteoglycan. The function of group V sPLA(2) as an enzyme and its cross-talk with cPLA(2)alpha in initiating eicosanoid generation is well documented. Evidence, though, is emerging on the ability of this molecule to act as a regulator of several intracellular and extracellular pathways independently of its ability to provide arachidonic acid for eicosanoid generation, acting within the cell or as a secreted enzyme. In this article we will provide an overview of the properties of the enzyme and how they relate to our current understanding of its function.
Collapse
Affiliation(s)
- Barbara Balestrieri
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
85
|
Frova C. Glutathione transferases in the genomics era: new insights and perspectives. ACTA ACUST UNITED AC 2006; 23:149-69. [PMID: 16839810 DOI: 10.1016/j.bioeng.2006.05.020] [Citation(s) in RCA: 324] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/12/2006] [Accepted: 05/12/2006] [Indexed: 11/23/2022]
Abstract
In the last decade the tumultuous development of "omics" greatly improved our ability to understand protein structure, function and evolution, and to define their roles and networks in complex biological processes. This fast accumulating knowledge holds great potential for biotechnological applications, from the development of biomolecules with novel properties of industrial and medical importance, to the creation of transgenic organisms with new, favorable characteristics. This review focuses on glutathione transferases (GSTs), an ancient protein superfamily with multiple roles in all eukaryotic organisms, and attempts to give an overview of the new insights and perspectives provided by omics into the biology of these proteins. Among the aspects considered are the redefinition of GST subfamilies, their evolution in connection with structurally related families, present and future biotechnological outcomes.
Collapse
Affiliation(s)
- Carla Frova
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133 Milano, Italy.
| |
Collapse
|
86
|
Kim DC, Hsu FI, Barrett NA, Friend DS, Grenningloh R, Ho IC, Al-Garawi A, Lora JM, Lam BK, Austen KF, Kanaoka Y. Cysteinyl leukotrienes regulate Th2 cell-dependent pulmonary inflammation. THE JOURNAL OF IMMUNOLOGY 2006; 176:4440-8. [PMID: 16547282 DOI: 10.4049/jimmunol.176.7.4440] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Th2 cell-dependent inflammatory response is a central component of asthma, and the ways in which it is regulated is a critical question. The cysteinyl leukotrienes (cys-LTs) are 5-lipoxygenase pathway products implicated in asthma, in particular, by their function as smooth muscle constrictors of airways and microvasculature. To elucidate additional roles for cys-LTs in the pathobiology of pulmonary inflammation, we used an OVA sensitization and challenge protocol with mice lacking leukotriene C(4) synthase (LTC(4)S), the terminal enzyme for cys-LT generation. Ag-induced pulmonary inflammation, characterized by eosinophil infiltration, goblet cell hyperplasia with mucus hypersecretion, and accumulation and activation of intraepithelial mast cells was markedly reduced in LTC(4)S(null) mice. Furthermore, Ag-specific IgE and IgG1 in serum, Th2 cell cytokine mRNA expression in the lung, and airway hyperresponsiveness to methacholine were significantly reduced in LTC(4)S(null) mice compared with wild-type controls. Finally, the number of parabronchial lymph node cells from sensitized LTC(4)S(null) mice and their capacity to generate Th2 cell cytokines ex vivo after restimulation with Ag were also significantly reduced. In contrast, delayed-type cutaneous hypersensitivity, a prototypic Th1 cell-dependent response, was intact in LTC(4)S(null) mice. These findings provide direct evidence of a role for cys-LTs in regulating the initiation and/or amplification of Th2 cell-dependent pulmonary inflammation.
Collapse
Affiliation(s)
- Daniel C Kim
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Chen M, Lam BK, Kanaoka Y, Nigrovic PA, Audoly LP, Austen KF, Lee DM. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. ACTA ACUST UNITED AC 2006; 203:837-42. [PMID: 16567388 PMCID: PMC2118292 DOI: 10.1084/jem.20052371] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neutrophils serve as a vanguard of the acute innate immune response to invading pathogens. Neutrophils are also abundant at sites of autoimmune inflammation, such as the rheumatoid joint, although their pathophysiologic role is incompletely defined and relevant effector functions remain obscure. Using genetic and pharmacologic approaches in the K/BxN serum transfer model of arthritis, we find that autoantibody-driven erosive synovitis is critically reliant on the generation of leukotrienes, and more specifically on leukotriene B4 (LTB4), for disease induction as well as perpetuation. Pursuing the cellular source for this mediator, we find via reconstitution experiments that mast cells are a dispensable source of leukotrienes, whereas arthritis susceptibility can be restored to leukotriene-deficient mice by intravenous administration of wild-type neutrophils. These experiments demonstrate a nonredundant role for LTB4 in inflammatory arthritis and define a neutrophil mediator involved in orchestrating the synovial eruption.
