51
|
Jaisinghani N, Dawa S, Singh K, Nandy A, Menon D, Bhandari PD, Khare G, Tyagi A, Gandotra S. Necrosis Driven Triglyceride Synthesis Primes Macrophages for Inflammation During Mycobacterium tuberculosis Infection. Front Immunol 2018; 9:1490. [PMID: 30018616 PMCID: PMC6037689 DOI: 10.3389/fimmu.2018.01490] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023] Open
Abstract
Pulmonary tuberculosis (TB) exhibits granulomatous inflammation, a site of controlling bacterial dissemination at the cost of host tissue damage. Intrigued by the granuloma type-dependent expression of inflammatory markers in TB, we sought to investigate underlying metabolic changes that drive amplification of inflammation in TB. Here, we show an association of higher inflammation in necrotic granulomas with the presence of triglyceride (TG)-rich foamy macrophages. The conspicuous absence of these macrophages in solid granulomas identified a link between the ensuing pathology and the metabolic programming of foamy macrophages. Consistent with in vivo findings, in vitro infection of macrophages with Mycobacterium tuberculosis (Mtb) led to increase in TG synthesis only under conditions of ~60% necrosis. Genetic and pharmacologic intervention that reduced necrosis prevented this bystander response. We further demonstrate that necrosis independent of Mtb also elicits the same bystander response in human macrophages. We identified a role for the human enzyme involved in TG synthesis, diacylglycerol O-acyltransferase (DGAT1), in this phenomenon. The increased TG levels in necrosis-associated foamy macrophages promoted the pro-inflammatory state of macrophages to infection while silencing expression of diacylglycerol O-acyltransferase (DGAT1) suppressed expression of pro-inflammatory genes. Our data thus invoke a role for storage lipids in the heightened host inflammatory response during infection-associated necrosis. Our data provide a functional role to macrophage lipid droplets in host defense and open new avenues for developing host-directed therapies against TB.
Collapse
Affiliation(s)
- Neetika Jaisinghani
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Stanzin Dawa
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Kaurab Singh
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ananya Nandy
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Dilip Menon
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Purva Deepak Bhandari
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Garima Khare
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Anil Tyagi
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India.,Guru Gobind Singh Indraprastha University, New Delhi, India
| | - Sheetal Gandotra
- Chemical and Systems Biology Group, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
52
|
Kim MO, Seo JH, Kwon EB, Kang MJ, Lee SU, Moon DO, Lee MK, Lee CH, Lee HS. Aceriphyllum rossii Exerts Lipid-Lowering Action in Both Normal and Hyperlipidemic Mice. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study aimed to evaluate the lipid-lowering effect of the MeOH extract of Aceriphyllum rossii and its CHCl3 fraction, as well as its inhibitory activity on DGAT in vitro, in normal and hyperlipidemic mice. We separated the MeOH extract of A. rossii into two portions, a CHCl3-soluble part and the remaining water residue, and performed DGAT enzymatic activity assay on them. Further assessment carried out to reveal that the MeOH extract and its CHCl3 fraction suppress the intestinal TG absorption after an acute lipid challenge, and ameliorate hyperlipidemia as well as obesity-related parameters (body weight gain, serum lipid profiles, and several adipose tissue weights) in HFD-induced obese mice. First, the MeOH extract and its CHCl3 fraction strongly inhibit DGAT1 and DGAT2 in vitro enzymatic activity. Second, the MeOH extract and the CHCl3 fraction inhibit intestinal TG absorption after an acute lipid challenge in mice. Finally, the CHCl3 fraction ameliorates various parameters of HFD-induced obesity mice, including body weight gain and serum levels of TG and glucose. Data obtained from the results obviously indicated that A. rossii prevents HFD-induced hyperlipidemia as well as obesity in mice possibly by inhibiting DGAT activity. We suggest that A. rossii MeOH extract and its CHCl3 fraction would be a useful material for the therapy of hyperlipidemia.
Collapse
Affiliation(s)
- Mun Ock Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Jee Hee Seo
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Eun Bin Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Myung Ji Kang
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| | - Dong Oh Moon
- Department of Biology Education, Daegu University, Gyeongsan-si, Gyeongsangbuk 38453, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyun Sun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, 30, Yeongudanji-ro, Ochang, Cheongju, Chungbuk 28116, Republic of Korea
| |
Collapse
|
53
|
Yasuno K, Kumagai K, Iguchi T, Tsuchiya Y, Kai K, Mori K. DS-7250, a Diacylglycerol Acyltransferase 1 Inhibitor, Enhances Hepatic Steatosis in Zucker Fatty Rats via Upregulation of Fatty Acid Synthesis. Toxicol Pathol 2018; 46:302-311. [PMID: 29587622 DOI: 10.1177/0192623318765909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in triglyceride synthesis. Since Dgat1-/- mice fed a high-fat diet (HFD) are resistant to hepatic steatosis, DGAT1 inhibitors are expected to have antifatty liver effects. To evaluate the hepatic effects of DS-7250, a selective DGAT1 inhibitor, vehicle or 10 mg/kg of DS-7250 was administered orally to male Fisher 344 (F344) and Zucker fatty (ZF) rats fed a standard diet or HFD for 14 or 28 days. ZF rats showed slight hepatic steatosis regardless of feeding conditions. DS-7250 exacerbated hepatic steatosis in ZF rats fed an HFD compared with the vehicle control. Hepatic steatosis did not occur in F344 rats fed an HFD, in which systemic exposures of DS-7250 were comparable to those in ZF rats. There was a higher expression of genes involved in lipid uptake and fatty acid synthesis in ZF rats compared to F344 rats under HFD conditions. DS-7250 upregulated key genes involved in de novo lipogenesis, which causes hepatic steatosis independently of DGAT1, in ZF rats fed an HFD compared with the vehicle control. These data suggest that ZF rats were more susceptible to hepatic steatosis due to their genetic characteristics and DS-7250 exacerbated hepatic steatosis independently of DGAT1.
Collapse
Affiliation(s)
- Kyohei Yasuno
- 1 Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Edogawa, Tokyo, Japan
| | - Kazuyoshi Kumagai
- 1 Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Edogawa, Tokyo, Japan
| | - Takuma Iguchi
- 1 Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Edogawa, Tokyo, Japan
| | - Yoshimi Tsuchiya
- 2 Quantitative Clinical Pharmacology and Translational Sciences, Daiichi Sankyo, Inc., Basking Ridge, New Jersey, USA
| | - Kiyonori Kai
- 1 Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Edogawa, Tokyo, Japan
| | - Kazuhiko Mori
- 1 Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Edogawa, Tokyo, Japan
| |
Collapse
|
54
|
Lee YJ, Kim JW. Monoacylglycerol O-acyltransferase 1 (MGAT1) localizes to the ER and lipid droplets promoting triacylglycerol synthesis. BMB Rep 2018; 50:367-372. [PMID: 28347400 PMCID: PMC5584744 DOI: 10.5483/bmbrep.2017.50.7.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 01/14/2023] Open
Abstract
Monoacylglycerol acyltransferase 1 (MGAT) is a microsomal enzyme that catalyzes the synthesis of diacylglycerol (DAG) and triacylglycerol (TAG). However, the subcellular localization and catalytic function domain of this enzyme is poorly understood. In this report, we identified that murine MGAT1 localizes to the endoplasmic reticulum (ER) under normal conditions, whereas MGAT1 co-localize to the lipid droplets (LD) under conditions of enriching fatty acids, contributing to TAG synthesis and LD expansion. For the enzyme activity, both the N-terminal transmembrane domain and catalytic HPHG motif are required. We also show that the transmembrane domain of MGAT1 consists of two hydrophobic regions in the N-terminus, and the consensus sequence FLXLXXXn, a putative neutral lipid-binding domain, exists in the first transmembrane domain. Finally, MGAT1 interacts with DGAT2, which serves to synergistically increase the TAG biosynthesis and LD expansion, leading to enhancement of lipid accumulation in the liver and fat.
Collapse
Affiliation(s)
- Yoo Jeong Lee
- Division of Metabolic Disease, Center for Biomedical Sciences, National Institutes of Health, Cheongju 28159, Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
55
|
Altering lipid droplet homeostasis affects Coxiella burnetii intracellular growth. PLoS One 2018; 13:e0192215. [PMID: 29390006 PMCID: PMC5794150 DOI: 10.1371/journal.pone.0192215] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular bacterial pathogen and a causative agent of culture-negative endocarditis. While C. burnetii initially infects alveolar macrophages, it has also been found in lipid droplet (LD)-containing foamy macrophages in the cardiac valves of endocarditis patients. In addition, transcriptional studies of C. burnetii-infected macrophages reported differential regulation of the LD coat protein-encoding gene perilipin 2 (plin-2). To further investigate the relationship between LDs and C. burnetii, we compared LD numbers using fluorescence microscopy in mock-infected and C. burnetii-infected alveolar macrophages. On average, C. burnetii-infected macrophages contained twice as many LDs as mock-infected macrophages. LD numbers increased as early as 24 hours post-infection, an effect reversed by blocking C. burnetii protein synthesis. The observed LD accumulation was dependent on the C. burnetii Type 4B Secretion System (T4BSS), a major virulence factor that manipulates host cellular processes by secreting bacterial effector proteins into the host cell cytoplasm. To determine the importance of LDs during C. burnetii infection, we manipulated LD homeostasis and assessed C. burnetii intracellular growth. Surprisingly, blocking LD formation with the pharmacological inhibitors triacsin C or T863, or knocking out acyl-CoA transferase-1 (acat-1) in alveolar macrophages, increased C. burnetii growth at least 2-fold. Conversely, preventing LD lipolysis by inhibiting adipose triglyceride lipase (ATGL) with atglistatin almost completely blocked bacterial growth, suggesting LD breakdown is essential for C. burnetii. Together these data suggest that maintenance of LD homeostasis, possibly via the C. burnetii T4BSS, is critical for bacterial growth.
Collapse
|
56
|
Knight M, Braverman J, Asfaha K, Gronert K, Stanley S. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathog 2018; 14:e1006874. [PMID: 29370315 PMCID: PMC5800697 DOI: 10.1371/journal.ppat.1006874] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/06/2018] [Accepted: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Lipid droplet (LD) formation occurs during infection of macrophages with numerous intracellular pathogens, including Mycobacterium tuberculosis. It is believed that M. tuberculosis and other bacteria specifically provoke LD formation as a pathogenic strategy in order to create a depot of host lipids for use as a carbon source to fuel intracellular growth. Here we show that LD formation is not a bacterially driven process during M. tuberculosis infection, but rather occurs as a result of immune activation of macrophages as part of a host defense mechanism. We show that an IFN-γ driven, HIF-1α dependent signaling pathway, previously implicated in host defense, redistributes macrophage lipids into LDs. Furthermore, we show that M. tuberculosis is able to acquire host lipids in the absence of LDs, but not in the presence of IFN-γ induced LDs. This result uncouples macrophage LD formation from bacterial acquisition of host lipids. In addition, we show that IFN-γ driven LD formation supports the production of host protective eicosanoids including PGE2 and LXB4. Finally, we demonstrate that HIF-1α and its target gene Hig2 are required for the majority of LD formation in the lungs of mice infected with M. tuberculosis, thus demonstrating that immune activation provides the primary stimulus for LD formation in vivo. Taken together our data demonstrate that macrophage LD formation is a host-driven component of the adaptive immune response to M. tuberculosis, and suggest that macrophage LDs are not an important source of nutrients for M. tuberculosis.
