51
|
Herrfurth C, Feussner I. Quantitative Jasmonate Profiling Using a High-Throughput UPLC-NanoESI-MS/MS Method. Methods Mol Biol 2020; 2085:169-187. [PMID: 31734925 DOI: 10.1007/978-1-0716-0142-6_13] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Jasmonic acid (JA) and its many derivatives-collectively referred as jasmonates-occur ubiquitously in land plants and regulate a wide range of stress-responses and development. Measuring these signaling compounds is complicated by the large number of jasmonate derivatives and the comparatively low concentration of these metabolites in plant tissues. We, here, present a selective and sensitive method consisting of a two-phase extraction coupled with liquid chromatography, nanoelectrospray ionization, and mass spectrometry to determine jasmonate levels in tissues and fluids of various plant species. The application of stable deuterium-labelled standards in combination with authentic standards allows the absolute quantification of a multitude of jasmonates and, additionally, the semi-quantitative analysis of further metabolites from the jasmonate pathway.
Collapse
Affiliation(s)
- Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany.
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
52
|
Verly C, Djoman ACR, Rigault M, Giraud F, Rajjou L, Saint-Macary ME, Dellagi A. Plant Defense Stimulator Mediated Defense Activation Is Affected by Nitrate Fertilization and Developmental Stage in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:583. [PMID: 32528493 PMCID: PMC7264385 DOI: 10.3389/fpls.2020.00583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/17/2020] [Indexed: 05/20/2023]
Abstract
Plant defense stimulators, used in crop protection, are an attractive option to reduce the use of conventional crop protection products and optimize biocontrol strategies. These products are able to activate plant defenses and thus limit infection by pathogens. However, the effectiveness of these plant defense stimulators remains erratic and is potentially dependent on many agronomic and environmental parameters still unknown or poorly controlled. The developmental stage of the plant as well as its fertilization, and essentially nitrogen nutrition, play major roles in defense establishment in the presence of pathogens or plant defense stimulators. The major nitrogen source used by plants is nitrate. In this study, we investigated the impact of Arabidopsis thaliana plant developmental stage and nitrate nutrition on its capacity to mount immune reactions in response to two plant defense stimulators triggering two major defense pathways, the salicylic acid and the jasmonic acid pathways. We show that optimal nitrate nutrition is needed for effective defense activation and protection against the pathogenic bacteria Dickeya dadantii and Pseudomonas syringae pv. tomato. Using an npr1 defense signaling mutant, we showed that nitrate dependent protection against D. dadantii requires a functional NPR1 gene. Our results indicate that the efficacy of plant defense stimulators is strongly affected by nitrate nutrition and the developmental stage. The nitrate dependent efficacy of plant defense stimulators is not only due to a metabolic effect but also invloves NPR1 mediated defense signaling. Plant defense stimulators may have opposite effects on plant resistance to a pathogen. Together, our results indicate that agronomic use of plant defense stimulators must be optimized according to nitrate fertilization and developmental stage.
Collapse
Affiliation(s)
- Camille Verly
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Staphyt-Service L&G/BIOTEAM, Martillac, France
| | - Atsin Claude Roméo Djoman
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Staphyt-Service L&G/BIOTEAM, Martillac, France
| | - Martine Rigault
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | | | - Alia Dellagi
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- *Correspondence: Alia Dellagi,
| |
Collapse
|
53
|
Acosta IF, Przybyl M. Jasmonate Signaling during Arabidopsis Stamen Maturation. PLANT & CELL PHYSIOLOGY 2019; 60:2648-2659. [PMID: 31651948 PMCID: PMC6896695 DOI: 10.1093/pcp/pcz201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
The last stages of stamen development, collectively called stamen maturation, encompass pollen viability, filament elongation and anther dehiscence or opening. These processes are essential for male fertility in Arabidopsis and require the function of jasmonate signaling. There is a good understanding of jasmonate synthesis, perception and transcriptional outputs in Arabidopsis stamens. In addition, the spatiotemporal localization of jasmonate signaling components at the tissue and cellular levels has started to emerge in recent years. However, the ultimate cellular functions activated by jasmonate to promote stamen maturation remain unknown. The hormones auxin and gibberellin have been proposed to control the activation of jasmonate synthesis to promote stamen maturation, although we hypothesize that this action is rather indirect. In this review, we examine these different areas, attempt to clarify some confusing aspects found in the literature and raise testable hypothesis that may help to further understand how jasmonate controls male fertility in Arabidopsis.
Collapse
Affiliation(s)
- Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, 50829 Cologne, Germany
| | - Marine Przybyl
- Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, 50829 Cologne, Germany
| |
Collapse
|
54
|
Mielke S, Gasperini D. Interplay between Plant Cell Walls and Jasmonate Production. PLANT & CELL PHYSIOLOGY 2019; 60:2629-2637. [PMID: 31241137 DOI: 10.1093/pcp/pcz119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/04/2019] [Indexed: 05/23/2023]
Abstract
Plant cell walls are sophisticated carbohydrate-rich structures representing the immediate contact surface with the extracellular environment, often serving as the first barrier against biotic and abiotic stresses. Notably, a variety of perturbations in plant cell walls result in upregulated jasmonate (JA) production, a phytohormone with essential roles in defense and growth responses. Hence, cell wall-derived signals can initiate intracellular JA-mediated responses and the elucidation of the underlying signaling pathways could provide novel insights into cell wall maintenance and remodeling, as well as advance our understanding on how is JA biosynthesis initiated. This Mini Review will describe current knowledge about cell wall-derived damage signals and their effects on JA biosynthesis, as well as provide future perspectives.
Collapse
Affiliation(s)
- Stefan Mielke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale) 06120, Germany
| |
Collapse
|
55
|
Hoermayer L, Friml J. Targeted cell ablation-based insights into wound healing and restorative patterning. CURRENT OPINION IN PLANT BIOLOGY 2019; 52:124-130. [PMID: 31585333 PMCID: PMC6900583 DOI: 10.1016/j.pbi.2019.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are constantly under attack by herbivores, rough environmental situations, or mechanical pressure. These challenges often lead to the induction of wounds or destruction of already specified and developed tissues. Additionally, wounding makes plants vulnerable to invasion by pathogens, which is why wound signalling often triggers specific defence responses. To stay competitive or, eventually, survive under these circumstances, plants need to regenerate efficiently, which in rigid, tissue migration-incompatible plant tissues requires post-embryonic patterning and organogenesis. Now, several studies used laser-assisted single cell ablation in the Arabidopsis root tip as a minimal wounding proxy. Here, we discuss their findings and put them into context of a broader spectrum of wound signalling, pathogen responses and tissue as well as organ regeneration.
Collapse
Affiliation(s)
- Lukas Hoermayer
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| |
Collapse
|
56
|
Schulze A, Zimmer M, Mielke S, Stellmach H, Melnyk CW, Hause B, Gasperini D. Wound-Induced Shoot-to-Root Relocation of JA-Ile Precursors Coordinates Arabidopsis Growth. MOLECULAR PLANT 2019; 12:1383-1394. [PMID: 31181337 DOI: 10.1016/j.molp.2019.05.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 05/22/2023]
Abstract
Multicellular organisms rely on the movement of signaling molecules across cells, tissues, and organs to communicate among distal sites. In plants, localized leaf damage activates jasmonic acid (JA)-dependent transcriptional reprogramming in both harmed and unharmed tissues. Although it has been indicated that JA species can translocate from damaged into distal sites, the identity of the mobile compound(s), the tissues through which they translocate, and the effect of their relocation remain unknown. Here, we found that following shoot wounding, the relocation of endogenous jasmonates through the phloem is essential to initiate JA signaling and stunt growth in unharmed roots of Arabidopsis thaliana. By employing grafting experiments and hormone profiling, we uncovered that the hormone precursor cis-12-oxo-phytodienoic acid (OPDA) and its derivatives, but not the bioactive JA-Ile conjugate, translocate from wounded shoots into undamaged roots. Upon root relocation, the mobile precursors cooperatively regulated JA responses through their conversion into JA-Ile and JA signaling activation. Collectively, our findings demonstrate the existence of long-distance translocation of endogenous OPDA and its derivatives, which serve as mobile molecules to coordinate shoot-to-root responses, and highlight the importance of a controlled redistribution of hormone precursors among organs during plant stress acclimation.
Collapse
Affiliation(s)
- Adina Schulze
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marlene Zimmer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Stefan Mielke
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Hagen Stellmach
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Charles W Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
57
|
Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, Thannhauser TW, Foolad MR, Diez MJ, Blanca J, Canizares J, Xu Y, van der Knaap E, Huang S, Klee HJ, Giovannoni JJ, Fei Z. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 2019; 51:1044-1051. [DOI: 10.1038/s41588-019-0410-2] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/03/2019] [Indexed: 01/23/2023]
|
58
|
Abstract
Diverse molecular processes regulate the interactions between plants and insect herbivores. Here, we review genes and proteins that are involved in plant-herbivore interactions and discuss how their discovery has structured the current standard model of plant-herbivore interactions. Plants perceive damage-associated and, possibly, herbivore-associated molecular patterns via receptors that activate early signaling components such as Ca2+, reactive oxygen species, and MAP kinases. Specific defense reprogramming proceeds via signaling networks that include phytohormones, secondary metabolites, and transcription factors. Local and systemic regulation of toxins, defense proteins, physical barriers, and tolerance traits protect plants against herbivores. Herbivores counteract plant defenses through biochemical defense deactivation, effector-mediated suppression of defense signaling, and chemically controlled behavioral changes. The molecular basis of plant-herbivore interactions is now well established for model systems. Expanding molecular approaches to unexplored dimensions of plant-insect interactions should be a future priority.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, 3000 Bern, Switzerland;
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
59
|
Zhou W, Lozano-Torres JL, Blilou I, Zhang X, Zhai Q, Smant G, Li C, Scheres B. A Jasmonate Signaling Network Activates Root Stem Cells and Promotes Regeneration. Cell 2019; 177:942-956.e14. [PMID: 30955889 DOI: 10.1016/j.cell.2019.03.006] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022]
Abstract
Plants are sessile and have to cope with environmentally induced damage through modification of growth and defense pathways. How tissue regeneration is triggered in such responses and whether this involves stem cell activation is an open question. The stress hormone jasmonate (JA) plays well-established roles in wounding and defense responses. JA also affects growth, which is hitherto interpreted as a trade-off between growth and defense. Here, we describe a molecular network triggered by wound-induced JA that promotes stem cell activation and regeneration. JA regulates organizer cell activity in the root stem cell niche through the RBR-SCR network and stress response protein ERF115. Moreover, JA-induced ERF109 transcription stimulates CYCD6;1 expression, functions upstream of ERF115, and promotes regeneration. Soil penetration and response to nematode herbivory induce and require this JA-mediated regeneration response. Therefore, the JA tissue damage response pathway induces stem cell activation and regeneration and activates growth after environmental stress.
