51
|
Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8050427. [PMID: 35628683 PMCID: PMC9144191 DOI: 10.3390/jof8050427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial lipids have been a hot topic in the field of metabolic engineering and synthetic biology due to their increased market and important applications in biofuels, oleochemicals, cosmetics, etc. This review first compares the popular hosts for lipid production and explains the four modules for lipid synthesis in yeast, including the fatty acid biosynthesis module, lipid accumulation module, lipid sequestration module, and fatty acid modification module. This is followed by a summary of metabolic engineering strategies that could be used for enhancing each module for lipid production. In addition, the efforts being invested in improving the production of value-added fatty acids in engineered yeast, such as cyclopropane fatty acid, ricinoleic acid, gamma linoleic acid, EPA, and DHA, are included. A discussion is further made on the potential relationships between lipid pathway engineering and consequential changes in cellular physiological properties, such as cell membrane integrity, intracellular reactive oxygen species level, and mitochondrial membrane potential. Finally, with the rapid development of synthetic biology tools, such as CRISPR genome editing tools and machine learning models, this review proposes some future trends that could be employed to engineer yeast with enhanced intracellular lipid production while not compromising much of its cellular health.
Collapse
|
52
|
Liao PC, Yang EJ, Borgman T, Boldogh IR, Sing CN, Swayne TC, Pon LA. Touch and Go: Membrane Contact Sites Between Lipid Droplets and Other Organelles. Front Cell Dev Biol 2022; 10:852021. [PMID: 35281095 PMCID: PMC8908909 DOI: 10.3389/fcell.2022.852021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
Lipid droplets (LDs) have emerged not just as storage sites for lipids but as central regulators of metabolism and organelle quality control. These critical functions are achieved, in part, at membrane contact sites (MCS) between LDs and other organelles. MCS are sites of transfer of cellular constituents to or from LDs for energy mobilization in response to nutrient limitations, as well as LD biogenesis, expansion and autophagy. Here, we describe recent findings on the mechanisms underlying the formation and function of MCS between LDs and mitochondria, ER and lysosomes/vacuoles and the role of the cytoskeleton in promoting LD MCS through its function in LD movement and distribution in response to environmental cues.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Emily J. Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Taylor Borgman
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Istvan R. Boldogh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Cierra N. Sing
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Theresa C. Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Liza A. Pon
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Liza A. Pon,
| |
Collapse
|
53
|
Antunes P, Cruz A, Barbosa J, Bonifácio VDB, Pinto SN. Lipid Droplets in Cancer: From Composition and Role to Imaging and Therapeutics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030991. [PMID: 35164256 PMCID: PMC8840564 DOI: 10.3390/molecules27030991] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
Cancer is the second most common cause of death worldwide, having its origin in the abnormal growth of cells. Available chemotherapeutics still present major drawbacks, usually associated with high toxicity and poor distribution, with only a small fraction of drugs reaching the tumour sites. Thus, it is urgent to develop novel therapeutic strategies. Cancer cells can reprogram their lipid metabolism to sustain uncontrolled proliferation, and, therefore, accumulate a higher amount of lipid droplets (LDs). LDs are cytoplasmic organelles that store neutral lipids and are hypothesized to sequester anti-cancer drugs, leading to reduced efficacy. Thus, the increased biogenesis of LDs in neoplastic conditions makes them suitable targets for anticancer therapy and for the development of new dyes for cancer cells imaging. In recent years, cancer nanotherapeutics offered some exciting possibilities, including improvement tumour detection and eradication. In this review we summarize LDs biogenesis, structure and composition, and highlight their role in cancer theranostics.
Collapse
Affiliation(s)
- Patrícia Antunes
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Adriana Cruz
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José Barbosa
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vasco D. B. Bonifácio
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Bioengineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (S.N.P.)
| | - Sandra N. Pinto
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (P.A.); (A.C.); (J.B.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence: (V.D.B.B.); (S.N.P.)
| |
Collapse
|
54
|
Bu X, Lin JY, Duan CQ, Koffas MAG, Yan GL. Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:3. [PMID: 34983533 PMCID: PMC8725481 DOI: 10.1186/s12934-021-01723-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/05/2022] Open
Abstract
Background The limitation of storage space, product cytotoxicity and the competition for precursor are the major challenges for efficiently overproducing carotenoid in engineered non-carotenogenic microorganisms. In this work, to improve β-carotene accumulation in Saccharomyces cerevisiae, a strategy that simultaneous increases cell storage capability and strengthens metabolic flux to carotenoid pathway was developed using exogenous oleic acid (OA) combined with metabolic engineering approaches. Results The direct separation of lipid droplets (LDs), quantitative analysis and genes disruption trial indicated that LDs are major storage locations of β-carotene in S. cerevisiae. However, due to the competition for precursor between β-carotene and LDs-triacylglycerol biosynthesis, enlarging storage space by engineering LDs related genes has minor promotion on β-carotene accumulation. Adding 2 mM OA significantly improved LDs-triacylglycerol metabolism and resulted in 36.4% increase in β-carotene content. The transcriptome analysis was adopted to mine OA-repressible promoters and IZH1 promoter was used to replace native ERG9 promoter to dynamically down-regulate ERG9 expression, which diverted the metabolic flux to β-carotene pathway and achieved additional 31.7% increase in β-carotene content without adversely affecting cell growth. By inducing an extra constitutive β-carotene synthesis pathway for further conversion precursor farnesol to β-carotene, the final strain produced 11.4 mg/g DCW and 142 mg/L of β-carotene, which is 107.3% and 49.5% increase respectively over the parent strain. Conclusions This strategy can be applied in the overproduction of other heterogeneous FPP-derived hydrophobic compounds with similar synthesis and storage mechanisms in S. cerevisiae. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01723-y.
Collapse
Affiliation(s)
- Xiao Bu
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China.,Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, 225300, People's Republic of China
| | - Jing-Yuan Lin
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Chang-Qing Duan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies and Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Guo-Liang Yan
- Centre for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, 100083, China. .,Innovation Research Center of Future Foods, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China. .,Key Laboratory of Food Bioengineering (China National Light Industry), China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
55
|
Lan C, Wang S, Zhang H, Wang Z, Wan W, Liu H, Hu Y, Cui Q, Song X. Cocktail biosynthesis of triacylglycerol by rational modulation of diacylglycerol acyltransferases in industrial oleaginous Aurantiochytrium. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:246. [PMID: 34961557 PMCID: PMC8714446 DOI: 10.1186/s13068-021-02096-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Triacylglycerol (TAG) is an important storage lipid in organisms, depending on the degree of unsaturation of fatty acid molecules attached to glycerol; it is usually used as the feedstock for nutrition or biodiesel. However, the mechanism of assembly of saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) into TAGs remains unclear for industrial oleaginous microorganism. RESULTS Diacylglycerol acyltransferase (DGAT) is a key enzyme for TAG synthesis. Hence, ex vivo (in yeast), and in vivo functions of four DGAT2s (DGAT2A, DGAT2B, DGAT2C, and DGAT2D) in industrial oleaginous thraustochytrid Aurantiochytrium sp. SD116 were analyzed. Results revealed that DGAT2C was mainly responsible for connecting PUFA to the sn-3 position of TAG molecules. However, DGAT2A and DGAT2D target SFA and/or MUFA. CONCLUSIONS There are two specific TAG assembly routes in Aurantiochytrium. The "saturated fatty acid (SFA) TAG lane" primarily produces SFA-TAGs mainly mediated by DGAT2D whose function is complemented by DGAT2A. And, the "polyunsaturated fatty acid (PUFA) TAG lane" primarily produces PUFA-TAGs via DGAT2C. In this study, we demonstrated the functional distribution pattern of four DGAT2s in oleaginous thraustochytrid Aurantiochytrium, and provided a promising target to rationally design TAG molecular with the desired characteristics.
Collapse
Affiliation(s)
- Chuanzeng Lan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Huidan Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
| | - Huan Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China
- Shandong Energy Institute, Qingdao, 266101, Shandong, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China
| | - Yang Hu
- Faculty of Science, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China.
- Shandong Energy Institute, Qingdao, 266101, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101, Shandong, China.
- Shandong Energy Institute, Qingdao, 266101, Shandong, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, Shandong, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266101, Shandong, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
56
|
Metabolic engineering of the oleaginous alga Nannochloropsis for enriching eicosapentaenoic acid in triacylglycerol by combined pulling and pushing strategies. Metab Eng 2021; 69:163-174. [PMID: 34864212 DOI: 10.1016/j.ymben.2021.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
The marine alga Nannochloropsis oceanica has been considered as a promising photosynthetic cell factory for synthesizing eicosapentaenoic acid (EPA), yet the accumulation of EPA in triacylglycerol (TAG) is restricted to an extreme low level. Poor channeling of EPA to TAG was observed in N. oceanica under TAG induction conditions, likely due to the weak activity of endogenous diacylglycerol acyltransferases (DGATs) on EPA-CoA. Screening over thirty algal DGATs revealed potent enzymes acting on EPA-CoA. Whilst overexpressing endogenous DGATs had no or slight effect on EPA abundance in TAG, introducing selected DGATs with strong activity on EPA-CoA, particularly the Chlamydomonas-derived CrDGTT1, which resided at the outermost membrane of the chloroplast and provided a strong pulling power to divert EPA to TAG for storage and protection, led to drastic increases in EPA abundance in TAG and TAG-derived EPA level in N. oceanica. They were further promoted by additional overexpression of an elongase gene involved in EPA biosynthesis, reaching 5.9- and 12.3-fold greater than the control strain, respectively. Our results together demonstrate the concept of applying combined pulling and pushing strategies to enrich EPA in algal TAG and provide clues for the enrichment of other desired fatty acids in TAG as well.
Collapse
|
57
|
Papagiannidis D, Bircham PW, Lüchtenborg C, Pajonk O, Ruffini G, Brügger B, Schuck S. Ice2 promotes ER membrane biogenesis in yeast by inhibiting the conserved lipin phosphatase complex. EMBO J 2021; 40:e107958. [PMID: 34617598 PMCID: PMC8591542 DOI: 10.15252/embj.2021107958] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Cells dynamically adapt organelle size to current physiological demand. Organelle growth requires membrane biogenesis and therefore needs to be coordinated with lipid metabolism. The endoplasmic reticulum (ER) can undergo massive expansion, but the underlying regulatory mechanisms are largely unclear. Here, we describe a genetic screen for factors involved in ER membrane expansion in budding yeast and identify the ER transmembrane protein Ice2 as a strong hit. We show that Ice2 promotes ER membrane biogenesis by opposing the phosphatidic acid phosphatase Pah1, called lipin in metazoa. Specifically, Ice2 inhibits the conserved Nem1‐Spo7 complex and thus suppresses the dephosphorylation and activation of Pah1. Furthermore, Ice2 cooperates with the transcriptional regulation of lipid synthesis genes and helps to maintain cell homeostasis during ER stress. These findings establish the control of the lipin phosphatase complex as an important mechanism for regulating ER membrane biogenesis.
