51
|
Li L, He L, Wu D, Chen L, Jiang Z. Pannexin-1 channels and their emerging functions in cardiovascular diseases. Acta Biochim Biophys Sin (Shanghai) 2015; 47:391-6. [PMID: 25921414 DOI: 10.1093/abbs/gmv028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/04/2015] [Indexed: 11/15/2022] Open
Abstract
Pannexin-1, Pannexin-2, and Pannexin-3 are three members of the Pannexin family of channel-forming glycoprotein. Their primary function is defined by their ability to form single-membrane channels. Pannexin-1 ubiquitously exists in many cells and organs throughout the body and is specially distributed in the circulatory system, while the expressions of Pannexin-2 and Pannexin-3 are mostly restricted to organs and tissues. Pannexin-1 oligomers have been shown to be functional single membrane channels that connect intracellular and extracellular compartments and are not intercellular channels in appositional membranes. The physiological functions of Pannexin-1 are to link to the adenosine triphosphate efflux that acts as a paracrine signal, and regulate cellular inflammasomes in a variety of cell types under physiological and pathophysiological conditions. However, there are still many functions to be explored. This review summarizes recent reports and discusses the role of Pannexin-1 in cardiovascular diseases, including ischemia, arrhythmia, cardiac fibrosis, and hypertension. Pannexin-1 has been suggested as an exciting, clinically relevant target in cardiovascular diseases.
Collapse
Affiliation(s)
- Lanfang Li
- Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Lu He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Di Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang 421001, China
| | - Zhisheng Jiang
- Post-doctoral Mobile Stations for Basic Medicine, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
52
|
Diezmos EF, Sandow SL, Perera DS, King DW, Bertrand PP, Liu L. Pannexin-2 is expressed in the human colon with extensive localization in the enteric nervous system. Neurogastroenterol Motil 2015; 27:672-83. [PMID: 25773474 DOI: 10.1111/nmo.12541] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/16/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pannexin-2 (Panx2) is a member of the novel group of membrane spanning protein channels present in the central nervous system. Limited studies have examined Panx2 in the intestine, where it may have important physiological roles. The present study characterized Panx2 expression and localization in the human colon in health and disease states. METHODS Immunofluorescence determined Panx2 localization and co-localization, and quantitative real-time PCR and Western blot determined gene and protein expression in ulcerative colitis (UC), Crohn's disease (CD), and control human colon. KEY RESULTS Panx2 was widely expressed in myenteric and submucosal ganglia, particularly in the cytoplasm of neurons. Panx2 was also expressed on smooth muscle of the muscularis and blood vessels, some non-lymphoid leukocytes, mast cells, and mucosal epithelial cells. Co-localization of Panx2 occurred with β-tubulin, neuronal nitric oxide synthase, substance P, vesicular acetylcholine transporter, and calcitonin gene-related peptide, indicating widespread Panx2 expression in extrinsic and intrinsic neurons. Molecular studies revealed a 3.4-fold higher level of Panx2 mRNA in ascending compared to sigmoid muscularis (p < 0.05), despite similar protein levels. Similarly, UC muscularis showed a 35-fold up-regulation in Panx2 mRNA, but not in protein (p < 0.05). CONCLUSIONS & INFERENCES Here, we demonstrated the dense expression of Panx2 in the enteric nervous system and the co-localization of Panx2 with a spectrum of neuronal markers, indicating that Panx2 may be involved in mediating neurotransmission in the colon. The substantial increase in Panx2 mRNA in UC muscle but not protein suggests that the Panx2 translation process may be disrupted in UC.
Collapse
Affiliation(s)
- E F Diezmos
- School of Medical Sciences, UNSW Australia, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
53
|
Boassa D, Nguyen P, Hu J, Ellisman MH, Sosinsky GE. Pannexin2 oligomers localize in the membranes of endosomal vesicles in mammalian cells while Pannexin1 channels traffic to the plasma membrane. Front Cell Neurosci 2015; 8:468. [PMID: 25698922 PMCID: PMC4313697 DOI: 10.3389/fncel.2014.00468] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 12/27/2014] [Indexed: 12/13/2022] Open
Abstract
Pannexin2 (Panx2) is the largest of three members of the pannexin proteins. Pannexins are topologically related to connexins and innexins, but serve different functional roles than forming gap junctions. We previously showed that pannexins form oligomeric channels but unlike connexins and innexins, they form only single membrane channels. High levels of Panx2 mRNA and protein in the Central Nervous System (CNS) have been documented. Whereas Pannexin1 (Panx1) is fairly ubiquitous and Pannexin3 (Panx3) is found in skin and connective tissue, both are fully glycosylated, traffic to the plasma membrane and have functions correlated with extracellular ATP release. Here, we describe trafficking and subcellular localizations of exogenous Panx2 and Panx1 protein expression in MDCK, HeLa, and HEK 293T cells as well as endogenous Panx1 and Panx2 patterns in the CNS. Panx2 was found in intracellular localizations, was partially N-glycosylated, and localizations were non-overlapping with Panx1. Confocal images of hippocampal sections immunolabeled for the astrocytic protein GFAP, Panx1 and Panx2 demonstrated that the two isoforms, Panx1 and Panx2, localized at different subcellular compartments in both astrocytes and neurons. Using recombinant fusions of Panx2 with appended genetic tags developed for correlated light and electron microscopy and then expressed in different cell lines, we determined that Panx2 is localized in the membrane of intracellular vesicles and not in the endoplasmic reticulum as initially indicated by calnexin colocalization experiments. Dual immunofluorescence imaging with protein markers for specific vesicle compartments showed that Panx2 vesicles are early endosomal in origin. In electron tomographic volumes, cross-sections of these vesicles displayed fine structural details and close proximity to actin filaments. Thus, pannexins expressed at different subcellular compartments likely exert distinct functional roles, particularly in the nervous system.
