51
|
Jaccoulet E, Daniel T, Dammak D, Prognon P, Caudron E. Interest of flow injection spectrophotometry as an orthogonal method for analyzing biomolecule aggregates: Application to stressed monoclonal antibody study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119436. [PMID: 33461132 DOI: 10.1016/j.saa.2021.119436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the suitability of flow injection spectrophotometry (FIS) to analyze three degraded therapeutic monoclonal antibodies (bevacizumab, nivolumab, and rituximab). For this purpose, aggregates were generated with stirring, freeze-thaw, and heat stresses. The intact and stressed mab samples were filtered with 0.22 µm hydrophilic filters and analyzed by size exclusion chromatography (SEC), cation-exchange chromatography (CEX), and FIS. In terms of quantitative and qualitative analysis, protein loss and structural changes were assessed. Various aggregates profiles were obtained according to the mabs and the stresses. FIS allowed performing very satisfactory quantifications for each mab with intermediate precision RSD < 3.0 % and recovery between 97.9 and 102.0 %. From the protein loss measurements, it appears that SEC underestimates the mab aggregate proportions up to two times less as compared with FIS since the latter avoids any non-specific interactions (electrostatic or hydrophobic interactions). Using second derivative spectroscopy and multivariate data analysis, we noticed apparent structural differences, located in the regions 245-265 nm for rituximab and nivolumab and 280-300 nm for bevacizumab, depending on the stress. The FIS complementarity with the other techniques used in this study allowed us to demonstrate that the three mabs behave differently for a given stress condition. While extreme mechanical stress formed large aggregates irrespective of the mabs, rituximab showed to be less stable and more sensitive than the two other mabs under freeze-thaw and heat stresses, generating large aggregates (>200 nm) and partial unfolding. Nivolumab tends to form small aggregates less than 50 nm when heated and freeze-thawed. Moreover, freeze-thaw seems to generate native IgG-1 aggregates with rituximab. Similarly, bevacizumab showed to form these IgG-1 aggregates and was resistant to freeze-thaw, likely thanks to trehalose cryoprotectant from its formulation. Finally, FIS associated with multivariate analysis can provide rich information in one single run and appears to be a fast, simple, and reliable method to set complementary and orthogonal approaches for protein aggregates monitoring.
Collapse
Affiliation(s)
- E Jaccoulet
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - T Daniel
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - D Dammak
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - P Prognon
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Lip(Sys)(2) Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay (EA4041 Groupe de Chimie Analytique de Paris-Sud), F-92290 Châtenay-Malabry, France
| | - E Caudron
- Service de Pharmacie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Lip(Sys)(2) Chimie Analytique Pharmaceutique, Univ. Paris-Sud, Université Paris-Saclay (EA4041 Groupe de Chimie Analytique de Paris-Sud), F-92290 Châtenay-Malabry, France
| |
Collapse
|
52
|
Pardeshi NN, Ahmadi M, Sierzputowska I, Fogg M, Baker M, Carpenter JF. Subvisible Particles in Solutions of Remicade in Intravenous Saline Activate Immune System Pathways in In Vitro Human Cell Systems. J Pharm Sci 2021; 110:2894-2903. [PMID: 33864780 DOI: 10.1016/j.xphs.2021.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/24/2022]
Abstract
Among patients that receive Remicade® therapy, more than 20% have adverse infusion related reactions and approximately 50% have immunogenic responses.1-3 Upon characterization of initial Remicade®-IV solution we observed a high concentration of subvisible particles that could inadvertently be delivered to patients. This solution was processed through the IV infusion system, mimicking the typical clinical administration setup - either with or without an in-line filter connected to the IV line. The samples generated thereafter were tested using various in vitro assays for activation of the innate immune system via cytokine release in whole blood and in peripheral blood mononuclear cell (PBMC) cultures, and activation of the Toll like receptors (TLRs). Activation of the adaptive immune system was evaluated by monitoring upregulation of surface receptors on dendritic cells (DCs) and CD4+ T cell proliferation in response to IV solution of Remicade®. Our results indicate that subvisible particles in Remicade®-saline solution have a significant role in activation of the immune system but there are extrinsic factors potentially contributed by the in-line filters or other process parameters that also contribute to immune system activation.