Collapse
Affiliation(s)
- Matthew Knight
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Jonathan Braverman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kaleb Asfaha
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Karsten Gronert
- Vision Science Program, School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Sarah Stanley
- Department of Molecular and Cell Biology, Division of Immunology and Pathogenesis, University of California, Berkeley, Berkeley, California, United States of America
- School of Public Health, Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
57
|
Samuel VT, Shulman GI. Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases. Cell Metab 2018; 27:22-41. [PMID: 28867301 PMCID: PMC5762395 DOI: 10.1016/j.cmet.2017.08.002] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
Abstract
NAFLD is closely linked with hepatic insulin resistance. Accumulation of hepatic diacylglycerol activates PKC-ε, impairing insulin receptor activation and insulin-stimulated glycogen synthesis. Peripheral insulin resistance indirectly influences hepatic glucose and lipid metabolism by increasing flux of substrates that promote lipogenesis (glucose and fatty acids) and gluconeogenesis (glycerol and fatty acid-derived acetyl-CoA, an allosteric activator of pyruvate carboxylase). Weight loss with diet or bariatric surgery effectively treats NAFLD, but drugs specifically approved for NAFLD are not available. Some new pharmacological strategies act broadly to alter energy balance or influence pathways that contribute to NAFLD (e.g., agonists for PPAR γ, PPAR α/δ, FXR and analogs for FGF-21, and GLP-1). Others specifically inhibit key enzymes involved in lipid synthesis (e.g., mitochondrial pyruvate carrier, acetyl-CoA carboxylase, stearoyl-CoA desaturase, and monoacyl- and diacyl-glycerol transferases). Finally, a novel class of liver-targeted mitochondrial uncoupling agents increases hepatocellular energy expenditure, reversing the metabolic and hepatic complications of NAFLD.
Collapse
Affiliation(s)
- Varman T Samuel
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Veterans Affairs Medical Center, West Haven, CT 06516, USA.
| | - Gerald I Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
58
|
Sharma M, Recuero-Checa MA, Fan FY, Dean D. Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets. Cell Microbiol 2017; 20. [PMID: 29117636 DOI: 10.1111/cmi.12801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 01/08/2023]
Abstract
Chlamydia trachomatis (Ct) is a Gram-negative obligate intracellular pathogen of humans that causes significant morbidity from sexually transmitted and ocular diseases globally. Ct acquires host fatty acids (FA) to meet the metabolic and growth requirements of the organism. Lipid droplets (LDs) are storehouses of FAs in host cells and have been proposed to be a source of FAs for the parasitophorous vacuole, termed inclusion, in which Ct replicates. Previously, cells devoid of LDs were shown to produce reduced infectious progeny at 24 hr postinfection (hpi). Here, although we also found reduced progeny at 24 hpi, there were significantly more progeny at 48 hpi in the absence of LDs compared to the control wild-type (WT) cells. These findings were confirmed using transmission electron microscopy where cells without LDs were shown to have significantly more metabolically active reticulate bodies at 24 hpi and significantly more infectious but metabolically inert elementary bodies at 48 hpi than WT cells. Furthermore, by measuring basal oxygen consumption rates (OCR) using extracellular flux analysis, Ct infected cells without LDs had higher OCRs at 24 hpi than cells with LDs, confirming ongoing metabolic activity in the absence of LDs. Although the FA oleic acid is a major source of phospholipids for Ct and stimulates LD synthesis, treatment with oleic acid, but not other FAs, enhanced growth and led to an increase in basal OCR in both LD depleted and WT cells, indicating that FA transport to the inclusion is not affected by the loss of LDs. Our results show that Ct regulates inclusion metabolic activity and growth in response to host FA availability in the absence of LDs.
Collapse
Affiliation(s)
- Manu Sharma
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Maria A Recuero-Checa
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Frances Yue Fan
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, USA.,Department of Bioengineering, University of California at Berkeley and San Francisco, CA, USA.,Department of Medicine and Pediatrics, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
59
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
60
|
Mitra R, Le TT, Gorjala P, Goodman OB. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5. BMC Cancer 2017; 17:631. [PMID: 28877685 PMCID: PMC5588693 DOI: 10.1186/s12885-017-3589-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022] Open
Abstract
Background Neoplastic cells proliferate rapidly and obtain requisite building blocks by reprogramming metabolic pathways that favor growth. Previously, we observed that prostate cancer cells uptake and store lipids in the form of lipid droplets, providing building blocks for membrane synthesis, to facilitate proliferation and growth. Mechanisms of lipid uptake, lipid droplet dynamics and their contribution to cancer growth have yet to be defined. This work is focused on elucidating the prostate cancer-specific modifications in lipid storage pathways so that these modified gene products can be identified and therapeutically targeted. Methods To identify genes that promote lipid droplet formation and storage, the expression profiles of candidate genes were assessed and compared between peripheral blood mononuclear cells and prostate cancer cells. Subsequently, differentially expressed genes were inhibited and growth assays performed to elucidate their role in the growth of the cancer cells. Cell cycle, apoptosis and autophagy assays were performed to ascertain the mechanism of growth inhibition. Results Our results indicate that DGAT1, ABHD5, ACAT1 and ATGL are overexpressed in prostate cancer cells compared to PBMCs and of these overexpressed genes, DGAT1 and ABHD5 aid in the growth of the prostate cancer cells. Blocking the expression of both DGAT1 and ABHD5 results in inhibition of growth, cell cycle block and cell death. DGAT1 siRNA treatment inhibits lipid droplet formation and leads to autophagy where as ABHD5 siRNA treatment promotes accumulation of lipid droplets and leads to apoptosis. Both the siRNA treatments reduce AMPK phosphorylation, a key regulator of lipid metabolism. While DGAT1 siRNA reduces phosphorylation of ACC, the rate limiting enzyme in de novo fat synthesis and triggers phosphorylation of raptor and ULK-1 inducing autophagy and cell death, ABHD5 siRNA decreases P70S6 phosphorylation, leading to PARP cleavage, apoptosis and cell death. Interestingly, DGAT-1 is involved in the synthesis of triacylglycerol where as ABHD5 is a hydrolase and participates in the fatty acid oxidation process, yet inhibition of both enzymes similarly promotes prostate cancer cell death. Conclusion Inhibition of either DGAT1 or ABHD5 leads to prostate cancer cell death. Both DGAT1 and ABHD5 can be selectively targeted to block prostate cancer cell growth.
Collapse
Affiliation(s)
- Ranjana Mitra
- College of Medicine, Roseman University of Health Sciences, 10530 Discovery drive, Las Vegas, NV, 89135, USA.
| | - Thuc T Le
- College of Medicine, Roseman University of Health Sciences, 10530 Discovery drive, Las Vegas, NV, 89135, USA
| | - Priyatham Gorjala
- College of Medicine, Roseman University of Health Sciences, 10530 Discovery drive, Las Vegas, NV, 89135, USA
| | - Oscar B Goodman
- College of Medicine, Roseman University of Health Sciences, 10530 Discovery drive, Las Vegas, NV, 89135, USA. .,Comprehensive Cancer Centers of Nevada, 9280 W Sunset Road, Las Vegas, NV, 89148, USA.
| |
Collapse
|
61
|
Gane E, Stedman C, Dole K, Chen J, Meyers CD, Wiedmann B, Zhang J, Raman P, Colvin RA. A Diacylglycerol Transferase 1 Inhibitor Is a Potent Hepatitis C Antiviral in Vitro but Not in Patients in a Randomized Clinical Trial. ACS Infect Dis 2017; 3:144-151. [PMID: 27788579 DOI: 10.1021/acsinfecdis.6b00138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepatitis C virus (HCV) infection is a significant cause of liver disease affecting 80-150 million people globally. Diacylglycerol transferase 1 (DGAT-1), a triglyceride synthesis enzyme, is important for the HCV life cycle in vitro. Pradigastat, a potent DGAT-1 inhibitor found to lower triglycerides and HgbA1c in patients, was investigated for safety and efficacy in patients with HCV. This was a two-part study. In the in vitro study, the effect of pradigastat on virus production was evaluated in infected cells in culture. In the clinical study ( https://clinicaltrials.gov/ct2/show/NCT01387958 ), 32 patients with HCV infection were randomized to receive pradigastat or placebo (26:6) once daily for 14 days. Primary efficacy outcomes were serum viral RNA and alanine aminotransferase levels. In vitro, pradigastat significantly reduced virus production, consistent with inhibition of viral assembly and release. However, the clinical study was prematurely terminated for lack of efficacy. There was no significant change in serum viral RNA levels after dosing with pradigastat or placebo for 14 days. Pradigastat was safe and well-tolerated in this population. Most treatment-emergent adverse events were gastrointestinal; there were no hepatic adverse events. Although pradigastat had a potent antiviral effect in vitro, no significant antiviral effect was observed in patients at predicted efficacious exposures.
Collapse
Affiliation(s)
- Edward Gane
- Auckland Clinical Sciences, Grafton, Auckland 1010, New Zealand
| | - Catherine Stedman
- Christchurch Hospital and University of Otago, Christchurch 4710, New Zealand
| | - Kiran Dole
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jin Chen
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Charles Daniel Meyers
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Brigitte Wiedmann
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jin Zhang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Prakash Raman
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Richard A. Colvin
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
62
|
Erion DM, Park HJ, Lee HY. The role of lipids in the pathogenesis and treatment of type 2 diabetes and associated co-morbidities. BMB Rep 2017; 49:139-48. [PMID: 26728273 PMCID: PMC4915228 DOI: 10.5483/bmbrep.2016.49.3.268] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Indexed: 12/25/2022] Open
Abstract
In the past decade, the incidence of type 2 diabetes (T2D) has rapidly increased, along with the associated cardiovascular complications. Therefore, understanding the pathophysiology underlying T2D, the associated complications and the impact of therapeutics on the T2D development has critical importance for current and future therapeutics. The prevailing feature of T2D is hyperglycemia due to excessive hepatic glucose production, insulin resistance, and insufficient secretion of insulin by the pancreas. These contribute to increased fatty acid influx into the liver and muscle causing accumulation of lipid metabolites. These lipid metabolites cause dyslipidemia and non-alcoholic fatty liver disease, which ultimately contributes to the increased cardiovascular risk in T2D. Therefore, understanding the mechanisms of hepatic insulin resistance and the specific role of liver lipids is critical in selecting and designing the most effective therapeutics for T2D and the associated co-morbidities, including dyslipidemia and cardiovascular disease. Herein, we review the effects and molecular mechanisms of conventional anti-hyperglycemic and lipid-lowering drugs on glucose and lipid metabolism. [BMB Reports 2016; 49(3): 139-148].