Collapse
Affiliation(s)
- Dimitrios Papagiannidis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Peter W Bircham
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany
| | | | - Oliver Pajonk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Giulia Ruffini
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance and Cell Networks Cluster of Excellence, Heidelberg, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| |
Collapse
|
58
|
Klug YA, Deme JC, Corey RA, Renne MF, Stansfeld PJ, Lea SM, Carvalho P. Mechanism of lipid droplet formation by the yeast Sei1/Ldb16 Seipin complex. Nat Commun 2021; 12:5892. [PMID: 34625558 PMCID: PMC8501077 DOI: 10.1038/s41467-021-26162-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Lipid droplets (LDs) are universal lipid storage organelles with a core of neutral lipids, such as triacylglycerols, surrounded by a phospholipid monolayer. This unique architecture is generated during LD biogenesis at endoplasmic reticulum (ER) sites marked by Seipin, a conserved membrane protein mutated in lipodystrophy. Here structural, biochemical and molecular dynamics simulation approaches reveal the mechanism of LD formation by the yeast Seipin Sei1 and its membrane partner Ldb16. We show that Sei1 luminal domain assembles a homooligomeric ring, which, in contrast to other Seipins, is unable to concentrate triacylglycerol. Instead, Sei1 positions Ldb16, which concentrates triacylglycerol within the Sei1 ring through critical hydroxyl residues. Triacylglycerol recruitment to the complex is further promoted by Sei1 transmembrane segments, which also control Ldb16 stability. Thus, we propose that LD assembly by the Sei1/Ldb16 complex, and likely other Seipins, requires sequential triacylglycerol-concentrating steps via distinct elements in the ER membrane and lumen.
Collapse
Affiliation(s)
- Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Justin C Deme
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Mike F Renne
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
| | - Susan M Lea
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
59
|
Romanauska A, Köhler A. Reprogrammed lipid metabolism protects inner nuclear membrane against unsaturated fat. Dev Cell 2021; 56:2562-2578.e3. [PMID: 34407429 PMCID: PMC8480995 DOI: 10.1016/j.devcel.2021.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/04/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022]
Abstract
The cell nucleus is surrounded by a double membrane. The lipid packing and viscosity of membranes is critical for their function and is tightly controlled by lipid saturation. Circuits regulating the lipid saturation of the outer nuclear membrane (ONM) and contiguous endoplasmic reticulum (ER) are known. However, how lipid saturation is controlled in the inner nuclear membrane (INM) has remained enigmatic. Using INM biosensors and targeted genetic manipulations, we show that increased lipid unsaturation causes a reprogramming of lipid storage metabolism across the nuclear envelope (NE). Cells induce lipid droplet (LD) formation specifically from the distant ONM/ER, whereas LD formation at the INM is suppressed. In doing so, unsaturated fatty acids are shifted away from the INM. We identify the transcription circuits that topologically reprogram LD synthesis and identify seipin and phosphatidic acid as critical effectors. Our study suggests a detoxification mechanism protecting the INM from excess lipid unsaturation. Biosensors detect lipid saturation dynamics of INM Increased lipid unsaturation induces LDs at ONM, but not at INM Opposing transcription circuits reprogram LD synthesis across the NE LDs detoxify unsaturated lipids to maintain INM integrity
Collapse
Affiliation(s)
- Anete Romanauska
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria
| | - Alwin Köhler
- Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter Campus (VBC), Dr. Bohr-Gasse 9/3, 1030 Vienna, Austria.
| |
Collapse
|
60
|
Renne MF, Hariri H. Lipid Droplet-Organelle Contact Sites as Hubs for Fatty Acid Metabolism, Trafficking, and Metabolic Channeling. Front Cell Dev Biol 2021; 9:726261. [PMID: 34595176 PMCID: PMC8477659 DOI: 10.3389/fcell.2021.726261] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/12/2021] [Indexed: 01/21/2023] Open
Abstract
Cells prepare for fluctuations in nutrient availability by storing energy in the form of neutral lipids in organelles called Lipid Droplets (LDs). Upon starvation, fatty acids (FAs) released from LDs are trafficked to different cellular compartments to be utilized for membrane biogenesis or as a source of energy. Despite the biochemical pathways being known in detail, the spatio-temporal regulation of FA synthesis, storage, release, and breakdown is not completely understood. Recent studies suggest that FA trafficking and metabolism are facilitated by inter-organelle contact sites that form between LDs and other cellular compartments such as the Endoplasmic Reticulum (ER), mitochondria, peroxisomes, and lysosomes. LD-LD contact sites are also sites where FAs are transferred in a directional manner to support LD growth and expansion. As the storage site of neutral lipids, LDs play a central role in FA homeostasis. In this mini review, we highlight the role of LD contact sites with other organelles in FA trafficking, channeling, and metabolism and discuss the implications for these pathways on cellular lipid and energy homeostasis.
Collapse
Affiliation(s)
- Mike F. Renne
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| |
Collapse
|
61
|
Jing G, Tang D, Yao Y, Su Y, Shen Y, Bai Y, Jing W, Zhang Q, Lin F, Guo D, Zhang W. Seed specifically over-expressing DGAT2A enhances oil and linoleic acid contents in soybean seeds. Biochem Biophys Res Commun 2021; 568:143-150. [PMID: 34217012 DOI: 10.1016/j.bbrc.2021.06.087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
Triacylglycerol (TAG), a main component of oil, is mainly biosynthesized by diacylglycerol acyltransferase (DGAT), which is critical for oil accumulation in plants. Intensive focus has been on DGAT2 functioning in unsaturated fatty acids biosynthesis. In this study, we analyzed the coding sequence (CDS) and amino acid sequence of GmDGAT2A and determined its key active sites through site-directed mutagenesis. As a consequence, H132, G201, and P152-X-I154-K155 were found to be essential active sites for GmDGAT2A. The spatial structure of the protein may bring the three active sites into close proximity, constituting an active domain. Additionally, N-terminus of GmDGAT2A was found to be an important regulator for the activity. Further, in vitro activity results uncovered GmDGAT2A was prone to utilize C18:2-CoA as the substrate. Consequently, overexpression of GmDGAT2A driven by a seed-specific promoter of Gmole1 in soybean significantly increased linoleic acid content specifically and total oil content, concomitant with accelerated elongation.
Collapse
Affiliation(s)
- Guangqin Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Daoping Tang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yao Yao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, PR China
| | - Youke Su
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yue Shen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yang Bai
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Wen Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Qun Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Feng Lin
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Dongquan Guo
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, PR China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
62
|
Demski K, Jeppson S, Stymne S, Lager I. Camelina sativa phosphatidylcholine:diacylglycerol cholinephosphotransferase-catalyzed interconversion does not discriminate between substrates. Lipids 2021; 56:591-602. [PMID: 34463366 DOI: 10.1002/lipd.12322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023]
Abstract
Phosphatidylcholine:diacylglycerol cholinephosphotransferases (PDCT) regulate the fatty acid composition of seed oil (triacylglycerol, TAG) by interconversion of diacylglycerols (DAG) and phosphatidylcholine (PtdCho). PtdCho is the substrate for polyunsaturated fatty acid biosynthesis, as well as for a number of unusual fatty acids. By the action of PDCT, these fatty acids can be transferred into the DAG pool to be utilized in TAG biosynthesis by the action of acyl-CoA:DAG and phospholipid:diacylglycerol acyltransferases. Despite its importance in regulating seed oil composition, biochemical characterization of PDCT enzymes has been lacking. We characterized Camelina sativa PDCT in microsomal preparations of a yeast strain expressing Camelina PDCT and lacking the capacity of producing TAG. Camelina PDCT was specific for PtdCho and the sn-1,2 enantiomer of DAG and could not utilize ceramide. The interconversion reaches equilibrium within 15 min of incubation, indicating that only distinct pools of DAG and PtdCho were available for exchange. However, the pool sizes of DAG and PtdCho involved in the exchange were not fixed but increased with the amount of exogenous DAG or PtdCho added. Camelina PDCT showed about the same selectivity for di-oleoyl, di-linoleoyl, and di-linolenoyl species in both PtdCho and DAG substrates, suggesting that no unidirectional transfer of particular unsaturated substrates occurred. Camelina PDCT had a good activity with erucoyl-DAG as a substrate despite low erucic acid levels in PtdCho in plant species accumulating a high amount of this fatty acid in the seed oil.
Collapse
Affiliation(s)
- Kamil Demski
- Department of Plant Breeding, Swedish University of Agriculture Science, Alnarp, Sweden
| | - Simon Jeppson
- Department of Plant Breeding, Swedish University of Agriculture Science, Alnarp, Sweden
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agriculture Science, Alnarp, Sweden
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agriculture Science, Alnarp, Sweden
| |
Collapse
|
63
|
Cottier S, Schneiter R. Lipid droplets form a network interconnected by the endoplasmic reticulum through which their proteins equilibrate. J Cell Sci 2021; 135:271208. [PMID: 34373922 DOI: 10.1242/jcs.258819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/03/2021] [Indexed: 01/13/2023] Open
Abstract
Lipid droplets (LDs) are globular intracellular structures dedicated to the storage of neutral lipids. They are closely associated with the endoplasmic reticulum (ER) and are delineated by a monolayer of phospholipids that is continuous with the cytoplasmic leaflet of the ER membrane. LDs contain a specific set of proteins, but how these proteins are targeted to the LD surface is not fully understood. Here, we devised a yeast mating-based microscopic readout to monitor the transfer of LD proteins upon zygote formation. The results of this analysis indicate that ER fusion between mating partners is required for transfer of LD proteins and that this transfer is continuous, bidirectional and affects most LDs simultaneously. These observations suggest that LDs do not fuse upon mating of yeast cells, but that they form a network that is interconnected through the ER membrane. Consistent with this, ER-localized LD proteins rapidly move onto LDs of a mating partner and this protein transfer is affected by seipin, a protein important for proper LD biogenesis and the functional connection of LDs with the ER membrane.
Collapse
Affiliation(s)
- Stéphanie Cottier
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| |
Collapse
|
64
|
Molenaar MR, Yadav KK, Toulmay A, Wassenaar TA, Mari MC, Caillon L, Chorlay A, Lukmantara IE, Haaker MW, Wubbolts RW, Houweling M, Vaandrager AB, Prieur X, Reggiori F, Choudhary V, Yang H, Schneiter R, Thiam AR, Prinz WA, Helms JB. Retinyl esters form lipid droplets independently of triacylglycerol and seipin. J Cell Biol 2021; 220:212517. [PMID: 34323918 PMCID: PMC8327380 DOI: 10.1083/jcb.202011071] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Lipid droplets store neutral lipids, primarily triacylglycerol and steryl esters. Seipin plays a role in lipid droplet biogenesis and is thought to determine the site of lipid droplet biogenesis and the size of newly formed lipid droplets. Here we show a seipin-independent pathway of lipid droplet biogenesis. In silico and in vitro experiments reveal that retinyl esters have the intrinsic propensity to sequester and nucleate in lipid bilayers. Production of retinyl esters in mammalian and yeast cells that do not normally produce retinyl esters causes the formation of lipid droplets, even in a yeast strain that produces only retinyl esters and no other neutral lipids. Seipin does not determine the size or biogenesis site of lipid droplets composed of only retinyl esters or steryl esters. These findings indicate that the role of seipin in lipid droplet biogenesis depends on the type of neutral lipid stored in forming droplets.