Collapse
Affiliation(s)
- Neha N Pardeshi
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, United States
| | - Maryam Ahmadi
- Abzena Ltd, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK
| | | | - Mark Fogg
- Abzena Ltd, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK
| | - Matthew Baker
- Abzena Ltd, Babraham Research Campus, Babraham, Cambridge CB22 3AT, UK
| | - John F Carpenter
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, United States.
| |
Collapse
|
53
|
Santra S, Dhurua S, Jana M. Analyzing the driving forces of insulin stability in the basic amino acid solutions: A perspective from hydration dynamics. J Chem Phys 2021; 154:084901. [PMID: 33639734 DOI: 10.1063/5.0038305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amino acids having basic side chains, as additives, are known to increase the stability of native-folded state of proteins, but their relative efficiency and the molecular mechanism are still controversial and obscure as well. In the present work, extensive atomistic molecular dynamics simulations were performed to investigate the hydration properties of aqueous solutions of concentrated arginine, histidine, and lysine and their comparative efficiency on regulating the conformational stability of the insulin monomer. We identified that in the aqueous solutions of the free amino acids, the nonuniform relaxation of amino acid-water hydrogen bonds was due to the entrapment of water molecules within the amino acid clusters formed in solutions. Insulin, when tested with these solutions, was found to show rigid conformations, relative to that in pure water. We observed that while the salt bridges formed by the lysine as an additive contributed more toward the direct interactions with insulin, the cation-π was more prominent for the insulin-arginine interactions. Importantly, it was observed that the preferentially more excluded arginine, compared to histidine and lysine from the insulin surface, enriches the hydration layer of the protein. Our study reveals that the loss of configurational entropy of insulin in arginine solution, as compared to that in pure water, is more as compared to the entropy loss in the other two amino acid solutions, which, moreover, was found to be due to the presence of motionally bound less entropic hydration water of insulin in arginine solution than in histidine or lysine solution.
Collapse
Affiliation(s)
- Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
54
|
Ulitzka M, Carrara S, Grzeschik J, Kornmann H, Hock B, Kolmar H. Engineering therapeutic antibodies for patient safety: tackling the immunogenicity problem. Protein Eng Des Sel 2021; 33:5944198. [PMID: 33128053 DOI: 10.1093/protein/gzaa025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Established monoclonal antibodies (mAbs) allow treatment of cancers, autoimmune diseases and other severe illnesses. Side effects either arise due to interaction with the target protein and its biology or result from of the patient's immune system reacting to the foreign protein. This immunogenic reaction against therapeutic antibodies is dependent on various factors. The presence of non-human sequences can trigger immune responses as well as chemical and post-translational modifications of the antibody. However, even fully human antibodies can induce immune response through T cell epitopes or aggregates. In this review, we briefly describe, how therapeutic antibodies can interact with the patient's immune system and summarize recent advancements in protein engineering and in silico methods to reduce immunogenicity of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefania Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|
55
|
Immunogenicity Challenges Associated with Subcutaneous Delivery of Therapeutic Proteins. BioDrugs 2021; 35:125-146. [PMID: 33523413 PMCID: PMC7848667 DOI: 10.1007/s40259-020-00465-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The subcutaneous route of administration has provided convenient and non-inferior delivery of therapeutic proteins compared to intravenous infusion, but there is potential for enhanced immunogenicity toward subcutaneously administered proteins in a subset of patients. Unwanted anti-drug antibody response toward proteins or monoclonal antibodies upon repeated administration is shown to impact the pharmacokinetics and efficacy of multiple biologics. Unique immunogenicity challenges of the subcutaneous route have been realized through various preclinical and clinical examples, although subcutaneous delivery has often demonstrated comparable immunogenicity to intravenous administration. Beyond route of administration as a treatment-related factor of immunogenicity, certain product-related risk factors are particularly relevant to subcutaneously administered proteins. This review attempts to provide an overview of the mechanism of immune response toward proteins administered subcutaneously (subcutaneous proteins) and comments on product-related risk factors related to protein structure and stability, dosage form, and aggregation. A two-wave mechanism of antigen presentation in the immune response toward subcutaneous proteins is described, and interaction with dynamic antigen-presenting cells possessing high antigen processing efficiency and migratory activity may drive immunogenicity. Mitigation strategies for immunogenicity are discussed, including those in general use clinically and those currently in development. Mechanistic insights along with consideration of risk factors involved inspire theoretical strategies to provide antigen-specific, long-lasting effects for maintaining the safety and efficacy of therapeutic proteins.