Collapse
Affiliation(s)
- Wenkun Zhou
- Laboratory of Plant Developmental Biology, Wageningen University and Research, 6708 PB Wageningen, the Netherlands; State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University and Research, 6708 PB Wageningen, the Netherlands
| | - Ikram Blilou
- Laboratory of Plant Developmental Biology, Wageningen University and Research, 6708 PB Wageningen, the Netherlands; KAUST, Thuwall 23955, Saudi Arabia
| | - Xiaoyue Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Geert Smant
- Laboratory of Nematology, Wageningen University and Research, 6708 PB Wageningen, the Netherlands
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ben Scheres
- Laboratory of Plant Developmental Biology, Wageningen University and Research, 6708 PB Wageningen, the Netherlands; Rijk Zwaan R&D, 4793 RS Fijnaart, the Netherlands.
| |
Collapse
|
60
|
Zhang RX, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng YQ, Xiong L, Li C, Hetherington AM, Liang YK. BIG regulates stomatal immunity and jasmonate production in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:335-348. [PMID: 30372534 DOI: 10.1111/nph.15568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/19/2018] [Indexed: 05/26/2023]
Abstract
Plants have evolved an array of responses that provide them with protection from attack by microorganisms and other predators. Many of these mechanisms depend upon interactions between the plant hormones jasmonate (JA) and ethylene (ET). However, the molecular basis of these interactions is insufficiently understood. Gene expression and physiological assays with mutants were performed to investigate the role of Arabidopsis BIG gene in stress responses. BIG transcription is downregulated by methyl JA (MeJA), necrotrophic infection or mechanical injury. BIG deficiency promotes JA-dependent gene induction, increases JA production but restricts the accumulation of both ET and salicylic acid. JA-induced anthocyanin accumulation and chlorophyll degradation are enhanced and stomatal immunity is impaired by BIG disruption. Bacteria- and lipopolysaccaride (LPS)-induced stomatal closure is reduced in BIG gene mutants, which are hyper-susceptible to microbial pathogens with different lifestyles, but these mutants are less attractive to phytophagous insects. Our results indicate that BIG negatively and positively regulate the MYC2 and ERF1 arms of the JA signalling pathway. BIG warrants recognition as a new and distinct regulator that regulates JA responses, the synergistic interactions of JA and ET, and other hormonal interactions that reconcile the growth and defense dilemma in Arabidopsis.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shengchao Ge
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jingjing He
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuangchen Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanhong Hao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hao Du
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant, Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongming Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Cheng
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant, Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
61
|
Malook SU, Qi J, Hettenhausen C, Xu Y, Zhang C, Zhang J, Lu C, Li J, Wang L, Wu J. The oriental armyworm ( Mythimna separata) feeding induces systemic defence responses within and between maize leaves. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180307. [PMID: 30967023 PMCID: PMC6367157 DOI: 10.1098/rstb.2018.0307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/12/2022] Open
Abstract
Maize ( Zea mays) is a staple cereal crop cultivated all over the world but that is threatened by various insects. Feeding of the lepidopteran insect Mythimna separata triggers defence signalling and increases anti-herbivore benzoxazinoids (Bxs) in the insect-damaged maize leaves. However, the herbivory-elicited within-leaf and leaf-to-leaf systemic signalling in maize remains largely unexplored. Here, we show that simulated M. separata herbivory and mechanical wounding elicited increased levels of jasmonic acid (JA), JA-Ile (JA-isoleucine conjugate) and Bxs in the damaged areas and in specific systemic regions within a leaf. Importantly, increased contents of Bxs were detected in a systemic leaf, and consistently, this leaf exhibited increased defence against M. separata. Increased JA/JA-Ile and altered transcriptome, including Bx biosynthesis genes, were detected in systemic leaves after wounding or simulated herbivory treatments, although only simulated herbivory induced increase of the contents of Bxs systemically. Promoter and co-expression analysis revealed that transcription factors bHLH57 and WRKY34 may regulate Bx biosynthesis genes in systemic leaves. Moreover, leaf ablation experiment indicated that the systemic signal rapidly exited the local leaves within 30 min after elicitation. This study provides new insight into the temporal and spatial regulation of defence responses of maize against lepidopteran insects. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Saif ul Malook
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengkai Lu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
62
|
Wang F, Yu G, Liu P. Transporter-Mediated Subcellular Distribution in the Metabolism and Signaling of Jasmonates. FRONTIERS IN PLANT SCIENCE 2019; 10:390. [PMID: 31001304 PMCID: PMC6454866 DOI: 10.3389/fpls.2019.00390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
Jasmonates (jasmonic acid and its relatives) are a group of oxylipin phytohormones that are implicated in the regulation of a range of developmental processes and responses to environmental stimuli in plants. The biosynthesis of JAs occur sequentially in various subcellular compartments including the chloroplasts, peroxisomes and the cytoplasm. The biologically active jasmonoyl-isoleucine (JA-Ile) activates the core JA signaling in the nucleus by binding with its coreceptor, SCFCOI1-JAZ. Five members of a clade of ATP-binding cassette G (ABCG) transporters of Arabidopsis thaliana were identified as the candidates of jasmonate transporters (JATs) in yeast cells. Among these JATs, AtJAT1/AtABCG16, has a dual localization in the plasma membrane and nuclear envelop and mediates the efflux of jasmonic acid (JA) across the plasma membrane and influx of JA-Ile into the nucleus. Genetic, cellular and biochemical analyses have demonstrated that AtJAT1/AtABCG16 is crucial for modulating JA-Ile concentration in the nucleus to orchestrate JA signaling. AtJAT1 could also be involved in modulating the biosynthesis of JA-Ile by regulating the distribution of JA and JA-Ile in the cytoplasm and nucleus, which would contribute to the highly dynamic JA signaling. Furthermore, other JAT members are localized in the plasma membrane and possibly in peroxisomes. Characterization of these JATs will provide further insights into a crucial role of transporter-mediated subcellular distribution in the metabolism and signaling of plant hormones, an emerging theme supported by the identification of increasing number of endomembrane-localized transporters.
Collapse
|
63
|
Cecchini NM, Roychoudhry S, Speed DJ, Steffes K, Tambe A, Zodrow K, Konstantinoff K, Jung HW, Engle NL, Tschaplinski TJ, Greenberg JT. Underground Azelaic Acid-Conferred Resistance to Pseudomonas syringae in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:86-94. [PMID: 30156481 DOI: 10.1094/mpmi-07-18-0185-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Local interactions between individual plant organs and diverse microorganisms can lead to whole plant immunity via the mobilization of defense signals. One such signal is the plastid lipid-derived oxylipin azelaic acid (AZA). Arabidopsis lacking AZI1 or EARLI1, related lipid transfer family proteins, exhibit reduced AZA transport among leaves and cannot mount systemic immunity. AZA has been detected in roots as well as leaves. Therefore, the present study addresses the effects on plants of AZA application to roots. AZA but not the structurally related suberic acid inhibits root growth when directly in contact with roots. Treatment of roots with AZA also induces resistance to Pseudomonas syringae in aerial tissues. These effects of AZA on root growth and disease resistance depend, at least partially, on AZI1 and EARLI1. AZI1 in roots localizes to plastids, similar to its known location in leaves. Interestingly, kinases previously shown to modify AZI1 in vitro, MPK3 and MPK6, are also needed for AZA-induced root-growth inhibition and aboveground immunity. Finally, deuterium-labeled AZA applied to the roots does not move to aerial tissues. Thus, AZA application to roots triggers systemic immunity through an AZI1/EARLI1/MPK3/MPK6-dependent pathway and AZA effects may involve one or more additional mobile signals.
Collapse
Affiliation(s)
- Nicolás M Cecchini
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Suruchi Roychoudhry
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - DeQuantarius J Speed
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Kevin Steffes
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Arjun Tambe
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Kristin Zodrow
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Katerina Konstantinoff
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| | - Ho Won Jung
- 2 Department of Molecular Genetics, Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan 49315, Korea; and
| | - Nancy L Engle
- 3 Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, U.S.A
| | | | - Jean T Greenberg
- 1 Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A
| |
Collapse
|
64
|
Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:63-84. [PMID: 30508537 DOI: 10.1016/j.pbiomolbio.2018.11.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/27/2022]
Abstract
Our review is devoted to the analysis of the role of long-distance electrical signals in the development of the fast systemic physiological responses in higher plants. The characteristics and mechanisms of basic electrical signals (variation potential, action potential and system potential) are analyzed, and a potential schema of the generation and propagation of the system potential is proposed. The review summarizes the physiological changes induced by the variation potential, action potential and system potential in higher plants, including changes in gene expressions, the production of phytohormones, photosynthesis, phloem mass-flow, respiration, ATP content, transpiration and plant growth. Potential mechanisms of the changes are analyzed. Finally, a hypothetical schema, which describes a hierarchy of the variation potential, action potential and system potential, in the development of the fast systemic non-specific adaptation of plants to stressors, is proposed.