Collapse
Affiliation(s)
- Martijn R Molenaar
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Kamlesh K Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Alexandre Toulmay
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Tsjerk A Wassenaar
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Muriel C Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lucie Caillon
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, Sorbonne Université, Université Pierre-et-Marie-Curie Université Paris 06, Université Paris Diderot, Centre national de la recherche scientifique, Paris, France
| | - Aymeric Chorlay
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, Sorbonne Université, Université Pierre-et-Marie-Curie Université Paris 06, Université Paris Diderot, Centre national de la recherche scientifique, Paris, France
| | - Ivan E Lukmantara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Maya W Haaker
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Richard W Wubbolts
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Martin Houweling
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Arie Bas Vaandrager
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Xavier Prieur
- Université de Nantes, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, l'institut du thorax, Nantes, France
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Vineet Choudhary
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Abdou Rachid Thiam
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, Sorbonne Université, Université Pierre-et-Marie-Curie Université Paris 06, Université Paris Diderot, Centre national de la recherche scientifique, Paris, France
| | - William A Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
65
|
Xu Y, Pan X, Lu J, Wang J, Shan Q, Stout J, Chen G. Evolutionary and biochemical characterization of a Chromochloris zofingiensis MBOAT with wax synthase and diacylglycerol acyltransferase activity. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5584-5598. [PMID: 34037747 DOI: 10.1093/jxb/erab236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Wax synthase (WS) catalyzes the last step in wax ester biosynthesis in green plants. Two unrelated sub-families of WS, including the bifunctional acyltransferase and plant-like WS have been reported, but the latter is largely uncharacterized in microalgae. Here, we functionally characterized a putative plant-like WS (CzWS1) from the emerging model green microalga Chromochloris zofingiensis. Our results showed that plant-like WS evolved under different selection constraints in plants and microalgae, with positive selection likely contributing to functional divergence. Unlike jojoba with high amounts of wax ester in seeds and a highly active WS enzyme, C. zofingiensis has no detectable wax ester but a high abundance of WS transcripts. Co-expression analysis showed that C. zofingiensis WS has different expression correlation with lipid biosynthetic genes from jojoba, and may have a divergent function. In vitro characterization indicated that CzWS1 had diacylglycerol acyltransferase activity along with WS activity, and overexpression of CzWS1 in yeast and Chlamydomonas reinhardtii affected triacylglycerol accumulation. Moreover, biochemical and bioinformatic analyses revealed the relevance of the C-terminal region of CzWS1 in enzyme function. Taken together, our results indicated a functional divergence of plant-like WS in plants and microalgae, and the importance of its C-terminal region in specialization of enzyme function.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Xue Pan
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Junhao Lu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Qiyuan Shan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jake Stout
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
66
|
Gopalam R, Tumaney AW. Functional characterization of acyltransferases from Salvia hispanica that can selectively catalyze the formation of trilinolenin. PHYTOCHEMISTRY 2021; 186:112712. [PMID: 33706110 DOI: 10.1016/j.phytochem.2021.112712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Salvia hispanica (chia) is an important oilseed crop cultivated commercially in South America, Australia, and India. It is the richest terrestrial natural source of α-linolenic acid (ALA), an ω-3 polyunsaturated fatty acid with varied health benefits. In this study, we have measured the total lipid content, fatty acid composition in four phases of seed development and analyzed the major triacylglycerol (TAG) molecular species present in Indian chia seed oil. We found that the mature seeds produced 28% oil, 65% of ALA, and trilinolenin as the major TAG species. To make TAG rich in ALA, there should be specialized enzymes that can efficiently transfer ALA to TAG. To study this hypothesis, we performed a characterization of TAG synthesizing enzymes present in chia. We have identified two acyl CoA:diacylglycerol acyltransferases (ShDGAT1 and ShDGAT2) and one phospholipid:diacylglycerol acyltransferase (ShPDAT1) from the chia transcriptome data. Functional characterization of these enzymes was conducted by heterologous expression in a TAG deficient mutant of Saccharomyces cerevisiae. Substrate specificity studies showed that ShDGAT2-1 and ShPDAT1 exhibited a strong preference towards substrates containing ALA and could incorporate 45% and 80% ALA into TAG, respectively. Both enzymes incorporated ALA in a concentration-dependent manner into TAG and were able to form trilinolenin in yeast. Our results provide a first insight into the high ALA accumulation in chia and the first demonstration of trilinolenin formation by DGAT2. The two identified enzymes (ShDGAT2-1 and ShPDAT1) can be used to metabolically engineer other oilseed crops to produce high levels of ALA.
Collapse
Affiliation(s)
- Rahul Gopalam
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ajay W Tumaney
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
67
|
Choudhary V, Schneiter R. A Unique Junctional Interface at Contact Sites Between the Endoplasmic Reticulum and Lipid Droplets. Front Cell Dev Biol 2021; 9:650186. [PMID: 33898445 PMCID: PMC8060488 DOI: 10.3389/fcell.2021.650186] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Lipid droplets (LDs) constitute compartments dedicated to the storage of metabolic energy in the form of neutral lipids. LDs originate from the endoplasmic reticulum (ER) with which they maintain close contact throughout their life cycle. These ER-LD junctions facilitate the exchange of both proteins and lipids between these two compartments. In recent years, proteins that are important for the proper formation of LDs and localize to ER-LD junctions have been identified. This junction is unique as it is generally believed to invoke a transition from the ER bilayer membrane to a lipid monolayer that delineates LDs. Proper formation of this junction requires the ordered assembly of proteins and lipids at specialized ER subdomains. Without such a well-ordered assembly of LD biogenesis factors, neutral lipids are synthesized throughout the ER membrane, resulting in the formation of aberrant LDs. Such ectopically formed LDs impact ER and lipid homeostasis, resulting in different types of lipid storage diseases. In response to starvation, the ER-LD junction recruits factors that tether the vacuole to these junctions to facilitate LD degradation. In addition, LDs maintain close contacts with peroxisomes and mitochondria for metabolic channeling of the released fatty acids toward beta-oxidation. In this review, we discuss the function of different components that ensure proper functioning of LD contact sites, their role in lipogenesis and lipolysis, and their relation to lipid storage diseases.
Collapse
Affiliation(s)
- Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
68
|
Gao Y, Sun Y, Gao H, Chen Y, Wang X, Xue J, Jia X, Li R. Ectopic overexpression of a type-II DGAT (CeDGAT2-2) derived from oil-rich tuber of Cyperus esculentus enhances accumulation of oil and oleic acid in tobacco leaves. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:76. [PMID: 33757551 PMCID: PMC7986309 DOI: 10.1186/s13068-021-01928-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/12/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Engineering triacylglycerol (TAG) accumulation in vegetative tissues of non-food crops has become a promising way to meet our increasing demand for plant oils, especially the renewable production of biofuels. The most important target modified in this regard is diacylglycerol acyltransferase (DGAT) enzyme responsible for the final rate-limiting step in TAG biosynthesis. Cyperus esculentus is a unique plant largely accumulating oleic acid-enriched oil in its underground tubers. We speculated that DGAT derived from such oil-rich tubers could function more efficiently than that from oleaginous seeds in enhancing oil storage in vegetative tissues of tobacco, a high-yielding biomass crops. RESULTS Three CeDGAT genes namely CeDGAT1, CeDGAT2-1 and CeDGAT2-2 were identified in C. esculentus by mining transcriptome of developing tubers. These CeDGATs were expressed in tissues tested, with CeDGAT1 highly in roots, CeDGAT2-1 abundantly in leaves, and CeDGAT2-2 predominantly in tubers. Notably, CeDGAT2-2 expression pattern was in accordance with oil dynamic accumulation during tuber development. Overexpression of CeDGAT2-2 functionally restored TAG biosynthesis in TAG-deficient yeast mutant H1246. Oleic acid level was significantly increased in CeDGAT2-2 transgenic yeast compared to the wild-type yeast and ScDGA1-expressed control under culture with and without feeding of exogenous fatty acids. Overexpressing CeDGAT2-2 in tobacco led to dramatic enhancements of leafy oil by 7.15- and 1.7-fold more compared to the wild-type control and plants expressing Arabidopsis seed-derived AtDGAT1. A substantial change in fatty acid composition was detected in leaves, with increase of oleic acid from 5.1% in the wild type to 31.33% in CeDGAT2-2-expressed tobacco and accompanied reduction of saturated fatty acids. Moreover, the elevated accumulation of oleic acid-enriched TAG in transgenic tobacco exhibited no significantly negative impact on other agronomic traits such as photosynthesis, growth rates and seed germination except for small decline of starch content. CONCLUSIONS The present data indicate that CeDGAT2-2 has a high enzyme activity to catalyze formation of TAG and a strong specificity for oleic acid-containing substrates, providing new insights into understanding oil biosynthesis mechanism in plant vegetative tissues. Overexpression of CeDGAT2-2 alone can significantly increase oleic acid-enriched oil accumulation in tobacco leaves without negative impact on other agronomy traits, showing CeDGAT2-2 as the desirable target gene in metabolic engineering to enrich oil and value-added lipids in high-biomass plants for commercial production of biofuel oils.
Collapse
Affiliation(s)
- Yu Gao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yan Sun
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Huiling Gao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Ying Chen
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaoqing Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
69
|
Zoni V, Khaddaj R, Lukmantara I, Shinoda W, Yang H, Schneiter R, Vanni S. Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure. Proc Natl Acad Sci U S A 2021; 118:e2017205118. [PMID: 33674387 PMCID: PMC7958289 DOI: 10.1073/pnas.2017205118] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are intracellular organelles responsible for lipid storage, and they emerge from the endoplasmic reticulum (ER) upon the accumulation of neutral lipids, mostly triglycerides (TG), between the two leaflets of the ER membrane. LD biogenesis takes place at ER sites that are marked by the protein seipin, which subsequently recruits additional proteins to catalyze LD formation. Deletion of seipin, however, does not abolish LD biogenesis, and its precise role in controlling LD assembly remains unclear. Here, we use molecular dynamics simulations to investigate the molecular mechanism through which seipin promotes LD formation. We find that seipin clusters TG, as well as its precursor diacylglycerol, inside its unconventional ring-like oligomeric structure and that both its luminal and transmembrane regions contribute to this process. This mechanism is abolished upon mutations of polar residues involved in protein-TG interactions into hydrophobic residues. Our results suggest that seipin remodels the membrane of specific ER sites to prime them for LD biogenesis.
Collapse
Affiliation(s)
- Valeria Zoni
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Rasha Khaddaj
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Ivan Lukmantara
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Chikusa-ku, 464-8603 Nagoya, Japan
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Roger Schneiter
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland;
| |
Collapse
|
70
|
Zhao Y, Zhang Y, Nielsen J, Liu Z. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnol Bioeng 2021; 118:2043-2052. [PMID: 33605428 DOI: 10.1002/bit.27717] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/07/2022]
Abstract
Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals. However, as a non-oleaginous yeast, S. cerevisiae has a limited production capacity for lipophilic compounds, such as β-carotene. To increase its accumulation of β-carotene, we engineered different lipid metabolic pathways in a β-carotene producing strain and investigated the relationship between lipid components and the accumulation of β-carotene. We found that overexpression of sterol ester synthesis genes ARE1 and ARE2 increased β-carotene yield by 1.5-fold. Deletion of phosphatidate phosphatase (PAP) genes (PAH1, DPP1, and LPP1) also increased β-carotene yield by twofold. Combining these two strategies resulted in a 2.4-fold improvement in β-carotene production compared with the starting strain. These results demonstrated that regulating lipid metabolism pathways is important for β-carotene accumulation in S. cerevisiae, and may also shed insights to the accumulation of other lipophilic compounds in yeast.