Collapse
|
56
|
Imura Y, Tagawa T, Miyamoto Y, Nonoyama S, Sumichika H, Fujino Y, Yamanouchi M, Miki H. Washing with alkaline solutions in protein A purification improves physicochemical properties of monoclonal antibodies. Sci Rep 2021; 11:1827. [PMID: 33469121 PMCID: PMC7815873 DOI: 10.1038/s41598-021-81366-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Protein A affinity chromatography has been widely used for both laboratory scale purification and commercial manufacturing of monoclonal antibodies and Fc-fusion proteins. Protein A purification is specific and efficient. However, there still remain several issues to be addressed, such as incomplete clearance of impurities including host cell proteins, DNA, aggregates, etc. In addition, the effects of wash buffers in protein A purification on the physicochemical characteristics of antibodies have yet to be fully understood. Here we found a new purification protocol for monoclonal antibodies that can improve physicochemical properties of monoclonal antibodies simply by inserting an additional wash step with a basic buffer after the capture step to the conventional protein A purification. The effects of the alkaline wash on monoclonal antibodies were investigated in terms of physicochemical characteristics, yields, and impurity clearance. The simple insertion of an alkaline wash step resulted in protection of antibodies from irreversible aggregation, reduction in free thiols and impurities, an improvement in colloidal and storage stability, and enhanced yields. This new procedure is widely applicable to protein A affinity chromatography of monoclonal antibodies.
Collapse
Affiliation(s)
- Yuichi Imura
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan. .,Development Department, Tanabe Research Laboratories U.S.A. Inc., San Diego, USA.
| | - Toshiaki Tagawa
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Yuya Miyamoto
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Fujisawa, Japan
| | - Satoshi Nonoyama
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Hiroshi Sumichika
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Yasuhiro Fujino
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan.,Research Department, Tanabe Research Laboratories U.S.A. Inc., San Diego, USA
| | - Masaya Yamanouchi
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | - Hideo Miki
- Sohyaku. Innovative Research Department, Mitsubishi Tanabe Pharma Corporation, Fujisawa, Japan
| |
Collapse
|
57
|
Luo S, McSweeney KM, Wang T, Bacot SM, Feldman GM, Zhang B. Defining the right diluent for intravenous infusion of therapeutic antibodies. MAbs 2021; 12:1685814. [PMID: 31774346 PMCID: PMC6927757 DOI: 10.1080/19420862.2019.1685814] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are commonly administered to patients through intravenous (IV) infusion, which involves diluting the medication into an infusion solution (e.g., saline and 5% dextrose). Using the wrong diluent can cause product aggregation, which may compromise patient safety. We and others have shown that Herceptin® (trastuzumab) and Avastin® (bevacizumab) undergo rapid aggregation upon mixing with dextrose and human plasma in vitro. In this study, we evaluated the compatibility of a panel of 11 therapeutic mAbs with dextrose or saline and human serum. These mAbs were randomly selected for their distinct formulations and IgG isotypes (IgG1, IgG2, IgG4, and Fc-fusion protein). All the mAbs appeared to be compatible with saline and human serum. However, mAbs that were formulated at acidic pH (≤ 6.5) exclusively formed insoluble aggregates upon mixing with dextrose and serum. Such aggregation was not detected for the mAbs that are at neutral pH (7.2–7.5) or in buffers containing sodium chloride. Mass spectrometric analysis revealed that the insoluble aggregates were composed of mAb molecules and several serum proteins (e.g., complement proteins, apolipoprotein, fibronectin) that are characterized by an isoelectric point of pH 5.4–6.7. At proximate pH to the isoelectric point values, those abundant serum proteins appeared to undergo isoelectric precipitation with mAb molecules. Our observations highlight a potential risk of protein aggregation at the blood-IV interface if a diluent is incompatible with a specific mAb formulation. This information has implications in guiding the design of product formulations and the selection of the right diluent for intravenous infusion of therapeutic mAbs. Abbreviations: ADC: antibody-drug conjugate; D5W: 5% dextrose in water; IM: intramuscular; IV: intravenous; LC-MS/MS: liquid chromatography-tandem mass spectrometry; mAb: monoclonal antibody; SC: subcutaneous; pI: isoelectric point