Collapse
|
65
|
Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, Koo AJ, Howe GA, Gilroy S. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 2018; 361:1112-1115. [PMID: 30213912 DOI: 10.1126/science.aat7744] [Citation(s) in RCA: 494] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022]
Abstract
Animals require rapid, long-range molecular signaling networks to integrate sensing and response throughout their bodies. The amino acid glutamate acts as an excitatory neurotransmitter in the vertebrate central nervous system, facilitating long-range information exchange via activation of glutamate receptor channels. Similarly, plants sense local signals, such as herbivore attack, and transmit this information throughout the plant body to rapidly activate defense responses in undamaged parts. Here we show that glutamate is a wound signal in plants. Ion channels of the GLUTAMATE RECEPTOR-LIKE family act as sensors that convert this signal into an increase in intracellular calcium ion concentration that propagates to distant organs, where defense responses are then induced.
Collapse
Affiliation(s)
- Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan. .,Department of Botany, University of Wisconsin, Madison, WI, 53593, USA.,JST, PRESTO, Saitama 332-0012, Japan
| | - Dirk Spencer
- Department of Botany, University of Wisconsin, Madison, WI, 53593, USA
| | | | - Wang Jiaqi
- Department of Biochemistry and Molecular Biology, Saitama University, Saitama 338-8570, Japan
| | - Tong Zhang
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Gregg A Howe
- Department of Energy-PRL, Michigan State University, East Lansing, MI 48824, USA.,Department of Biochemistry and Molecular Biology, and Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, WI, 53593, USA.
| |
Collapse
|
66
|
Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc Natl Acad Sci U S A 2018; 115:10178-10183. [PMID: 30228123 PMCID: PMC6176584 DOI: 10.1073/pnas.1807049115] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Numerous modes of long-distance electrical signaling exist in nature. The best known of these, axonal conduction, requires one primary cell population, i.e., neurons. In contrast, the cell types that mediate leaf-to-leaf electrical signaling in wounded plants have not been defined rigorously. Using genetic approaches, we find that two distinct populations of cells in the vasculature matrix are needed to perform this function. Surprisingly, these cells do not contact each other directly. As we further defined the plant wound response, we found that wound-induced membrane depolarizations preceded large intravasculature calcium fluxes. We reveal a two-cell-type mode of electrical signaling in leaves and discuss parallels and differences in electrical signaling outside the plant kingdom. The identity of the cell files necessary for the leaf-to-leaf transmission of wound signals plants has been debated for decades. In Arabidopsis, wounding initiates the glutamate receptor-like (GLR)–dependent propagation of membrane depolarizations that lead to defense gene activation. Using a vein extraction procedure we found pools of GLR-fusion proteins in endomembranes in phloem sieve elements and/or in xylem contact cells. Strikingly, only double mutants that eliminated GLRs from both of these spatially separated cell types strongly attenuated leaf-to-leaf electrical signaling. glr3.3 mutants were also compromised in their defense against herbivores. Since wounding is known to cause increases in cytosolic calcium, we monitored electrical signals and Ca2+ transients simultaneously. This revealed that wound-induced membrane depolarizations in the wild-type preceded cytosolic Ca2+ maxima. The axial and radial distributions of calcium fluxes were differentially affected in each glr mutant. Resolving a debate over which cell types are necessary for electrical signaling between leaves, we show that phloem sieve elements and xylem contact cells function together in this process.
Collapse
|
67
|
Wasternack C, Strnad M. Jasmonates: News on Occurrence, Biosynthesis, Metabolism and Action of an Ancient Group of Signaling Compounds. Int J Mol Sci 2018; 19:E2539. [PMID: 30150593 PMCID: PMC6164985 DOI: 10.3390/ijms19092539] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
: Jasmonic acid (JA) and its related derivatives are ubiquitously occurring compounds of land plants acting in numerous stress responses and development. Recent studies on evolution of JA and other oxylipins indicated conserved biosynthesis. JA formation is initiated by oxygenation of α-linolenic acid (α-LeA, 18:3) or 16:3 fatty acid of chloroplast membranes leading to 12-oxo-phytodienoic acid (OPDA) as intermediate compound, but in Marchantiapolymorpha and Physcomitrellapatens, OPDA and some of its derivatives are final products active in a conserved signaling pathway. JA formation and its metabolic conversion take place in chloroplasts, peroxisomes and cytosol, respectively. Metabolites of JA are formed in 12 different pathways leading to active, inactive and partially active compounds. The isoleucine conjugate of JA (JA-Ile) is the ligand of the receptor component COI1 in vascular plants, whereas in the bryophyte M. polymorpha COI1 perceives an OPDA derivative indicating its functionally conserved activity. JA-induced gene expressions in the numerous biotic and abiotic stress responses and development are initiated in a well-studied complex regulation by homeostasis of transcription factors functioning as repressors and activators.
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
68
|
Hilleary R, Gilroy S. Systemic signaling in response to wounding and pathogens. CURRENT OPINION IN PLANT BIOLOGY 2018; 43:57-62. [PMID: 29351871 DOI: 10.1016/j.pbi.2017.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 05/06/2023]
Abstract
Plants possess systemic signaling networks that allow the perception of local stresses to be translated into plant-wide responses. Although information can be propagated via a variety of molecules such as hormones and RNAs moving within the bulk flow of the phloem or in the transpiration stream, the vasculature also appears to be a major pathway whereby extremely rapid signals move bi-directionally throughout the plant. In these cases, the movement mechanisms are not dependent on redistribution through bulk flow. For example, self-reinforcing systems based around changes in Ca2+ and reactive oxygen species, coupled to parallel electrical signaling events appear able to generate waves of information that can propagate at hundreds of μm/s. These signals then elicit distant responses that prime the plant for a more effective defense or stress response in unchallenged tissues. Although ion channels, Ca2+, reactive oxygen species and associated molecular machineries, such as the NADPH oxidases, have been identified as likely important players in this propagation system, the precise nature of these signaling networks remains to be defined. Critically, whether different stimuli are using the same rapid, systemic signaling network, or whether multiple, parallel pathways for signal propagation are operating to trigger specific systemic outputs remains a key open question.
Collapse
Affiliation(s)
- Richard Hilleary
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Simon Gilroy
- Department of Botany, University of Wisconsin, Birge Hall, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
69
|
Mun BG, Lee SU, Hussain A, Kim HH, Rolly NK, Jung KH, Yun BW. S-nitrosocysteine-responsive genes modulate diverse regulatory pathways in Oryza sativa: a transcriptome profiling study. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:630-644. [PMID: 32290965 DOI: 10.1071/fp17249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 12/05/2017] [Indexed: 06/11/2023]
Abstract
Rice (Oryza sativa L.) is a major food crop and also a well-established genetic model. Nitric oxide (NO) and its derivatives are important signalling molecules that actively participate in various signalling pathways in response to different stresses. In this study, we performed RNA-seq mediated transcriptomic analysis of rice after treatment with the nitric oxide donor, S-nitroso-L-cysteine (CySNO), generating an average of 37.5 and 41.5 million reads from control and treated leaf samples respectively. More than 95% of the reads were successfully mapped to the O. sativa reference genome yielding a total of 33539 differentially expressed genes (DEGs, P < 0.05). Further analyses identified 825 genes with at least 2-fold change in the expression following treatment with CySNO (P < 0.01). The DEGs identified were involved in diverse molecular functions such as catalytic activity, binding, transport, and receptor activity and were mostly located in the membrane, organelles such as nucleus, Golgi apparatus and mitochondria. DEGs also contained several genes that regulate responses to abiotic stresses such as drought, heat, cold and salt stress and biotic stresses. We also found significantly similar expression patterns of CySNO-responsive DEGs of rice with the CySNO-responsive DEGs of Arabidopsis in a previous study. Expression patterns of genes involved in key biological functions were verified using quantitative real time (qRT)-PCR. The findings of this study suggest that NO regulates the transcriptional control of genes involved in a wide variety of physiological functions in rice, and that NO-mediated transcriptional networks are highly conserved across the plant kingdom. This study provides useful information regarding the transcriptional response of plants to nitrosative stress.
Collapse
Affiliation(s)
- Bong-Gyu Mun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Sang-Uk Lee
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Adil Hussain
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Hyun-Ho Kim
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Nkulu Kabange Rolly
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotechnology Institute, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| |
Collapse
|
70
|
Matsuoka K, Yanagi R, Yumoto E, Yokota T, Yamane H, Satoh S, Asahina M. RAP2.6L and jasmonic acid-responsive genes are expressed upon Arabidopsis hypocotyl grafting but are not needed for cell proliferation related to healing. PLANT MOLECULAR BIOLOGY 2018; 96:531-542. [PMID: 29344830 DOI: 10.1007/s11103-018-0702-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/12/2018] [Indexed: 05/15/2023]
Abstract
Jasmonic acid and RAP2.6L are induced upon wounding but are not involved in cell proliferation during healing in Arabidopsis hypocotyls. Plants produce jasmonic acid in response to wounding, but its role in healing, if any, has not been determined. Previously, the jasmonic acid-induced transcription factor, RAP2.6L, related to APETALA 2.6-like, was identified as a spatially expressed factor involved in tissue reunion in partially incised flowering stems of Arabidopsis. In the present study, we investigated the function of JA and RAP2.6L on wound healing using an Arabidopsis hypocotyl-grafting system, in which separated tissues are reattached by vascular tissue cell proliferation. The jasmonic acid-responsive genes AOS and JAZ10 were transiently expressed immediately after grafting. We confirmed that the endogenous content of jasmonic acid-Ile, which is the bioactive form of jasmonic acid, increased in hypocotyls 1 h after grafting. Morphological analysis of the grafted tissue revealed that vascular tissue cell proliferation occurred in a similar manner in wild-type Arabidopsis, the jasmonic acid-deficient mutant aos, the jasmonic acid-insensitive mutant coi1, and in Arabidopsis that had been exogenously treated with jasmonic acid. RAP2.6L expression was also induced during graft healing. Because RAP2.6L expression occurred during graft healing in aos and coi1, its expression must be regulated via a jasmonic acid-independent pathway. The rap2.6L mutant and dominant repressor transformants for RAP2.6L showed normal cell proliferation during graft healing. Taken together, our results suggest that JA and RAP2.6L, induced by grafting, are not necessary for cell proliferation process in healing.