Collapse
Affiliation(s)
- Derek M Erion
- Takeda Pharmaceuticals 350 Massachusetts Ave. Cambridge, MA, 02139, USA
| | - Hyun-Jun Park
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon 21999, Korea
| | - Hui-Young Lee
- Department of Molecular Medicine and Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, School of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
63
|
To M, Peterson CWH, Roberts MA, Counihan JL, Wu TT, Forster MS, Nomura DK, Olzmann JA. Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation. Mol Biol Cell 2016; 28:270-284. [PMID: 27881664 PMCID: PMC5231896 DOI: 10.1091/mbc.e16-07-0483] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum (ER) mediates the folding, maturation, and deployment of the secretory proteome. Proteins that fail to achieve their native conformation are retained in the ER and targeted for clearance by ER-associated degradation (ERAD), a sophisticated process that mediates the ubiquitin-dependent delivery of substrates to the 26S proteasome for proteolysis. Recent findings indicate that inhibition of long-chain acyl-CoA synthetases with triacsin C, a fatty acid analogue, impairs lipid droplet (LD) biogenesis and ERAD, suggesting a role for LDs in ERAD. However, whether LDs are involved in the ERAD process remains an outstanding question. Using chemical and genetic approaches to disrupt diacylglycerol acyltransferase (DGAT)-dependent LD biogenesis, we provide evidence that LDs are dispensable for ERAD in mammalian cells. Instead, our results suggest that triacsin C causes global alterations in the cellular lipid landscape that disrupt ER proteostasis by interfering with the glycan trimming and dislocation steps of ERAD. Prolonged triacsin C treatment activates both the IRE1 and PERK branches of the unfolded protein response and ultimately leads to IRE1-dependent cell death. These findings identify an intimate relationship between fatty acid metabolism and ER proteostasis that influences cell viability.
Collapse
Affiliation(s)
- Milton To
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Clark W H Peterson
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Melissa A Roberts
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Jessica L Counihan
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Tiffany T Wu
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Mercedes S Forster
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
64
|
Sachdev V, Leopold C, Bauer R, Patankar JV, Iqbal J, Obrowsky S, Boverhof R, Doktorova M, Scheicher B, Goeritzer M, Kolb D, Turnbull AV, Zimmer A, Hoefler G, Hussain MM, Groen AK, Kratky D. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1132-1141. [PMID: 27344248 PMCID: PMC4948681 DOI: 10.1016/j.bbalip.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/13/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1−/−) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1−/− and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia.
Collapse
Affiliation(s)
- Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Christina Leopold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Raimund Bauer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jay V Patankar
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jahangir Iqbal
- Department of Cell Biology, SUNY Downstate Medical Center, 11203 New York, United States
| | - Sascha Obrowsky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Renze Boverhof
- Departments of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Marcela Doktorova
- Departments of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Bernhard Scheicher
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kolb
- Institute of Cell Biology, Histology, and Embryology, Medical University of Graz, 8010 Graz, Austria
| | | | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, University of Graz, 8010 Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - M Mahmood Hussain
- Department of Cell Biology, SUNY Downstate Medical Center, 11203 New York, United States
| | - Albert K Groen
- Departments of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, 9713 Groningen, The Netherlands
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria.
| |
Collapse
|
65
|
Zhang HQ, Chen SY, Wang AS, Yao AJ, Fu JF, Zhao JS, Chen F, Zou ZQ, Zhang XH, Shan YJ, Bao YP. Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Mol Nutr Food Res 2016; 60:2185-2197. [PMID: 27218607 PMCID: PMC5111775 DOI: 10.1002/mnfr.201500915] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/18/2022]
Abstract
SCOPE Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed "browning," may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1-isothiocyanate-4-methyl-sulfonyl butane; SFN) on browning of white adipocytes. METHODS AND RESULTS 3T3-L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3-L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2-related factor 2/sirtuin1/peroxisome proliferator activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis, and fatty acid oxidation in 3T3-L1 adipocytes. CONCLUSION SFN-induced browning of white adipocytes enhanced the utilization of cellular fuel, and application of SFN is a promising strategy to combat obesity and obesity-related metabolic disorder.
Collapse
Affiliation(s)
- Hui Q Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Clinical Nutrition, Ningbo Second Hospital, Ningbo, Zhejiang, China
| | - Shi Y Chen
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Hospital Infection-Control Department, Ningbo Medical Treatment Center, Lihuili Hospital, Ningbo, Zhejiang, China
| | - An S Wang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - An J Yao
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jian F Fu
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jin S Zhao
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Fen Chen
- The Affiliated Hospital of the School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zu Q Zou
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Xiao H Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Yu J Shan
- School of Food Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yong P Bao
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
66
|
Heckmann BL, Zhang X, Saarinen AM, Liu J. Regulation of G0/G1 Switch Gene 2 (G0S2) Protein Ubiquitination and Stability by Triglyceride Accumulation and ATGL Interaction. PLoS One 2016; 11:e0156742. [PMID: 27248498 PMCID: PMC4889065 DOI: 10.1371/journal.pone.0156742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022] Open
Abstract
Intracellular triglyceride (TG) hydrolysis or lipolysis is catalyzed by the key intracellular triglyceride hydrolase, adipose triglyceride lipase (ATGL). The G0/G1 Switch Gene 2 (G0S2) was recently identified as the major selective inhibitor of ATGL and its hydrolase function. Since G0S2 levels are dynamically linked and rapidly responsive to nutrient status or metabolic requirements, the identification of its regulation at the protein level is of significant value. Earlier evidence from our laboratory demonstrated that G0S2 is a short-lived protein degraded through the proteasomal pathway. However, little is currently known regarding the underlying mechanisms. In the current study we find that 1) protein degradation is initiated by K48-linked polyubiquitination of the lysine- 25 in G0S2; and 2) G0S2 protein is stabilized in response to ATGL expression and TG accumulation. Mutation of lysine-25 of G0S2 abolished ubiquitination and increased protein stability. More importantly, G0S2 was stabilized via different mechanisms in the presence of ATGL vs. in response to fatty acid (FA)-induced TG accumulation. Furthermore, G0S2 protein but not mRNA levels were reduced in the adipose tissue of ATGL-deficient mice, corroborating the involvement of ATGL in the stabilization of G0S2. Taken together our data illustrate for the first time a crucial multifaceted mechanism for the stabilization of G0S2 at the protein level.
Collapse
Affiliation(s)
- Bradlee L. Heckmann
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, Arizona, United States of America
- Metabolic HEALth Program, Mayo Clinic, Scottsdale, Arizona, United States of America
- Mayo Graduate School, Rochester, Minnesota, United States of America
| | - Xiaodong Zhang
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, Arizona, United States of America
- Metabolic HEALth Program, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Alicia M. Saarinen
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, Arizona, United States of America
- Metabolic HEALth Program, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Jun Liu
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, Arizona, United States of America
- Metabolic HEALth Program, Mayo Clinic, Scottsdale, Arizona, United States of America
- * E-mail:
| |
Collapse
|
67
|
Acyl-CoA:Diacylglycerol Acyltransferase 1 Expression Level in the Hematopoietic Compartment Impacts Inflammation in the Vascular Plaques of Atherosclerotic Mice. PLoS One 2016; 11:e0156364. [PMID: 27223895 PMCID: PMC4880185 DOI: 10.1371/journal.pone.0156364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2016] [Indexed: 01/09/2023] Open
Abstract
The final step of triacylglycerol synthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferases (DGATs). We have previously shown that ApoE-/-Dgat1-/- mice are protected from developing atherosclerosis in association with reduced foam cell formation. However, the role of DGAT1, specifically in myeloid and other hematopoietic cell types, in determining this protective phenotype is unknown. To address this question, we reconstituted the bone marrow of irradiated Ldlr–/–mice with that from wild-type (WT→ Ldlr–/–) and Dgat1–/–(Dgat1–/–→ Ldlr–/–) donor mice. We noted that DGAT1 in the hematopoietic compartment exerts a sex-specific effect on systemic cholesterol homeostasis. However, both male and female Dgat1–/–→ Ldlr–/–mice had higher circulating neutrophil and lower lymphocyte counts than control mice, suggestive of a classical inflammatory phenotype. Moreover, specifically examining the aortae of these mice revealed that Dgat1–/–→ Ldlr–/–mice have atherosclerotic plaques with increased macrophage content. This increase was coupled to a reduced plaque collagen content, leading to a reduced collagen-to-macrophage ratio. Together, these findings point to a difference in the inflammatory contribution to plaque composition between Dgat1–/–→ Ldlr–/–and control mice. By contrast, DGAT1 deficiency did not affect the transcriptional responses of cultured macrophages to lipoprotein treatment in vitro, suggesting that the alterations seen in the plaques of Dgat1–/–→ Ldlr–/–mice in vivo do not reflect a cell intrinsic effect of DGAT1 in macrophages. We conclude that although DGAT1 in the hematopoietic compartment does not impact the overall lipid content of atherosclerotic plaques, it exerts reciprocal effects on inflammation and fibrosis, two processes that control plaque vulnerability.
Collapse
|
68
|
Tuohetahuntila M, Molenaar MR, Spee B, Brouwers JF, Houweling M, Vaandrager AB, Helms JB. ATGL and DGAT1 are involved in the turnover of newly synthesized triacylglycerols in hepatic stellate cells. J Lipid Res 2016; 57:1162-74. [PMID: 27179362 DOI: 10.1194/jlr.m066415] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/15/2022] Open
Abstract
Hepatic stellate cell (HSC) activation is a critical step in the development of chronic liver disease. During activation, HSCs lose their lipid droplets (LDs) containing triacylglycerol (TAG), cholesteryl esters (CEs), and retinyl esters (REs). Here we aimed to investigate which enzymes are involved in LD turnover in HSCs during activation in vitro. Targeted deletion of the Atgl gene in mice HSCs had little effect on the decrease of the overall TAG, CE, and RE levels during activation. However, ATGL-deficient HSCs specifically accumulated TAG species enriched in PUFAs and degraded new TAG species more slowly. TAG synthesis and levels of PUFA-TAGs were lowered by the diacylglycerol acyltransferase (DGAT)1 inhibitor, T863. The lipase inhibitor, Atglistatin, increased the levels of TAG in both WT and ATGL-deficient mouse HSCs. Both Atglistatin and T863 inhibited the induction of activation marker, α-smooth muscle actin, in rat HSCs, but not in mouse HSCs. Compared with mouse HSCs, rat HSCs have a higher turnover of new TAGs, and Atglistatin and the DGAT1 inhibitor, T863, were more effective. Our data suggest that ATGL preferentially degrades newly synthesized TAGs, synthesized by DGAT1, and is less involved in the breakdown of preexisting TAGs and REs in HSCs. Furthermore a large change in TAG levels has modest effect on rat HSC activation.
Collapse
Affiliation(s)
- Maidina Tuohetahuntila
- Departments of Biochemistry and Cell Biology Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Martijn R Molenaar
- Departments of Biochemistry and Cell Biology Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Bart Spee
- Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jos F Brouwers
- Departments of Biochemistry and Cell Biology Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Martin Houweling
- Departments of Biochemistry and Cell Biology Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Arie B Vaandrager
- Departments of Biochemistry and Cell Biology Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - J Bernd Helms
- Departments of Biochemistry and Cell Biology Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
69
|
Recuero-Checa MA, Sharma M, Lau C, Watkins PA, Gaydos CA, Dean D. Chlamydia trachomatis growth and development requires the activity of host Long-chain Acyl-CoA Synthetases (ACSLs). Sci Rep 2016; 6:23148. [PMID: 26988341 PMCID: PMC4796813 DOI: 10.1038/srep23148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/25/2016] [Indexed: 11/17/2022] Open
Abstract
The obligate-intracellular pathogen Chlamydia trachomatis (Ct) has undergone considerable genome reduction with consequent dependence on host biosynthetic pathways, metabolites and enzymes. Long-chain acyl-CoA synthetases (ACSLs) are key host-cell enzymes that convert fatty acids (FA) into acyl-CoA for use in metabolic pathways. Here, we show that the complete host ACSL family [ACSL1 and ACSL3-6] translocates into the Ct membrane-bound vacuole, termed inclusion, and remains associated with membranes of metabolically active forms of Ct throughout development. We discovered that three different pharmacologic inhibitors of ACSL activity independently impede Ct growth in a dose-dependent fashion. Using an FA competition assay, host ACSLs were found to activate Ct branched-chain FAs, suggesting that one function of the ACSLs is to activate Ct FAs and host FAs (recruited from the cytoplasm) within the inclusion. Because the ACSL inhibitors can deplete lipid droplets (LD), we used a cell line where LD synthesis was switched off to evaluate whether LD deficiency affects Ct growth. In these cells, we found no effect on growth or on translocation of ACSLs into the inclusion. Our findings support an essential role for ACSL activation of host-cell and bacterial FAs within the inclusion to promote Ct growth and development, independent of LDs.