Collapse
Affiliation(s)
- Shen Luo
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Keisha Melodi McSweeney
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tao Wang
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Silvia M Bacot
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gerald M Feldman
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Baolin Zhang
- Office of Biotechnology Products; Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
58
|
The Impact of Product and Process Related Critical Quality Attributes on Immunogenicity and Adverse Immunological Effects of Biotherapeutics. J Pharm Sci 2020; 110:1025-1041. [PMID: 33316242 DOI: 10.1016/j.xphs.2020.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
The pharmaceutical industry has experienced great successes with protein therapeutics in the last two decades and with novel modalities, including cell therapies and gene therapies, more recently. Biotherapeutics are complex in structure and present challenges for discovery, development, regulatory, and life cycle management. Biotherapeutics can interact with the immune system that may lead to undesired immunological responses, including immunogenicity, hypersensitivity reactions (HSR), injection site reactions (ISR), and others. Many product and process related critical quality attributes (CQAs) have the potential to trigger or augment such immunological responses to the product. Tremendous efforts, both clinically and preclinically, have been invested to understand the impact of product and process related CQAs on adverse immunological effects. The information and knowledge are critical for the implementation of Quality by Design (QbD), which requires risk assessment and establishment of specifications and control strategies for CQAs. A quality target product profile (QTPP) that identifies the key CQAs through process development can help assign severity scores based on safety, immunogenicity, pharmacokinetics (PK) and pharmacodynamics (PD) of the molecule. Gaps and future directions related to biotherapeutics and emerging novel modalities are presented.
Collapse
|
59
|
Immunological Evaluation In Vitro of Nanoparticulate Impurities Isolated From Pharmaceutical-Grade Sucrose. J Pharm Sci 2020; 110:952-958. [PMID: 33220239 DOI: 10.1016/j.xphs.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022]
Abstract
Sucrose is a commonly used stabilizing excipient in protein formulations. However, recent studies have indicated the presence of nanoparticulate impurities (NPIs) in the size range of 100-200 nm in pharmaceutical-grade sucrose. Furthermore, isolated NPIs have been shown to induce protein aggregation when added to monoclonal antibody formulations. Moreover, nanoparticles are popular vaccine delivery systems used to increase the immunogenicity of antigens. Therefore, we hypothesized that NPIs may have immunostimulatory properties. In this study, we evaluated the immunomodulatory effects of NPIs in presence and absence of trastuzumab in vitro with monocyte-derived dendritic cells (moDCs). Exposure of trastuzumab, the model IgG used in this study, to NPIs led to an increase in concentration of proteinaceous particles in the sub-micron range. When added to moDCs, the NPIs alone or in presence of trastuzumab did not affect cell viability or cytotoxicity. Moreover, no significant effect on the expression of surface markers, and cytokine and chemokine production was observed. Our findings showed, surprisingly, no evidence of any immunomodulatory activity of NPIs. As this study was limited to a single IgG formulation and to in vitro immunological read-outs, further work is required to fully understand the immunogenic potential of NPIs.