Collapse
Affiliation(s)
- Mei Chen
- Department of Medicine and Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Balestrieri B, Hsu VW, Gilbert H, Leslie CC, Han WK, Bonventre JV, Arm JP. Group V secretory phospholipase A2 translocates to the phagosome after zymosan stimulation of mouse peritoneal macrophages and regulates phagocytosis. J Biol Chem 2006; 281:6691-8. [PMID: 16407308 PMCID: PMC1820836 DOI: 10.1074/jbc.m508314200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported that group V secretory phospholipase A2 (sPLA2) amplifies the action of cytosolic phospholipase A2(cPLA2) alpha in regulating eicosanoid biosynthesis by mouse peritoneal macrophages stimulated with zymosan (Satake, Y., Diaz, B. L., Balestrieri, B., Lam, B. K., Kanaoka, Y., Grusby, M. J., and Arm, J. P. (2004) J. Biol. Chem. 279, 16488-16494). To further understand the role of group V sPLA2, we studied its localization in resting mouse peritoneal macrophages before and after stimulation with zymosan and the effect of deletion of the gene encoding group V sPLA2 on phagocytosis of zymosan. We report that group V sPLA2 is present in the Golgi apparatus and recycling endosome in the juxtanuclear region of resting peritoneal macrophages. Upon ingestion of zymosan by mouse peritoneal macrophages, group V sPLA2 is recruited to the phagosome. There it co-localizes with cPLA2alpha, 5-lipoxygenase, 5-lipoxygenase-activating protein, and leukotriene C4 synthase. Using immunostaining for the cysteinyl leukotrienes in carbodiimide-fixed cells, we show, for the first time, that the phagosome is a site of cysteinyl leukotriene formation. Furthermore, peritoneal macrophages from group V sPLA2-null mice demonstrated a >50% attenuation in phagocytosis of zymosan particles, which was restored by adenoviral expression of group V sPLA2 but IIA not group sPLA2. These data demonstrate that group V sPLA2 contributes to the innate immune response both through regulation of eicosanoid generation in response to a phagocytic stimulus and also as a component of the phagocytic machinery.
Collapse
Affiliation(s)
- Barbara Balestrieri
- From the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Victor W. Hsu
- From the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Huiya Gilbert
- From the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | - Christina C. Leslie
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206
| | - Won K. Han
- Renal Division, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| | | | - Jonathan P. Arm
- From the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts 02115
- Partners Asthma Center, Brigham and Women’s Hospital, Boston, Massachusetts 02115
| |
Collapse
|
89
|
Suram S, Brown GD, Ghosh M, Gordon S, Loper R, Taylor PR, Akira S, Uematsu S, Williams DL, Leslie CC. Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J Biol Chem 2006; 281:5506-14. [PMID: 16407295 DOI: 10.1074/jbc.m509824200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Phagocytosis of non-opsonized microorganisms by macrophages initiates innate immune responses for host defense against infection. Cytosolic phospholipase A(2) is activated during phagocytosis, releasing arachidonic acid for production of eicosanoids, which initiate acute inflammation. Our objective was to identify pattern recognition receptors that stimulate arachidonic acid release and cyclooxygenase 2 (COX2) expression in macrophages by pathogenic yeast and yeast cell walls. Zymosan- and Candida albicans-stimulated arachidonic acid release from resident mouse peritoneal macrophages was blocked by soluble glucan phosphate. In RAW264.7 cells arachidonic acid release, COX2 expression, and prostaglandin production were enhanced by overexpressing the beta-glucan receptor, dectin-1, but not dectin-1 lacking the cytoplasmic tail. Pure particulate (1, 3)-beta-D-glucan stimulated arachidonic acid release and COX2 expression, which were augmented in a Toll-like receptor 2 (TLR2)-dependent manner by macrophage-activating lipopeptide-2. However, arachidonic acid release and leukotriene C(4) production stimulated by zymosan and C. albicans were TLR2-independent, whereas COX2 expression and prostaglandin production were partially blunted in TLR2(-/-) macrophages. Inhibition of Syk tyrosine kinase blocked arachidonic acid release and COX2 expression in response to zymosan, C. albicans, and particulate (1, 3)-beta-D-glucan. The results suggest that cytosolic phospholipase A(2) activation triggered by the beta-glucan component of yeast is dependent on the immunoreceptor tyrosine-based activation motif-like domain of dectin-1 and activation of Syk kinase, whereas both TLR2 and Syk kinase regulate COX2 expression.