Collapse
Affiliation(s)
- Yijin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
71
|
Amino acid starvation inhibits autophagy in lipid droplet-deficient cells through mitochondrial dysfunction. Biochem J 2021; 477:3613-3623. [PMID: 32886124 DOI: 10.1042/bcj20200551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
Lipid droplets are ubiquitous organelles in eukaryotes that act as storage sites for neutral lipids. Under normal growth conditions, they are not required in the yeast Saccharomyces cerevisiae. However, recent works have shown that lipid droplets are required for autophagy to proceed in response to nitrogen starvation and that they play an essential role in maintaining ER homeostasis. Autophagy is a major catabolic pathway that helps degradation and recycling of potentially harmful proteins and organelles. It can be pharmacologically induced by rapamycin even in the absence of lipid droplets. Here, we show that amino acid starvation is responsible for autophagy failure in lipid droplet-deficient yeast. It not only fails to induce autophagy but also inhibits rapamycin-induced autophagy. The general amino acid control pathway is not involved in this paradoxical effect of amino acid shortage. We correlate the autophagy failure with mitochondria aggregation and we show that amino acid starvation-induced autophagy is restored in lipid droplet-deficient yeast by increasing mitochondrial biomass physiologically (respiration) or genetically (REG1 deletion). Our results establish a new functional link between lipid droplets, ER and mitochondria during nitrogen starvation-induced autophagy.
Collapse
|
72
|
Sestric R, Spicer V, V Krokhin O, Sparling R, B Levin D. Analysis of the Yarrowia lipolytica proteome reveals subtle variations in expression levels between lipogenic and non-lipogenic conditions. FEMS Yeast Res 2021; 21:6133473. [PMID: 33571365 DOI: 10.1093/femsyr/foab007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Oleaginous yeasts have the ability to store greater than 20% of their mass as neutral lipids, in the form of triacylglycerides. The ATP citrate lyase is thought to play a key role in triacylglyceride synthesis, but the relationship between expression levels of this and other related enzymes is not well understood in the role of total lipid accumulation conferring the oleaginous phenotype. We conducted comparative proteomic analyses with the oleaginous yeast, Yarrowia lipolytica, grown in either nitrogen-sufficient rich media or nitrogen-limited minimal media. Total proteins extracted from cells collected during logarithmic and late stationary growth phases were analyzed by 1D liquid chromatography, followed by mass spectroscopy. The ATP citrate lyase enzyme was expressed at similar concentrations in both conditions, in both logarithmic and stationary phase, but many upstream and downstream enzymes showed drastically different expression levels. In non-lipogenic conditions, several pyruvate enzymes were expressed at higher concentration. These enzymes, especially the pyruvate decarboxylase and pyruvate dehydrogenase, may be regulating carbon flux away from central metabolism and reducing the amount of citrate being produced in the mitochondria. While crucial for the oleaginous phenotype, the constitutively expressed ATP citrate lyase appears to cleave citrate in response to carbon flux upstream from other enzymes creating the oleaginous phenotype.
Collapse
Affiliation(s)
- Ryan Sestric
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Vic Spicer
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Oleg V Krokhin
- Manitoba Centre for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Richard Sparling
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David B Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| |
Collapse
|
73
|
Zoni V, Khaddaj R, Campomanes P, Thiam AR, Schneiter R, Vanni S. Pre-existing bilayer stresses modulate triglyceride accumulation in the ER versus lipid droplets. eLife 2021; 10:e62886. [PMID: 33522484 PMCID: PMC7895522 DOI: 10.7554/elife.62886] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Cells store energy in the form of neutral lipids (NLs) packaged into micrometer-sized organelles named lipid droplets (LDs). These structures emerge from the endoplasmic reticulum (ER) at sites marked by the protein seipin, but the mechanisms regulating their biogenesis remain poorly understood. Using a combination of molecular simulations, yeast genetics, and fluorescence microscopy, we show that interactions between lipids' acyl-chains modulate the propensity of NLs to be stored in LDs, in turn preventing or promoting their accumulation in the ER membrane. Our data suggest that diacylglycerol, which is enriched at sites of LD formation, promotes the packaging of NLs into LDs, together with ER-abundant lipids, such as phosphatidylethanolamine. On the opposite end, short and saturated acyl-chains antagonize fat storage in LDs and promote accumulation of NLs in the ER. Our results provide a new conceptual understanding of LD biogenesis in the context of ER homeostasis and function.
Collapse
Affiliation(s)
- Valeria Zoni
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Rasha Khaddaj
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Pablo Campomanes
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Roger Schneiter
- University of Fribourg, Department of BiologyFribourgSwitzerland
| | - Stefano Vanni
- University of Fribourg, Department of BiologyFribourgSwitzerland
| |
Collapse
|
74
|
Bhunia RK, Sinha K, Chawla K, Randhawa V, Sharma TR. Functional characterization of two type-1 diacylglycerol acyltransferase (DGAT1) genes from rice (Oryza sativa) embryo restoring the triacylglycerol accumulation in yeast. PLANT MOLECULAR BIOLOGY 2021; 105:247-262. [PMID: 33089420 DOI: 10.1007/s11103-020-01085-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Two OsDGAT1 genes showed the ability to restore TAG and LB synthesis in yeast H1246. Alterations in the N-terminal region of OsDGAT1-1 gene revealed its regulatory role in gene function. Accumulation of triacylglycerol (TAG) or oil in vegetative tissues has emerged as a promising approach to meet the global needs of food, feed, and fuel. Rice (Oryza sativa) has been recognized as an important cereal crop containing nutritional rice bran oil with high economic value for renewable energy production. To identify the key component involved in storage lipid biosynthesis, two type-1 diacylglycerol acyltransferases (DGAT1) from rice were characterized for its in vivo function in the H1246 (dga1, lro1, are1 and are2) yeast quadruple mutant. The ectopic expression of rice DGAT1 (designated as OsDGAT1-1 and OsDGAT1-2) genes restored the capability of TAG synthesis and lipid body (LB) formation in H1246. OsDGAT1-1 showed nearly equal substrate preferences to C16:0-CoA and 18:1-CoA whereas OsDGAT1-2 displayed substrate selectivity for C16:0-CoA over 18:1-CoA, indicating that these enzymes have contrasting substrate specificities. In parallel, we have identified the intrinsically disordered region (IDR) at the N-terminal domains of OsDGAT1 proteins. The regulatory role of the N-terminal domain was dissected. Single point mutations at the phosphorylation sites and truncations of the N-terminal region highlighted reduced lipid accumulation capabilities among different OsDGAT1-1 variants.
Collapse
Affiliation(s)
- Rupam Kumar Bhunia
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| | - Kshitija Sinha
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Kirti Chawla
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Vinay Randhawa
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Tilak Raj Sharma
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| |
Collapse
|
75
|
Cui H, Zhao C, Xu W, Zhang H, Hang W, Zhu X, Ji C, Xue J, Zhang C, Li R. Characterization of type-2 diacylglycerol acyltransferases in Haematococcus lacustris reveals their functions and engineering potential in triacylglycerol biosynthesis. BMC PLANT BIOLOGY 2021; 21:20. [PMID: 33407140 PMCID: PMC7788937 DOI: 10.1186/s12870-020-02794-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 12/09/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Haematococcus lacustris is an ideal source of astaxanthin (AST), which is stored in oil bodies containing esterified AST (EAST) and triacylglycerol (TAG). Diacylglycerol acyltransferases (DGATs) catalyze the last step of acyl-CoA-dependent TAG biosynthesis and are also considered as crucial enzymes involved in EAST biosynthesis in H. lacustris. Previous studies have identified four putative DGAT2-encoding genes in H. lacustris, and only HpDGAT2D allowed the recovery of TAG biosynthesis, but the engineering potential of HpDGAT2s in TAG biosynthesis remains ambiguous. RESULTS Five putative DGAT2 genes (HpDGAT2A, HpDGAT2B, HpDGAT2C, HpDGAT2D, and HpDGAT2E) were identified in H. lacustris. Transcription analysis showed that the expression levels of the HpDGAT2A, HpDGAT2D, and HpDGAT2E genes markedly increased under high light and nitrogen deficient conditions with distinct patterns, which led to significant TAG and EAST accumulation. Functional complementation demonstrated that HpDGAT2A, HpDGAT2B, HpDGAT2D, and HpDGAT2E had the capacity to restore TAG synthesis in a TAG-deficient yeast strain (H1246) showing a large difference in enzymatic activity. Fatty acid (FA) profile assays revealed that HpDGAT2A, HpDGAT2D, and HpDGAT2E, but not HpDGAT2B, preferred monounsaturated fatty acyl-CoAs (MUFAs) for TAG synthesis in yeast cells, and showed a preference for polyunsaturated fatty acyl-CoAs (PUFAs) based on their feeding strategy. The heterologous expression of HpDGAT2D in Arabidopsis thaliana and Chlamydomonas reinhardtii significantly increased the TAG content and obviously promoted the MUFAs and PUFAs contents. CONCLUSIONS Our study represents systematic work on the characterization of HpDGAT2s by integrating expression patterns, AST/TAG accumulation, functional complementation, and heterologous expression in yeast, plants, and algae. These results (1) update the gene models of HpDGAT2s, (2) prove the TAG biosynthesis capacity of HpDGAT2s, (3) show the strong preference for MUFAs and PUFAs, and (4) offer target genes to modulate TAG biosynthesis by using genetic engineering methods.