Collapse
|
60
|
Yang JY, Zhang J, Lu R, Tan YQ, Du GF, Zhou G. T cell-derived exosomes induced macrophage inflammatory protein-1α/β drive the trafficking of CD8 + T cells in oral lichen planus. J Cell Mol Med 2020; 24:14086-14098. [PMID: 33107682 PMCID: PMC7754044 DOI: 10.1111/jcmm.16020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Abstract
Oral lichen planus (OLP) is a T cell–mediated chronic inflammatory disease with uncertain aetiology. Exosomes are nanosized particles with biological capacities. Here, we aimed to study the effects of T cell–derived exosomes (T‐exos) on the pathogenesis of OLP and its mechanism. T‐exos were incubated with Jurkat cells for 48 hours, and 26 cytokines in the supernatant were measured by luminex assay. The expression of macrophage inflammatory protein (MIP)‐1α/β was detected using immunohistochemistry and ELISA; that of CCR1/3/5 on peripheral T cells was determined by flow cytometry. Transwell assay was performed to investigate the chemotactic effect of MIP‐1α/β, and cells in the lower chambers were examinated by flow cytometry. As a result, OLP T‐exos elevated the production of MIP‐1α/β, which were highly expressed in OLP tissues and plasma. CCR1/5 were markedly expressed on OLP peripheral T cells, and the majority of CCR1/5+ T cells were CD8+ T cells. Besides, MIP‐1α/β promoted the migration of OLP mononuclear cells, while inhibiting CCR1/5 significantly decreased the trafficking of mononuclear cells, especially that of CD8+ T cells. Conclusively, OLP T‐exos‐induced MIP‐1α/β may drive the trafficking of CD8+ T cells after binding with CCR1/5 in OLP, contributing to the development of OLP.
Collapse
Affiliation(s)
- Jing-Ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rui Lu
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ge-Fei Du
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
61
|
Kiyoshi M, Tada M, Shibata H, Aoyama M, Ishii-Watabe A. Characterization of Aggregated Antibody-Silicone Oil Complexes: From Perspectives of Morphology, 3D Image, and Fcγ Receptor Activation. J Pharm Sci 2020; 110:1189-1196. [PMID: 33069712 DOI: 10.1016/j.xphs.2020.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022]
Abstract
Pre-filled syringes (PFS) have been in widespread use as an administration device for therapeutic antibodies in recent decades. Generally, the inner barrel and syringe of PFS are coated with silicone oil (SO) for lubrication. Multiple studies have focused on the fact that the SO adsorbs denatured antibody molecules, and induces antibody aggregation. Aggregated antibodies are recognized as a potential risk for evoking immunogenic responses in patients. The characteristics of the aggregated antibody-SO complexes, including their concentration, population, shape, three-dimensional (3D) image, and Fcγ Receptors (FcγRs) activation have been obscurely acknowledged so far. In the present work, we prepared aggregated antibody-SO complexes by agitation and analyzed using multifaceted techniques such as flow imaging, confocal fluorescence microscopy, and cell-based assays for FcγRs activation. The results emphasized that the SO accelerates the increase in sub-visible particles and antibody aggregation. The confocal fluorescence microscopy analysis revealed the high-resolution 3D images of aggregated antibody-SO complexes. The FcγRs reporter cell assay clarified that the pre-mixed and agitated Ab + SO have higher FcγRs activation capability compared to the agitated Ab. Overall, this study advances the view that SO has an effect to increase the risk of agitation-induced aggregated antibody particles.
Collapse
Affiliation(s)
- Masato Kiyoshi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan.
| | - Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Hiroko Shibata
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Michihiko Aoyama
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa 210-9501, Japan
| |
Collapse
|
62
|
Ruesch MN, Benetti L, Berkay E, Cirelli DJ, Frantz N, Gastens MH, Kelley WP, Kretsinger J, Lewis M, Novick S, Rellahan B, Pack L, Stroop CJM, Subashi A, Yin P, Zeng M, Stults J. Strategies for Setting Patient-Centric Commercial Specifications for Biotherapeutic Products. J Pharm Sci 2020; 110:771-784. [PMID: 33035537 DOI: 10.1016/j.xphs.2020.09.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022]
Abstract
Commercial specifications for a new biotherapeutic product are a critical component of the product's overall control strategy that ensures safety and efficacy. This paper describes strategies for setting commercial specifications as proposed by a consortium of industry development scientists. The specifications for some attributes are guided by compendia and regulatory guidance. For other product quality attributes (PQAs), product knowledge and the understanding of attribute criticality built throughout product development should drive specification setting. The foundation of PQA knowledge is an understanding of potential patient impact through an assessment of potency, PK, immunogenicity and safety. In addition to PQA knowledge, the ability of the manufacturing process to consistently meet specifications, typically assessed through statistical analyses, is an important consideration in the specification-setting process. Setting acceptance criteria that are unnecessarily narrow can impact the ability to supply product or prohibit consideration of future convenient dosage forms. Patient-centric specifications enable appropriate control over higher risk PQAs to ensure product quality for the patient, and flexibility for lower risk PQAs for a sustainable supply chain. This paper captures common strategic approaches for setting specifications for standard biotherapeutic products such as monoclonal antibodies and includes considerations for ensuring specifications are patient centric.