Collapse
Affiliation(s)
- Maria A. Recuero-Checa
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA
- Department of Infectious Disease, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Manu Sharma
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - Constance Lau
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| | - Paul A. Watkins
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte A. Gaydos
- Department of Infectious Disease, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children’s Hospital Oakland Research Institute, Oakland, CA, 94609, USA
- Department of Bioengineering, University of California at Berkeley and San Francisco, CA, USA
| |
Collapse
|
70
|
Sanghez V, Cubuk C, Sebastián-Leon P, Carobbio S, Dopazo J, Vidal-Puig A, Bartolomucci A. Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice. Stress 2016; 19:214-24. [PMID: 26946982 PMCID: PMC4841025 DOI: 10.3109/10253890.2016.1151491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Valentina Sanghez
- Department of Integrative Biology and Physiology, University of Minnesota,
Minneapolis,
MN,
USA
- Department of Neuroscience, University of Parma, Parma,
Italy
- Correspondence: Alessandro Bartolomucci,
Department of Integrative Biology and Physiology, University of Minnesota,
Minneapolis,
MN,
USA. Tel: +1-612-626-7006. Fax: +1-612-625-5149. E-mail:
| | - Cankut Cubuk
- Department of Computational Genomics, Centro de Investigación Principe Felipe, Valencia,
Spain
| | - Patricia Sebastián-Leon
- Department of Computational Genomics, Centro de Investigación Principe Felipe, Valencia,
Spain
| | - Stefania Carobbio
- Wellcome Trust MRC Metabolic Disease Unit, Institute Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge,
UK
| | - Joaquin Dopazo
- Department of Computational Genomics, Centro de Investigación Principe Felipe, Valencia,
Spain
| | - Antonio Vidal-Puig
- Wellcome Trust MRC Metabolic Disease Unit, Institute Metabolic Science, Addenbrooke’s Hospital, University of Cambridge, Cambridge,
UK
- Wellcome Trust Sanger Institute, Hinxton,
UK
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota,
Minneapolis,
MN,
USA
- Correspondence: Alessandro Bartolomucci,
Department of Integrative Biology and Physiology, University of Minnesota,
Minneapolis,
MN,
USA. Tel: +1-612-626-7006. Fax: +1-612-625-5149. E-mail:
| |
Collapse
|
71
|
Synthesis and multiparametric evaluation of thiadiazoles and oxadiazoles as diacylglycerol acyltransferase type 1 inhibitors. Bioorg Med Chem Lett 2016; 26:25-32. [DOI: 10.1016/j.bmcl.2015.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 11/22/2022]
|
72
|
Khatun I, Clark RW, Vera NB, Kou K, Erion DM, Coskran T, Bobrowski WF, Okerberg C, Goodwin B. Characterization of a Novel Intestinal Glycerol-3-phosphate Acyltransferase Pathway and Its Role in Lipid Homeostasis. J Biol Chem 2015; 291:2602-15. [PMID: 26644473 DOI: 10.1074/jbc.m115.683359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Dietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways. Therefore, we investigated the role of the glycerol 3-phosphate pathway in dietary lipid absorption. The expression of glycerol-3-phosphate acyltransferase (GPAT3) was examined throughout the small intestine. To evaluate the role for GPAT3 in lipid absorption, mice harboring a disrupted GPAT3 gene (Gpat3(-/-)) were subjected to an oral lipid challenge and fed a Western-type diet to characterize the role in lipid and cholesterol homeostasis. Additional mechanistic studies were performed in primary enterocytes. GPAT3 was abundantly expressed in the apical surface of enterocytes in the small intestine. After an oral lipid bolus, Gpat3(-/-) mice exhibited attenuated plasma TG excursion and accumulated lipid in the enterocytes. Electron microscopy studies revealed a lack of lipids in the lamina propria and intercellular space in Gpat3(-/-) mice. Gpat3(-/-) enterocytes displayed a compensatory increase in the synthesis of phospholipid and cholesteryl ester. When fed a Western-type diet, hepatic TG and cholesteryl ester accumulation was significantly higher in Gpat3(-/-) mice compared with the wild-type mice accompanied by elevated levels of alanine aminotransferase, a marker of liver injury. Dysregulation of bile acid metabolism was also evident in Gpat3-null mice. These studies identify GPAT3 as a novel enzyme involved in intestinal lipid metabolism.
Collapse
Affiliation(s)
- Irani Khatun
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Ronald W Clark
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Nicholas B Vera
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Kou Kou
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Derek M Erion
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| | - Timothy Coskran
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340
| | - Walter F Bobrowski
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340
| | - Carlin Okerberg
- Drug Safety Research and Development, Pfizer Worldwide Research and Development, Groton, Connecticut 06340
| | - Bryan Goodwin
- From the Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139 and
| |
Collapse
|
73
|
Liu J, McLaren DG, Chen D, Kan Y, Stout SJ, Shen X, Murphy BA, Forrest G, Karanam B, Sonatore L, He S, Roddy TP, Pinto S. Potential mechanism of enhanced postprandial glucagon-like peptide-1 release following treatment with a diacylglycerol acyltransferase 1 inhibitor. Pharmacol Res Perspect 2015; 3:e00193. [PMID: 27022467 PMCID: PMC4777249 DOI: 10.1002/prp2.193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 01/09/2023] Open
Abstract
Studies have demonstrated that blockade of diacylglycerol acyltransferase 1 (DGAT1) leads to prolonged release of glucagon‐like peptide 1 (GLP‐1) after meal challenge. The current study was undertaken to investigate the mechanism of action underlying the elevated levels of GLP‐1 release following pharmacological inhibition of DGAT1. We utilized a potent, specific DGAT1 inhibitor, compound A, to investigate the changes in intestinal lipid profile in a mouse model after oral administration of the compound and challenge with tracer containing fatty meal. [13C18]‐oleic acid and LC‐MS were employed to trace the fate of dietary fatty acids provided as part of a meal challenge in lean mice. Lipid profiles in plasma, proximal to distal segments of intestine, and feces were evaluated at various times following the meal challenge to study the kinetics of fatty acid absorption, synthesis into complex lipids, and excretion. Pharmacological inhibition of DGAT1 led to reduction of postprandial total and newly synthesized triglyceride (TG) excursion and significant increases in TG and FFA levels in the distal portion of intestine enriched with enteroendocrine L cells. Enhanced levels of FFA and cholesteryl ester were observed via fecal fat profiling. DGAT1 inhibition leads to enhancement of carbon flow to the synthesis of phosphatidylcholine within the intestine. DGAT1 inhibition markedly increases levels of TG and FFA in the distal intestine, which could be the predominant contributor to the prolonged and enhanced postprandial GLP‐1 release. Inactivation of DGAT1 could provide potential benefit in the treatment of dysmetabolic diseases.
Collapse
Affiliation(s)
- Jinqi Liu
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - David G McLaren
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Dunlu Chen
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Yanqing Kan
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Steven J Stout
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Xiaolan Shen
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Beth Ann Murphy
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Gail Forrest
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Bindhu Karanam
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Lisa Sonatore
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Shuwen He
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| | - Thomas P Roddy
- Agios Pharmaceuticals 38 Sidney Street Cambridge Massachusetts 02139
| | - Shirly Pinto
- Merck Research Laboratories 2000 Galloping Hill Road Kenilworth New Jersey 07033
| |
Collapse
|
74
|
Chang S, Sung PS, Lee J, Park J, Shin EC, Choi C. Prolonged silencing of diacylglycerol acyltransferase-1 induces a dedifferentiated phenotype in human liver cells. J Cell Mol Med 2015; 20:38-47. [PMID: 26493024 PMCID: PMC4717863 DOI: 10.1111/jcmm.12685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/14/2015] [Indexed: 01/29/2023] Open
Abstract
Diacylglycerol acyltransferase‐1 (DGAT1), a key enzyme in triglyceride (TG) biogenesis, is highly associated with metabolic abnormalities, such as obesity and type 2 diabetes. However, the effects of DGAT1 silencing in the human liver have not been elucidated. To investigate the effects of DGAT1 silencing in human liver cells, we compared the cellular behaviours of DGAT1‐deficient Huh‐7.5 cell lines with those of control Huh‐7.5 cells. DGAT1‐deficient cells acquired dedifferentiated and stem cell‐like characteristics, such as formation of aggregates in the presence of high levels of growth factors, high proliferation rates and loss of albumin secretion. In relation to aggregate formation, the expression level of various adhesion molecules was significantly altered in DGAT1‐deficient cells. Microarray data analysis and immunostaining of patient tissue samples clearly showed decreased expression levels of DGAT1 and integrin β1 in patients who have nodular cirrhosis without fatty degeneration.
Collapse
Affiliation(s)
- Soyoung Chang
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Junseong Park
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Korea
| | - Chulhee Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, Korea.,KAIST Institute for the BioCentury, KAIST, Daejeon, Korea
| |
Collapse
|
75
|
Song XS, Zhang J, Chen X, Palyha O, Chung C, Sonatore LM, Wilsie L, Stout S, McLaren DG, Taggart A, Imbriglio JE, Pinto S, Garcia-Calvo M, Addona GH. Identification of DGAT2 Inhibitors Using Mass Spectrometry. ACTA ACUST UNITED AC 2015; 21:117-26. [DOI: 10.1177/1087057115607463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/23/2015] [Indexed: 11/17/2022]
Abstract
Mass spectrometry offers significant advantages over other detection technologies in the areas of hit finding, hit validation, and medicinal chemistry compound optimization. The foremost obvious advantage is the ability to directly measure enzymatic product formation. In addition, the inherent sensitivity of the liquid chromatography/mass spectrometry (LC/MS) approach allows the execution of enzymatic assays at substrate concentrations typically at or below substrate Km. Another advantage of the LC/MS approach is the ability to assay impure enzyme systems that would otherwise be difficult to prosecute with traditional labeled methods. This approach was used to identify inhibitors of diacylglycerol O-acyltransferase-2 (DGAT2), a transmembrane enzyme involved in the triglyceride (TG) production pathway. The LC/MS approach was employed because of its increased assay window (compared with control membranes) of more than sevenfold compared with less than twofold with a conventional fluorogenic assay. The ability to generate thousands of dose-dependent IC50 data was made possible by the use of a staggered parallel LC/MS system with fast elution gradients. From the hit-deconvolution efforts, several structural scaffold series were identified that inhibit DGAT2 activity. Additional profiling of one chemotype in particular identified two promising reversible and selective compounds (compound 15 and compound 16) that effectively inhibit TG production in mouse primary hepatocytes.