Collapse
Affiliation(s)
- Daniela Boassa
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | - Phuong Nguyen
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | - Junru Hu
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA ; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Gina E Sosinsky
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA, USA ; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
54
|
Le Vasseur M, Lelowski J, Bechberger JF, Sin WC, Naus CC. Pannexin 2 protein expression is not restricted to the CNS. Front Cell Neurosci 2014; 8:392. [PMID: 25505382 PMCID: PMC4243559 DOI: 10.3389/fncel.2014.00392] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/03/2014] [Indexed: 11/27/2022] Open
Abstract
Pannexins (Panx) are proteins homologous to the invertebrate gap junction proteins called innexins (Inx) and are traditionally described as transmembrane channels connecting the intracellular and extracellular compartments. Three distinct Panx paralogs (Panx1, Panx2 and Panx3) have been identified in vertebrates but previous reports on Panx expression and functionality focused primarily on Panx1 and Panx3 proteins. Several gene expression studies reported that Panx2 transcript is largely restricted to the central nervous system (CNS) hence suggesting that Panx2 might serve an important role in the CNS. However, the lack of suitable antibodies prevented the creation of a comprehensive map of Panx2 protein expression and Panx2 protein localization profile is currently mostly inferred from the distribution of its transcript. In this study, we characterized novel commercial monoclonal antibodies and surveyed Panx2 expression and distribution at the mRNA and protein level by real-time qPCR, Western blotting and immunofluorescence. Panx2 protein levels were readily detected in every tissue examined, even when transcriptional analysis predicted very low Panx2 protein expression. Furthermore, our results indicate that Panx2 transcriptional activity is a poor predictor of Panx2 protein abundance and does not correlate with Panx2 protein levels. Despite showing disproportionately high transcript levels, the CNS expressed less Panx2 protein than any other tissues analyzed. Additionally, we showed that Panx2 protein does not localize at the plasma membrane like other gap junction proteins but remains confined within cytoplasmic compartments. Overall, our results demonstrate that the endogenous expression of Panx2 protein is not restricted to the CNS and is more ubiquitous than initially predicted.
Collapse
Affiliation(s)
- Maxence Le Vasseur
- Department of Cellular and Physiological Sciences, The Life Science Institute, University of British Columbia Vancouver, BC, Canada
| | - Jonathan Lelowski
- Department of Cellular and Physiological Sciences, The Life Science Institute, University of British Columbia Vancouver, BC, Canada
| | - John F Bechberger
- Department of Cellular and Physiological Sciences, The Life Science Institute, University of British Columbia Vancouver, BC, Canada
| | - Wun-Chey Sin
- Department of Cellular and Physiological Sciences, The Life Science Institute, University of British Columbia Vancouver, BC, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, The Life Science Institute, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
55
|
Abstract
In less than a decade, a small family of channel-forming glycoproteins, named pannexins, have captured the interest of many biologists, in large part due to their association with common diseases, ranging from cancers to neuropathies to infectious diseases. Although the pannexin family consists of only three members (Panx1, Panx2 and Panx3), one or more of these pannexins are expressed in virtually every mammalian organ, implicating their potential role in a diverse array of pathophysiologies. Panx1 is the most extensively studied, but features of this pannexin must be cautiously extrapolated to the other pannexins, as for example we now know that Panx2, unlike Panx1, exhibits unique properties such as a tendency to be retained within intracellular compartments. In the present review, we assess the biochemical and channel features of pannexins focusing on the literature which links these unique molecules to over a dozen diseases and syndromes. Although no germ-line mutations in genes encoding pannexins have been linked to any diseases, many cases have shown that high pannexin expression is associated with disease onset and/or progression. Disease may also occur, however, when pannexins are underexpressed, highlighting that pannexin expression must be exquisitely regulated. Finally, we discuss some of the most pressing questions and controversies in the pannexin field as the community seeks to uncover the full biological relevance of pannexins in healthy organs and during disease.
Collapse
|
56
|
Schalper KA, Carvajal-Hausdorf D, Oyarzo MP. Possible role of hemichannels in cancer. Front Physiol 2014; 5:237. [PMID: 25018732 PMCID: PMC4073485 DOI: 10.3389/fphys.2014.00237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022] Open
Abstract
In humans, connexins (Cxs) and pannexins (Panxs) are the building blocks of hemichannels. These proteins are frequently altered in neoplastic cells and have traditionally been considered as tumor suppressors. Alteration of Cxs and Panxs in cancer cells can be due to genetic, epigenetic and post-transcriptional/post-translational events. Activated hemichannels mediate the diffusional membrane transport of ions and small signaling molecules. In the last decade hemichannels have been shown to participate in diverse cell processes including the modulation of cell proliferation and survival. However, their possible role in tumor growth and expansion remains largely unexplored. Herein, we hypothesize about the possible role of hemichannels in carcinogenesis and tumor progression. To support this theory, we summarize the evidence regarding the involvement of hemichannels in cell proliferation and migration, as well as their possible role in the anti-tumor immune responses. In addition, we discuss the evidence linking hemichannels with cancer in diverse models and comment on the current technical limitations for their study.
Collapse
Affiliation(s)
- Kurt A Schalper
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile ; Department of Pathology, Yale School of Medicine New Haven, CT, USA
| | | | - Mauricio P Oyarzo
- Servicio Anatomía Patológica, Clínica Alemana de Santiago, Facultad de Medicina Clinica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
57
|
Pannexins form gap junctions with electrophysiological and pharmacological properties distinct from connexins. Sci Rep 2014; 4:4955. [PMID: 24828343 PMCID: PMC4021813 DOI: 10.1038/srep04955] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 04/22/2014] [Indexed: 11/17/2022] Open
Abstract
Stable expression of pannexin 1 (Panx1) and pannexin 3 (Panx3) resulted in functional gap junctions (GJs) in HeLa cells, but not in Neuro-2a (N2a) or PC-12 cells. The glycosylation pattern of expressed Panx1 varied greatly among different cell lines. In contrast to connexin (Cx) containing GJs (Cx-GJs), junctional conductance (Gj) of pannexin GJs (Panx-GJs) is very less sensitive to junctional voltage. Both Panx1 and Panx3 junctions favoured anionic dyes over cations to permeate. Though, carbenoxolone (CBX) and probenecid blocked Panx1 hemichannel activity, they had no effect on Panx1-GJs or Panx3-GJs. Extracellular loop 1 (E1) of Panx1 possibly bears the binding pocket. The Cx-GJ blocker heptanol blocked neither Panx1 hemichannel nor Panx-GJs. Unlike the GJs formed by most Cxs, CO2 did not uncouple Panx-GJs completely. Oxygen and glucose deprivation (OGD) caused lesser uncoupling of Panx-GJs compared to Cx43-GJs. These findings demonstrate properties of Panx-GJs that are distinctly different from Cx-GJs.
Collapse
|
58
|
Shoji KF, Sáez PJ, Harcha PA, Aguila HL, Sáez JC. Pannexin1 channels act downstream of P2X 7 receptors in ATP-induced murine T-cell death. Channels (Austin) 2014; 8:142-56. [PMID: 24590064 DOI: 10.4161/chan.28122] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X 7 receptors (P2X 7Rs). However, a link between P2X 7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1-/- mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1-/- mice, in which levels of P2X 7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X 7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.