Collapse
Affiliation(s)
- Margaret N Ruesch
- Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA 01810, USA.
| | | | | | - David J Cirelli
- Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA 01810, USA
| | - Neha Frantz
- Biogen, Research Triangle Park, NC 27709, USA
| | | | - Wayne P Kelley
- Pharma Research & Development, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Juliana Kretsinger
- Bioproduct Analytical Development, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Mike Lewis
- Janssen R&D, LLC, Malvern, PA 19355, USA
| | - Shawn Novick
- BioPhia Consulting, Inc., Lake Forest, IL 60045, USA
| | | | - Laura Pack
- Product Quality, Seagen, Bothell, WA 98021, USA
| | | | - Ann Subashi
- Global Product Development, Pfizer Inc., Groton, CT, USA
| | - Ping Yin
- Global Regulatory Affairs, Vertex Pharmaceuticals, Boston, MA 02210, USA
| | - Ming Zeng
- Parenteral Science & Technology, Bristol-Myers Squibb Company, New Brunswick, NJ 08903, USA
| | - John Stults
- Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
63
|
Nabhan M, Legrand FX, Le-Minh V, Robin B, Bechara R, Huang N, Smadja C, Pallardy M, Turbica I. The FcγRIIa–Syk Axis Controls Human Dendritic Cell Activation and T Cell Response Induced by Infliximab Aggregates. THE JOURNAL OF IMMUNOLOGY 2020; 205:2351-2361. [DOI: 10.4049/jimmunol.1901381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/28/2020] [Indexed: 11/19/2022]
|
64
|
Bansal R, Dash R, Rathore AS. Impact of mAb Aggregation on Its Biological Activity: Rituximab as a Case Study. J Pharm Sci 2020; 109:2684-2698. [DOI: 10.1016/j.xphs.2020.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/03/2023]
|
65
|
Singh SK, Mishra A, Goel G, Chirmule N, Rathore AS. Modulation of granulocyte colony stimulating factor conformation and receptor binding by methionine oxidation. Proteins 2020; 89:68-80. [PMID: 32860270 DOI: 10.1002/prot.25995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Biosimilars offer an avenue for potential cost savings and enhanced patient access to various emerging therapies in a budget neutral way. Biosimilars of the granulocyte colony stimulating factor (GCSF) are an excellent example in this regard with as many as 18 versions of the drug being currently approved across globe for treatment of neutropenia. Here, we identified oxidation of the various methionine residues in GCSF as a key heterogeneity that adversely impact its efficacy. In agreement with earlier studies, it was found that oxidation of Met 122 and Met 127 significantly contributes toward reduction of GCSF efficacy, measured using binding affinity to the GCSF receptor. The combination of molecular dynamics simulation along with structural characterization studies established that oxidation of Met 127 and Met 122 brings about a small local conformational change around the B-C loop in GCSF structure due to slight displacement of Asp113 and Thr117 residues. The simulation studies were validated using fluorescence quenching experiments using acrylamide as quencher and site-directed mutagenesis by replacing Met 122 and Met 127 residues with alanine. The results of this study lead to an enhanced mechanistic understanding of the oxidation in GCSF and should be useful in protein engineering efforts to design stable, safe, and efficacious GCSF product. In addition, the structure-function information can provide targets for protein engineering during early drug development and setting specifications of allowable limits of product variants in biosimilar products.