Collapse
Affiliation(s)
- Saritha Suram
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Abonia JP, Friend DS, Austen WG, Moore FD, Carroll MC, Chan R, Afnan J, Humbles A, Gerard C, Knight P, Kanaoka Y, Yasuda S, Morokawa N, Austen KF, Stevens RL, Gurish MF. Mast cell protease 5 mediates ischemia-reperfusion injury of mouse skeletal muscle. THE JOURNAL OF IMMUNOLOGY 2005; 174:7285-91. [PMID: 15905575 PMCID: PMC2951006 DOI: 10.4049/jimmunol.174.11.7285] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ischemia with subsequent reperfusion (IR) injury is a significant clinical problem that occurs after physical and surgical trauma, myocardial infarction, and organ transplantation. IR injury of mouse skeletal muscle depends on the presence of both natural IgM and an intact C pathway. Disruption of the skeletal muscle architecture and permeability also requires mast cell (MC) participation, as revealed by the fact that IR injury is markedly reduced in c-kit defective, MC-deficient mouse strains. In this study, we sought to identify the pathobiologic MC products expressed in IR injury using transgenic mouse strains with normal MC development, except for the lack of a particular MC-derived mediator. Histologic analysis of skeletal muscle from BALB/c and C57BL/6 mice revealed a strong positive correlation (R(2) = 0.85) between the extent of IR injury and the level of MC degranulation. Linkage between C activation and MC degranulation was demonstrated in mice lacking C4, in which only limited MC degranulation and muscle injury were apparent. No reduction in injury was observed in transgenic mice lacking leukotriene C(4) synthase, hemopoietic PGD(2) synthase, N-deacetylase/N-sulfotransferase-2 (enzyme involved in heparin biosynthesis), or mouse MC protease (mMCP) 1. In contrast, muscle injury was significantly attenuated in mMCP-5-null mice. The MCs that reside in skeletal muscle contain abundant amounts of mMCP-5 which is the serine protease that is most similar in sequence to human MC chymase. We now report a cytotoxic activity associated with a MC-specific protease and demonstrate that mMCP-5 is critical for irreversible IR injury of skeletal muscle.
Collapse
Affiliation(s)
- J. Pablo Abonia
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Daniel S. Friend
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - William G. Austen
- Department of Surgery, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02129
| | - Francis D. Moore
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Michael C. Carroll
- Department of Pediatrics, CBR Institute for Biomedical Research, and Harvard Medical School, Boston, MA, 02115
| | - Rodney Chan
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Jalil Afnan
- Department of Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Alison Humbles
- Department of Pediatrics, Beth Israel Hospital, Children's Hospital, and Harvard Medical School, Boston, MA, 02115
| | - Craig Gerard
- Department of Pediatrics, Beth Israel Hospital, Children's Hospital, and Harvard Medical School, Boston, MA, 02115
| | - Pamela Knight
- Department of Veterinary Clinical Studies, Royal School of Veterinary Studies, University of Edinburgh, Easter Bush, United Kingdom
| | - Yoshihide Kanaoka
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Shinsuke Yasuda
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Nasa Morokawa
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - K. Frank Austen
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Richard L. Stevens
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
| | - Michael F. Gurish
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115
- Address correspondence and reprint requests to Dr. Michael F. Gurish, Brigham and Women's Hospital, Smith Building, Room 624, 1 Jimmy Fund Way, Boston, MA 02115.