Collapse
Affiliation(s)
- Kenji F Shoji
- Departamento de Fisiología; Pontificia Universidad Católica de Chile; Santiago, Chile
| | - Pablo J Sáez
- Departamento de Fisiología; Pontificia Universidad Católica de Chile; Santiago, Chile
| | - Paloma A Harcha
- Departamento de Fisiología; Pontificia Universidad Católica de Chile; Santiago, Chile
| | - Hector L Aguila
- Department of Immunology; University of Connecticut Health Center; Farmington, CT USA
| | - Juan C Sáez
- Departamento de Fisiología; Pontificia Universidad Católica de Chile; Santiago, Chile; Instituto Milenio; Centro Interdisciplinario de Neurociencias de Valparaíso; Valparaíso, Chile
| |
Collapse
|
59
|
Makarenkova HP, Shestopalov VI. The role of pannexin hemichannels in inflammation and regeneration. Front Physiol 2014; 5:63. [PMID: 24616702 PMCID: PMC3933922 DOI: 10.3389/fphys.2014.00063] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/02/2014] [Indexed: 12/19/2022] Open
Abstract
Tissue injury involves coordinated systemic responses including inflammatory response, targeted cell migration, cell-cell communication, stem cell activation and proliferation, and tissue inflammation and regeneration. The inflammatory response is an important prerequisite for regeneration. Multiple studies suggest that extensive cell-cell communication during tissue regeneration is coordinated by purinergic signaling via extracellular adenosine triphosphate (ATP). Most recent data indicates that ATP release for such communication is mediated by hemichannels formed by connexins and pannexins. The Pannexin family consists of three vertebrate proteins (Panx 1, 2, and 3) that have low sequence homology with other gap junction proteins and were shown to form predominantly non-junctional plasma membrane hemichannels. Pannexin-1 (Panx1) channels function as an integral component of the P2X/P2Y purinergic signaling pathway and is arguably the major contributor to pathophysiological ATP release. Panx1 is expressed in many tissues, with highest levels detected in developing brain, retina and skeletal muscles. Panx1 channel expression and activity is reported to increase significantly following injury/inflammation and during regeneration and differentiation. Recent studies also report that pharmacological blockade of the Panx1 channel or genetic ablation of the Panx1 gene cause significant disruption of progenitor cell migration, proliferation, and tissue regeneration. These findings suggest that pannexins play important roles in activation of both post-injury inflammatory response and the subsequent process of tissue regeneration. Due to wide expression in multiple tissues and involvement in diverse signaling pathways, pannexins and connexins are currently being considered as therapeutic targets for traumatic brain or spinal cord injuries, ischemic stroke and cancer. The precise role of pannexins and connexins in the balance between tissue inflammation and regeneration needs to be further understood.
Collapse
Affiliation(s)
- Helen P Makarenkova
- Department of Cell and Molecular Biology, The Scripps Research Institute La Jolla, CA, USA
| | - Valery I Shestopalov
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami School of Medicine Miami, FL, USA ; Department of Cell Biology and Anatomy, Vavilov Institute for General Genetics Moscow, Russia
| |
Collapse
|
60
|
Abstract
The pannexins (Panxs) are a family of chordate proteins homologous to the invertebrate gap junction forming proteins named innexins. Three distinct Panx paralogs (Panx1, Panx2, and Panx3) are shared among the major vertebrate phyla, but they appear to have suppressed (or even lost) their ability to directly couple adjacent cells. Connecting the intracellular and extracellular compartments is now widely accepted as Panx's primary function, facilitating the passive movement of ions and small molecules along electrochemical gradients. The tissue distribution of the Panxs ranges from pervasive to very restricted, depending on the paralog, and are often cell type-specific and/or developmentally regulated within any given tissue. In recent years, Panxs have been implicated in an assortment of physiological and pathophysiological processes, particularly with respect to ATP signaling and inflammation, and they are now considered to be a major player in extracellular purinergic communication. The following is a comprehensive review of the Panx literature, exploring the historical events leading up to their discovery, outlining our current understanding of their biochemistry, and describing the importance of these proteins in health and disease.
Collapse
Affiliation(s)
- Stephen R Bond
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA ; Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
61
|
Lohman AW, Isakson BE. Differentiating connexin hemichannels and pannexin channels in cellular ATP release. FEBS Lett 2014; 588:1379-88. [PMID: 24548565 DOI: 10.1016/j.febslet.2014.02.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 12/22/2022]
Abstract
Adenosine triphosphate (ATP) plays a fundamental role in cellular communication, with its extracellular accumulation triggering purinergic signaling cascades in a diversity of cell types. While the roles for purinergic signaling in health and disease have been well established, identification and differentiation of the specific mechanisms controlling cellular ATP release is less well understood. Multiple mechanisms have been proposed to regulate ATP release with connexin (Cx) hemichannels and pannexin (Panx) channels receiving major focus. However, segregating the specific roles of Panxs and Cxs in ATP release in a plethora of physiological and pathological contexts has remained enigmatic. This multifaceted problem has arisen from the selectivity of pharmacological inhibitors for Panxs and Cxs, methodological differences in assessing Panx and Cx function and the potential compensation by other isoforms in gene silencing and genetic knockout models. Consequently, there remains a void in the current understanding of specific contributions of Panxs and Cxs in releasing ATP during homeostasis and disease. Differentiating the distinct signaling pathways that regulate these two channels will advance our current knowledge of cellular communication and aid in the development of novel rationally-designed drugs for modulation of Panx and Cx activity, respectively.
Collapse
Affiliation(s)
- Alexander W Lohman
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA 22098, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, United States
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA 22098, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
62
|
Panx1 regulates cellular properties of keratinocytes and dermal fibroblasts in skin development and wound healing. J Invest Dermatol 2014; 134:2026-2035. [PMID: 24522432 DOI: 10.1038/jid.2014.86] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/08/2014] [Accepted: 02/02/2014] [Indexed: 12/15/2022]
Abstract
Pannexin1 (Panx1), a channel-forming glycoprotein is expressed in neonatal but not in aged mouse skin. Histological staining of Panx1 knockout (KO) mouse skin revealed a reduction in epidermal and dermal thickness and an increase in hypodermal adipose tissue. Following dorsal skin punch biopsies, mutant mice exhibited a significant delay in wound healing. Scratch wound and proliferation assays revealed that cultured keratinocytes from KO mice were more migratory, whereas dermal fibroblasts were more proliferative compared with controls. In addition, collagen gels populated with fibroblasts from KO mice exhibited significantly reduced contraction, comparable to WT fibroblasts treated with the Panx1 blocker, probenecid. KO fibroblasts did not increase α-smooth muscle actin expression in response to TGF-β, as is the case for differentiating WT myofibroblasts during wound contraction. We conclude that Panx1 controls cellular properties of keratinocytes and dermal fibroblasts during early stages of skin development and modulates wound repair upon injury.