Collapse
Affiliation(s)
- Keita Matsuoka
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Raiki Yanagi
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Emi Yumoto
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Takao Yokota
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan
| | - Shinobu Satoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masashi Asahina
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551, Japan.
| |
Collapse
|
71
|
Hu TH, Lung SC, Ye ZW, Chye ML. Depletion of Arabidopsis ACYL-COA-BINDING PROTEIN3 Affects Fatty Acid Composition in the Phloem. FRONTIERS IN PLANT SCIENCE 2018; 9:2. [PMID: 29422909 PMCID: PMC5789640 DOI: 10.3389/fpls.2018.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 01/03/2018] [Indexed: 05/05/2023]
Abstract
Oxylipins are crucial components in plant wound responses that are mobilised via the plant vasculature. Previous studies have shown that the overexpression of an Arabidopsis acyl-CoA-binding protein, AtACBP3, led to an accumulation of oxylipin-containing galactolipids, and AtACBP3pro::BETA-GLUCURONIDASE (GUS) was expressed in the phloem of transgenic Arabidopsis. To investigate the role of AtACBP3 in the phloem, reverse transcription-polymerase chain reaction and western blot analysis of phloem exudates from the acbp3 mutant and wild type revealed that the AtACBP3 protein, but not its mRNA, was detected in the phloem sap. Furthermore, micrografting demonstrated that AtACBP3 expressed from the 35S promoter was translocated from shoot to root. Subsequently, AtACBP3 was localised to the companion cells, sieve elements and the apoplastic space of phloem tissue by immunogold electron microscopy using anti-AtACBP3 antibodies. AtACBP3pro::GUS was induced locally in Arabidopsis leaves upon wounding, and the expression of wound-responsive jasmonic acid marker genes (JASMONATE ZIM-DOMAIN10, VEGETATIVE STORAGE PROTEIN2, and LIPOXYGENASE2) increased more significantly in both locally wounded and systemic leaves of the wild type in comparison to acbp3 and AtACBP3-RNAi. Oxylipin-related fatty acid (FA) (C18:2-FA, C18:3-FA and methyl jasmonate) content was observed to be lower in acbp3 and AtACBP3-RNAi than wild-type phloem exudates using gas chromatography-mass spectrometry. Experiments using recombinant AtACBP3 in isothermal titration calorimetry analysis showed that medium- and long-chain acyl-CoA esters bind (His)6-AtACBP3 with KD values in the micromolar range. Taken together, these results suggest that AtACBP3 is likely to be a phloem-mobile protein that affects the FA pool and jasmonate content in the phloem, possibly by its binding to acyl-CoA esters.
Collapse
|
72
|
Luo S, Zhang X, Wang J, Jiao C, Chen Y, Shen Y. Plant ion channels and transporters in herbivory-induced signalling. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:111-131. [PMID: 32291026 DOI: 10.1071/fp16318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/06/2016] [Indexed: 06/11/2023]
Abstract
In contrast to many biotic stresses that plants face, feeding by herbivores produces unique mechanical and chemical signatures. Plants have evolved effective systems to recognise these mechanical stimuli and chemical elicitors at the plasma membrane (PM), where this recognition generates ion fluxes, including an influx of Ca2+ that elicits cellular Ca2+ signalling, production of reactive oxygen species (ROS), and variation in transmembrane potential. These signalling events also function in propagation of long-distance signals (Ca2+ waves, ROS waves, and electrical signals), which contribute to rapid, systemic induction of defence responses. Recent studies have identified several candidate channels or transporters that likely produce these ion fluxes at the PM. Here, we describe the important roles of these channels/transporters in transduction or transmission of herbivory-induced early signalling events, long-distance signals, and jasmonic acid and green leaf volatile signalling in plants.
Collapse
Affiliation(s)
- Shuitian Luo
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinfei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunyang Jiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
73
|
Heyer M, Reichelt M, Mithöfer A. A Holistic Approach to Analyze Systemic Jasmonate Accumulation in Individual Leaves of Arabidopsis Rosettes Upon Wounding. FRONTIERS IN PLANT SCIENCE 2018; 9:1569. [PMID: 30425725 PMCID: PMC6218591 DOI: 10.3389/fpls.2018.01569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/08/2018] [Indexed: 05/08/2023]
Abstract
Phytohormones, especially jasmonates, are known to be mediators of the plant responses to wounding and herbivore feeding. Their role in such stress responses has been largely studied locally in treated leaves. However, less is known about the induced systemic distribution of phytohormone signals upon these kinds of stresses. Here, a holistic approach was performed in order to investigate the systemic phytohormone pattern in the rosette of Arabidopsis thaliana after herbivore-related wounding. Levels of different stress-related phytohormones such as jasmonates, abscisic acid, and salicylic acid were analyzed in individual leaves. We demonstrate that the typically used sampling method, where leaves are first cut and immediately frozen, causes false-positive results since cutting already induces systemic jasmonate elevations within less than 1.6 min. Therefore, this approach is not suitable to study systemic phytohormone changes in the whole plant. By developing a new method where leaves are frozen first and subsequently cut, sampling-induced phytohormone elevations could be reduced. Using this new method, we show that jasmonic acid and its active isoleucine conjugate (jasmonoyl-isoleucine) are involved in the fast systemic wound response of Arabidopsis. A systemic induction of the jasmonates' precursor, 12-oxo-phytodienoic acid, was not observed throughout our treatments. The systemic phytohormone distribution pattern is strongly linked to the vascular connections between the leaves, providing further evidence that the vascular system is used for long distance-signaling in Arabidopsis. Besides already known vascular connections, we also demonstrate that the systemic distribution of jasmonate signals can be extended to distant leaves, which are systemically but indirectly connected via another vascularly connected leaf. This holistic approach covering almost the whole Arabidopsis rosette introduces a method to overcome false-positive results in systemic phytohormone determinations and demonstrates that wounding-induced long-distance signaling includes fast changes in jasmonate levels in systemic, non-treated leaves.
Collapse
Affiliation(s)
- Monika Heyer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- *Correspondence: Axel Mithöfer,
| |
Collapse
|
74
|
Sanches PA, Santos F, Peñaflor MFGV, Bento JMS. Direct and indirect resistance of sugarcane to Diatraea saccharalis induced by jasmonic acid. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:828-838. [PMID: 28434411 DOI: 10.1017/s0007485317000372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Treating plants with synthetic jasmonic acid (JA) induces a defensive response similar to herbivore attack, and is a potential strategy for integrated pest management. Despite the importance of sugarcane, its JA-induced defences have not yet been studied. We investigated the effects of JA treatment on the direct and indirect resistance of sugarcane to the key-pest and specialist herbivore Diatraea saccharalis and the generalist Spodoptera frugiperda. Indirect defences were examined by testing the attraction of Cotesia flavipes, a sugarcane-borer parasitoid, to JA-induced volatile. The results showed that JA-treated sugarcane did not affect the weight gain of the two larvae. However, in dual-choice assays, both species preferred to feed on mock rather than JA-treated plants. Leaf colorimetric analyses showed that visual cues are unlikely to be involved in larval preference, whereas results from olfactometric assays revealed that D. saccharalis preferred JA-induced over mock plant volatiles. After 48 h of treatment, JA-treated plants emitted a volatile blend attractive to C. flavipes, comprised mainly of sesquiterpenes. However, the parasitoid did not discriminate JA-treated from host-damaged plant volatiles. When the wasps were given a choice between JA-treated and JA-treated + host-damaged plants, they preferred the latter, which emitted a more complex blend, suggesting that JA treatment likely does not hamper host-finding. We concluded that JA induces the emission of volatiles that are attractive to the sugarcane borer parasitoid, as well as an antixenosis type of resistance in sugarcane against the two pests, although neither volatiles nor visual cues alone are involved in the underlying mechanism.
Collapse
Affiliation(s)
- P A Sanches
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ/USP), Av. Pádua Dias, 11, mailbox 9, Piracicaba-SP, Brazil
| | - F Santos
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ/USP), Av. Pádua Dias, 11, mailbox 9, Piracicaba-SP, Brazil
| | - M F G V Peñaflor
- Department of Entomology, Federal University of Lavras (UFLA), mailbox 3037, Lavras-MG, Brazil
| | - J M S Bento
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ/USP), Av. Pádua Dias, 11, mailbox 9, Piracicaba-SP, Brazil
| |
Collapse
|
75
|
Takeo K, Ito T. Subcellular localization of VIP1 is regulated by phosphorylation and 14-3-3 proteins. FEBS Lett 2017; 591:1972-1981. [PMID: 28542772 DOI: 10.1002/1873-3468.12686] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/05/2022]
Abstract
Arabidopsis basic leucine zipper transcription factor VIRE2-interacting protein 1 (VIP1) changes its localization from the cytosol to the nucleus when cells are subjected to mechanical or hypo-osmotic stress, although the mechanism of this change is not known. In this study, we show that change in VIP1 subcellular localization is synchronized with a change in the VIP1 phosphorylation state that is induced by mechanical/hypo-osmotic stress. VIP1 has three phosphorylatable serine residues in HXRXXS motifs, which are 14-3-3-binding targets. Mutations of these residues results in the lack of 14-3-3 binding and prevents cytosolic localization of VIP1. These results suggest that dephosphorylation of VIP1 resulting from mechanical or hypo-osmotic stress induces nuclear localization via 14-3-3 dissociation.