| |
Collapse
|
91
|
Zhou JS, Friend DS, Lee DM, Li L, Austen KF, Katz HR. gp49B1 deficiency is associated with increases in cytokine and chemokine production and severity of proliferative synovitis induced by anti-type II collagen mAb. Eur J Immunol 2005; 35:1530-8. [PMID: 15827966 DOI: 10.1002/eji.200425895] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mice with a disrupted gp49B gene, which encodes gp49B1 that is expressed on certain hematopoietic cells and has two immunoreceptor tyrosine-based inhibitory motifs (ITIM), exhibit augmented FcepsilonRI-initiated mast cell degranulation and resultant tissue edema. gp49B1-deficient (gp49B(-/-)) mice also exhibit exaggerated lipopolysaccharide (LPS)-induced intravascular neutrophil aggregation leading to cutaneous microangiopathy. To determine whether gp49B(-/-) mice exhibit elevated cytokine and chemokine levels leading to pathologic inflammation, we quantified clinical and morphologic parameters of arthritis and tissue levels of contributory mediators in gp49B(-/-) and gp49B1-sufficient (gp49B(+/+)) mice injected with anti-type II collagen monoclonal antibody (mAb) and LPS. Clinical scores for joint swelling and histological assessments of synovial thickness and cartilage matrix depletion at day 7 were significantly 2.3- to 2.5-fold greater and were more prolonged in gp49B(-/-) mice. At day 5, the amounts of IL-1beta, macrophage inflammatory protein (MIP)-1alpha, and MIP-2 were 2.1-, 2.5-, and 12-fold greater in joint extracts from gp49B(-/-) mice. A significant 2.7-fold more neutrophils infiltrated the synovium of gp49B(-/-) mice at day 7, and neutrophilia persisted with the delayed resolution of the synovitis. mAb-mediated depletion of neutrophils prevented the synovitis in both strains. Thus, gp49B1 counter-regulates the cytokine and chemokine induction and attendant neutrophilia that are all essential for synovitis and cartilage matrix depletion.
Collapse
Affiliation(s)
- Joseph S Zhou
- Department of Medicine, Harvard Medical School, Boston, USA
| | | | | | | | | | | |
Collapse
|
92
|
Abstract
This review describes the three mammalian glutathione transferase (GST) families, namely cytosolic, mitochondrial, and microsomal GST, the latter now designated MAPEG. Besides detoxifying electrophilic xenobiotics, such as chemical carcinogens, environmental pollutants, and antitumor agents, these transferases inactivate endogenous alpha,beta-unsaturated aldehydes, quinones, epoxides, and hydroperoxides formed as secondary metabolites during oxidative stress. These enzymes are also intimately involved in the biosynthesis of leukotrienes, prostaglandins, testosterone, and progesterone, as well as the degradation of tyrosine. Among their substrates, GSTs conjugate the signaling molecules 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) and 4-hydroxynonenal with glutathione, and consequently they antagonize expression of genes trans-activated by the peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). Through metabolism of 15d-PGJ2, GST may enhance gene expression driven by nuclear factor-kappaB (NF-kappaB). Cytosolic human GST exhibit genetic polymorphisms and this variation can increase susceptibility to carcinogenesis and inflammatory disease. Polymorphisms in human MAPEG are associated with alterations in lung function and increased risk of myocardial infarction and stroke. Targeted disruption of murine genes has demonstrated that cytosolic GST isoenzymes are broadly cytoprotective, whereas MAPEG proteins have proinflammatory activities. Furthermore, knockout of mouse GSTA4 and GSTZ1 leads to overexpression of transferases in the Alpha, Mu, and Pi classes, an observation suggesting they are part of an adaptive mechanism that responds to endogenous chemical cues such as 4-hydroxynonenal and tyrosine degradation products. Consistent with this hypothesis, the promoters of cytosolic GST and MAPEG genes contain antioxidant response elements through which they are transcriptionally activated during exposure to Michael reaction acceptors and oxidative stress.