Collapse
Affiliation(s)
- Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Chunchao Zhao
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Wenxin Xu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Hongjiang Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Wei Hang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Xiaoli Zhu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Taigu, 030801 Shanxi China
| |
Collapse
|
76
|
Sanya DRA, Onesime D, Kunze G, Neuveglise C, Crutz-Le Coq AM. The native acyltransferase-coding genes DGA1 and DGA2 affect lipid accumulation in Blastobotrys raffinosifermentans differently when overexpressed. FEMS Yeast Res 2020; 20:5989697. [PMID: 33206977 DOI: 10.1093/femsyr/foaa060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
Blastobotrys raffinosifermentans is an ascomycetous yeast with biotechnological applications, recently shown to be an oleaginous yeast accumulating lipids under nitrogen limitation. Diacylglycerol acyltransferases (DGATs) act in the lipid storage pathway, in the last step of triacylglycerol biosynthesis. Two DGAT families are widespread in eukaryotes. We first checked that B. raffinosifermentans strain LS3 possessed both types of DGAT, and we then overexpressed the native DGAT-encoding genes, DGA1 and DGA2, separately or together. DGA2 (from the DGAT1 family) overexpression was sufficient to increase lipid content significantly in LS3, to up to 26.5% of dry cell weight (DCW), 1.6 times the lipid content of the parental strain (16.90% of DCW) in glucose medium under nitrogen limitation. By contrast, DGA1 (of the DGAT2 type) overexpression led to a large increase (up to 140-fold) in the amount of the corresponding transcript, but had no effect on overall lipid content relative to the parental strain. Analysis of the expression of the native genes over time in the parental strain revealed that DGA2 transcript levels quadrupled between 8 and 24 h in the N-limited lipogenic medium, whereas DGA1 transcript levels remained stable. This survey highlights the predominant role of the DGAT1 family in lipid accumulation and demonstrates the suitability of B. raffinosifermentans for engineering for lipid production.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute,Domaine de Vilvert, Jouy-en-Josas 78350, France
| | - Djamila Onesime
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute,Domaine de Vilvert, Jouy-en-Josas 78350, France
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Physiology and Cell Biology, Correnstr. 3, Gatersleben 06466, Germany
| | - Cécile Neuveglise
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute,Domaine de Vilvert, Jouy-en-Josas 78350, France
| | - Anne-Marie Crutz-Le Coq
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute,Domaine de Vilvert, Jouy-en-Josas 78350, France
| |
Collapse
|
77
|
Shalini T, Martin A. Identification, isolation, and heterologous expression of Sunflower wax synthase for the synthesis of tailored wax esters. J Food Biochem 2020; 44:e13433. [PMID: 33090542 DOI: 10.1111/jfbc.13433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/01/2022]
Abstract
Wax esters (WE) are neutral lipids formed by condensation of fatty alcohol with fatty acyl-CoA by wax synthases. They serve as carbon and energy reserves and are potential substrates for various commercial applications. Sunflower (Helianthus annuus) an edible oil seed is a source of WE, however, the gene responsible for WE formation has hitherto remained unidentified. Using an in silico approach we identified, isolated putative Sunflower wax synthase (HaWS) gene and investigated it's potential for WE production in yeast. Heterologous expression of HaWS in Saccharomyces cerevisiae H1246 exhibited 57 kDa protein which was confirmed by immunoblotting. Recombinant yeast expressing HaWS were fed with combinations of C16, C18 fatty alcohols with 16:0, 18:0 fatty acyl CoA's as potential substrates to validate WE formation in vivo. The yeast cells accumulated C-32 to C-36 WE. Our study reveals identification, isolation, and heterologous functional expression of WS gene from Sunflower for the first time. PRACTICAL APPLICATIONS: Wax synthases (WSs) are critical enzymes for wax ester (WE) biosynthesis. WEs are high value products having several industrial applications. WE serve as substrates for lubricants, food coatings, cosmetics, and pharmaceuticals. There is a demand for alternate renewable resource of WEs. In this study, we have successfully isolated a putative wax synthase gene from Sunflower and submitted its sequence data to the GenBank (Accession number MH460820). Conserved sequence search analysis showed presence of condensation superfamily motif‒HHXXXDG, critical for WE biosynthesis. Heterologous expression of HaWS in yeast revealed synthesis of C-32 to C-36 WE. Our study demonstrates the efficacy of HaWS to accumulate specific WE of desired lengths in yeast, and thus represents an alternate source of WE for commercial applications and for biotechnological production of tailored WE in eukaryotic expression systems.
Collapse
Affiliation(s)
- Theresa Shalini
- Department of Food Safety and Analytical Quality Control Laboratory, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Asha Martin
- Department of Food Safety and Analytical Quality Control Laboratory, Council of Scientific and Industrial Research, Central Food Technological Research Institute, Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
78
|
Hapala I, Griac P, Holic R. Metabolism of Storage Lipids and the Role of Lipid Droplets in the Yeast Schizosaccharomyces pombe. Lipids 2020; 55:513-535. [PMID: 32930427 DOI: 10.1002/lipd.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Storage lipids, triacylglycerols (TAG), and steryl esters (SE), are predominant constituents of lipid droplets (LD) in fungi. In several yeast species, metabolism of TAG and SE is linked to various cellular processes, including cell division, sporulation, apoptosis, response to stress, and lipotoxicity. In addition, TAG are an important source for the generation of value-added lipids for industrial and biomedical applications. The fission yeast Schizosaccharomyces pombe is a widely used unicellular eukaryotic model organism. It is a powerful tractable system used to study various aspects of eukaryotic cellular and molecular biology. However, the knowledge of S. pombe neutral lipids metabolism is quite limited. In this review, we summarize and discuss the current knowledge of the homeostasis of storage lipids and of the role of LD in the fission yeast S. pombe with the aim to stimulate research of lipid metabolism and its connection with other essential cellular processes. We also discuss the advantages and disadvantages of fission yeast in lipid biotechnology and recent achievements in the use of S. pombe in the biotechnological production of valuable lipid compounds.
Collapse
Affiliation(s)
- Ivan Hapala
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griac
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
79
|
Zhou B, Fei W, Yang S, Yang F, Qu G, Tang W, Ou J, Peng D. Alteration of the fatty acid composition of Brassica napus L. via overexpression of phospholipid: Diacylglycerol acyltransferase 1 from Sapium sebiferum (L.) Roxb. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110562. [PMID: 32771163 DOI: 10.1016/j.plantsci.2020.110562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Sapium sebiferum (L.) Roxb. plays an important role in traditional Chinese medicine and is one of major woody oil tree in China. Phospholipid: diacylglycerol acyltransferase 1 (PDAT1), as an important catalytic enzyme for the formation of triacylglycerol (TAG), is mainly responsible for the transfer of an acyl group from the sn-2 position of phospholipids to the sn-3 position of sn-1, 2-diacylglycerol (DAG) to produce TAG and sn-1 lysophospholipids. The importance of PDAT1 in triacylglycerol biosynthesis has been illustrated in previous research, and at least 67 PDAT1 sequences have been identified from 31 organisms. However, little is known about the gene encoding PDAT1 in S. sebiferum (SsPDAT1), which is involved in seed oil biosynthesis. To explore the functional characteristics of SsPDAT1, we cloned and analyzed the full-length cDNA in the coding region of SsPDAT1, which consists of 2040 bp and encodes a putative protein of 680 amino acid (aa) residues. Thin-layer chromatography (TLC) analysis showed that recombinant SsPDAT1 could restore TAG accumulation in TAG-deficient mutant yeast (Saccharomyces cerevisiae) H1246, which revealed the enzyme activity of SsPDAT1. Moreover, transgenic Brassica napus L. W10 plants overexpressing SsPDAT1 showed significant increases of 19.6-28.9 % in linoleic acid levels but decreases of 27.3-37.1 % in linolenic acid. Furthermore, the total oil content increased by 8.1 %-10.8 % in SsPDAT1 transgenic seeds. These results confirmed the role of SsPDAT1 in stabilizing oil biosynthesis and suggested that SsPDAT1 could be exploitable to specifically regulate the oil composition of plants. These experimental results provide a new concept that may enable the industrial development of plants with high-linoleic-acid oil through overexpression of SsPDAT1 in S. sebiferum L.
Collapse
Affiliation(s)
- Bo Zhou
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China; Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China; Forestry Biotechnology Hunan Key Laboratories, Hunan, Changsha, 410004, China; National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, Changsha, 410004, Hunan, China; Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, Huitong, 438107, China.
| | - Wenjie Fei
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Shiquan Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Feng Yang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Gaoyi Qu
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Weiwei Tang
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Jianping Ou
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China
| | - Dan Peng
- Faculty of Bioscience and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, China; Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410018, Changsha, China.
| |
Collapse
|
80
|
Falarz LJ, Xu Y, Caldo KMP, Garroway CJ, Singer SD, Chen G. Characterization of the diversification of phospholipid:diacylglycerol acyltransferases in the green lineage. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2025-2038. [PMID: 32538516 DOI: 10.1111/tpj.14880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/03/2023]
Abstract
Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl-CoA-independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage. Some fundamental questions remain unanswered, such as how PDATs evolved in photosynthetic organisms and whether the evolution of terrestrial plant PDATs from a lineage of charophyte green algae diverges in enzyme function. As such, we used molecular evolutionary analysis and biochemical assays to address these questions. Our results indicated that PDAT underwent divergent evolution in the green lineage: PDATs exist in a wide range of plants and algae, but not in cyanobacteria. Although PDATs exhibit the conservation of several features, phylogenetic and selection-pressure analyses revealed that overall they evolved to be highly divergent, driven by different selection constraints. Positive selection, as one major driving force, may have resulted in enzymes with a higher functional importance in land plants than green algae. Further structural and mutagenesis analyses demonstrated that some amino acid sites under positive selection are critically important to PDAT structure and function, and may be central in lecithin:cholesterol acyltransferase family enzymes in general.
Collapse
Affiliation(s)
- Lucas J Falarz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| |
Collapse
|
81
|
Jeppson S, Mattisson H, Demski K, Lager I. A predicted transmembrane region in plant diacylglycerol acyltransferase 2 regulates specificity toward very-long-chain acyl-CoAs. J Biol Chem 2020; 295:15398-15406. [PMID: 32873712 PMCID: PMC7650248 DOI: 10.1074/jbc.ra120.013755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/24/2020] [Indexed: 11/27/2022] Open
Abstract
Triacylglycerols are the main constituent of seed oil. The specific fatty acid composition of this oil is strongly impacted by the substrate specificities of acyltransferases involved in lipid synthesis, such as the integral membrane enzyme diacylglycerol acyltransferase (DGAT). Two forms of DGAT, DGAT1 and DGAT2, are thought to contribute to the formation of seed oil, and previous characterizations of various DGAT2 enzymes indicate that these often are associated with the incorporation of unusual fatty acids. However, the basis of DGAT2's acyl-donor specificity is not known because of the inherent challenges of predicting structural features of integral membrane enzymes. The recent characterization of DGAT2 enzymes from Brassica napus reveals that DGAT2 enzymes with similar amino acid sequences exhibit starkly contrasting acyl-donor specificities. Here we have designed and biochemically tested a range of chimeric enzymes, substituting parts of these B. napus DGAT2 enzymes with each other, allowing us to pinpoint a region that dramatically affects the specificity toward 22:1-CoA. It may thus be possible to redesign the acyl-donor specificity of DGAT2 enzymes, potentially altering the fatty acid composition of seed oil. Further, the characterization of a DGAT2 chimera between Arabidopsis and B. napus demonstrates that the specificity regulated by this region is transferrable across species. The identified region contains two predicted transmembrane helices that appear to reoccur in a wide range of plant DGAT2 orthologues, suggesting that it is a general feature of plant DGAT2 enzymes.
Collapse
Affiliation(s)
- Simon Jeppson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Helena Mattisson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Kamil Demski
- Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
82
|
Wang X, Xin Y, Ren L, Sun Z, Zhu P, Ji Y, Li C, Xu J, Ma B. Positive dielectrophoresis-based Raman-activated droplet sorting for culture-free and label-free screening of enzyme function in vivo. SCIENCE ADVANCES 2020; 6:eabb3521. [PMID: 32821836 PMCID: PMC7413728 DOI: 10.1126/sciadv.abb3521] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/26/2020] [Indexed: 05/19/2023]
Abstract
The potential of Raman-activated cell sorting (RACS) is inherently limited by conflicting demands for signal quality and sorting throughput. Here, we present positive dielectrophoresis-based Raman-activated droplet sorting (pDEP-RADS), where a periodical pDEP force was exerted to trap fast-moving cells, followed by simultaneous microdroplet encapsulation and sorting. Screening of yeasts for triacylglycerol (TAG) content demonstrated near-theoretical-limit accuracy, ~120 cells min-1 throughput and full-vitality preservation, while sorting fatty acid degree of unsaturation (FA-DU) featured ~82% accuracy at ~40 cells min-1. From a yeast library expressing algal diacylglycerol acyltransferases (DGATs), a pDEP-RADS run revealed all reported TAG-synthetic variants and distinguished FA-DUs of enzyme products. Furthermore, two previously unknown DGATs producing low levels of monounsaturated fatty acid-rich TAG were discovered. This first demonstration of RACS for enzyme discovery represents hundred-fold saving in time consumables and labor versus culture-based approaches. The ability to automatically flow-sort resonance Raman-independent phenotypes greatly expands RACS' application.