Collapse
|
63
|
Penuela S, Simek J, Thompson RJ. Regulation of pannexin channels by post-translational modifications. FEBS Lett 2014; 588:1411-5. [PMID: 24486011 DOI: 10.1016/j.febslet.2014.01.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/25/2023]
Abstract
The large-pore channels formed by the pannexin family of proteins have been implicated in many physiological and pathophysiological functions, mainly through their ATP release function. However, a tight regulation of channel opening is necessary to modulate their function in vivo. Post-translational modifications have been postulated as some of the regulating mechanisms for Panx1, while Panx2 and Panx3 have not been as well characterized. Positive regulators include caspase cleavage to open Panx1 channels in apoptotic cells, and activation by Src family kinases via ionotropic receptors in neurons and macrophages. S-nitrosylation of cysteines has been shown to both inhibit and activate the Panx1 channel in different cell types. All three pannexins are N-glycosylated but to different levels of modification. Their diverse glycosylation appears to regulate cellular localization, intermixing, and may restrict their ability to function as inter-cellular channels. It is clear that our understanding of pannexin post-translational modification and their role in channel function regulation is still in its infancy even a decade after their discovery.
Collapse
Affiliation(s)
- Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, ON N6A5C1, Canada.
| | - Jamie Simek
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A5C1, Canada
| | - Roger J Thompson
- Hotchkiss Brain Institute and Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
64
|
Penuela S, Lohman AW, Lai W, Gyenis L, Litchfield DW, Isakson BE, Laird DW. Diverse post-translational modifications of the pannexin family of channel-forming proteins. Channels (Austin) 2014; 8:124-30. [PMID: 24418849 DOI: 10.4161/chan.27422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The pannexin family of channel-forming proteins is composed of 3 distinct but related members called Panx1, Panx2, and Panx3. Pannexins have been implicated in many physiological processes as well as pathological conditions, primarily through their function as ATP release channels. However, it is currently unclear if all pannexins are subject to similar or different post-translational modifications as most studies have focused primarily on Panx1. Using in vitro biochemical assays performed on ectopically expressed pannexins in HEK-293T cells, we confirmed that all 3 pannexins are N-glycosylated to different degrees, but they are not modified by sialylation or O-linked glycosylation in a manner that changes their apparent molecular weight. Using cell-free caspase assays, we also discovered that similar to Panx1, the C-terminus of Panx2 is a substrate for caspase cleavage. Panx3, on the other hand, is not subject to caspase digestion but an in vitro biotin switch assay revealed that it was S-nitrosylated by nitric oxide donors. Taken together, our findings uncover novel and diverse pannexin post-translational modifications suggesting that they may be differentially regulated for distinct or overlapping cellular and physiological functions.
Collapse
Affiliation(s)
- Silvia Penuela
- Department of Anatomy and Cell Biology; University of Western Ontario; London, ON Canada
| | - Alexander W Lohman
- Robert M Berne Cardiovascular Research Center; Department of Molecular Physiology and Biological Physics; University of Virginia; Charlottesville, VA USA
| | - Wesley Lai
- Department of Anatomy and Cell Biology; University of Western Ontario; London, ON Canada; Department of Molecular Genetics; University of Toronto; The Hospital for Sick Children; Toronto, ON Canada
| | - Laszlo Gyenis
- Department of Biochemistry; University of Western Ontario; London, ON Canada
| | - David W Litchfield
- Department of Biochemistry; University of Western Ontario; London, ON Canada
| | - Brant E Isakson
- Robert M Berne Cardiovascular Research Center; Department of Molecular Physiology and Biological Physics; University of Virginia; Charlottesville, VA USA
| | - Dale W Laird
- Department of Anatomy and Cell Biology; University of Western Ontario; London, ON Canada
| |
Collapse
|
65
|
Wicki-Stordeur LE, Swayne LA. The emerging Pannexin 1 signalome: a new nexus revealed? Front Cell Neurosci 2014; 7:287. [PMID: 24409119 PMCID: PMC3884145 DOI: 10.3389/fncel.2013.00287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 12/23/2013] [Indexed: 11/22/2022] Open
Abstract
Pannexins (Panxs) are a family of single-membrane, large-pore ion, and metabolite permeable channels. Of the three Panx proteins, Panx1 has been most extensively studied, and has recently emerged as an exciting, clinically relevant target in many physiological and pathophysiological settings. This channel is widely expressed across various cell and tissue types; however its links to precise signaling pathways are largely unknown. Here we review the current literature surrounding presently identified Panx1–protein interactions, a critical first step to unraveling the Panx1 signalome. First we elucidate the reported associations of Panx1 with other ion channels, receptors, and channel signaling complexes. Further, we highlight recently identified Panx1–cytoskeleton interactions. Finally, we discuss the implications of these protein–protein interactions for Panx1 function in various cell and tissue types, and identify key outstanding questions arising from this work.
Collapse
Affiliation(s)
| | - Leigh A Swayne
- Division of Medical Sciences, University of Victoria Victoria, BC, Canada ; Department of Biology, University of Victoria Victoria, BC, Canada ; Department of Biochemistry and Microbiology, University of Victoria Victoria, BC, Canada ; Department of Cellular and Physiological Sciences and Island Medical Program, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
66
|
Boyce AKJ, Prager RT, Wicki-Stordeur LE, Swayne LA. Pore positioning: current concepts in Pannexin channel trafficking. Channels (Austin) 2013; 8:110-7. [PMID: 24300303 DOI: 10.4161/chan.27287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pannexins (Panxs) are a multifaceted family of ion and metabolite channels that play key roles in a number of physiological and pathophysiological settings. These single membrane large-pore channels exhibit a variety of tissue, cell type, and subcellular distributions. The lifecycles of Panxs are complex, yet must be understood to accurately target these proteins for future therapeutic use. Here we review the basics of Panx function and localization, and then analyze the recent advances in knowledge regarding Panx trafficking. We examine several intrinsic features of Panxs including specific post-translational modifications, the divergent C-termini, and oligomerization, all of which contribute to Panx anterograde transport pathways. Further, we examine the potential influence of extrinsic factors, such as protein-protein interactions, on Panx trafficking. Finally, we highlight what is currently known with respect to Panx internalization and retrograde transport, and present new data illustrating Panx1 internalization following an activating stimulus.