Collapse
Affiliation(s)
- Koichi Takeo
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takeshi Ito
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
76
|
Oenel A, Fekete A, Krischke M, Faul SC, Gresser G, Havaux M, Mueller MJ, Berger S. Enzymatic and Non-Enzymatic Mechanisms Contribute to Lipid Oxidation During Seed Aging. PLANT & CELL PHYSIOLOGY 2017; 58:925-933. [PMID: 28371855 DOI: 10.1093/pcp/pcx036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/05/2017] [Indexed: 05/26/2023]
Abstract
Storage of seeds is accompanied by loss of germination and oxidation of storage and membrane lipids. A lipidomic analysis revealed that during natural and artificial aging of Arabidopsis seeds, levels of several diacylglycerols and free fatty acids, such as linoleic acid and linolenic acid as well as free oxidized fatty acids and oxygenated triacylglycerols, increased. Lipids can be oxidized by enzymatic or non-enzymatic processes. In the enzymatic pathway, lipoxygenases (LOXs) catalyze the first oxygenation step of polyunsaturated fatty acids. Analysis of lipid levels in mutants with defects in the two 9-LOX genes revealed that the strong increase in free 9-hydroxy- and 9-keto-fatty acids is dependent on LOX1 but not LOX5. Fatty acid oxidation correlated with an aging-induced decrease of germination, raising the question of whether these oxylipins negatively regulate germination. However, seeds of the lox1 mutant were only slightly more tolerant to aging, indicating that 9-LOX products contribute to but are not the major cause of loss of germination during aging. In contrast to free oxidized fatty acids, accumulation of oxygenated triacylglycerols upon accelerated aging was mainly based on non-enzymatic oxidation of seed storage lipids.
Collapse
Affiliation(s)
- Ayla Oenel
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Agnes Fekete
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Markus Krischke
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Sophie C Faul
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Gabriele Gresser
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Michel Havaux
- CEA, CNRS UMR7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, France
| | - Martin J Mueller
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Susanne Berger
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| |
Collapse
|
77
|
Urano K, Maruyama K, Jikumaru Y, Kamiya Y, Yamaguchi-Shinozaki K, Shinozaki K. Analysis of plant hormone profiles in response to moderate dehydration stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:17-36. [PMID: 27995695 DOI: 10.1111/tpj.13460] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 05/19/2023]
Abstract
Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses.
Collapse
Affiliation(s)
- Kaoru Urano
- RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Kyonoshin Maruyama
- Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Yusuke Jikumaru
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science (CSRS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science (CSRS), 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| |
Collapse
|
78
|
Zhang L, Zhang F, Melotto M, Yao J, He SY. Jasmonate signaling and manipulation by pathogens and insects. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1371-1385. [PMID: 28069779 PMCID: PMC6075518 DOI: 10.1093/jxb/erw478] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 05/18/2023]
Abstract
Plants synthesize jasmonates (JAs) in response to developmental cues or environmental stresses, in order to coordinate plant growth, development or defense against pathogens and herbivores. Perception of pathogen or herbivore attack promotes synthesis of jasmonoyl-L-isoleucine (JA-Ile), which binds to the COI1-JAZ receptor, triggering the degradation of JAZ repressors and induction of transcriptional reprogramming associated with plant defense. Interestingly, some virulent pathogens have evolved various strategies to manipulate JA signaling to facilitate their exploitation of plant hosts. In this review, we focus on recent advances in understanding the mechanism underlying the enigmatic switch between transcriptional repression and hormone-dependent transcriptional activation of JA signaling. We also discuss various strategies used by pathogens and insects to manipulate JA signaling and how interfering with this could be used as a novel means of disease control.
Collapse
Affiliation(s)
- Li Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| | - Feng Zhang
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Laboratory of Structural Sciences and Laboratory of Structural Biology and Biochemistry, Van Andel Research Institute, Grand Rapids, MI 49503
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, 210095, Nanjing, Jiangsu Province, China
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA 95616
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
79
|
Wasternack C, Song S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1303-1321. [PMID: 27940470 DOI: 10.1093/jxb/erw443] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone's action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1-JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors.
Collapse
Affiliation(s)
- Claus Wasternack
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Institute of Experimental Botany AS CR, Šlechtitelu 11, CZ 78371 Olomouc, Czech Republic
| | - Susheng Song
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
80
|
Cerna H, Černý M, Habánová H, Šafářová D, Abushamsiya K, Navrátil M, Brzobohatý B. Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV). J Proteomics 2017; 153:78-88. [PMID: 27235724 DOI: 10.1016/j.jprot.2016.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/22/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022]
Abstract
Pea seed-borne mosaic virus (PSbMV) significantly reduces yields in a broad spectra of legumes. The eukaryotic translation initiation factor has been shown to confer resistance to this pathogen, thus implying that translation and proteome dynamics play a role in resistance. This study presents the results of a proteome-wide analysis of Pisum sativum L. response to PSbMV infection. LC-MS profiling of two contrasting pea cultivars, resistant (B99) and susceptible (Raman) to PSbMV infection, detected >2300 proteins, 116 of which responded to PSbMV ten and/or twenty days post-inoculation. These differentially abundant proteins are involved in number of processes that have previously been reported in the plant-pathogen response, including protein and amino acid metabolism, stress signaling, redox homeostasis, carbohydrate metabolism, and lipid metabolism. We complemented our proteome-wide analysis work with targeted analyses of free amino acids and selected small molecules, fatty acid profiling, and enzyme activity assays. Data from these additional experiments support our findings and validate the biological relevance of the observed proteome changes. We found surprising similarities in the resistant and susceptible cultivars, which implies that a seemingly unaffected plant, with no detectable levels of PSbMV, actively suppresses viral replication. BIOLOGICAL SIGNIFICANCE Plant resistance to PSbMV is connected to translation initiation factors, yet the processes involved are still poorly understood at the proteome level. To the best of our knowledge, this is the first survey of the global proteomic response to PSbMV in plants. The combination of label-free LC-MS profiling and two contrasting cultivars (resistant and susceptible) provided highly sensitive snapshots of protein abundance in response to PSbMV infection. PSbMV is a member of the largest family of plant viruses and our results are in accordance with previously characterized potyvirus-responsive proteomes. Hence, the results of this study can further extend our knowledge about these pathogens. We also show that even though no viral replication is detected in the PSbMV-resistant cultivar B99, it is still significantly affected by PSbMV inoculation.
Collapse
Affiliation(s)
- Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Dana Šafářová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Kifah Abushamsiya
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Milan Navrátil
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc 27, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
81
|
Maag D, Köhler A, Robert CAM, Frey M, Wolfender JL, Turlings TCJ, Glauser G, Erb M. Highly localized and persistent induction of Bx1-dependent herbivore resistance factors in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:976-991. [PMID: 27538820 DOI: 10.1111/tpj.13308] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/11/2016] [Accepted: 08/15/2016] [Indexed: 05/23/2023]
Abstract
The induced production of secondary metabolites in herbivore-attacked plants varies in space and time. However, the consequences of these spatiotemporal patterns for herbivore performance are not well understood. This is particularly true for 1,4-benzoxazin-3-ones (BXs), the major induced defensive metabolites of maize. Here we report on the spatiotemporal dynamics of BX induction and its consequences for the leaf feeder Spodoptera littoralis. Defence-related phytohormones and transcript levels of BX biosynthetic genes were upregulated locally at the wound site within 12 h of herbivory. Within another 12 h, the insecticidal BX HDMBOA-Glc started to accumulate in a highly localized manner at the feeding site. Changes in BX metabolism away from the feeding site within the same leaf were much weaker and were undetected in systemic leaves. Following the removal of the caterpillars, local HDMBOA-Glc levels remained elevated for 7 days. Caterpillars that were forced to feed directly on locally induced leaf parts, but not on adjacent leaf parts, suffered from reduced growth. This effect was abolished in the BX-deficient bx1 mutant. We did not find any evidence that BXs regulate defensive phytohormones or their own accumulation. In summary, this study shows that induced herbivore resistance in maize is highly localized and dependent on BXs.
Collapse
Affiliation(s)
- Daniel Maag
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Laboratory of Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Angela Köhler
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Christelle A M Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Monika Frey
- Lehrstuhl für Genetik, Technische Universität München, Am Hochanger 8, 85350, München, Germany
| | - Jean-Luc Wolfender
- Laboratory of Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Gaétan Glauser
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000, Neuchâtel, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| |
Collapse
|
82
|
Niethammer P. The early wound signals. Curr Opin Genet Dev 2016; 40:17-22. [PMID: 27266971 PMCID: PMC5278878 DOI: 10.1016/j.gde.2016.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 01/08/2023]
Abstract
Wounding of tissue barriers, such as epithelia, disrupts homeostasis and allows infection. Within minutes, animals detect injury and respond to it by recruitment of phagocytes and barrier breach closure. The signals that activate these first events are scarcely known. Commonly considered are cytoplasmic factors released into the extracellular space by lysing cells (Damage Associated Molecular Patterns, DAMPs). DAMPs activate inflammatory gene transcription through pattern recognition receptors. But the promptness of wound responses is difficult to explain by transcriptional mechanisms alone. This review highlights the emerging role of nonlytic stress signals in the rapid detection of wounds.
Collapse
Affiliation(s)
- Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
83
|
Abstract
Jasmonates (JAs) are a class of plant hormones that play essential roles in response to tissue wounding. They act on gene expression to slow down growth and to redirect metabolism towards producing defense molecules and repairing damage. These responses are systemic and have dramatic impacts on yields, making JAs a very active research area. JAs interact with many other plant hormones and therefore also have essential functions throughout development, notably during plant reproduction, leaf senescence and in response to many biotic and abiotic stresses.