Collapse
Affiliation(s)
- John D Hayes
- Biomedical Research Center, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom.
| | | | | |
Collapse
|
93
|
Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res 2005; 69:107-27. [PMID: 15896353 DOI: 10.1016/j.mvr.2005.01.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/21/2005] [Accepted: 01/26/2005] [Indexed: 01/26/2023]
Abstract
Arachidonic acid (AA) and its metabolites (eicosanoids) represent powerful mediators, used by organisms to induce and suppress inflammation as a part of the innate response to disturbances. Several cell types participate in the synthesis and release of AA metabolites, while many cell types represent the targets for eicosanoid action. Endothelial cells (EC), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, are of particular importance for the development of inflammation, since endothelium controls such diverse processes as vascular tone, homeostasis, adhesion of platelets and leukocytes to the vascular wall, and permeability of the vascular wall for cells and fluids. Proliferation and migration of endothelial cells contribute significantly to new vessel development (angiogenesis). This review discusses endothelial-specific synthesis and action of arachidonic acid derivatives with a particular focus on the mechanisms of signal transduction and associated intracellular protein targets.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
94
|
Abe M, Yoshimoto T. [Leukotriene-lipoxygenase pathway and drug discovery]. Nihon Yakurigaku Zasshi 2005; 124:415-25. [PMID: 15572846 DOI: 10.1254/fpj.124.415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The first drugs affecting the leukotriene-lipoxygenase pathway, which have been introduced in clinical application, inhibit effects of slow reacting substance of anaphylaxis (SRS-A). Although, a 5-lipoxygenase inhibitor was first used in clinical practice as an anti-asthma drug, cysteinyl-leukotriene type 1 receptor (cysLT(1)R) antagonists are preferred as anti-asthma and anti-rhinitis drugs because they are almost as effective as the 5-lipoxygenase inhibitors but have fewer side effects. The cloning of genes related to lipoxygenase-leukotriene metabolism prompted us to try to elucidate the role of leukotrienes in various inflammations. There are at least two types of cysLTRs known: cysLT(1)R and cysLT(2)R. CysLT(1)R plays an important role in the pathophysiology of asthma; however, the role of the cysLT(2)R remains unknown. The abundant distribution of cysLT(2)R in heart and brain tissues suggests that cysLTs play an important role in the pathophysiology of ischemic heart diseases or arrhythmias and through this receptor (cysLT(2)R), psychoneurological disorders. The use of a selective cysLT(2)R antagonist may clarify these questions. Since the 5-lipoxygenase pathway is abundantly expressed in atherosclerotic lesions, and 12/15-lipoxygenase is able to oxygenate polyunsaturated fatty acid esterified in the membranous phospholipids, 5-lipoxygenase or 12/15-lipoxygenase inhibitors may prevent progression of atherosclerosis. In addition, it has been reported that 15-lipoxygenase participates in suppression of prostate cancer. In conclusion, the leukotriene-lipoxygenase metabolism may be involved in the pathophysiology of acute inflammatory to chronic progressive disorders. We think that more drugs modifying leukotriene-lipoxygenase metabolism will be introduced into clinical practice in the future.
Collapse
Affiliation(s)
- Masayoshi Abe
- Department of Pharmacology, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | | |
Collapse
|
95
|
Ohtsuka Y, Arima M, Fujimura L, Li H, Sakamoto A, Okamoto Y, Tokuhisa T. Bcl6 regulates Th2 type cytokine productions by mast cells activated by FcepsilonRI/IgE cross-linking. Mol Immunol 2005; 42:1453-9. [PMID: 15950739 DOI: 10.1016/j.molimm.2005.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 01/18/2005] [Indexed: 11/16/2022]
Abstract
Bcl6-deficient (Bcl6-/-) mice displayed Th2 type inflammation, which caused by abnormality of non-lymphoid cells. However, initiators for the Th2 type inflammation were not clear. In order to elucidate the initiators, we investigated property and function of mast cells derived from Bcl6-/- mice. Mast cells were developed from bone marrow cells cultured with IL-3 (BMMCs). Although the development of BMMCs from Bcl6-/- mice was similar to that from wild-type mice, proliferation of Bcl6-/- BMMCs stimulated with IL-3 was slightly lower than that of wild-type BMMCs. When these BMMCs were stimulated by FcepsilonRI/IgE cross-linking, Bcl6-/- BMMCs produced Th2 cytokines more than wild-type BMMCs did. Thus, Bcl6-/- mast cells are one of the initiators for Th2 type inflammation in Bcl6-/- mice, and Bcl6 may be a molecular target for Th2 type allergic diseases.