Collapse
Affiliation(s)
- Xixian Wang
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Xin
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihui Ren
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Sun
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuetong Ji
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Qingdao Single-cell Biotechnology Co., Ltd., Qingdao, Shandong, China
| | - Chunyu Li
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Corresponding author. (B.M.); (J.X.)
| | - Bo Ma
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics and Shandong Institute of Energy Research, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
- University of Chinese Academy of Sciences, Beijing, China
- Corresponding author. (B.M.); (J.X.)
| |
Collapse
|
83
|
Chawla K, Sinha K, Kaur R, Bhunia RK. Identification and functional characterization of two acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) genes from forage sorghum (Sorghum bicolor) embryo. PHYTOCHEMISTRY 2020; 176:112405. [PMID: 32473393 DOI: 10.1016/j.phytochem.2020.112405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
Elevating the lipid content in high-biomass forage crops has emerged as a new research platform for increasing energy density and improving livestock production efficiency associated with improved human health beneficial meat and milk quality. To gain insights of triacylglycerol (TAG) biosynthesis in forage sorghum, two type-1 diacylglycerol acyltransferase (designated as SbDGAT1-1 and SbDGAT1-2) were characterized for its in vivo function. SbDGAT1-2 is more abundantly expressed in embryo and bran during the early stage of the grain development in comparison to SbDGAT1-1. Heterologous expression of SbDGAT1 genes in TAG deficient H1246 strain restored the TAG accumulation capability with high substrate predilection towards 16:0, 16:1 and 18:1 fatty acids (FA). In parallel, we have identified N-terminal intrinsically disordered region (IDR) in SbDGAT1 proteins. To test the efficacy of the N-terminal region, truncated variants of SbDGAT1-1 (designated as SbDGAT1-1(39-515) and SbDGAT1-1(89-515)) were generated and expressed in yeast H1246 strain. Deletion in the N-terminal region resulted in decreased accumulation of TAG and FA (16:0 and 18:0) when compared to the SbDGAT1-1 variant expressed in yeast H1246 strain. The present study provides significant insight in forage sorghum DGAT1 gene function, useful for enhancing the green-forage TAG content through metabolic engineering.
Collapse
Affiliation(s)
- Kirti Chawla
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Mohali, 140306, Punjab, India
| | - Kshitija Sinha
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Mohali, 140306, Punjab, India
| | - Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, New Delhi, 110026, India
| | - Rupam Kumar Bhunia
- Plant Tissue Culture and Genetic Engineering, National Agri-Food Biotechnology Institute (NABI), Mohali, 140306, Punjab, India.
| |
Collapse
|
84
|
Ghogare R, Chen S, Xiong X. Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Overproduction of Fatty Acids. Front Microbiol 2020; 11:1717. [PMID: 32849364 PMCID: PMC7418586 DOI: 10.3389/fmicb.2020.01717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/30/2020] [Indexed: 01/24/2023] Open
Abstract
The oleaginous yeast Yarrowia lipolytica has attracted much attention due to its ability to utilize a wide range of substrates to accumulate high lipid content and its flexibility for genetic manipulation. In this study, intracellular lipid metabolism in Y. lipolytica was tailored to produce fatty acid, a renewable oleochemical and precursor for production of advanced biofuels. Two main strategies, including blocking activation and peroxisomal uptake of fatty acids and elimination of biosynthesis of lipids, were employed to reduce fatty acid consumption by the native pathways in Y. lipolytica. Both genetic modifications improved fatty acid production. However, disruption of the genes responsible for assembly of nonpolar lipid molecules including triacylglycerols (TAGs) and steryl esters resulted in the deleterious effects on the cell growth. The gene tesA encoding thioesterase from Escherichia coli was expressed in the strain with disrupted faa genes encoding fatty acyl-CoA synthetases and pxa1 encoding peroxisomal acyl-CoA transporter, and the titer of fatty acids resulted in 2.3 g/L in shake flask culture, representing 11-fold improvement compared with the parent strain. Expressing the native genes encoding acetyl-CoA carboxylase (ACC) and hexokinase also increased fatty acid production, although the improvement was not as significant as that with tesA expression. Saturated fatty acids including palmitic acid (C16:0) and stearic acid (C18:0) increased remarkably in the fatty acid composition of the recombinant bearing tesA compared with the parent strain. The recombinant expressing tesA gene resulted in high lipid content, indicating the great fatty acid producing potential of Y. lipolytica. The results highlight the achievement of fatty acid overproduction without adverse effect on growth of the strain. Results of this study provided insight into the relationship between fatty acid and lipid metabolism in Y. lipolytica, confirming the avenue to reprogram lipid metabolism of this host for overproduction of renewable fatty acids.
Collapse
Affiliation(s)
- Rishikesh Ghogare
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Shulin Chen
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| | - Xiaochao Xiong
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, United States
| |
Collapse
|
85
|
Choudhary V, El Atab O, Mizzon G, Prinz WA, Schneiter R. Seipin and Nem1 establish discrete ER subdomains to initiate yeast lipid droplet biogenesis. J Cell Biol 2020; 219:e201910177. [PMID: 32349126 PMCID: PMC7337503 DOI: 10.1083/jcb.201910177] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/26/2020] [Accepted: 04/03/2020] [Indexed: 02/03/2023] Open
Abstract
Lipid droplets (LDs) are fat storage organelles that originate from the endoplasmic reticulum (ER). Relatively little is known about how sites of LD formation are selected and which proteins/lipids are necessary for the process. Here, we show that LDs induced by the yeast triacylglycerol (TAG)-synthases Lro1 and Dga1 are formed at discrete ER subdomains defined by seipin (Fld1), and a regulator of diacylglycerol (DAG) production, Nem1. Fld1 and Nem1 colocalize to ER-LD contact sites. We find that Fld1 and Nem1 localize to ER subdomains independently of each other and of LDs, but both are required for the subdomains to recruit the TAG-synthases and additional LD biogenesis factors: Yft2, Pex30, Pet10, and Erg6. These subdomains become enriched in DAG. We conclude that Fld1 and Nem1 are both necessary to recruit proteins to ER subdomains where LD biogenesis occurs.
Collapse
Affiliation(s)
- Vineet Choudhary
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ola El Atab
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Giulia Mizzon
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - William A. Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
86
|
Yang Y, Zhou Z, Li Y, Lv Y, Yang D, Yang S, Wu J, Li X, Gu Z, Sun X, Yang Y. Uncovering the role of a positive selection site of wax ester synthase/diacylglycerol acyltransferase in two closely related Stipa species in wax ester synthesis under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4159-4170. [PMID: 32309855 PMCID: PMC7475244 DOI: 10.1093/jxb/eraa194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/17/2020] [Indexed: 06/02/2023]
Abstract
Natural selection drives local adaptations of species to biotic or abiotic environmental stresses. As a result, adaptive phenotypic divergence can evolve among related species living in different habitats. However, the genetic foundation of this divergence process remains largely unknown. Two closely related alpine grass species, Stipa capillacea and Stipa purpurea, are distributed in different rainfall regions of northern Tibet. Here, we analyzed the drought tolerance of these two closely related Stipa species, and found that S. purpurea was more resistance to drought stress than S. capillacea. To further understand the genetic diversity behind their adaptation to drought environments, a comprehensive gene repertoire was generated using PacBio isoform and Illumina RNA sequencing technologies. Bioinformatics analyses revealed that differential transcripts were mainly enriched in the wax synthetic pathway, and a threonine residue at position 239 of WSD1 was identified as having undergone positive selection in S. purpurea. Using heterologous expression in the Saccharomyces cerevisiae mutant H1246, site-directed mutagenesis studies demonstrated that a positive selection site results in changes to the wax esters profile. This difference may play an important role in S. purpurea in response to drought conditions, indicating that S. purpurea has evolved specific strategies involving its wax biosynthetic pathway as part of its long-term adaptation to the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Yunqiang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhili Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqiu Lv
- College of Life Sciences, Changchun Normal University, Changchun, China
| | - Danni Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shihai Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jianshuang Wu
- Functional Biodiversity, Dahlem Center of Plant Sciences, Free University of Berlin, Berlin, Germany
| | - Xiong Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhijia Gu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
| | - Xudong Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yongping Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
87
|
Kubalová D, Káňovičová P, Veselá P, Awadová T, Džugasová V, Daum G, Malínský J, Balážová M. The lipid droplet protein Pgc1 controls the subcellular distribution of phosphatidylglycerol. FEMS Yeast Res 2020; 19:5524364. [PMID: 31247640 DOI: 10.1093/femsyr/foz045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The biosynthesis of yeast phosphatidylglycerol (PG) takes place in the inner mitochondrial membrane. Outside mitochondria, the abundance of PG is low. Here, we present evidence that the subcellular distribution of PG is maintained by the locally controlled enzymatic activity of the PG-specific phospholipase, Pgc1. A fluorescently labeled Pgc1 protein accumulates on the surface of lipid droplets (LD). We show, however, that LD are not only dispensable for Pgc1-mediated PG degradation, but do not even host any phospholipase activity of Pgc1. Our in vitro assays document the capability of LD-accumulated Pgc1 to degrade PG upon entry to the membranes of the endoplasmic reticulum, mitochondria and even of artificial phospholipid vesicles. Fluorescence recovery after photobleaching analysis confirms the continuous exchange of GFP-Pgc1 within the individual LD in situ, suggesting that a steady-state equilibrium exists between LD and membranes to regulate the immediate phospholipase activity of Pgc1. In this model, LD serve as a storage place and shelter Pgc1, preventing its untimely degradation, while both phospholipase activity and degradation of the enzyme occur in the membranes.
Collapse
Affiliation(s)
- Dominika Kubalová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Paulína Káňovičová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Petra Veselá
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic,14220 Prague, Czech Republic
| | - Thuraya Awadová
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic,14220 Prague, Czech Republic
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84215 Bratislava, Slovakia
| | - Günther Daum
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Jan Malínský
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic,14220 Prague, Czech Republic
| | - Mária Balážová
- Department of Membrane Biochemistry, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| |
Collapse
|
88
|
Vollheyde K, Yu D, Hornung E, Herrfurth C, Feussner I. The Fifth WS/DGAT Enzyme of the Bacterium Marinobacter aquaeolei VT8. Lipids 2020; 55:479-494. [PMID: 32434279 DOI: 10.1002/lipd.12250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/09/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022]
Abstract
Wax esters (WE) belong to the class of neutral lipids. They are formed by an esterification of a fatty alcohol and an activated fatty acid. Dependent on the chain length and desaturation degree of the fatty acid and the fatty alcohol moiety, WE can have diverse physicochemical properties. WE derived from monounsaturated long-chain acyl moieties are of industrial interest due to their very good lubrication properties. Whereas WE were obtained in the past from spermaceti organs of the sperm whale, industrial WE are nowadays mostly produced chemically from fossil fuels. In order to produce WE more sustainably, attempts to produce industrial WE in transgenic plants are steadily increasing. To achieve this, different combinations of WE producing enzymes are expressed in developing Arabidopsis thaliana or Camelina sativa seeds. Here we report the identification and characterization of a fifth wax synthase from the organism Marinobacter aquaeolei VT8, MaWSD5. It belongs to the class of bifunctional wax synthase/acyl-CoA:diacylglycerol O-acyltransferases (WSD). The protein was purified to homogeneity. In vivo and in vitro substrate analyses revealed that MaWSD5 is able to synthesize WE but no triacylglycerols. The protein produces WE from saturated and monounsaturated mid- and long-chain substrates. Arabidopsis thaliana seeds expressing a fatty acid reductase from Marinobacter aquaeolei VT8 and MaWSD5 produce WE. Main WE synthesized are 20:1/18:1 and 20:1/20:1. This makes MaWSD5 a suitable candidate for industrial WE production in planta.