Collapse
Affiliation(s)
- Sumit Kumar Singh
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Avinash Mishra
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Gaurav Goel
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, New Delhi, India
| | | | - Anurag S Rathore
- Department of Chemical Engineering, DBT Center of Excellence for Biopharmaceutical Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
66
|
Xiao H, Huang L, Zhang W, Yin Z. Damage of proteins at the air/water interface: Surface tension characterizes globulin interface stability. Int J Pharm 2020; 584:119445. [PMID: 32450209 DOI: 10.1016/j.ijpharm.2020.119445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/17/2023]
Abstract
In the present study, we aimed to see what circumstances may cause protein damage at air/water interface and reveal the correlation between the surface properties of protein solution and the interface stability. The surface hydrophobicity and β-sheet of protein were determined by exogenous fluorescent probes, and the changes in the spatial structure of proteins were characterized by steady-state fluorescence spectroscopy. The surface tension was determined by the plate method, and such value was used to establish the correlation with the hydrophobicity and structure of the protein. Moreover, degree of aggregation in the presence or absence of Hofmeister salt in protein solution was investigated. There was a significant correlation between the surface tension and hydrophobicity of the protein solution (P < 0.05). The surface tension and structure of the protein also showed a significant correlation under the induction of pH (P < 0.05). Furthermore, when the protein was induced by the air/water interface, the surface tension, hydrophobicity, and structure of proteins were correlated, and protein aggregation was increased. When the additive induced a decrease in the surface tension of the protein solution, the protein aggregation was promoted. These findings provided valuable insights into the relationship between surface tension of the protein solution and interfacial stability and paved the way for future pre-formulation studies of therapeutic proteins.
Collapse
Affiliation(s)
- Huashuai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Luyao Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Wei Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
67
|
Jawa V, Terry F, Gokemeijer J, Mitra-Kaushik S, Roberts BJ, Tourdot S, De Groot AS. T-Cell Dependent Immunogenicity of Protein Therapeutics Pre-clinical Assessment and Mitigation-Updated Consensus and Review 2020. Front Immunol 2020; 11:1301. [PMID: 32695107 PMCID: PMC7338774 DOI: 10.3389/fimmu.2020.01301] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 01/01/2023] Open
Abstract
Immune responses to protein and peptide drugs can alter or reduce their efficacy and may be associated with adverse effects. While anti-drug antibodies (ADA) are a standard clinical measure of protein therapeutic immunogenicity, T cell epitopes in the primary sequences of these drugs are the key drivers or modulators of ADA response, depending on the type of T cell response that is stimulated (e.g., T helper or Regulatory T cells, respectively). In a previous publication on T cell-dependent immunogenicity of biotherapeutics, we addressed mitigation efforts such as identifying and reducing the presence of T cell epitopes or T cell response to protein therapeutics prior to further development of the protein therapeutic for clinical use. Over the past 5 years, greater insight into the role of regulatory T cell epitopes and the conservation of T cell epitopes with self (beyond germline) has improved the preclinical assessment of immunogenic potential. In addition, impurities contained in therapeutic drug formulations such as host cell proteins have also attracted attention and become the focus of novel risk assessment methods. Target effects have come into focus, given the emergence of protein and peptide drugs that target immune receptors in immuno-oncology applications. Lastly, new modalities are entering the clinic, leading to the need to revise certain aspects of the preclinical immunogenicity assessment pathway. In addition to drugs that have multiple antibody-derived domains or non-antibody scaffolds, therapeutic drugs may now be introduced via viral vectors, cell-based constructs, or nucleic acid based therapeutics that may, in addition to delivering drug, also prime the immune system, driving immune response to the delivery vehicle as well as the encoded therapeutic, adding to the complexity of assessing immunogenicity risk. While it is challenging to keep pace with emerging methods for the preclinical assessment of protein therapeutics and new biologic therapeutic modalities, this collective compendium provides a guide to current best practices and new concepts in the field.