Collapse
Affiliation(s)
- Xuelei S. Song
- Department of Pharmacology, Merck Research Laboratories, Boston, MA, USA
| | - Jiaping Zhang
- Department of Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Xun Chen
- Department of Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Oksana Palyha
- Atherosclerosis, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Christine Chung
- Department of Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Lisa M. Sonatore
- Department of Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Larissa Wilsie
- Atherosclerosis, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Steven Stout
- Department of Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - David G. McLaren
- Department of Pharmacology, Merck Research Laboratories, Kenilworth, NJ, USA
| | - Andrew Taggart
- Atherosclerosis, Merck Research Laboratories, Kenilworth, NJ, USA
| | | | - Shirly Pinto
- Atherosclerosis, Merck Research Laboratories, Kenilworth, NJ, USA
| | | | - George H. Addona
- Department of Pharmacology, Merck Research Laboratories, Boston, MA, USA
| |
Collapse
|
76
|
Yang M, Nickels JT. MOGAT2: A New Therapeutic Target for Metabolic Syndrome. Diseases 2015; 3:176-192. [PMID: 28943619 PMCID: PMC5548241 DOI: 10.3390/diseases3030176] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/26/2022] Open
Abstract
Metabolic syndrome is an ever-increasing health problem among the world’s population. It is a group of intertwined maladies that includes obesity, hypertriglyceridemia, hypertension, nonalcoholic fatty liver disease (NAFLD), and diabetes mellitus type II (T2D). There is a direct correlation between high triacylglycerol (triglyceride; TAG) level and severity of metabolic syndrome. Thus, controlling the synthesis of TAG will have a great impact on overall systemic lipid metabolism and thus metabolic syndrome progression. The Acyl-CoA: monoacylglycerolacyltransferase (MGAT) family has three members (MGAT1, -2, and -3) that catalyze the first step in TAG production, conversion of monoacylglycerol (MAG) to diacylglycerol (DAG). TAG is then directly synthesized from DAG by a Acyl-CoA: diacylglycerolacyltransferase (DGAT). The conversion of MAG → DAG → TAG is the major pathway for the production of TAG in the small intestine, and produces TAG to a lesser extent in the liver. Transgenic and pharmacological studies in mice have demonstrated the beneficial effects of MGAT inhibition as a therapy for treating several metabolic diseases, including obesity, insulin resistance, T2D, and NAFLD. In this review, the significance of several properties of MGAT physiology, including tissue expression pattern and its relationship to overall TAG metabolism, enzymatic biochemical properties and their effects on drug discovery, and finally what is the current knowledge about MGAT small molecule inhibitors and their efficacy will be discussed. Overall, this review highlights the therapeutic potential of inhibiting MGAT for lowering TAG synthesis and whether this avenue of drug discovery warrants further clinical investigation.
Collapse
Affiliation(s)
- Muhua Yang
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ 08691, USA.
| | - Joseph T Nickels
- Institute of Metabolic Disorders, Genesis Biotechnology Group, Hamilton, NJ 08691, USA.
| |
Collapse
|
77
|
Velliquette RA, Grann K, Missler SR, Patterson J, Hu C, Gellenbeck KW, Scholten JD, Randolph RK. Identification of a botanical inhibitor of intestinal diacylglyceride acyltransferase 1 activity via in vitro screening and a parallel, randomized, blinded, placebo-controlled clinical trial. Nutr Metab (Lond) 2015; 12:27. [PMID: 26246845 PMCID: PMC4526202 DOI: 10.1186/s12986-015-0025-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/29/2015] [Indexed: 01/19/2023] Open
Abstract
Background Diacylglyceride acyltransferase 1 (DGAT1) is the enzyme that adds the final fatty acid on to a diacylglyceride during triglyceride (TG) synthesis. DGAT1 plays a key role in the repackaging of dietary TG into circulating TG rich chylomicrons. A growing amount of research has indicated that an exaggerated postprandial circulating TG level is a risk indicator for cardiovascular and metabolic disorders. The aim of this research was to identify a botanical extract that inhibits intestinal DGAT1 activity and attenuates postprandial hypertriglyceridemia in overweight and obese humans. Methods Twenty individual phytochemicals and an internal proprietary botanical extract library were screened with a primary cell-free DGAT1 enzyme assay that contained dioleoyl glycerol and palmitoleoyl Coenzyme A as substrates plus human intestinal microsomes as the DGAT1 enzyme source. Botanical extracts with IC50 values < 100 μg/mL were evaluated in a cellular DGAT1 assay. The cellular DGAT1 assay comprised the analysis of 14C labeled TG synthesis in cells incubated with 14C-glycerol and 0.3 mM oleic acid. Lead botanical extracts were then evaluated in a parallel, double-blind, placebo-controlled clinical trial. Ninety healthy, overweight and obese participants were randomized to receive 2 g daily of placebo or individual botanical extracts (the investigational product) for seven days. Serum TG levels were measured before and after consuming a high fat meal (HFM) challenge (0.354 L drink/shake; 77 g fat, 25 g carbohydrate and 9 g protein) as a marker of intestinal DGAT1 enzyme activity. Results Phenolic acids (i.e., gallic acid) and polyphenols (i.e., cyanidin) abundantly found in nature appeared to inhibit DGAT1 enzyme activity in vitro. Four polyphenolic rich botanical extracts were identified from in vitro evaluation in both cell-free and cellular model systems: apple peel extract (APE), grape extract (GE), red raspberry leaf extract (RLE) and apricot/nectarine extract (ANE) (IC50 = 1.4, 5.6, and 10.4 and 3.4 μg/mL, respectively). In the seven day clinical trial, compared to placebo, only GE significantly reduced the baseline subtracted change in serum TG AUC following consumption of the HFM (AUC = 281 ± 37 vs. 181 ± 30 mg/dL*h, respectively; P = 0.021). Chromatographic characterization of the GE revealed a large number of closely eluting components containing proanthocyanidins, catechins, anthocyanins and their secondary metabolites that corresponded with the observed DGAT1 enzyme inhibition in the cell-free model. Conclusion These data suggest that a dietary GE has the potential to attenuate postprandial hypertriglyceridemia in part by the inhibition of intestinal DGAT1 enzyme activity without intolerable side effects. Trial registration This trial was registered with ClinicalTrials.gov NCT02333461 Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0025-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rodney A Velliquette
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - Kerry Grann
- Nutrition Product Development, Food, Beverages and Chewables, Amway R&D, Ada, MI 49355 USA
| | - Stephen R Missler
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - Jennifer Patterson
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - Chun Hu
- Nutrition Product Development, Supplements, Nutrilite Health Institute, Buena Park, CA 90622 USA
| | - Kevin W Gellenbeck
- Nutrition Product Development, Supplements, Nutrilite Health Institute, Buena Park, CA 90622 USA
| | - Jeffrey D Scholten
- Department of Analytical Sciences, Amway R&D, 7575 Fulton St., Building 50-2D, Ada, MI 49355 USA
| | - R Keith Randolph
- Nutrition Product Development, Supplements, Nutrilite Health Institute, Buena Park, CA 90622 USA
| |
Collapse
|
78
|
Abstract
This Review discusses new developments in understanding the basis of chylomicronaemia--a challenging metabolic disorder for which there is an unmet clinical need. Chylomicronaemia presents in two distinct primary forms. The first form is very rare monogenic early-onset chylomicronaemia, which presents in childhood or adolescence and is often caused by homozygous mutations in the gene encoding lipoprotein lipase (LPL), its cofactors apolipoprotein C-II or apolipoprotein A-V, the LPL chaperone lipase maturation factor 1 or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1. The second form, polygenic late-onset chylomicronaemia, which is caused by an accumulation of several genetic variants, can be exacerbated by secondary factors, such as poor diet, obesity, alcohol intake and uncontrolled type 1 or type 2 diabetes mellitus, and is more common than early-onset chylomicronaemia. Both forms of chylomicronaemia are associated with an increased risk of life-threatening pancreatitis; the polygenic form might also be associated with an increased risk of cardiovascular disease. Treatment of chylomicronaemia focuses on restriction of dietary fat and control of secondary factors, as available pharmacological therapies are only minimally effective. Emerging therapies that might prove more effective than existing agents include LPL gene therapy, inhibition of microsomal triglyceride transfer protein and diacylglycerol O-acyltransferase 1, and interference with the production and secretion of apoC-III and angiopoietin-like protein 3.
Collapse
Affiliation(s)
- Amanda J Brahm
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
79
|
Lopes JLS, Araujo APU, Jameson DM. Investigation of the conformational flexibility of DGAT1 peptides using tryptophan fluorescence. Methods Appl Fluoresc 2015; 3:025003. [PMID: 29148488 DOI: 10.1088/2050-6120/3/2/025003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The conformational behavior of synthetic peptides corresponding to the putative binding sites of the diacylglycerol acyltransferase 1 enzyme (a polytopic integral membrane protein) was investigated using steady-state and time-resolved fluorescence spectroscopies. Three small linear peptides with 13, 15 and 22 amino acid residues, containing one, two and three Trp residues, respectively, were studied in aqueous solution, in the absence and presence of model membranes. The high flexibility and unordered conformation of the peptides in solution were confirmed by the low Trp polarization values, the high accessibility to water-soluble quencher, and the fast rotational correlation times of the Trp residues. However, upon binding to the lipid systems, the Trp residues were incorporated within the acyl hydrophobic core and their lifetimes and rotational correlation times increased. Phasor plots were employed to analyze intensity decay of peptide-lipid binding and provided a trajectory, in phasor space, that lies along a line connecting the points of the free and bound peptide. This trajectory was analyzed to determine the association constant of the peptide to the model membrane.
Collapse
Affiliation(s)
- Jose L S Lopes
- Institute of Physics of Sao Carlos, University of Sao Paulo, Sao Carlos, SP, Brazil. Department of Cell and Molecular Biology, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | | |
Collapse
|
80
|
Li C, Li L, Lian J, Watts R, Nelson R, Goodwin B, Lehner R. Roles of Acyl-CoA:Diacylglycerol Acyltransferases 1 and 2 in Triacylglycerol Synthesis and Secretion in Primary Hepatocytes. Arterioscler Thromb Vasc Biol 2015; 35:1080-91. [PMID: 25792450 DOI: 10.1161/atvbaha.114.304584] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Very low-density lipoprotein assembly and secretion are regulated by the availability of triacylglycerol. Although compelling evidence indicates that the majority of triacylglycerol in very low-density lipoprotein is derived from re-esterification of lipolytic products released by endoplasmic reticulum-associated lipases, little is known about roles of acyl-CoA:diacylglycerol acyltransferases (DGATs) in this process. We aimed to investigate the contribution of DGAT1 and DGAT2 in lipid metabolism and lipoprotein secretion in primary mouse and human hepatocytes. APPROACH AND RESULTS We used highly selective small-molecule inhibitors of DGAT1 and DGAT2, and we tracked storage and secretion of lipids synthesized de novo from [(3)H]acetic acid and from exogenously supplied [(3)H]oleic acid. Inactivation of individual DGAT activity did not affect incorporation of either radiolabeled precursor into intracellular triacylglycerol, whereas combined inactivation of both DGATs severely attenuated triacylglycerol synthesis. However, inhibition of DGAT2 augmented fatty acid oxidation, whereas inhibition of DGAT1 increased triacylglycerol secretion, suggesting preferential channeling of separate DGAT-derived triacylglycerol pools to distinct metabolic pathways. Inactivation of DGAT2 impaired cytosolic lipid droplet expansion, whereas DGAT1 inactivation promoted large lipid droplet formation. Moreover, inactivation of DGAT2 attenuated expression of lipogenic genes. Finally, triacylglycerol secretion was significantly reduced on DGAT2 inhibition without altering extracellular apolipoprotein B levels. CONCLUSIONS Our data suggest that DGAT1 and DGAT2 can compensate for each other to synthesize triacylglycerol, but triacylglycerol synthesized by DGAT1 is preferentially channeled to oxidation, whereas DGAT2 synthesizes triacylglycerol destined for very low-density lipoprotein assembly.