Collapse
Affiliation(s)
- Andrew K J Boyce
- Division of Medical Sciences; Island Medical Program; University of Victoria; Victoria, British Columbia, Canada
| | - Ross T Prager
- Division of Medical Sciences; Island Medical Program; University of Victoria; Victoria, British Columbia, Canada
| | - Leigh E Wicki-Stordeur
- Division of Medical Sciences; Island Medical Program; University of Victoria; Victoria, British Columbia, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences; Island Medical Program; University of Victoria; Victoria, British Columbia, Canada; Department of Biology; University of Victoria; Victoria, British Columbia, Canada; Department of Biochemistry and Microbiology; University of Victoria; Victoria, British Columbia, Canada; Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, British Columbia, Canada
| |
Collapse
|
67
|
D'hondt C, Iyyathurai J, Vinken M, Rogiers V, Leybaert L, Himpens B, Bultynck G. Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell 2013; 105:373-98. [PMID: 23718186 DOI: 10.1111/boc.201200096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
Abstract
Connexin (Cx) and pannexin (Panx) proteins form large conductance channels, which function as regulators of communication between neighbouring cells via gap junctions and/or hemichannels. Intercellular communication is essential to coordinate cellular responses in tissues and organs, thereby fulfilling an essential role in the spreading of signalling, survival and death processes. The functional properties of gap junctions and hemichannels are modulated by different physiological and pathophysiological stimuli. At the molecular level, Cxs and Panxs function as multi-protein channel complexes, regulating their channel localisation and activity. In addition to this, gap junctional channels and hemichannels are modulated by different post-translational modifications (PTMs), including phosphorylation, glycosylation, proteolysis, N-acetylation, S-nitrosylation, ubiquitination, lipidation, hydroxylation, methylation and deamidation. These PTMs influence almost all aspects of communicating junctional channels in normal cell biology and pathophysiology. In this review, we will provide a systematic overview of PTMs of communicating junction proteins and discuss their effects on Cx and Panx-channel activity and localisation.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signalling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N 1, BE-3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
68
|
Giaume C, Leybaert L, Naus CC, Sáez JC. Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 2013; 4:88. [PMID: 23882216 PMCID: PMC3713369 DOI: 10.3389/fphar.2013.00088] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 06/21/2013] [Indexed: 12/22/2022] Open
Abstract
Functional interaction between neurons and glia is an exciting field that has expanded tremendously during the past decade. Such partnership has multiple impacts on neuronal activity and survival. Indeed, numerous findings indicate that glial cells interact tightly with neurons in physiological as well as pathological situations. One typical feature of glial cells is their high expression level of gap junction protein subunits, named connexins (Cxs), thus the membrane channels they form may contribute to neuroglial interaction that impacts neuronal activity and survival. While the participation of gap junction channels in neuroglial interactions has been regularly reviewed in the past, the other channel function of Cxs, i.e., hemichannels located at the cell surface, has only recently received attention. Gap junction channels provide the basis for a unique direct cell-to-cell communication, whereas Cx hemichannels allow the exchange of ions and signaling molecules between the cytoplasm and the extracellular medium, thus supporting autocrine and paracrine communication through a process referred to as “gliotransmission,” as well as uptake and release of metabolites. More recently, another family of proteins, termed pannexins (Panxs), has been identified. These proteins share similar membrane topology but no sequence homology with Cxs. They form multimeric membrane channels with pharmacology somewhat overlapping with that of Cx hemichannels. Such duality has led to several controversies in the literature concerning the identification of the molecular channel constituents (Cxs versus Panxs) in glia. In the present review, we update and discuss the knowledge of Cx hemichannels and Panx channels in glia, their properties and pharmacology, as well as the understanding of their contribution to neuroglial interactions in brain health and disease.
Collapse
Affiliation(s)
- Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050 Paris, France ; University Pierre et Marie Curie Paris, France ; MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University Paris, France
| | | | | | | |
Collapse
|
69
|
Wicki-Stordeur LE, Boyce AKJ, Swayne LA. Analysis of a pannexin 2-pannexin 1 chimeric protein supports divergent roles for pannexin C-termini in cellular localization. ACTA ACUST UNITED AC 2013; 20:73-9. [PMID: 23659289 DOI: 10.3109/15419061.2013.791681] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pannexins (Panxs) are a three-member family of large pore ion channels permeable to ions and small molecules. Recent elegant work has demonstrated that the Panx1 C-terminus plays an important role in channel trafficking. Panx2, another family member, has a longer and highly dissimilar C-terminus. Interestingly, Panx1 is readily found at the plasma membrane, while Panx2 is mainly present on intracellular membranes. Here we used overlap-extension cloning to create the first chimeric Panx, consisting of Panx2 with the Panx1 C-terminus (Panx2(Panx1CT)), to determine whether the Panx1 C-terminus influences the trafficking of Panx2. We are the first to observe a high level of co-localization between Panx2 and the endolysosomal enriched mannose-6-phosphate receptor. Interestingly this distinct localization of Panx2 is altered by the presence of the Panx1 C-terminus. These novel observations support previous data indicating the importance of the C-terminus in the control of Panx trafficking, and highlight the complexity of molecular signals involved.
Collapse
Affiliation(s)
- Leigh E Wicki-Stordeur
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | | | | |
Collapse
|
70
|
Weilinger NL, Maslieieva V, Bialecki J, Sridharan SS, Tang PL, Thompson RJ. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction. Acta Pharmacol Sin 2013; 34:39-48. [PMID: 22864302 DOI: 10.1038/aps.2012.95] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization. Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients. In this review, we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently, to cell death. The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons. Interestingly, two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel. We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia. The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.