Collapse
Affiliation(s)
- Yuichiro Ohtsuka
- Department of Developmental Genetics H2, Graduate School of Medicine, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
96
|
Moon TC, Lin CX, Lee JS, Kim DS, Bae K, Son KH, Kim HP, Kang SS, Son JK, Chang HW. Antiinflammatory Activity of Astilbic Acid from Astilbe chinensis. Biol Pharm Bull 2005; 28:24-6. [PMID: 15635157 DOI: 10.1248/bpb.28.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the effect of astilbic acid (3beta,6beta-dihydroxyolean-12-en-27-oic acid), which is a herbal medicine isolated from Astilbe chinensis. Astilbic acid inhibited 5-lipoxygenase (5-LOX)-dependent leukotriene C4 (LTC4) generation in bone marrow-derived mast cells in a concentration-dependent manner with an IC50 value of 2.1 microM. In addition, astilbic acid was tested in a rat passive cutaneous anaphylaxis (PCA) reaction assay by administering 10 to 50 mg/kg i.p. Astilbic acid dose dependently inhibited the PCA reaction, which was activated by anti-dinitrophenyl (DNP) IgE. Furthermore, this compound inhibited mouse acetic acid-induced writhing (47-62% inhibition at 0.4-50 mg/kg) after being administered orally, while aspirin (200 mg/kg) showed 62% inhibition. These results suggest that astilbic acid may be beneficial in regulating various inflammatory processes.
Collapse
Affiliation(s)
- Tae Chul Moon
- College of Pharmacy, Yeungnam University, Gyongsan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Kanaoka Y, Boyce JA. Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. THE JOURNAL OF IMMUNOLOGY 2004; 173:1503-10. [PMID: 15265876 DOI: 10.4049/jimmunol.173.3.1503] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cysteinyl leukotrienes (cys-LTs) are a family of potent bioactive lipids that act through two structurally divergent G protein-coupled receptors, termed the CysLT(1) and CysLT(2) receptors. The cloning and characterization of these two receptors has not only reconciled findings of previous pharmacologic profiling studies of contractile tissues, but also has uncovered their expression on a wide array of circulating and tissue-dwelling leukocytes. With the development of receptor-selective reagents, as well as mice lacking critical biosynthetic enzymes, transporter proteins, and the CysLT(1) receptor, diverse functions of cys-LTs and their receptors in immune and inflammatory responses have been identified. We review cys-LT biosynthesis; the molecular biology and distribution of the CysLT(1) and CysLT(2) receptors; the functions of cys-LTs and their receptors in the recruitment and activation of effector leukocytes and induction of adaptive immunity; and the development of fibrosis and airway remodeling in animal models of lung injury and allergic inflammation.
Collapse
Affiliation(s)
- Yoshihide Kanaoka
- Department of Medicine, Harvard University Medical School and Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston MA 02115, USA
| | | |
Collapse
|
98
|
Beller TC, Maekawa A, Friend DS, Austen KF, Kanaoka Y. Targeted Gene Disruption Reveals the Role of the Cysteinyl Leukotriene 2 Receptor in Increased Vascular Permeability and in Bleomycin-induced Pulmonary Fibrosis in Mice. J Biol Chem 2004; 279:46129-34. [PMID: 15328359 DOI: 10.1074/jbc.m407057200] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cysteinyl leukotrienes (cys-LTs) mediate both acute and chronic inflammatory responses in mice, as demonstrated by the attenuation of the IgE/antigen-mediated increase in microvascular permeability and of bleomycin-induced pulmonary fibrosis, respectively, in a strain with targeted disruption of leukotriene C(4) synthase to prevent cys-LT synthesis. Our earlier finding that the acute, but not the chronic, injury was attenuated in a strain with targeted disruption of the cysteinyl leukotriene 1 (CysLT(1)) receptor suggested that the chronic injury might be mediated through the CysLT(2) receptor. Thus, we generated CysLT(2) receptor-deficient mice by targeted gene disruption. These mice developed normally and were fertile. The increased vascular permeability associated with IgE-dependent passive cutaneous anaphylaxis was significantly reduced in CysLT(2) receptor-null mice as compared with wild-type mice, whereas plasma protein extravasation in response to zymosan A-induced peritoneal inflammation was not altered. Alveolar septal thickening after intratracheal injection of bleomycin, characterized by interstitial infiltration with macrophages and fibroblasts and the accumulation of collagen fibers, was significantly reduced in CysLT(2) receptor-null mice as compared with the wild-type mice. The amounts of cys-LTs in bronchoalveolar lavage fluid after bleomycin injection were similar in the CysLT(2) receptor-null mice and the wild-type mice. Thus, in response to a particular pathobiologic event the CysLT(2) receptor can mediate an increase in vascular permeability in some tissues or promote chronic pulmonary inflammation with fibrosis.