Collapse
Affiliation(s)
- Chen Li
- From the Group on Molecular and Cell Biology of Lipids (C.L., L.L., J.L., R.W., R.N., R.L.), Department of Cell Biology (C.L., R.L.), Department of Pediatrics (L.L., J.L., R.W., R.N., R.L.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; and Pfizer Global Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA (B.G.)
| | - Lena Li
- From the Group on Molecular and Cell Biology of Lipids (C.L., L.L., J.L., R.W., R.N., R.L.), Department of Cell Biology (C.L., R.L.), Department of Pediatrics (L.L., J.L., R.W., R.N., R.L.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; and Pfizer Global Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA (B.G.)
| | - Jihong Lian
- From the Group on Molecular and Cell Biology of Lipids (C.L., L.L., J.L., R.W., R.N., R.L.), Department of Cell Biology (C.L., R.L.), Department of Pediatrics (L.L., J.L., R.W., R.N., R.L.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; and Pfizer Global Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA (B.G.)
| | - Russell Watts
- From the Group on Molecular and Cell Biology of Lipids (C.L., L.L., J.L., R.W., R.N., R.L.), Department of Cell Biology (C.L., R.L.), Department of Pediatrics (L.L., J.L., R.W., R.N., R.L.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; and Pfizer Global Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA (B.G.)
| | - Randal Nelson
- From the Group on Molecular and Cell Biology of Lipids (C.L., L.L., J.L., R.W., R.N., R.L.), Department of Cell Biology (C.L., R.L.), Department of Pediatrics (L.L., J.L., R.W., R.N., R.L.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; and Pfizer Global Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA (B.G.)
| | - Bryan Goodwin
- From the Group on Molecular and Cell Biology of Lipids (C.L., L.L., J.L., R.W., R.N., R.L.), Department of Cell Biology (C.L., R.L.), Department of Pediatrics (L.L., J.L., R.W., R.N., R.L.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; and Pfizer Global Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA (B.G.)
| | - Richard Lehner
- From the Group on Molecular and Cell Biology of Lipids (C.L., L.L., J.L., R.W., R.N., R.L.), Department of Cell Biology (C.L., R.L.), Department of Pediatrics (L.L., J.L., R.W., R.N., R.L.), Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; and Pfizer Global Research and Development, Cardiovascular and Metabolic Diseases Research Unit, Cambridge, MA (B.G.).
| |
Collapse
|
81
|
Lopes JLS, Beltramini LM, Wallace BA, Araujo APU. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites. PLoS One 2015; 10:e0118407. [PMID: 25719207 PMCID: PMC4342243 DOI: 10.1371/journal.pone.0118407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/16/2015] [Indexed: 12/02/2022] Open
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.
Collapse
Affiliation(s)
| | | | - Bonnie A. Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
- * E-mail: (APUA); (BAW)
| | - Ana P. U. Araujo
- Instituto de Física de São Carlos, USP, São Carlos, Brazil
- * E-mail: (APUA); (BAW)
| |
Collapse
|
82
|
Otero YF, Stafford JM, McGuinness OP. Pathway-selective insulin resistance and metabolic disease: the importance of nutrient flux. J Biol Chem 2015; 289:20462-9. [PMID: 24907277 DOI: 10.1074/jbc.r114.576355] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic glucose and lipid metabolism are altered in metabolic disease (e.g. obesity, metabolic syndrome, and Type 2 diabetes). Insulin-dependent regulation of glucose metabolism is impaired. In contrast, lipogenesis, hypertriglyceridemia, and hepatic steatosis are increased. Because insulin promotes lipogenesis and liver fat accumulation, to explain the elevation in plasma and tissue lipids, investigators have suggested the presence of pathway-selective insulin resistance. In this model, insulin signaling to glucose metabolism is impaired, but insulin signaling to lipid metabolism is intact. We discuss the evidence for the differential regulation of hepatic lipid and glucose metabolism. We suggest that the primary phenotypic driver is altered substrate delivery to the liver, as well as the repartitioning of hepatic nutrient handling. Specific alterations in insulin signaling serve to amplify the alterations in hepatic substrate metabolism. Thus, hyperinsulinemia and its resultant increased signaling may facilitate lipogenesis, but are not the major drivers of the phenotype of pathway-selective insulin resistance.
Collapse
|
83
|
Li Y, Wang L, Liu Z, Li C, Xu J, Gu Q, Xu J. Predicting selective liver X receptor β agonists using multiple machine learning methods. MOLECULAR BIOSYSTEMS 2015; 11:1241-50. [DOI: 10.1039/c4mb00718b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The classification models for predicting selective LXRβ agonists were firstly established using multiple machine learning methods. The top models can predict selective LXRβ agonists with chemical structure diversity.
Collapse
Affiliation(s)
- Yali Li
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Ling Wang
- School of Bioscience and Bioengineering
- South China University of Technology
- Guangzhou 510006
- China
| | - Zhihong Liu
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Chanjuan Li
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Jiake Xu
- Centre for Orthopaedic Research
- School of Surgery
- The University of Western Australia
- Perth
- Australia
| | - Qiong Gu
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| | - Jun Xu
- Research Center for Drug Discovery & Institute of Human Virology
- School of Pharmaceutical Sciences
- Sun Yat-Sen University
- Guangzhou 510006
- China
| |
Collapse
|
84
|
Lopes JL, Nobre TM, Cilli EM, Beltramini LM, Araújo AP, Wallace B. Deconstructing the DGAT1 enzyme: Binding sites and substrate interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3145-52. [DOI: 10.1016/j.bbamem.2014.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
|
85
|
Gauthier MS, Pérusse JR, Lavoie MÈ, Sladek R, Madiraju SRM, Ruderman NB, Coulombe B, Prentki M, Rabasa-Lhoret R. Increased subcutaneous adipose tissue expression of genes involved in glycerolipid-fatty acid cycling in obese insulin-resistant versus -sensitive individuals. J Clin Endocrinol Metab 2014; 99:E2518-28. [PMID: 25210878 PMCID: PMC5393488 DOI: 10.1210/jc.2014-1662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT A subpopulation of obese individuals remains insulin sensitive (ISO). They represent a unique human model to investigate factors underlying insulin resistance (IR) without the confounding effect of major differences in weight/adiposity. Altered fatty-acid (FA) metabolism in sc adipose tissue (SAT) contributes to obesity-associated IR. OBJECTIVE To test the hypothesis that ISO and body mass index-matched insulin-resistant obese (IRO) patients demonstrate differential SAT expression profiles of genes involved in glycerolipid-FA metabolism and that weight loss-induced improvement of IR ameliorates these changes. DESIGN AND SETTING A cross-sectional and longitudinal study. PATIENTS AND INTERVENTION Thirty-eight nondiabetic obese women were stratified into ISO (n = 25) or IRO (n = 13) groups based on hyperinsulinemic-euglycemic clamp results. Subjects were studied before and after a 6-month hypocaloric diet intervention. MAIN OUTCOME MEASURES mRNA (quantitative RT-PCR) and protein (mass spectrometry and immunoblots) levels were measured in SAT biopsies. RESULTS Despite having age, body mass index, and fat mass similar to ISO individuals, IRO patients had lower insulin sensitivity and glucose tolerance (P < .05). Baseline SAT mRNA and protein levels of genes involved in both the synthesis and lipolysis of glycerolipid-FAs were higher in IRO individuals (P < .05), even when groups were matched for visceral adipose tissue content. The dietary intervention resulted in approximately 6% weight loss in both the IRO and ISO groups (P < .05) but only ameliorated insulin sensitivity in IRO individuals (P < .05). Likewise, the intervention reduced the expression of most glycerolipid-FA metabolism genes (P < .05), with expression levels in IRO individuals being restored to ISO levels. CONCLUSIONS Increased SAT expression of genes involved in both the synthesis and hydrolysis of glycerolipid-FAs is closely associated with IR in obese women. The results suggest that enhanced glycerolipid-FA cycling in SAT contributes to obesity-associated IR.
Collapse
Affiliation(s)
- Marie-Soleil Gauthier
- Institut de recherches cliniques de Montréal (M.-S.G., J.R.P., M.-E.L., B.C., R.R.-L.), Montréal, QC H2W 1R7, Canada; Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) (M.-S.G., M.-E.L., R.S., S.R.M.M., M.P., R.R.-L.), Montréal, QC H2X 0A9, Canada; McGill University and Centre d'Innovation Génome Québec (R.S.), Montréal, QC H3A 0G1, Canada; Molecular Nutrition Unit at the CRCHUM (S.R.M.M., M.P.), Montréal, QC H2X 0A9, Canada; Diabetes and Metabolism Research Unit (N.B.R.), and Department of Medicine and Section of Endocrinology (N.B.R.), Boston University School of Medicine, Boston, Massachusetts 02118; Departments of Biochemistry (B.C., M.P.) and Nutrition (M.-E.L., M.P., R.R.-L.), Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Tsuda N, Kumadaki S, Higashi C, Ozawa M, Shinozaki M, Kato Y, Hoshida K, Kikuchi S, Nakano Y, Ogawa Y, Furusako S. Intestine-targeted DGAT1 inhibition improves obesity and insulin resistance without skin aberrations in mice. PLoS One 2014; 9:e112027. [PMID: 25405858 PMCID: PMC4236014 DOI: 10.1371/journal.pone.0112027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/10/2014] [Indexed: 11/26/2022] Open
Abstract
Objective Diacylglycerol O-acyltransferase 1 (DGAT1) catalyzes the final committed step in triglyceride biosynthesis. DGAT1 null mice are known to be resistant to diet-induced obesity, and more insulin sensitive relative to the wild-type; however, the mice exhibit abnormalities in the skin. This work determined whether the intestine-targeted DGAT1 inhibitor could improve obesity and insulin resistance without skin aberrations in mice. Design and Methods We synthesized 2 DGAT1 inhibitors: Compound A, described in the patent application from the Japan Tobacco, and Compound B (A-922500), reported by Abbott Laboratories. Both compounds were evaluated for inhibitory activities against DGAT1 enzymes and effects on the skin in mice in vivo. Compound B was further investigated for effects on obesity and insulin resistance in diet-induced-obese (DIO) mice. Results The 2 compounds comparably inhibited the DGAT1 enzyme activity and the cellular triglyceride synthesis in vitro, while they showed different distribution patterns in mice in vivo. Compound A, which distributed systemically, caused skin aberrations, while Compound B, which preferentially distributed to the intestine, improved obesity and insulin resistance without skin aberrations in DIO mice. Conclusions Our results suggest that the intestine is the key tissue in which DGAT1 plays a role in promoting obesity and insulin resistance.