Collapse
Affiliation(s)
- Antoine Larrieu
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| |
Collapse
|
84
|
Tarkowská D, Strnad M. Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones. PLANTA 2016; 244:545-555. [PMID: 27339274 DOI: 10.1007/s00425-016-2561-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.
Collapse
Affiliation(s)
- Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
85
|
Nilsson AK, Fahlberg P, Johansson ON, Hamberg M, Andersson MX, Ellerström M. The activity of HYDROPEROXIDE LYASE 1 regulates accumulation of galactolipids containing 12-oxo-phytodienoic acid in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5133-44. [PMID: 27422994 PMCID: PMC5014160 DOI: 10.1093/jxb/erw278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arabidopsis produces galactolipids containing esters of 12-oxo-phytodienoic acid (OPDA) and dinor-12-oxo-phytodienoic acid (dnOPDA). These lipids are referred to as arabidopsides and accumulate in response to abiotic and biotic stress. We explored the natural genetic variation found in 14 different Arabidopsis accessions to identify genes involved in the formation of arabidopsides. The accession C24 was identified as a poor accumulator of arabidopsides whereas the commonly used accession Col-0 was found to accumulate comparably large amounts of arabidopsides in response to tissue damage. A quantitative trait loci analysis of an F2 population created from a cross between C24 and Col-0 located a region on chromosome four strongly linked to the capacity to form arabidopsides. Expression analysis of HYDROPEROXIDE LYASE 1 (HPL1) showed large differences in transcript abundance between accessions. Transformation of Col-0 plants with the C24 HPL1 allele under transcriptional regulation of the 35S promoter revealed a strong negative correlation between HPL1 expression and arabidopside accumulation after tissue damage, thereby strengthening the view that HPL1 competes with ALLENE OXIDE SYNTHASE (AOS) for lipid-bound hydroperoxide fatty acids. We further show that the last step in the synthesis of galactolipid-bound OPDA and dnOPDA from unstable allene oxides is exclusively enzyme-catalyzed and not the result of spontaneous cyclization. Thus, the results presented here together with previous studies suggest that all steps in arabidopside biosynthesis are enzyme-dependent and apparently all reactions can take place with substrates being esterified to galactolipids.
Collapse
Affiliation(s)
- Anders K Nilsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| | - Per Fahlberg
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| | - Oskar N Johansson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| | - Mats Hamberg
- Division of Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17 177 Stockholm, Sweden
| | - Mats X Andersson
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| | - Mats Ellerström
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Göteborg, Sweden
| |
Collapse
|
86
|
Xu Z, Lei P, Feng X, Li S, Xu H. Analysis of the Metabolic Pathways Affected by Poly(γ-glutamic Acid) in Arabidopsis thaliana Based on GeneChip Microarray. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6257-6266. [PMID: 27465513 DOI: 10.1021/acs.jafc.6b02163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Plant growth is promoted by poly(γ-glutamic acid) (γ-PGA). However, the molecular mechanism underlying such promotion is not yet well understood. Therefore, we used GeneChip microarrays to explore the effects of γ-PGA on gene transcription in Arabidopsis thaliana. Our results revealed 299 genes significantly regulated by γ-PGA. These differently expressed genes participate mainly in metabolic and cellular processes and in stimuli responses. The metabolic pathways linked to these differently expressed genes were also investigated. A total of 64 of the 299 differently expressed genes were shown to be directly involved in 24 pathways such as brassinosteroid biosynthesis, α-linolenic acid metabolism, phenylpropanoid biosynthesis, and nitrogen metabolism, all of which were influenced by γ-PGA. The analysis demonstrated that γ-PGA promoted nitrogen assimilation and biosynthesis of brassinosteroids, jasmonic acid, and lignins, providing a better explanation for why γ-PGA promotes growth and enhances stress tolerance in plants.
Collapse
Affiliation(s)
- Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering and Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University , Nanjing 211816, People's Republic of China
| |
Collapse
|
87
|
Boex-Fontvieille E, Rustgi S, Von Wettstein D, Pollmann S, Reinbothe S, Reinbothe C. Jasmonic acid protects etiolated seedlings of Arabidopsis thaliana against herbivorous arthropods. PLANT SIGNALING & BEHAVIOR 2016; 11:e1214349. [PMID: 27485473 PMCID: PMC5022418 DOI: 10.1080/15592324.2016.1214349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Seed predators can cause mass ingestion of larger seed populations. As well, herbivorous arthropods attempt to attack etiolated seedlings and chose the apical hook for ingestion, aimed at dropping the cotyledons for later consumption. Etiolated seedlings, as we show here, have established an efficient mechanism of protecting their Achilles' heel against these predators, however. Evidence is provided for a role of jasmonic acid (JA) in this largely uncharacterized plant-herbivore interaction during skotomorphogenesis and that this comprises the temporally and spatially tightly controlled synthesis of a cysteine protease inhibitors of the Kunitz family. Interestingly, the same Kunitz protease inhibitor was found to be expressed in flowers of Arabidopsis where endogenous JA levels are high for fertility. Because both the apical hook and inflorescences were preferred isopod targets in JA-deficient plants that could be rescued by exogenously administered JA, our data identify a JA-dependent mechanism of plant arthropod deterrence that is recalled in different organs and at quite different times of plant development.
Collapse
Affiliation(s)
- Edouard Boex-Fontvieille
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, Grenoble cedex, France
| | - Sachin Rustgi
- Department of Agricultural and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC, USA
- Department of Crop and Soil Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Diter Von Wettstein
- Department of Crop and Soil Sciences, School of Molecular Biosciences, and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politecnica de Madrid (UPM)-Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, Grenoble cedex, France
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble-Alpes, Grenoble cedex, France
| |
Collapse
|
88
|
Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R. ROS, Calcium, and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. PLANT PHYSIOLOGY 2016; 171:1606-15. [PMID: 27208294 PMCID: PMC4936577 DOI: 10.1104/pp.16.00434] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/10/2016] [Indexed: 05/19/2023]
Abstract
ROS, calcium, and electric signals mediate rapid systemic signaling in plants.
Collapse
Affiliation(s)
- Simon Gilroy
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (S.G.);Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture, Biotechnology, and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warsaw, Poland (M.B., M.G., S.K.);Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, 102-8554 Tokyo, Japan (N.S.); andDepartment of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203 (A.R.D., R.M.)
| | - Maciej Białasek
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (S.G.);Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture, Biotechnology, and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warsaw, Poland (M.B., M.G., S.K.);Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, 102-8554 Tokyo, Japan (N.S.); andDepartment of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203 (A.R.D., R.M.)
| | - Nobuhiro Suzuki
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (S.G.);Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture, Biotechnology, and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warsaw, Poland (M.B., M.G., S.K.);Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, 102-8554 Tokyo, Japan (N.S.); andDepartment of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203 (A.R.D., R.M.)
| | - Magdalena Górecka
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (S.G.);Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture, Biotechnology, and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warsaw, Poland (M.B., M.G., S.K.);Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, 102-8554 Tokyo, Japan (N.S.); andDepartment of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203 (A.R.D., R.M.)
| | - Amith R Devireddy
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (S.G.);Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture, Biotechnology, and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warsaw, Poland (M.B., M.G., S.K.);Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, 102-8554 Tokyo, Japan (N.S.); andDepartment of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203 (A.R.D., R.M.)
| | - Stanisław Karpiński
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (S.G.);Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture, Biotechnology, and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warsaw, Poland (M.B., M.G., S.K.);Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, 102-8554 Tokyo, Japan (N.S.); andDepartment of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203 (A.R.D., R.M.)
| | - Ron Mittler
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (S.G.);Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture, Biotechnology, and Landscape Architecture, Warsaw University of Life Sciences, 02-776 Warsaw, Poland (M.B., M.G., S.K.);Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, 102-8554 Tokyo, Japan (N.S.); andDepartment of Biological Sciences, College of Arts and Sciences, University of North Texas, Denton, Texas 76203 (A.R.D., R.M.)
| |
Collapse
|
89
|
Mochizuki S, Sugimoto K, Koeduka T, Matsui K. Arabidopsis lipoxygenase 2 is essential for formation of green leaf volatiles and five-carbon volatiles. FEBS Lett 2016; 590:1017-27. [PMID: 26991128 DOI: 10.1002/1873-3468.12133] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/31/2022]
Abstract
Plants biosynthesize a variety of bioactive lipid derivatives, such as green leaf volatiles (GLVs) and jasmonates (JAs). Here we identify a lipoxygenase 2 (LOX2) involved in GLV biosynthesis in Arabidopsis using mutant lines for each of the six LOX isoforms present in Arabidopsis. We found that formation of five carbon volatiles was also dependent on LOX2. LOX2 is known to be involved in formation of JA; thus, LOX2 is apparently versatile in function. The results in this study suggested that LOX2 activity is suppressed in intact cells but activated upon tissue damage to support the rapid GLV-burst observed in wounded leaves.