Collapse
Affiliation(s)
- Thomas C Beller
- Departments of Medicine and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
99
|
Beller TC, Friend DS, Maekawa A, Lam BK, Austen KF, Kanaoka Y. Cysteinyl leukotriene 1 receptor controls the severity of chronic pulmonary inflammation and fibrosis. Proc Natl Acad Sci U S A 2004; 101:3047-52. [PMID: 14970333 PMCID: PMC365742 DOI: 10.1073/pnas.0400235101] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cysteinyl leukotrienes (cys-LTs), leukotriene (LT) C(4), LTD(4), and LTE(4), are smooth muscle constrictors that signal via the CysLT(1) receptor. Here we report that the cys-LTs play an important role in chronic pulmonary inflammation with fibrosis induced by bleomycin in mice. Targeted disruption of LTC(4) synthase, the pivotal enzyme for cys-LT biosynthesis, protected significantly against alveolar septal thickening by macrophages and fibroblasts and collagen deposition. In contrast, targeted disruption of the CysLT(1) receptor significantly increased both the concentration of cys-LTs in the bronchoalveolar lavage fluid and the magnitude of septal thickening as defined by morphology, digital image analysis, and deposition of reticular fibers. These findings change our understanding of the pathobiology mediated by the cys-LTs by revealing their role in chronic inflammation with fibrosis, likely via the CysLT(2) receptor, and by uncovering a dual role for the CysLT(1) receptor, namely proinflammatory acute constriction of smooth muscle and antiinflammatory counteraction of chronic injury.
Collapse
Affiliation(s)
- Thomas C Beller
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
100
|
Satake Y, Diaz BL, Balestrieri B, Lam BK, Kanaoka Y, Grusby MJ, Arm JP. Role of group V phospholipase A2 in zymosan-induced eicosanoid generation and vascular permeability revealed by targeted gene disruption. J Biol Chem 2004; 279:16488-94. [PMID: 14761945 PMCID: PMC1201398 DOI: 10.1074/jbc.m313748200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conclusions regarding the contribution of low molecular weight secretory phospholipase A2 (sPLA2) enzymes in eicosanoid generation have relied on data obtained from transfected cells or the use of inhibitors that fail to discriminate between individual members of the large family of mammalian sPLA2 enzymes. To elucidate the role of group V sPLA2, we used targeted gene disruption to generate mice lacking this enzyme. Zymosan-induced generation of leukotriene C4 and prostaglandin E2 was attenuated approximately 50% in peritoneal macrophages from group V sPLA2-null mice compared with macrophages from wild-type littermates. Furthermore, the early phase of plasma exudation in response to intraperitoneal injection of zymosan and the accompanying in vivo generation of cysteinyl leukotrienes were markedly attenuated in group V sPLA2-null mice compared with wild-type controls. These data provide clear evidence of a role for group V sPLA2 in regulating eicosanoid generation in response to an acute innate stimulus of the immune response both in vitro and in vivo, suggesting a role for this enzyme in innate immunity.
Collapse
Affiliation(s)
- Yoshiyuki Satake
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
| | - Bruno L. Diaz
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
- Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Barbara Balestrieri
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
| | - Bing K. Lam
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
| | - Yoshihide Kanaoka
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
| | - Michael J. Grusby
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, MA 02115
| | - Jonathan P. Arm
- Department of Medicine Harvard Medical School, Boston, MA 02115
- Division of Rheumatology Immunology and Allergy, and the
- Partners Asthma Center, Brigham and Women’s Hospital, Boston, MA 02115
- §§ To whom correspondence should be addressed: Brigham and Women’s Hospital, Smith Research Building, Room 638B, 1, Jimmy Fund Way, Boston, MA 02115. Tel.: 617-525-1305; Fax: 617-525-1310; E-Mail:
| |
Collapse
|