Collapse
Affiliation(s)
- Naoto Tsuda
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| | - Shin Kumadaki
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Chika Higashi
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Makoto Ozawa
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Mikihiko Shinozaki
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Yutaka Kato
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Koutarou Hoshida
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Satomi Kikuchi
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Yoshihisa Nakano
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shoji Furusako
- Discovery Research, Mochida Pharmaceutical Company Limited, Shizuoka, Japan
| |
Collapse
|
87
|
Arya N, Kharjul MD, Shishoo CJ, Thakare VN, Jain KS. Some molecular targets for antihyperlipidemic drug research. Eur J Med Chem 2014; 85:535-68. [DOI: 10.1016/j.ejmech.2014.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
|
88
|
Yen CLE, Nelson DW, Yen MI. Intestinal triacylglycerol synthesis in fat absorption and systemic energy metabolism. J Lipid Res 2014; 56:489-501. [PMID: 25231105 DOI: 10.1194/jlr.r052902] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intestine plays a prominent role in the biosynthesis of triacylglycerol (triglyceride; TAG). Digested dietary TAG is repackaged in the intestine to form the hydrophobic core of chylomicrons, which deliver metabolic fuels, essential fatty acids, and other lipid-soluble nutrients to the peripheral tissues. By controlling the flux of dietary fat into the circulation, intestinal TAG synthesis can greatly impact systemic metabolism. Genes encoding many of the enzymes involved in TAG synthesis have been identified. Among TAG synthesis enzymes, acyl-CoA:monoacylglycerol acyltransferase 2 and acyl-CoA:diacylglycerol acyltransferase (DGAT)1 are highly expressed in the intestine. Their physiological functions have been examined in the context of whole organisms using genetically engineered mice and, in the case of DGAT1, specific inhibitors. An emerging theme from recent findings is that limiting the rate of TAG synthesis in the intestine can modulate gut hormone secretion, lipid metabolism, and systemic energy balance. The underlying mechanisms and their implications for humans are yet to be explored. Pharmacological inhibition of TAG hydrolysis in the intestinal lumen has been employed to combat obesity and associated disorders with modest efficacy and unwanted side effects. The therapeutic potential of inhibiting specific enzymes involved in intestinal TAG synthesis warrants further investigation.
Collapse
Affiliation(s)
- Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
89
|
Liu L, Trent CM, Fang X, Son NH, Jiang H, Blaner WS, Hu Y, Yin YX, Farese RV, Homma S, Turnbull AV, Eriksson JW, Hu SL, Ginsberg HN, Huang LS, Goldberg IJ. Cardiomyocyte-specific loss of diacylglycerol acyltransferase 1 (DGAT1) reproduces the abnormalities in lipids found in severe heart failure. J Biol Chem 2014; 289:29881-91. [PMID: 25157099 DOI: 10.1074/jbc.m114.601864] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final step in triglyceride synthesis, the conversion of diacylglycerol (DAG) to triglyceride. Dgat1(-/-) mice exhibit a number of beneficial metabolic effects including reduced obesity and improved insulin sensitivity and no known cardiac dysfunction. In contrast, failing human hearts have severely reduced DGAT1 expression associated with accumulation of DAGs and ceramides. To test whether DGAT1 loss alone affects heart function, we created cardiomyocyte-specific DGAT1 knock-out (hDgat1(-/-)) mice. hDgat1(-/-) mouse hearts had 95% increased DAG and 85% increased ceramides compared with floxed controls. 50% of these mice died by 9 months of age. The heart failure marker brain natriuretic peptide increased 5-fold in hDgat1(-/-) hearts, and fractional shortening (FS) was reduced. This was associated with increased expression of peroxisome proliferator-activated receptor α and cluster of differentiation 36. We crossed hDgat1(-/-) mice with previously described enterocyte-specific Dgat1 knock-out mice (hiDgat1(-/-)). This corrected the early mortality, improved FS, and reduced cardiac ceramide and DAG content. Treatment of hDgat1(-/-) mice with the glucagon-like peptide 1 receptor agonist exenatide also improved FS and reduced heart DAG and ceramide content. Increased fatty acid uptake into hDgat1(-/-) hearts was normalized by exenatide. Reduced activation of protein kinase Cα (PKCα), which is increased by DAG and ceramides, paralleled the reductions in these lipids. Our mouse studies show that loss of DGAT1 reproduces the lipid abnormalities seen in severe human heart failure.
Collapse
Affiliation(s)
- Li Liu
- From the Divisions of Preventive Medicine and Nutrition and Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Chad M Trent
- From the Divisions of Preventive Medicine and Nutrition and
| | - Xiang Fang
- From the Divisions of Preventive Medicine and Nutrition and Department of Geriatrics, Affiliated Provincial Hospital, Anhui Medical University, 230001 Hefei, China
| | - Ni-Huiping Son
- From the Divisions of Preventive Medicine and Nutrition and
| | - HongFeng Jiang
- From the Divisions of Preventive Medicine and Nutrition and
| | | | - Yunying Hu
- From the Divisions of Preventive Medicine and Nutrition and
| | - Yu-Xin Yin
- Institute of Systems Biomedicine, Peking University Health Science Center, 100083 Beijing, China
| | - Robert V Farese
- Gladstone Institute of Cardiovascular Disease and Departments of Medicine and Biochemistry and Biophysics, University of California, San Francisco, California 94158
| | - Shunichi Homma
- Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | - Jan W Eriksson
- Astra-Zeneca Company, 431 50 Mölndal, Sweden, Department of Medical Sciences, Uppsala University, 751 05 Uppsala, Sweden, and
| | - Shi-Lian Hu
- Department of Geriatrics, Affiliated Provincial Hospital, Anhui Medical University, 230001 Hefei, China
| | | | - Li-Shin Huang
- From the Divisions of Preventive Medicine and Nutrition and
| | - Ira J Goldberg
- From the Divisions of Preventive Medicine and Nutrition and Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, Division of Endocrinology, Diabetes, and Metabolism, New York University Langone School of Medicine, New York, New York 10016
| |
Collapse
|
90
|
Abstract
Second-generation antipsychotics (SGAs) are commonly used to treat schizophrenia. However, SGAs cause metabolic disturbances that can manifest as metabolic syndrome (MetS) in a subset of patients. The causes for these metabolic disturbances remain unclear. We performed a comprehensive metabolomic profiling of 60 schizophrenia patients undergoing treatment with SGAs that puts them at high (clozapine, olanzapine), medium (quetiapine, risperidone), or low (ziprasidone, aripiprazole) risk for developing MetS, compared to a cohort of 20 healthy controls. Multiplex immunoassays were used to measure 13 metabolic hormones and adipokines in plasma. Mass spectrometry was used to determine levels of lipids and polar metabolites in 29 patients and 10 controls. We found that levels of insulin and tumor necrosis factor alpha (TNF-α) were significantly higher (p < 0.005) in patients at medium and high risk for MetS, compared to controls. These molecules are known to be increased in individuals with high body fat content and obesity. On the other hand, adiponectin, a molecule responsible for control of food intake and body weight, was significantly decreased in patients at medium and high risk for MetS (p < 0.005). Further, levels of dyacylglycerides (DG), tryacylglycerides (TG) and cholestenone were increased, whereas α-Ketoglutarate and malate, important mediators of the tricarboxylic acid (TCA) cycle, were significantly decreased in patients compared to controls. Our studies suggest that high- and medium-risk SGAs are associated with disruption of energy metabolism pathways. These findings may shed light on the molecular underpinnings of antipsychotic-induced MetS and aid in design of novel therapeutic approaches to reduce the side effects associated with these drugs.
Collapse
|
91
|
Naik R, Obiang-Obounou BW, Kim M, Choi Y, Lee HS, Lee K. Therapeutic Strategies for Metabolic Diseases: Small-Molecule Diacylglycerol Acyltransferase (DGAT) Inhibitors. ChemMedChem 2014; 9:2410-24. [DOI: 10.1002/cmdc.201402069] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Indexed: 11/07/2022]
|
92
|
Greer MS, Zhou T, Weselake RJ. A novel assay of DGAT activity based on high temperature GC/MS of triacylglycerol. Lipids 2014; 49:831-8. [PMID: 24934589 DOI: 10.1007/s11745-014-3921-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/23/2014] [Indexed: 11/25/2022]
Abstract
Diacylglycerol acyltransferase (DGAT) catalyzes the final step in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG), a high-energy compound composed of three fatty acids esterified to a glycerol backbone. In vitro DGAT assays, which are usually conducted with radiolabeled substrate using microsomal fractions, have been useful in identifying compounds and genetic modifications that affect DGAT activity. Here, we describe a high-temperature gas chromatography (GC)/mass spectrometry (MS)-based method for monitoring molecular species of TAG produced by the catalytic action of microsomal DGAT. This method circumvents the need for radiolabeled or modified substrates, and only requires a simple lipid extraction prior to GC. The utility of the method is demonstrated using a recombinant type-1 Brassica napus DGAT produced in a strain of Saccharomyces cerevisae that is deficient in TAG synthesis. The GC/MS-based assay of DGAT activity was strongly correlated with the typical in vitro assay of the enzyme using [1-(14)C] acyl-CoA as an acyl donor. In addition to determining DGAT activity, the method is also useful for determining substrate specificity and selectivity properties of the enzyme.
Collapse
Affiliation(s)
- Michael S Greer
- Department of Agricultural, Food and Nutritional Science, Alberta Innovates Phytola Centre, University of Alberta, 4-10 Agriculture/Forestry Centre, Edmonton, AB, T6G 2P5, Canada
| | | | | |
Collapse
|
93
|
Wang W, He Y, Lin P, Li Y, Sun R, Gu W, Yu J, Zhao R. In vitro effects of active components of Polygonum Multiflorum Radix on enzymes involved in the lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:763-70. [PMID: 24680992 DOI: 10.1016/j.jep.2014.03.042] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/06/2014] [Accepted: 03/09/2014] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Raw and processed Polygoni Multiflori Radix (PMR and PMRP) are used in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD), hyperlipidemia or related diseases. In our previous research, 2, 3, 5, 4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) displayed the most important role in the total cholesterol (TC) lowering effect among all the chemical constituents of Polygonum multiflorum. Emodin and physcion displayed more favorable triglyceride (TG) reducing effects than TSG. However, there are few researches focus on the approach and mechanism of how do Polygonum multiflorum exhibit good lipid regulation activity. The targeted sites of active substances of Polygonum multiflorum are still not clearly elucidated. This research pays close attention to how major chemical components of Polygonum multiflorum affect the TC and TG contents in liver cells. MATERIALS AND METHODS In this research, a sensitive, accurate and rapid in vitro model, steatosis hepatic L02 cell, was used to explore target sites of active chemical substances of Polygonum multiflorum for 48h. Steatosis hepatic L02 cell was exposed to emodin, physcion and TSG, respectively. The contents of four key enzymes in the pathway of synthesis and decomposition of TC and TG were investigated after exposure. Meanwhile, the contents of lipid transfer protein were also tested. The diacylgycerol acyltransferase 1 (DGAT1) controlled the biosynthesis of TG from free fatty acids while 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) limited the biosynthesis of TC. Hepatic triglyceride lipase (HTGL) and cholesterol 7α-hydroxylase (CYP7A) played the key role in the lipolysis procedure of TG and TC. RESULTS The synthesis of TC and TG in steatosis L02 cells were apparently increased in the model group compared to the control group. Intracellular contents of HMG-CoA reductase and DGAT1 increased 32.33% and 56.52%, while contents of CYP7A and HTGL decreased 21.61% and 47.37%. Emodin, physcion and TSG all showed down-regulation effects on HMG-CoA reductase, while up-regulation effects on CYP7A. The most remarkable effect on HMG-CoA reductase was found on emodin. Emodin could reduce the DGAT1 content from 438.44 ± 4.51 pg/mL in model group to 192.55 ± 9.85 pg/mL (100 μm). The content of HTGL in 300 μm physcion group was 3.15 ± 0.15 U/mL, which was more significantly effective than the control, lovastatin and fenofibrate group. CONCLUSIONS TSG could raise the content of CYP7A and then promote the lipolysis of cholesterol. Moreover, TSG also showed the best LDL-reducing effect. Emodin could inhibit HMG-CoA reductase and DGAT1, which were key enzymes in the synthesis of TC and TG. Physcion increased the content of HTGL, and then could boost the lipolysis of triglyceride. At the same time, physcion showed the best VLDL-reducing effect. In view of the above conclusions, we contributed the lipid regulation activity to an overall synergy of TSG, emodin and physcion.