Collapse
Affiliation(s)
- Katharina Vollheyde
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077, Goettingen, Germany
| | - Dan Yu
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077, Goettingen, Germany
| | - Ellen Hornung
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077, Goettingen, Germany
| | - Cornelia Herrfurth
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077, Goettingen, Germany.,Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077, Goettingen, Germany
| | - Ivo Feussner
- Department for Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, 37077, Goettingen, Germany.,Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077, Goettingen, Germany.,Department for Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077, Goettingen, Germany
| |
Collapse
|
89
|
Jamme F, Cinquin B, Gohon Y, Pereiro E, Réfrégiers M, Froissard M. Synchrotron multimodal imaging in a whole cell reveals lipid droplet core organization. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:772-778. [PMID: 32381780 PMCID: PMC7206545 DOI: 10.1107/s1600577520003847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 06/11/2023]
Abstract
A lipid droplet (LD) core of a cell consists mainly of neutral lipids, triacylglycerols and/or steryl esters (SEs). The structuration of these lipids inside the core is still under debate. Lipid segregation inside LDs has been observed but is sometimes suggested to be an artefact of LD isolation and chemical fixation. LD imaging in their native state and in unaltered cellular environments appears essential to overcome these possible technical pitfalls. Here, imaging techniques for ultrastructural study of native LDs in cellulo are provided and it is shown that LDs are organized structures. Cryo soft X-ray tomography and deep-ultraviolet (DUV) transmittance imaging are showing a partitioning of SEs at the periphery of the LD core. Furthermore, DUV transmittance and tryptophan/tyrosine auto-fluorescence imaging on living cells are combined to obtain complementary information on cell chemical contents. This multimodal approach paves the way for a new label-free organelle imaging technique in living cells.
Collapse
Affiliation(s)
- Frédéric Jamme
- DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Bertrand Cinquin
- DISCO Beamline, Synchrotron SOLEIL, 91192 Gif-sur-Yvette, France
| | - Yann Gohon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| | - Eva Pereiro
- MISTRAL Beamline, ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| | | | - Marine Froissard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles 78000, France
| |
Collapse
|
90
|
Xu Y, Caldo KMP, Falarz L, Jayawardhane K, Chen G. Kinetic improvement of an algal diacylglycerol acyltransferase 1 via fusion with an acyl-CoA binding protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:856-871. [PMID: 31991039 DOI: 10.1111/tpj.14708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/26/2019] [Accepted: 01/21/2020] [Indexed: 05/03/2023]
Abstract
Microalgal oils in the form of triacylglycerols (TAGs) are broadly used as nutritional supplements and biofuels. Diacylglycerol acyltransferase (DGAT) catalyzes the final step of acyl-CoA-dependent biosynthesis of TAG, and is considered a key target for manipulating oil production. Although a growing number of DGAT1s have been identified and over-expressed in some algal species, the detailed structure-function relationship, as well as the improvement of DGAT1 performance via protein engineering, remain largely untapped. Here, we explored the structure-function features of the hydrophilic N-terminal domain of DGAT1 from the green microalga Chromochloris zofingiensis (CzDGAT1). The results indicated that the N-terminal domain of CzDGAT1 was less disordered than those of the higher eukaryotic enzymes and its partial truncation or complete removal could substantially decrease enzyme activity, suggesting its possible role in maintaining enzyme performance. Although the N-terminal domains of animal and plant DGAT1s were previously found to bind acyl-CoAs, replacement of CzDGAT1 N-terminus by an acyl-CoA binding protein (ACBP) could not restore enzyme activity. Interestingly, the fusion of ACBP to the N-terminus of the full-length CzDGAT1 could enhance the enzyme affinity for acyl-CoAs and augment protein accumulation levels, which ultimately drove oil accumulation in yeast cells and tobacco leaves to higher levels than the full-length CzDGAT1. Overall, our findings unravel the distinct features of the N-terminus of algal DGAT1 and provide a strategy to engineer enhanced performance in DGAT1 via protein fusion, which may open a vista in generating improved membrane-bound acyl-CoA-dependent enzymes and boosting oil biosynthesis in plants and oleaginous microorganisms.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Lucas Falarz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Kethmi Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
91
|
Lundquist PK, Shivaiah KK, Espinoza-Corral R. Lipid droplets throughout the evolutionary tree. Prog Lipid Res 2020; 78:101029. [PMID: 32348789 DOI: 10.1016/j.plipres.2020.101029] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022]
Abstract
Intracellular lipid droplets are utilized for lipid storage and metabolism in organisms as evolutionarily diverse as animals, fungi, plants, bacteria, and archaea. These lipid droplets demonstrate great diversity in biological functions and protein and lipid compositions, yet fundamentally share common molecular and ultrastructural characteristics. Lipid droplet research has been largely fragmented across the diversity of lipid droplet classes and sub-classes. However, we suggest that there is great potential benefit to the lipid community in better integrating the lipid droplet research fields. To facilitate such integration, we survey the protein and lipid compositions, functional roles, and mechanisms of biogenesis across the breadth of lipid droplets studied throughout the natural world. We depict the big picture of lipid droplet biology, emphasizing shared characteristics and unique differences seen between different classes. In presenting the known diversity of lipid droplets side-by-side it becomes necessary to offer for the first time a consistent system of categorization and nomenclature. We propose a division into three primary classes that reflect their sub-cellular location: i) cytoplasmic lipid droplets (CYTO-LDs), that are present in the eukaryotic cytoplasm, ii) prokaryotic lipid droplets (PRO-LDs), that exist in the prokaryotic cytoplasm, and iii) plastid lipid droplets (PL-LDs), that are found in plant plastids, organelles of photosynthetic eukaryotes. Within each class there is a remarkable array of sub-classes displaying various sizes, shapes and compositions. A more integrated lipid droplet research field will provide opportunities to better build on discoveries and accelerate the pace of research in ways that have not been possible.
Collapse
Affiliation(s)
- Peter K Lundquist
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA.
| | - Kiran-Kumar Shivaiah
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Roberto Espinoza-Corral
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
92
|
Renne MF, Klug YA, Carvalho P. Lipid droplet biogenesis: A mystery "unmixing"? Semin Cell Dev Biol 2020; 108:14-23. [PMID: 32192830 DOI: 10.1016/j.semcdb.2020.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022]
Abstract
Lipid droplets (LDs) are versatile organelles with central roles in lipid and energy metabolism in all eukaryotes. They primarily buffer excess fatty acids by storing them as neutral lipids, mainly triglycerides and steryl esters. The neutral lipids form a core, surrounded by a unique phospholipid monolayer coated with a defined set of proteins. Thus, the architecture of LDs sets them apart from all other membrane-bound organelles. The origin of LDs remained controversial for a long time. However, it has become clear that their biogenesis occurs at the endoplasmic reticulum (ER) and is a lipid driven process. LD formation is intiatied by the demixing of neutral lipids from membrane phospholipids, leading to the formation of a neutral lipid "lens" like structure between the leaflets of the ER bilayer. As this lens grows, it buds out of the membrane towards the cytosol to give rise to a LD. Recent biophysical and cell biological experiments indicate that LD biogenesis occurs at specific ER domains. These domains are enriched in various proteins required for normal LD formation and possibly have a lipid composition distinct from the remaining ER membrane. Here, we describe the prevailing model for LD formation and discuss recent insights on how proteins organize ER domains involved in LD biogenesis.
Collapse
Affiliation(s)
- Mike F Renne
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
93
|
Ranganathan PR, Nawada N, Narayanan AK, Rao DKV. Triglyceride deficiency and diacylglycerol kinase1 activity lead to the upregulation of mevalonate pathway in yeast: A study for the development of potential yeast platform for improved production of triterpenoid. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158661. [PMID: 32058036 DOI: 10.1016/j.bbalip.2020.158661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Besides energy storage and membrane biogenesis, lipids are known for their numerous biological functions. The two essential lipids, diacylglycerol (DG) and phosphatidic acid (PA), are shown to be associated with cell signalling processes. In this study, we examined whether triglyceride-deficient yeast mutants (tgΔ), dga1Δ and dga1Δlro1Δ, may play an important role in mevalonate (MEV) pathway regulation. Our metabolite analyses revealed that tgΔ cells showed high levels of squalene (SQ) and ergosterol (ERG), which are key indicators of MEV pathway activity. In addition, gene expression studies indicated that the MEV pathway genes in tgΔ cells were significantly upregulated. Interestingly, tgΔ cells exhibited high diacylglycerol kinase1 (DGK1) expression. Furthermore, DGK1 overexpression in WT and tgΔ phenotypes causes a substantial elevation in SQ and ERG levels, and we also found a significant increase in transcript levels of MEV pathway genes, confirming the new role of DGK1 in MEV pathway regulation. This suggests that high DG phosphorylation activity increases the PA pool that may induce the upregulation of MEV pathway in tgΔ cells. The induced MEV pathway is one of the key strategies in the field of synthetic biology for improved production of terpenoids in yeast. Thus, to examine whether increased endogenous MEV pathway flux can be redirected to triterpenoid, β-Amyrin synthase gene was heterologously expressed in DGK1 overexpressing tgΔ cells that led to significant production of β-Amyrin, a natural triterpenoid. In conclusion, our findings provide a novel strategy to increase MEV pathway precursors by modulating endogenous signal lipids for improved production of terpenoids.
Collapse
Affiliation(s)
- Poornima Ramani Ranganathan
- Biochemistry Laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, Allalasandra, GKVK (post), Bangalore 560065, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Niveditha Nawada
- Biochemistry Laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, Allalasandra, GKVK (post), Bangalore 560065, India
| | - Ananth Krishna Narayanan
- Biochemistry Laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, Allalasandra, GKVK (post), Bangalore 560065, India
| | - D K Venkata Rao
- Biochemistry Laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, Allalasandra, GKVK (post), Bangalore 560065, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
94
|
Wang B, Zhao H. Unleashing the power of energy storage: Engineering β-oxidation pathways for polyketide production. Synth Syst Biotechnol 2020; 5:21-22. [PMID: 32042931 PMCID: PMC6997112 DOI: 10.1016/j.synbio.2020.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/06/2023] Open
Abstract
Overproduction of polyketides has been a challenge for metabolic engineering for decades. However, recent studies have demonstrated that in both native host and heterologous host, engineering β -oxidation pathways can lead to dramatic improvement of polyketide production.