Collapse
|
71
|
Lohman AW, Weaver JL, Billaud M, Sandilos JK, Griffiths R, Straub AC, Penuela S, Leitinger N, Laird DW, Bayliss DA, Isakson BE. S-nitrosylation inhibits pannexin 1 channel function. J Biol Chem 2012; 287:39602-12. [PMID: 23033481 DOI: 10.1074/jbc.m112.397976] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch assay, we found that application of the NO donor S-nitrosoglutathione (GSNO) or diethylammonium (Z)-1-1(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate) to human embryonic kidney (HEK) 293T cells expressing wild type (WT) Panx1 and mouse aortic endothelial cells induced Panx1 S-nitrosylation. Functionally, GSNO and DEA NONOate attenuated Panx1 currents; consistent with a role for S-nitrosylation, current inhibition was reversed by the reducing agent dithiothreitol and unaffected by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a blocker of guanylate cyclase activity. In addition, ATP release was significantly inhibited by treatment with both NO donors. To identify which cysteine residue(s) was S-nitrosylated, we made single cysteine-to-alanine substitutions in Panx1 (Panx1(C40A), Panx1(C346A), and Panx1(C426A)). Mutation of these single cysteines did not prevent Panx1 S-nitrosylation; however, mutation of either Cys-40 or Cys-346 prevented Panx1 current inhibition and ATP release by GSNO. This observation suggested that multiple cysteines may be S-nitrosylated to regulate Panx1 channel function. Indeed, we found that mutation of both Cys-40 and Cys-346 (Panx1(C40A/C346A)) prevented Panx1 S-nitrosylation by GSNO as well as the GSNO-mediated inhibition of Panx1 current and ATP release. Taken together, these results indicate that S-nitrosylation of Panx1 at Cys-40 and Cys-346 inhibits Panx1 channel currents and ATP release.
Collapse
Affiliation(s)
- Alexander W Lohman
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Patterns of heterogeneous expression of pannexin 1 and pannexin 2 transcripts in the olfactory epithelium and olfactory bulb. J Mol Histol 2012; 43:651-60. [PMID: 22945868 DOI: 10.1007/s10735-012-9443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Pannexins form membrane channels that release biological signals to communicate with neighboring cells. Here, we report expression patterns of pannexin 1 (Panx1) and pannexin 2 (Panx2) in the olfactory epithelium and olfactory bulb of adult mice. In situ hybridization revealed that mRNAs for Panx1 and Panx2 were both expressed in the olfactory epithelium and olfactory bulb. Expression of Panx1 and Panx2 was mainly found in cell bodies below the sustentacular cell layer in the olfactory epithelium, indicating that Panx1 and Panx2 are expressed in mature and immature olfactory neurons, and basal cells. Expression of Panx2 was observed in sustentacular cells in a few locations of the olfactory epithelium. In the olfactory bulb, Panx1 and Panx2 were expressed in spatial patterns. Many mitral cells, tufted cells, periglomerular cells and granule cells were Panx1 and Panx2 positive. Mitral cells located at the dorsal and lateral portions of the olfactory bulb showed weak Panx1 expression compared with those in the medial side. However, the opposite was true for the distribution of Panx2 positive mitral cells. There were more Panx2 mRNA positive mitral cells and granule cells compared to those expressing Panx1. Our findings on pannexin expression in the olfactory system of adult mice raise the novel possibility that pannexins play a role in information processing in the olfactory system. Demonstration of expression patterns of pannexins in the olfactory system provides an anatomical basis for future functional studies.
Collapse
|
73
|
Cowan KN, Langlois S, Penuela S, Cowan BJ, Laird DW. Pannexin1 and Pannexin3 exhibit distinct localization patterns in human skin appendages and are regulated during keratinocyte differentiation and carcinogenesis. ACTA ACUST UNITED AC 2012; 19:45-53. [PMID: 22947051 DOI: 10.3109/15419061.2012.712575] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Having shown that Panx1 and Panx3 are expressed in the epidermis, we investigated their distribution in human skin adnexal structures and skin cancer. Both proteins were found in hair follicles, sebaceous and eccrine glands, as well as blood vessels. Panx1 was detected as punctate or diffuse intracellular labeling, while Panx3 was only observed as diffuse intracellular staining, suggesting different functions. We also identified the Panx3 immunoreactive ~70 kD species modulated during keratinocyte differentiation as Panx3. Since our data indicate that pannexins are regulated during keratinocyte differentiation, we assessed whether their levels are altered under circumstances in which keratinocyte differentiation is compromised. We found that Panx1 and Panx3 levels are highly reduced in human keratinocyte tumors, thus showing for the first time that both pannexins are dysregulated in human cancers. Altogether, these data suggest that Panx1 and Panx3 have distinct and unique functions within the skin in health and disease.
Collapse
Affiliation(s)
- Kyle N Cowan
- Division of Pediatric Surgery, Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada.
| | | | | | | | | |
Collapse
|
74
|
Eugenin EA, Basilio D, Sáez JC, Orellana JA, Raine CS, Bukauskas F, Bennett MVL, Berman JW. The role of gap junction channels during physiologic and pathologic conditions of the human central nervous system. J Neuroimmune Pharmacol 2012; 7:499-518. [PMID: 22438035 PMCID: PMC3638201 DOI: 10.1007/s11481-012-9352-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 02/28/2012] [Indexed: 12/15/2022]
Abstract
Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP(3), and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system.
Collapse
Affiliation(s)
- Eliseo A Eugenin
- Department of Pathology, F727, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Bond SR, Wang N, Leybaert L, Naus CC. Pannexin 1 Ohnologs in the Teleost Lineage. J Membr Biol 2012; 245:483-93. [DOI: 10.1007/s00232-012-9497-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/31/2012] [Indexed: 02/04/2023]
|
76
|
|
77
|
Wicki-Stordeur LE, Dzugalo AD, Swansburg RM, Suits JM, Swayne LA. Pannexin 1 regulates postnatal neural stem and progenitor cell proliferation. Neural Dev 2012; 7:11. [PMID: 22458943 PMCID: PMC3390283 DOI: 10.1186/1749-8104-7-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/29/2012] [Indexed: 11/27/2022] Open
Abstract
Background Pannexin 1 forms ion and metabolite permeable hexameric channels and is abundantly expressed in the brain. After discovering pannexin 1 expression in postnatal neural stem and progenitor cells we sought to elucidate its functional role in neuronal development. Results We detected pannexin 1 in neural stem and progenitor cells in vitro and in vivo. We manipulated pannexin 1 expression and activity in Neuro2a neuroblastoma cells and primary postnatal neurosphere cultures to demonstrate that pannexin 1 regulates neural stem and progenitor cell proliferation likely through the release of adenosine triphosphate (ATP). Conclusions Permeable to ATP, a potent autocrine/paracine signaling metabolite, pannexin 1 channels are ideally suited to influence the behavior of neural stem and progenitor cells. Here we demonstrate they play a robust role in the regulation of neural stem and progenitor cell proliferation. Endogenous postnatal neural stem and progenitor cells are crucial for normal brain health, and their numbers decline with age. Furthermore, these special cells are highly responsive to neurological injury and disease, and are gaining attention as putative targets for brain repair. Therefore, understanding the fundamental role of pannexin 1 channels in neural stem and progenitor cells is of critical importance for brain health and disease.