Collapse
Affiliation(s)
- Wangen Wang
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yanran He
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Pei Lin
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Yunfei Li
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Ruifen Sun
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Wen Gu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China
| | - Jie Yu
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China.
| | - Ronghua Zhao
- Yunnan University of Traditional Chinese Medicine, Kunming 650500, Yunnan Province, China.
| |
Collapse
|
94
|
Salakhutdinov NF, Laev SS. Triglyceride-lowering agents. Bioorg Med Chem 2014; 22:3551-64. [PMID: 24894768 DOI: 10.1016/j.bmc.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/29/2014] [Accepted: 05/05/2014] [Indexed: 12/11/2022]
Abstract
This review is the first attempt at systematization of the literature data on the structures and activities of triglyceride-lowering agents which used in medical practice or are in development. The effects and mechanisms of action of statins, squalene synthase inhibitors, fibrates, PPARα and PPARα/γ agonists, nicotinic acid, omega-3 fatty acids and some other molecular targets were considered. Unfortunately, to date, harmless and effective triglyceride-lowering drug still does not exist and there is still need for development of better triglyceride-lowering agents.
Collapse
Affiliation(s)
- Nariman F Salakhutdinov
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation; Novosibirsk State University, Pirogova str. 2, Novosibirsk 630090, Russian Federation
| | - Sergey S Laev
- Vorozhtsov Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. akademika Lavrent'eva 9, Novosibirsk 630090, Russian Federation.
| |
Collapse
|
95
|
Nelson DW, Gao Y, Yen MI, Yen CLE. Intestine-specific deletion of acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2 protects mice from diet-induced obesity and glucose intolerance. J Biol Chem 2014; 289:17338-49. [PMID: 24784138 DOI: 10.1074/jbc.m114.555961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The absorption of dietary fat involves the re-esterification of digested triacylglycerol in the enterocytes, a process catalyzed by acyl-CoA:monoacylglycerol acyltransferase (MGAT) 2. Mice without a functional gene encoding MGAT2 (Mogat2(-/-)) are protected from diet-induced obesity. Surprisingly, these mice absorb normal amounts of dietary fat but increase their energy expenditure. MGAT2 is expressed in tissues besides intestine, including adipose tissue in both mice and humans. To test the hypothesis that intestinal MGAT2 regulates systemic energy balance, we generated and characterized mice deficient in MGAT2 specifically in the small intestine (Mogat2(IKO)). We found that, like Mogat2(-/-) mice, Mogat2(IKO) mice also showed a delay in fat absorption, a decrease in food intake, and a propensity to use fatty acids as fuel when first exposed to a high fat diet. Mogat2(IKO) mice increased energy expenditure although to a lesser degree than Mogat2(-/-) mice and were protected against diet-induced weight gain and associated comorbidities, including hepatic steatosis, hypercholesterolemia, and glucose intolerance. These findings illustrate that intestinal lipid metabolism plays a crucial role in the regulation of systemic energy balance and may be a feasible intervention target. In addition, they suggest that MGAT activity in extraintestinal tissues may also modulate energy metabolism.
Collapse
Affiliation(s)
- David W Nelson
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Yu Gao
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Mei-I Yen
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| | - Chi-Liang Eric Yen
- From the Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
96
|
Fox BM, Sugimoto K, Iio K, Yoshida A, Zhang J(K, Li K, Hao X, Labelle M, Smith ML, Rubenstein SM, Ye G, McMinn D, Jackson S, Choi R, Shan B, Ma J, Miao S, Matsui T, Ogawa N, Suzuki M, Kobayashi A, Ozeki H, Okuma C, Ishii Y, Tomimoto D, Furakawa N, Tanaka M, Matsushita M, Takahashi M, Inaba T, Sagawa S, Kayser F. Discovery of 6-Phenylpyrimido[4,5-b][1,4]oxazines as Potent and Selective Acyl CoA:Diacylglycerol Acyltransferase 1 (DGAT1) Inhibitors with in Vivo Efficacy in Rodents. J Med Chem 2014; 57:3464-83. [DOI: 10.1021/jm500135c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Brian M. Fox
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Kazuyuki Sugimoto
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Kiyosei Iio
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Atsuhito Yoshida
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Jian (Ken) Zhang
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Kexue Li
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Xiaolin Hao
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Marc Labelle
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Marie-Louise Smith
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Steven M. Rubenstein
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Guosen Ye
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Dustin McMinn
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Simon Jackson
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Rebekah Choi
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Bei Shan
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Ji Ma
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Shichang Miao
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Takuya Matsui
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Nobuya Ogawa
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masahiro Suzuki
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Akio Kobayashi
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hidekazu Ozeki
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Chihiro Okuma
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yukihito Ishii
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Daisuke Tomimoto
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Noboru Furakawa
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masahiro Tanaka
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Mutsuyoshi Matsushita
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Mitsuru Takahashi
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takashi Inaba
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shoichi Sagawa
- Central
Pharmaceutical
Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Frank Kayser
- Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, United States
| |
Collapse
|
97
|
Denison H, Nilsson C, Löfgren L, Himmelmann A, Mårtensson G, Knutsson M, Al-Shurbaji A, Tornqvist H, Eriksson JW. Diacylglycerol acyltransferase 1 inhibition with AZD7687 alters lipid handling and hormone secretion in the gut with intolerable side effects: a randomized clinical trial. Diabetes Obes Metab 2014; 16:334-43. [PMID: 24118885 DOI: 10.1111/dom.12221] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/21/2013] [Accepted: 09/30/2013] [Indexed: 02/02/2023]
Abstract
AIM Inhibition of diacylglycerol acyltransferase 1 (DGAT1) is a potential treatment modality for patients with type 2 diabetes mellitus and obesity, based on preclinical data suggesting it is associated with insulin sensitization and weight loss. This randomized, placebo-controlled, phase 1 study in 62 overweight or obese men explored the effects and tolerability of AZD7687, a reversible and selective DGAT1 inhibitor. METHODS Multiple doses of AZD7687 (1, 2.5, 5, 10 and 20 mg/day, n = 6 or n = 12 for each) or placebo (n = 20) were administered for 1 week. Postprandial serum triacylglycerol (TAG) was measured for 8 h after a standardized 45% fat meal. Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) were measured and a paracetamol challenge was performed to assess gastric emptying. RESULTS Dose-dependent reductions in postprandial serum TAG were demonstrated with AZD7687 doses ≥5 mg compared with placebo (p < 0.01). Significant (p < 0.001) increases in plasma GLP-1 and PYY levels were seen at these doses, but no clear effect on gastric emptying was demonstrated at the end of treatment. With AZD7687 doses >5 mg/day, gastrointestinal (GI) side effects increased; 11/18 of these participants discontinued treatment owing to diarrhoea. CONCLUSIONS Altered lipid handling and hormone secretion in the gut were demonstrated during 1-week treatment with the DGAT1 inhibitor AZD7687. However, the apparent lack of therapeutic window owing to GI side effects of AZD7687, particularly diarrhoea, makes the utility of DGAT1 inhibition as a novel treatment for diabetes and obesity questionable.
Collapse
|
98
|
Fuhrmann A, Lopes PC, Sereno J, Pedro J, Espinoza D, Pereira M, Reis F, Eriksson J, Carvalho E. Molecular mechanisms underlying the effects of cyclosporin A and sirolimus on glucose and lipid metabolism in liver, skeletal muscle and adipose tissue in an in vivo rat model. Biochem Pharmacol 2014; 88:216-28. [DOI: 10.1016/j.bcp.2014.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/23/2013] [Accepted: 01/14/2014] [Indexed: 01/20/2023]
|
99
|
Zhang J, Xu D, Nie J, Cao J, Zhai Y, Tong D, Shi Y. Monoacylglycerol acyltransferase-2 is a tetrameric enzyme that selectively heterodimerizes with diacylglycerol acyltransferase-1. J Biol Chem 2014; 289:10909-10918. [PMID: 24573674 DOI: 10.1074/jbc.m113.530022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acyl-CoA:monoacylglycerol acyltransferases (MGATs) and diacylglycerol acyltransferases (DGATs) catalyze the two consecutive steps in the synthesis of triacylglycerol, a key process required for dietary fat absorption into the enterocytes of the small intestine. In this report, we investigated the tendency of MGAT2 to form an enzyme complex with DGAT1 and DGAT2 in intact cells. We demonstrated that in addition to the 38-kDa monomer of the MGAT2 enzyme predicted by its peptide sequence, a 76-kDa moiety was detected in SDS-PAGE without reducing agent and heat inactivation. The 76-kDa MGAT2 moiety was greatly enhanced by treatment with a cross-linking reagent in intact cells. Additionally, the cross-linking reagent dose-dependently yielded a band corresponding to the tetramer (152 kDa) in SDS-PAGE, suggesting that the MGAT2 enzyme primarily functions as a homotetrameric protein and as a tetrameric protein. Likewise, DGAT1 also forms a homodimer under nondenaturing conditions. When co-expressed in COS-7 cells, MGAT2 heterodimerized with DGAT1 without treatment with a cross-linking reagent. MGAT2 also co-eluted with DGAT1 on a gel filtration column, suggesting that the two enzymes form a complex in intact cells. In contrast, MGAT2 did not heterodimerize with DGAT2 when co-expressed in COS-7 cells, despite high sequence homology between the two enzymes. Furthermore, systematic deletion analysis demonstrates that N-terminal amino acids 35-80 of DGAT1, but not a signal peptide at the N terminus of MGAT2, is required for the heterodimerization. Finally, co-expression of MGAT2 with DGAT1 significantly increased lipogenesis in COS-7 cells, indicating the functional importance of the dimerization.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dan Xu
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jia Nie
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Jingsong Cao
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | - Yonggong Zhai
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yuguang Shi
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033.
| |
Collapse
|
100
|
Identification and characterization of sebaceous gland atrophy-sparing DGAT1 inhibitors. PLoS One 2014; 9:e88908. [PMID: 24558447 PMCID: PMC3928314 DOI: 10.1371/journal.pone.0088908] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 01/13/2014] [Indexed: 12/16/2022] Open
Abstract
Inhibition of Diacylglycerol O-acyltransferase 1 (DGAT1) has been a mechanism of interest for metabolic disorders. DGAT1 inhibition has been shown to be a key regulator in an array of metabolic pathways; however, based on the DGAT1 KO mouse phenotype the anticipation is that pharmacological inhibition of DGAT1 could potentially lead to skin related adverse effects. One of the aims in developing small molecule DGAT1 inhibitors that target key metabolic tissues is to avoid activity on skin-localized DGAT1 enzyme. In this report we describe a modeling-based approach to identify molecules with physical properties leading to differential exposure distribution. In addition, we demonstrate histological and RNA based biomarker approaches that can detect sebaceous gland atrophy pre-clinically that could be used as potential biomarkers in a clinical setting.
Collapse
|