Collapse
Affiliation(s)
- Bin Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huimin Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
95
|
Yuan Y, Arondel V, Domergue F. Characterization and heterologous expression of three DGATs from oil palm (Elaeis guineensis) mesocarp in Saccharomyces cerevisiae. Biochimie 2020; 169:18-28. [PMID: 31536755 DOI: 10.1016/j.biochi.2019.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
Oil palm (Elaeis guineensis) can accumulate up to 88% oil in fruit mesocarp. A previous transcriptome study of oil palm fruits indicated that genes coding for three diacylglycerol acyltransferases (DGATs), designated as EgDGAT1_3, EgDGAT2_2 and EgWS/DGAT_1 (according to Rosli et al., 2018) were highly expressed in mesocarp during oil accumulation. In the present study, the corresponding open reading frames were isolated, and characterized by heterologous expression in the mutant yeast H1246, which is devoid of neutral lipid synthesis. Expression of EgDGAT1_3 or EgDGAT2_2 could restore TAG synthesis, confirming that both proteins are true DGAT. In contrast, expression of EgWS/DGAT_1 resulted in the synthesis of fatty acid isoamyl esters (FAIEs) with saturated long-chain and very-long-chain fatty acids. In the presence of exogenously supplied fatty alcohols, EgWS/DGAT_1 was able to produce wax esters, indicating that EgWS/DGAT_1 codes for an acyltransferase with wax ester synthase but no DGAT activity. Finally, the complete wax ester biosynthetic pathway was reconstituted in yeast by coexpressing EgWS/DGAT_1 with a fatty acyl reductase from Tetrahymena thermophila. Altogether, our results characterized two novel DGATs from oil palm as well as a putative wax ester synthase that preferentially using medium chain fatty alcohols and saturated very-long chain fatty acids as substrates.
Collapse
Affiliation(s)
- Yijun Yuan
- Laboratoire de Biogenèse Membranaire, CNRS - University of Bordeaux - UMR 5200, Bâtiment A3 - INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux - CS 20032, 33140, Villenave d'Ornon, France
| | - Vincent Arondel
- Laboratoire de Biogenèse Membranaire, CNRS - University of Bordeaux - UMR 5200, Bâtiment A3 - INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux - CS 20032, 33140, Villenave d'Ornon, France
| | - Frédéric Domergue
- Laboratoire de Biogenèse Membranaire, CNRS - University of Bordeaux - UMR 5200, Bâtiment A3 - INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux - CS 20032, 33140, Villenave d'Ornon, France.
| |
Collapse
|
96
|
Csáky Z, Garaiová M, Kodedová M, Valachovič M, Sychrová H, Hapala I. Squalene lipotoxicity in a lipid droplet‐less yeast mutant is linked to plasma membrane dysfunction. Yeast 2020; 37:45-62. [DOI: 10.1002/yea.3454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zsófia Csáky
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Martina Garaiová
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Marie Kodedová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Martin Valachovič
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| | - Hana Sychrová
- Department of Membrane Transport, Division BIOCEV Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
| | - Ivan Hapala
- Department of Membrane Biochemistry Institute of Animal Biochemistry and Genetics, Centre of Biosciences of the Slovak Academy of Sciences Bratislava Slovakia
| |
Collapse
|
97
|
Lager I, Jeppson S, Gippert AL, Feussner I, Stymne S, Marmon S. Acyltransferases Regulate Oil Quality in Camelina sativa Through Both Acyl Donor and Acyl Acceptor Specificities. FRONTIERS IN PLANT SCIENCE 2020; 11:1144. [PMID: 32922411 PMCID: PMC7456936 DOI: 10.3389/fpls.2020.01144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/14/2020] [Indexed: 05/03/2023]
Abstract
Camelina sativa is an emerging biotechnology oil crop. However, more information is needed regarding its innate lipid enzyme specificities. We have therefore characterized several triacylglycerol (TAG) producing enzymes by measuring in vitro substrate specificities using different combinations of acyl-acceptors (diacylglycerol, DAG) and donors. Specifically, C. sativa acyl-CoA:diacylglycerol acyltransferase (DGAT) 1 and 2 (which both use acyl-CoA as acyl donor) and phospholipid:diacylglycerol acyltransferase (PDAT, with phosphatidylcoline as acyl donor) were studied. The results show that the DGAT1 and DGAT2 specificities are complementary, with DGAT2 exhibiting a high specificity for acyl acceptors containing only polyunsaturated fatty acids (FAs), whereas DGAT1 prefers acyl donors with saturated and monounsaturated FAs. Furthermore, the combination of substrates that resulted in the highest activity for DGAT2, but very low activity for DGAT1, corresponds to TAG species previously shown to increase in C. sativa seeds with downregulated DGAT1. Similarly, the combinations of substrates that gave the highest PDAT1 activity were also those that produce the two TAG species (54:7 and 54:8 TAG) with the highest increase in PDAT overexpressing C. sativa seeds. Thus, the in vitro data correlate well with the changes in the overall fatty acid profile and TAG species in C. sativa seeds with altered DGAT1 and PDAT activity. Additionally, in vitro studies of C. sativa phosphatidycholine:diacylglycerol cholinephosphotransferase (PDCT), another activity involved in TAG biosynthesis, revealed that PDCT accepts substrates with different desaturation levels. Furthermore, PDCT was unable to use DAG with ricineoleyl groups, and the presence of this substrate also inhibited PDCT from using other DAG-moieties. This gives insights relating to previous in vivo studies regarding this enzyme.
Collapse
Affiliation(s)
- Ida Lager
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Simon Jeppson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anna-Lena Gippert
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Sten Stymne
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sofia Marmon
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- *Correspondence: Sofia Marmon,
| |
Collapse
|
98
|
Liu D, Ji H, Yang Z. Functional Characterization of Three Novel Genes Encoding Diacylglycerol Acyltransferase (DGAT) from Oil-Rich Tubers of Cyperus esculentus. PLANT & CELL PHYSIOLOGY 2020; 61:118-129. [PMID: 31532486 DOI: 10.1093/pcp/pcz184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/12/2019] [Indexed: 05/06/2023]
Abstract
Cyperus esculentus is probably the only plant that is known to accumulate large amounts of oil in its tubers. However, the underlying metabolic mechanism and regulatory factors involved in oil synthesis of tubers are still largely unclear. In this study, one gene encoding type I diacylglycerol acyltransferase (DGAT) (CeDGAT1) and two genes encoding type II DGAT (CeDGAT2a and CeDGAT2b) from C. esculentus were identified and functionally analyzed. All three DGAT genes were found to be expressed in tuber, root and leaf tissues. CeDGAT1 is highly expressed in roots and leaves, whereas CeDGAT2b is dominantly expressed in tubers. Furthermore, the temporal expression pattern of CeDGAT2b is well coordinated with the oil accumulation in developing tubers. When each CeDGAT was heterologously expressed in triacylglycerol (TAG)-deficient mutant of Saccharomyces cerevisiae, Arabidopsis thaliana wild type or its TAG1 mutant with AtDGAT1 disruption, only CeDGAT2b showed the ability to restore TAG biosynthesis with lipid body formation in yeast mutant, enhance seed oil production of Arabidopsis wild type and rescue multiple seed phenotypes of TAG1 mutant. In addition, CeDGAT2b was shown to have a substrate preference for unsaturated fatty acids toward TAG synthesis. Taken together, our results indicated that CeDGAT2b from C. esculentus is an actively functional protein and is most likely the major contributor to tuber oil biosynthesis containing common fatty acids, in contrast to oil-rich seeds and fruits where DGAT1 plays a more central role than DGAT2 in oil production accumulating normal fatty acids, whereas DGAT2 is a primary regulator for oil synthesis rich in unusual fatty acids.
Collapse
Affiliation(s)
- Dantong Liu
- Key Lab of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongying Ji
- Key Lab of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenle Yang
- Key Lab of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
99
|
Nguyen T, Xu Y, Abdel-Hameed M, Sorensen JL, Singer SD, Chen G. Characterization of a Type-2 Diacylglycerol Acyltransferase from Haematococcus pluvialis Reveals Possible Allostery of the Recombinant Enzyme. Lipids 2019; 55:425-433. [PMID: 31879987 DOI: 10.1002/lipd.12210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/24/2022]
Abstract
Haematococcus pluvialis is a green microalga used in the algal biotechnology industry that can accumulate considerable amounts of storage triacylglycerol (TAG) and astaxanthin, which is a high-value carotenoid with strong antioxidant activity, under stress conditions. Diacylglycerol acyltransferase (DGAT) catalyzes the last step of the acyl-CoA-dependent TAG biosynthesis and appears to represent a bottleneck in algal TAG formation. In this study, putative H. pluvialis DGAT2 cDNA (HpDGAT2A, B, D and E) were identified from a transcriptome database and were subjected to sequence-based in silico analyses. The coding sequences of HpDGAT2B, D, and E were then isolated and characterized through heterologous expression in a TAG-deficient Saccharomyces cerevisiae strain H1246. The expression of HpDGAT2D allowed the recovery of TAG biosynthesis in this yeast mutant, and further in vitro enzymatic assays confirmed that the recombinant HpDGAT2D possessed strong DGAT activity. Interestingly, the recombinant HpDGAT2D displayed sigmoidal kinetics in response to increasing acyl-CoA concentrations, which has not been reported in plant or algal DGAT2 in previous studies.
Collapse
Affiliation(s)
- Trinh Nguyen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Mona Abdel-Hameed
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - John L Sorensen
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.,Department of Biological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
100
|
Zhao J, Bi R, Li S, Zhou D, Bai Y, Jing G, Zhang K, Zhang W. Genome-wide analysis and functional characterization of Acyl-CoA:diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. JOURNAL OF PLANT PHYSIOLOGY 2019; 242:153019. [PMID: 31437808 DOI: 10.1016/j.jplph.2019.153019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT) is a key enzyme in the Kennedy pathway of triacylglycerol (TAG) synthesis. It catalyzes the acyl-CoA-dependent acylation of sn-1, 2-diacylglycerol to form TAG. DGATs in soybean (Glycine max) have been reported, but their functions are largely unclear. Here we cloned three members of DGAT1 and four members of DGAT2 family from soybean, named GmDGAT1A to GmDGAT1C, and GmDGAT2A to GmDGAT2D, respectively. GmDGAT1A and GmDGAT1C were expressed at a high level in immature seeds, GmDGAT2B in mature seeds, and GmDGAT2C in older leaves. The seven genes were transformed into the H1246 quadruple mutant yeast strain, in which GmDGAT1A, GmDGAT1B, GmDGAT1C, GmDGAT2A, and GmDGAT2B had the ability to produce TAG. Six genes were transformed into Arabidopsis respectively, and constitutive expression of GmDGAT1A and GmDGAT1B resulted in an increase in oil content at the cost of reduced protein content in seeds. Overexpression of GmDGAT1A produced heavier weight of individual seed, but did not affect the weight of total seeds from a plant. Our results reveal the functions of soybean DGATs in seed oil synthesis using transgenic Arabidopsis. The implications for the biotechnological modification of the oil contents in soybeans by altering DGAT expression are discussed.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China; College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Rongrong Bi
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Shuxiang Li
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Dan Zhou
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Yang Bai
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guangqin Jing
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Kewei Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Wenhua Zhang
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|