Collapse
Affiliation(s)
- Leigh E Wicki-Stordeur
- Division of Medical Sciences, Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | | |
Collapse
|
78
|
Penuela S, Gyenis L, Ablack A, Churko JM, Berger AC, Litchfield DW, Lewis JD, Laird DW. Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J Biol Chem 2012; 287:29184-93. [PMID: 22753409 DOI: 10.1074/jbc.m112.377176] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pannexin 1 (Panx1) is a channel-forming glycoprotein expressed in different cell types of mammalian skin. We examined the role of Panx1 in melanoma tumorigenesis and metastasis since qPCR and Western blots revealed that mouse melanocytes exhibited low levels of Panx1 while increased Panx1 expression was correlated with tumor cell aggressiveness in the isogenic melanoma cell lines (B16-F0, -F10, and -BL6). Panx1 shRNA knockdown (Panx1-KD) generated stable BL6 cell lines, with reduced dye uptake, that showed a marked increase in melanocyte-like cell characteristics including higher melanin production, decreased cell migration and enhanced formation of cellular projections. Western blotting and proteomic analyses using 2D-gel/mass spectroscopy identified vimentin and β-catenin as two of the markers of malignant melanoma that were down-regulated in Panx1-KD cells. Xenograft Panx1-KD cells grown within the chorioallantoic membrane of avian embryos developed tumors that were significantly smaller than controls. Mouse-Alu qPCR of the excised avian embryonic organs revealed that tumor metastasis to the liver was significantly reduced upon Panx1 knockdown. These data suggest that while Panx1 is present in skin melanocytes it is up-regulated during melanoma tumor progression, and tumorigenesis can be inhibited by the knockdown of Panx1 raising the possibility that Panx1 may be a viable target for the treatment of melanoma.
Collapse
Affiliation(s)
- Silvia Penuela
- Department of Anatomy and Cell BiologyUniversity of Western Ontario, London, Ontario N6A-5C1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Johnstone SR, Billaud M, Lohman AW, Taddeo EP, Isakson BE. Posttranslational modifications in connexins and pannexins. J Membr Biol 2012; 245:319-32. [PMID: 22739962 DOI: 10.1007/s00232-012-9453-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/08/2012] [Indexed: 01/17/2023]
Abstract
Posttranslational modification is a common cellular process that is used by cells to ensure a particular protein function. This can happen in a variety of ways, e.g., from the addition of phosphates or sugar residues to a particular amino acid, ensuring proper protein life cycle and function. In this review, we assess the evidence for ubiquitination, glycosylation, phosphorylation, S-nitrosylation as well as other modifications in connexins and pannexin proteins. Based on the literature, we find that posttranslational modifications are an important component of connexin and pannexin regulation.
Collapse
Affiliation(s)
- Scott R Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
80
|
Davis LK, Gamazon ER, Kistner-Griffin E, Badner JA, Liu C, Cook EH, Sutcliffe JS, Cox NJ. Loci nominally associated with autism from genome-wide analysis show enrichment of brain expression quantitative trait loci but not lymphoblastoid cell line expression quantitative trait loci. Mol Autism 2012; 3:3. [PMID: 22591576 PMCID: PMC3484025 DOI: 10.1186/2040-2392-3-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/22/2012] [Indexed: 01/26/2023] Open
Abstract
Background Autism spectrum disorder is a severe early onset neurodevelopmental disorder with high heritability but significant heterogeneity. Traditional genome-wide approaches to test for an association of common variants with autism susceptibility risk have met with limited success. However, novel methods to identify moderate risk alleles in attainable sample sizes are now gaining momentum. Methods In this study, we utilized publically available genome-wide association study data from the Autism Genome Project and annotated the results (P <0.001) for expression quantitative trait loci present in the parietal lobe (GSE35977), cerebellum (GSE35974) and lymphoblastoid cell lines (GSE7761). We then performed a test of enrichment by comparing these results to simulated data conditioned on minor allele frequency to generate an empirical P-value indicating statistically significant enrichment of expression quantitative trait loci in top results from the autism genome-wide association study. Results Our findings show a global enrichment of brain expression quantitative trait loci, but not lymphoblastoid cell line expression quantitative trait loci, among top single nucleotide polymorphisms from an autism genome-wide association study. Additionally, the data implicates individual genes SLC25A12, PANX1 and PANX2 as well as pathways previously implicated in autism. Conclusions These findings provide supportive rationale for the use of annotation-based approaches to genome-wide association studies.
Collapse
Affiliation(s)
- Lea K Davis
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Swayne LA, Wicki-Stordeur L. Ion channels in postnatal neurogenesis: potential targets for brain repair. Channels (Austin) 2012; 6:69-74. [PMID: 22614818 DOI: 10.4161/chan.19721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neural stem and progenitor cells (NSC/NPCs) are unspecialized cells found in the adult peri-ventricular and sub-granular zones that are capable of self-renewal, migration, and differentiation into new neurons through the remarkable process of postnatal neurogenesis. We are now beginning to understand that the concerted action of ion channels, multi-pass transmembrane proteins that allow passage of ions across otherwise impermeable cellular membranes tightly regulate this process. Specific ion channels control proliferation, differentiation and survival. Furthermore, they have the potential to be highly selective drug targets due to their complex structures. As such, these proteins represent intriguing prospects for control and optimization of postnatal neurogenesis for neural regeneration following brain injury or disease. Here, we concentrate on ion channels identified in adult ventricular zone NSC/NPCs that have been found to influence the stages of neurogenesis. Finally, we outline the potential of these channels to elicit repair, and highlight the outstanding challenges.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- Division of Medical Sciences; Island Medical Program, University of Victoria, Victoria, BC, Canada.