Collapse
Affiliation(s)
- Satoshi Mochizuki
- Department of Applied Molecular Bioscience, Graduate School of Medicine and Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan
| | - Koichi Sugimoto
- Department of Applied Molecular Bioscience, Graduate School of Medicine and Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan.,MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Takao Koeduka
- Department of Applied Molecular Bioscience, Graduate School of Medicine and Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan
| | - Kenji Matsui
- Department of Applied Molecular Bioscience, Graduate School of Medicine and Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Japan
| |
Collapse
|
90
|
Chauvin A, Lenglet A, Wolfender JL, Farmer EE. Paired Hierarchical Organization of 13-Lipoxygenases in Arabidopsis. PLANTS 2016; 5:plants5020016. [PMID: 27135236 PMCID: PMC4931396 DOI: 10.3390/plants5020016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/11/2016] [Accepted: 03/18/2016] [Indexed: 12/16/2022]
Abstract
Embryophyte genomes typically encode multiple 13-lipoxygenases (13-LOXs) that initiate the synthesis of wound-inducible mediators called jasmonates. Little is known about how the activities of these different LOX genes are coordinated. We found that the four 13-LOX genes in Arabidopsis thaliana have different basal expression patterns. LOX2 expression was strong in soft aerial tissues, but was excluded both within and proximal to maturing veins. LOX3 was expressed most strongly in circumfasicular parenchyma. LOX4 was expressed in phloem-associated cells, in contrast to LOX6, which is expressed in xylem contact cells. To investigate how the activities of these genes are coordinated after wounding, we carried out gene expression analyses in 13-lox mutants. This revealed a two-tiered, paired hierarchy in which LOX6, and to a lesser extent LOX2, control most of the early-phase of jasmonate response gene expression. Jasmonates precursors produced by these two LOXs in wounded leaves are converted to active jasmonates that regulate LOX3 and LOX4 gene expression. Together with LOX2 and LOX6, and working downstream of them, LOX3 and LOX4 contribute to jasmonate synthesis that leads to the expression of the defense gene VEGETATIVE STORAGE PROTEIN2 (VSP2). LOX3 and LOX4 were also found to contribute to defense against the generalist herbivore Spodoptera littoralis. Our results reveal that 13-LOX genes are organised in a regulatory network, and the data herein raise the possibility that other genomes may encode LOXs that act as pairs.
Collapse
Affiliation(s)
- Adeline Chauvin
- School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Aurore Lenglet
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Lausanne, University of Geneva, quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
91
|
Gaupels F, Furch ACU, Zimmermann MR, Chen F, Kaever V, Buhtz A, Kehr J, Sarioglu H, Kogel KH, Durner J. Systemic Induction of NO-, Redox-, and cGMP Signaling in the Pumpkin Extrafascicular Phloem upon Local Leaf Wounding. FRONTIERS IN PLANT SCIENCE 2016; 7:154. [PMID: 26904092 PMCID: PMC4751408 DOI: 10.3389/fpls.2016.00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/29/2016] [Indexed: 05/29/2023]
Abstract
Cucurbits developed the unique extrafascicular phloem (EFP) as a defensive structure against herbivorous animals. Mechanical leaf injury was previously shown to induce a systemic wound response in the EFP of pumpkin (Cucurbita maxima). Here, we demonstrate that the phloem antioxidant system and protein modifications by NO are strongly regulated during this process. Activities of the central antioxidant enzymes dehydroascorbate reductase, glutathione reductase and ascorbate reductase were rapidly down-regulated at 30 min with a second minimum at 24 h after wounding. As a consequence levels of total ascorbate and glutathione also decreased with similar bi-phasic kinetics. These results hint toward a wound-induced shift in the redox status of the EFP. Nitric oxide (NO) is another important player in stress-induced redox signaling in plants. Therefore, we analyzed NO-dependent protein modifications in the EFP. Six to forty eight hours after leaf damage total S-nitrosothiol content and protein S-nitrosylation were clearly reduced, which was contrasted by a pronounced increase in protein tyrosine nitration. Collectively, these findings suggest that NO-dependent S-nitrosylation turned into peroxynitrite-mediated protein nitration upon a stress-induced redox shift probably involving the accumulation of reactive oxygen species within the EFP. Using the biotin switch assay and anti-nitrotyrosine antibodies we identified 9 candidate S-nitrosylated and 6 candidate tyrosine-nitrated phloem proteins. The wound-responsive Phloem Protein 16-1 (PP16-1) and Cyclophilin 18 (CYP18) as well as the 26.5 kD isoform of Phloem Protein 2 (PP2) were amenable to both NO modifications and could represent important redox-sensors within the cucurbit EFP. We also found that leaf injury triggered the systemic accumulation of cyclic guanosine monophosphate (cGMP) in the EFP and discuss the possible function of this second messenger in systemic NO and redox signaling within the EFP.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Alexandra C. U. Furch
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-UniversityJena, Germany
| | - Matthias R. Zimmermann
- Institute of General Botany and Plant Physiology, Friedrich-Schiller-UniversityJena, Germany
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical SchoolHannover, Germany
| | - Anja Buhtz
- Department Lothar Willmitzer, Max Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Julia Kehr
- Biocenter Klein Flottbek, University HamburgHamburg, Germany
| | - Hakan Sarioglu
- Department of Protein Science, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| | - Karl-Heinz Kogel
- Research Center for BioSystems, Land Use and Nutrition, Institute of Phytopathology, Justus Liebig University GiessenGiessen, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental HealthNeuherberg, Germany
| |
Collapse
|
92
|
Havko NE, Major IT, Jewell JB, Attaran E, Browse J, Howe GA. Control of Carbon Assimilation and Partitioning by Jasmonate: An Accounting of Growth-Defense Tradeoffs. PLANTS 2016; 5:plants5010007. [PMID: 27135227 PMCID: PMC4844420 DOI: 10.3390/plants5010007] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 12/02/2022]
Abstract
Plant growth is often constrained by the limited availability of resources in the microenvironment. Despite the continuous threat of attack from insect herbivores and pathogens, investment in defense represents a lost opportunity to expand photosynthetic capacity in leaves and absorption of nutrients and water by roots. To mitigate the metabolic expenditure on defense, plants have evolved inducible defense strategies. The plant hormone jasmonate (JA) is a key regulator of many inducible defenses. Synthesis of JA in response to perceived danger leads to the deployment of a variety of defensive structures and compounds, along with a potent inhibition of growth. Genetic studies have established an important role for JA in mediating tradeoffs between growth and defense. However, several gaps remain in understanding of how JA signaling inhibits growth, either through direct transcriptional control of JA-response genes or crosstalk with other signaling pathways. Here, we highlight recent progress in uncovering the role of JA in controlling growth-defense balance and its relationship to resource acquisition and allocation. We also discuss tradeoffs in the context of the ability of JA to promote increased leaf mass per area (LMA), which is a key indicator of leaf construction costs and leaf life span.
Collapse
Affiliation(s)
- Nathan E Havko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Ian T Major
- Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Jeremy B Jewell
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Elham Attaran
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA.
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
93
|
Lin YT, Chen LJ, Herrfurth C, Feussner I, Li HM. Reduced Biosynthesis of Digalactosyldiacylglycerol, a Major Chloroplast Membrane Lipid, Leads to Oxylipin Overproduction and Phloem Cap Lignification in Arabidopsis. THE PLANT CELL 2016; 28:219-32. [PMID: 26721860 PMCID: PMC4746690 DOI: 10.1105/tpc.15.01002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 05/20/2023]
Abstract
DIGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (DGD1) is a chloroplast outer membrane protein responsible for the biosynthesis of the lipid digalactosyldiacylglycerol (DGDG) from monogalactosyldiacylglycerol (MGDG). The Arabidopsis thaliana dgd1 mutants have a greater than 90% reduction in DGDG content, reduced photosynthesis, and altered chloroplast morphology. However, the most pronounced visible phenotype is the extremely short inflorescence stem, but how deficient DGDG biosynthesis causes this phenotype is unclear. We found that, in dgd1 mutants, phloem cap cells were lignified and jasmonic acid (JA)-responsive genes were highly upregulated under normal growth conditions. The coronative insensitive1 dgd1 and allene oxide synthase dgd1 double mutants no longer exhibited the short inflorescence stem and lignification phenotypes but still had the same lipid profile and reduced photosynthesis as dgd1 single mutants. Hormone and lipidomics analyses showed higher levels of JA, JA-isoleucine, 12-oxo-phytodienoic acid, and arabidopsides in dgd1 mutants. Transcript and protein level analyses further suggest that JA biosynthesis in dgd1 is initially activated through the increased expression of genes encoding 13-lipoxygenases (LOXs) and phospholipase A-Iγ3 (At1g51440), a plastid lipase with a high substrate preference for MGDG, and is sustained by further increases in LOX and allene oxide cyclase mRNA and protein levels. Our results demonstrate a link between the biosynthesis of DGDG and JA.
Collapse
Affiliation(s)
- Yang-Tsung Lin
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Lih-Jen Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Cornelia Herrfurth
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Georg-August-University Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany Georg-August-University Goettingen, Goettingen Center for Molecular Biosciences, Department of Plant Biochemistry, D-37077 Goettingen, Germany
| | - Hsou-Min Li
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
94
|
Abstract
Most 'green' plants form green leaf volatiles (GLVs). GLVs are a familiar plant secondary metabolite, but knowledge of their physiological and ecological functions is limited. GLV formation is tightly suppressed when plant tissues are intact, but upon mechanical wounding, herbivore attack, or abiotic stresses, GLVs are formed rapidly, within seconds or minutes. Thus, this may be an important system for defense responses, allowing plants to protect themselves from damage as soon as possible. Because GLV formation in the natural environment is roughly related to the degree of stress in the plant life, sensing the amount of GLVs in the atmosphere might allow plants to recognize their surroundings. Because some plants respond to GLVs, they may communicate with GLVs. GLVs that contain α,β-unsaturated carbonyl groups might activate signaling systems regulated under the redox state of plant cells. Plasma membranes would also be targets of interactions with GLVs. Additionally, the metabolism of GLVs in plant cells after absorption from the atmosphere could also be classified as a plant-plant interaction.