| | | |
Collapse
|
82
|
The biochemistry and function of pannexin channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:15-22. [PMID: 22305965 DOI: 10.1016/j.bbamem.2012.01.017] [Citation(s) in RCA: 294] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/05/2012] [Accepted: 01/19/2012] [Indexed: 11/21/2022]
Abstract
Three family members compose the pannexin family of channel-forming glycoproteins (Panx1, Panx2 and Panx3). Their primary function is defined by their capacity to form single-membrane channels that are regulated by post-translational modifications, channel intermixing, and sub-cellular expression profiles. Panx1 is ubiquitously expressed in many mammalian tissues, while Panx2 and Panx3 appear to be more restricted in their expression. Paracrine functions of Panx1 as an ATP release channel have been extensively studied and this channel plays a key role, among others, in the release of "find-me" signals for apoptotic cell clearance. In addition Panx1 has been linked to propagation of calcium waves, regulation of vascular tone, mucociliary lung clearance, taste-bud function and has been shown to act like a tumor suppressor in gliomas. Panx1 channel opening can also be detrimental, contributing to cell death and seizures under ischemic or epileptic conditions and even facilitating HIV-1 viral infection. Panx2 is involved in differentiation of neurons while Panx3 plays a role in the differentiation of chondrocytes, osteoblasts and the maturation and transport of sperm. Using the available Panx1 knockout mouse models it has now become possible to explore some of its physiological functions. However, given the potential for one pannexin to compensate for another it seems imperative to generate single and double knockout mouse models involving all three pannexins and evaluate their interplay in normal differentiation and development as well as in malignant transformation and disease. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.
Collapse
|
83
|
Bond SR, Lau A, Penuela S, Sampaio AV, Underhill TM, Laird DW, Naus CC. Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J Bone Miner Res 2011; 26:2911-22. [PMID: 21915903 DOI: 10.1002/jbmr.509] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pannexins are a class of chordate channel proteins identified by their homology to insect gap junction proteins. The pannexin family consists of three members, Panx1, Panx2, and Panx3, and the role each of these proteins plays in cellular processes is still under investigation. Previous reports of Panx3 expression indicate enrichment in skeletal tissues, so we have further investigated this distribution by surveying the developing mouse embryo with immunofluorescence. High levels of Panx3 were detected in intramembranous craniofacial flat bones, as well as long bones of the appendicular and axial skeleton. This distribution is the result of expression in both osteoblasts and hypertrophic chondrocytes. Furthermore, the Panx3 promoter contains putative binding sites for transcription factors involved in bone formation, and we show that the sequence between bases -275 and -283 is responsive to Runx2 activation. Taken together, our data suggests that Panx3 may serve an important role in bone development, and is a novel target for Runx2-dependent signaling.
Collapse
Affiliation(s)
- Stephen R Bond
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
84
|
Rodríguez-Sinovas A, Sánchez JA, Fernandez-Sanz C, Ruiz-Meana M, Garcia-Dorado D. Connexin and pannexin as modulators of myocardial injury. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1962-70. [PMID: 21839721 DOI: 10.1016/j.bbamem.2011.07.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 07/20/2011] [Accepted: 07/28/2011] [Indexed: 01/02/2023]
Abstract
Multicellular organisms have developed a variety of mechanisms that allow communication between their cells. Whereas some of these systems, as neurotransmission or hormones, make possible communication between remote areas, direct cell-to-cell communication through specific membrane channels keep in contact neighboring cells. Direct communication between the cytoplasm of adjacent cells is achieved in vertebrates by membrane channels formed by connexins. However, in addition to allowing exchange of ions and small metabolites between the cytoplasms of adjacent cells, connexin channels also communicate the cytosol with the extracellular space, thus enabling a completely different communication system, involving activation of extracellular receptors. Recently, the demonstration of connexin at the inner mitochondrial membrane of cardiomyocytes, probably forming hemichannels, has enlarged the list of actions of connexins. Some of these mechanisms are also shared by a different family of proteins, termed pannexins. Importantly, these systems allow not only communication between healthy cells, but also play an important role during different types of injury. The aim of this review is to discuss the role played by both connexin hemichannels and pannexin channels in cell communication and injury. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
85
|
Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G. Pannexin channels are not gap junction hemichannels. Channels (Austin) 2011; 5:193-7. [PMID: 21532340 DOI: 10.4161/chan.5.3.15765] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pannexins, a class of membrane channels, bear significant sequence homology with the invertebrate gap junction proteins, innexins and more distant similarities in their membrane topologies and pharmacological sensitivities with the gap junction proteins, connexins. However, the functional role for the pannexin oligomers, or pannexons, is different from connexin oligomers, the connexons. Many pannexin publications have used the term "hemichannels" to describe pannexin oligomers while others use the term "channels" instead. This has led to confusion within the literature about the function of pannexins that promotes the idea that pannexons serve as gap junction hemichannels and thus have an assembly and functional state as gap junctional intercellular channels. Here we present the case that unlike the connexin gap junction intercellular channels, so far, pannexin oligomers have repeatedly been shown to be channels that are functional in single membranes, but not as intercellular channel in appositional membranes. Hence, they should be referred to as channels and not hemichannels. Thus, we advocate that in the absence of firm evidence that pannexins form gap junctions, the use of the term "hemichannel" be discontinued within the pannexin literature.
Collapse
Affiliation(s)
- Gina E Sosinsky
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Pannexin channels in ATP release and beyond: an unexpected rendezvous at the endoplasmic reticulum. Cell Signal 2010; 23:305-16. [PMID: 20688156 DOI: 10.1016/j.cellsig.2010.07.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/22/2010] [Indexed: 01/13/2023]
Abstract
The pannexin (Panx) family of proteins, which is co-expressed with connexins (Cxs) in vertebrates, was found to be a new GJ-forming protein family related to invertebrate innexins. During the past ten years, different studies showed that Panxs mainly form hemichannels in the plasma membrane and mediate paracrine signalling by providing a flux pathway for ions such as Ca²(+), for ATP and perhaps for other compounds, in response to physiological and pathological stimuli. Although the physiological role of Panxs as a hemichannel was questioned, there is increasing evidence that Panx play a role in vasodilatation, initiation of inflammatory responses, ischemic death of neurons, epilepsy and in tumor suppression. Moreover, it is intriguing that Panxs may also function at the endoplasmic reticulum (ER) as intracellular Ca²(+)-leak channel and may be involved in ER-related functions. Although the physiological significance and meaning of such Panx-regulated intracellular Ca²(+) leak requires further exploration, this functional property places Panx at the centre of many physiological and pathophysiological processes, given the fundamental role of intracellular Ca²(+) homeostasis and dynamics in a plethora of physiological processes. In this review, we therefore want to focus on Panx as channels at the plasma membrane and at the ER membranes with a particular emphasis on the potential implications of the latter in intracellular Ca²(+) signalling.
Collapse
|