Collapse
|
95
|
Johansson ON, Nilsson AK, Gustavsson MB, Backhaus T, Andersson MX, Ellerström M. A quick and robust method for quantification of the hypersensitive response in plants. PeerJ 2015; 3:e1469. [PMID: 26734506 PMCID: PMC4699783 DOI: 10.7717/peerj.1469] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/12/2015] [Indexed: 01/28/2023] Open
Abstract
One of the most studied defense reactions of plants against microbial pathogens is the hypersensitive response (HR). The HR is a complex multicellular process that involves programmed cell death at the site of infection. A standard method to quantify plant defense and the HR is to measure the release of cellular electrolytes into water after infiltration with pathogenic bacteria. In this type of experiment, the bacteria are typically delivered into the plant tissue through syringe infiltration. Here we report the development of a vacuum infiltration protocol that allows multiple plant lines to be infiltrated simultaneously and assayed for defense responses. Vacuum infiltration did not induce more wounding response in Arabidopsis leaf tissue than syringe inoculation, whereas throughput and reproducibility were improved. The method was used to study HR-induced electrolyte loss after treatment with the bacterium Pseudomonas syringae pv. tomato DC3000 harboring the effector AvrRpm1, AvrRpt2 or AvrRps4. Specifically, the influence of bacterial titer on AvrRpm1-induced HR was investigated. Not only the amplitude, but also the timing of the maximum rate of the HR reaction was found to be dose-dependent. Finally, using vacuum infiltration, we were able quantify induction of phospholipase D activity after AvrRpm1 recognition in leaves labeled with (33)PO4.
Collapse
Affiliation(s)
- Oskar N Johansson
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anders K Nilsson
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mikael B Gustavsson
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Backhaus
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mats X Andersson
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mats Ellerström
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
96
|
Nilsson AK, Johansson ON, Fahlberg P, Kommuri M, Töpel M, Bodin LJ, Sikora P, Modarres M, Ekengren S, Nguyen CT, Farmer EE, Olsson O, Ellerström M, Andersson MX. Acylated monogalactosyl diacylglycerol: prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1152-66. [PMID: 26566971 DOI: 10.1111/tpj.13072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/25/2015] [Accepted: 11/03/2015] [Indexed: 05/25/2023]
Abstract
The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono- and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl-MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl-MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12-oxo-phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA-containing galactolipids in the plant kingdom. While acyl-MGDG was found to be ubiquitous in green tissue of plants ranging from non-vascular plants to angiosperms, OPDA-containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non-oxidized and OPDA-containing acyl-MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl-MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response.
Collapse
Affiliation(s)
- Anders K Nilsson
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Oskar N Johansson
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Per Fahlberg
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Murali Kommuri
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Mats Töpel
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Lovisa J Bodin
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Per Sikora
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Masoomeh Modarres
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Sophia Ekengren
- Department of Glycoscience, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, SE-106 91, Sweden
| | - Chi T Nguyen
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Olof Olsson
- Department of Pure and Applied Biochemistry, Lund University, Lund, SE-221 00, Sweden
| | - Mats Ellerström
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| | - Mats X Andersson
- Department of Biological- and Environmental Sciences, University of Gothenburg, Box 461, Göteborg, SE-405 30, Sweden
| |
Collapse
|
97
|
Sun Y, Lv D, Wang W, Xu W, Wang L, Miao C, Lin HH. Lipoxygenase 2 functions in exogenous nitric oxide-induced stomatal closure in Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:1019-1025. [PMID: 32480741 DOI: 10.1071/fp15151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/02/2015] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) and lipoxygenase (LOX)-derived oxylipins play important roles in stomatal closure in plants, and LOX-NO crosstalk has been indicated in mesophyll cells. However, whether the crosstalk also exists in guard cells is not clear and the detailed mechanisms remain unknown. Here, we report that exogenous sodium nitroprusside (SNP, a NO donor)-induced stomatal closure was clearly impaired in the AtLOX2 null mutant lox2-1 compared with wild-type (WT) Arabidopsis thaliana (L.) Heynh. Patch clamp analysis showed that the SNP-suppressed activity of inward-rectifying potassium channels in lox2-1 guard cell protoplasts was reduced. Moreover, SNP promoted an increase in cytosolic Ca2+ concentration in guard cells of lox2-1 mutants was inhibited compared with the WT. These results suggest that AtLOX2 plays an important role in NO-induced stomatal closure by affecting the cytosolic Ca2+ concentration increase and the activity of inward-rectifying potassium channels in guard cells. Furthermore, lox2-1 mutants showed a higher rate of leaf water loss and a relatively wider stomatal aperture than the WT under normal growth conditions. These data imply that AtLOX2 might modulate stomatal movement by increasing oxylipin generation in A. thaliana.
Collapse
Affiliation(s)
- Yanfeng Sun
- Key Laboratory of Bio-resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Dong Lv
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wei Wang
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wei Xu
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chen Miao
- State Key Laboratory of Cotton Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
98
|
Gasperini D, Chauvin A, Acosta IF, Kurenda A, Stolz S, Chételat A, Wolfender JL, Farmer EE. Axial and Radial Oxylipin Transport. PLANT PHYSIOLOGY 2015; 169:2244-54. [PMID: 26338953 PMCID: PMC4634084 DOI: 10.1104/pp.15.01104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/03/2015] [Indexed: 05/03/2023]
Abstract
Jasmonates are oxygenated lipids (oxylipins) that control defense gene expression in response to cell damage in plants. How mobile are these potent mediators within tissues? Exploiting a series of 13-lipoxygenase (13-lox) mutants in Arabidopsis (Arabidopsis thaliana) that displays impaired jasmonic acid (JA) synthesis in specific cell types and using JA-inducible reporters, we mapped the extent of the transport of endogenous jasmonates across the plant vegetative growth phase. In seedlings, we found that jasmonate (or JA precursors) could translocate axially from wounded shoots to unwounded roots in a LOX2-dependent manner. Grafting experiments with the wild type and JA-deficient mutants confirmed shoot-to-root oxylipin transport. Next, we used rosettes to investigate radial cell-to-cell transport of jasmonates. After finding that the LOX6 protein localized to xylem contact cells was not wound inducible, we used the lox234 triple mutant to genetically isolate LOX6 as the only JA precursor-producing LOX in the plant. When a leaf of this mutant was wounded, the JA reporter gene was expressed in distal leaves. Leaf sectioning showed that JA reporter expression extended from contact cells throughout the vascular bundle and into extravascular cells, revealing a radial movement of jasmonates. Our results add a crucial element to a growing picture of how the distal wound response is regulated in rosettes, showing that both axial (shoot-to-root) and radial (cell-to-cell) transport of oxylipins plays a major role in the wound response. The strategies developed herein provide unique tools with which to identify intercellular jasmonate transport routes.
Collapse
Affiliation(s)
- Debora Gasperini
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Adeline Chauvin
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Ivan F Acosta
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Andrzej Kurenda
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Stéphanie Stolz
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Aurore Chételat
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Jean-Luc Wolfender
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland (D.G., A.Cha., I.F.A., A.K., S.S., A.Ché., E.E.F.); andSchool of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211 Geneva, Switzerland (A.Cha., J.-L.W.)
| |
Collapse
|
99
|
Scholz SS, Reichelt M, Boland W, Mithöfer A. Additional evidence against jasmonate-induced jasmonate induction hypothesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:9-14. [PMID: 26398786 DOI: 10.1016/j.plantsci.2015.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/20/2015] [Accepted: 06/27/2015] [Indexed: 06/05/2023]
Abstract
Jasmonates are phytohormones involved in development and stress reactions. The most prominent jasmonate is jasmonic acid, however, the bioactive jasmonate is (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile). Biosynthesis of jasmonates is long time known; compartmentalization, enzymes and corresponding genes are well studied. Because all genes encoding these biosynthetic enzymes are jasmonate inducible, a hypothesis of jasmonate-induced-jasmonate-biosynthesis is widely accepted. Here, this hypothesis was revisited by employing the synthetic JA-Ile mimic coronalon to intact and wounded leaves, which excludes structural cross-contamination with endogenous jasmonates. At an effective concentration that induced various jasmonate-responsive genes in Arabidopsis, neither accumulation of endogenous jasmonic acid, JA-Ile, nor of their hydroxylated metabolites was detected. Results indicate that in spite of jasmonate-induced biosynthetic gene expression, no jasmonate biosynthesis/accumulation takes place supporting a post-translational regulation.
Collapse
Affiliation(s)
- Sandra S Scholz
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Michael Reichelt
- Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | - Axel Mithöfer
- Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| |
Collapse
|
100
|
Zhai Q, Zhang X, Wu F, Feng H, Deng L, Xu L, Zhang M, Wang Q, Li C. Transcriptional Mechanism of Jasmonate Receptor COI1-Mediated Delay of Flowering Time in Arabidopsis. THE PLANT CELL 2015; 27:2814-28. [PMID: 26410299 PMCID: PMC4682329 DOI: 10.1105/tpc.15.00619] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/09/2015] [Indexed: 05/03/2023]
Abstract
Flowering time of plants must be tightly regulated to maximize reproductive success. Plants have evolved sophisticated signaling network to coordinate the timing of flowering in response to their ever-changing environmental conditions. Besides being a key immune signal, the lipid-derived plant hormone jasmonate (JA) also regulates a wide range of developmental processes including flowering time. Here, we report that the CORONATINE INSENSITIVE1 (COI1)-dependent signaling pathway delays the flowering time of Arabidopsis thaliana by inhibiting the expression of the florigen gene FLOWERING LOCUS T (FT). We provide genetic and biochemical evidence that the APETALA2 transcription factors (TFs) TARGET OF EAT1 (TOE1) and TOE2 interact with a subset of JAZ (jasmonate-ZIM domain) proteins and repress the transcription of FT. Our results support a scenario that, when plants encounter stress conditions, bioactive JA promotes COI1-dependent degradation of JAZs. Degradation of the JAZ repressors liberates the transcriptional function of the TOEs to repress the expression of FT and thereby triggers the signaling cascades to delay flowering. Our study identified interacting pairs of TF and JAZ transcriptional regulators that underlie JA-mediated regulation of flowering, suggesting that JA signals are converted into specific context-dependent responses by matching pairs of TF and JAZ proteins.
Collapse
Affiliation(s)
- Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Fangming Wu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailong Feng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Xu
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Zhang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|