Collapse
Affiliation(s)
- Vibha Jawa
- Predictive and Clinical Immunogenicity, PPDM, Merck & Co., Kenilworth, NJ, United States
| | | | - Jochem Gokemeijer
- Discovery Biotherapeutics, Bristol-Myers Squibb, Cambridge, MA, United States
| | | | | | - Sophie Tourdot
- BioMedicine Design, Pfizer Inc., Andover, MA, United States
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
68
|
Kibria MG, Akazawa-Ogawa Y, Rahman N, Hagihara Y, Kuroda Y. The immunogenicity of an anti-EGFR single domain antibody (V HH) is enhanced by misfolded amorphous aggregation but not by heat-induced aggregation. Eur J Pharm Biopharm 2020; 152:164-174. [PMID: 32416134 DOI: 10.1016/j.ejpb.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022]
Abstract
Amorphous aggregates of therapeutic proteins can provoke an unwanted immune response (anti-drug antibodies; ADAs), but counter-examples have led to some controversy. Amorphous aggregates can possess unique biophysical and biochemical attributes depending on both the way they are generated and the protein's biophysical/biochemical properties. Here, we examine the immunogenicity of an anti-EGFR single domain antibody (VHH) in four types of amorphous aggregates: two heat-aggregated VHH incubated at 65 °C (VHH-65) and 95 °C (VHH-95), a misfolded VHH isolated from the insoluble fraction of the E. coli lysate (VHH-Ins), and a low solubility misfolded VHH produced by miss-shuffling the SS bonds of the native VHH (VHH-Mis). Biophysical and biochemical measurements indicated that VHH was indeed natively folded, monomeric, and β-sheeted; that VHH-65 was partially unfolded and formed aggregates with a Z-average (Zave) of 771 nm; whereas VHH-95 was unfolded and formed aggregates of 1722 nm; and that both VHH-Ins and VHH-Mis were misfolded with non-native intermolecular SS bonds and formed aggregates with a Zave of 1846 nm and 1951 nm, respectively. The IgG level generated in Jcl:ICR mice determined by ELISA showed that the native VHH was barely immunogenic, VHH-95 was not immunogenic, while VHH-65 was mildly immunogenic. By contrast, the misfolded aggregates, VHH-Ins and VHH-Mis, having a Zave and an aggregation propensity similar to that of VHH-95, were highly immunogenic. These findings indicate the critical role of the biochemical and biophysical attributes of the amorphous aggregates in generating an immune response against a protein, rather than just their sizes.
Collapse
Affiliation(s)
- Md Golam Kibria
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yoko Akazawa-Ogawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Nafsoon Rahman
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yoshihisa Hagihara
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
69
|
Nabhan M, Pallardy M, Turbica I. Immunogenicity of Bioproducts: Cellular Models to Evaluate the Impact of Therapeutic Antibody Aggregates. Front Immunol 2020; 11:725. [PMID: 32431697 PMCID: PMC7214678 DOI: 10.3389/fimmu.2020.00725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/31/2020] [Indexed: 12/21/2022] Open
Abstract
Patients treated with bioproducts (BPs) frequently develop anti-drug antibodies (ADAs) with potential neutralizing capacities leading to loss of clinical response or potential hypersensitivity reactions. Many factors can influence BP immunogenicity and could be related to the patient, the treatment, as well as to the product itself. Among these latter factors, it is now well accepted that BP aggregation is associated with an increased potential for immunogenicity, as aggregates seem to be correlated with ADA development. Moreover, the presence of high-affinity ADAs suggests a CD4 T-cell dependent adaptive immune response and therefore a pivotal role for antigen-presenting cells (APCs), such as dendritic cells (DCs). In this review, we address the in vitro methods developed to evaluate how monoclonal antibodies could trigger the immunization process by focusing on the role of aggregated antibodies in the establishment of this response. In particular, we will present the different cell-based assays that have been used to assess the potential of antibodies and their aggregates to modulate cellular mechanisms leading to activation and the biological parameters (cellular activation markers, proliferation and secreted molecules) that can be measured to evaluate the different cell activation stages and their consequences in the propagation of the immune response. Indeed, the use of such strategies could help evaluate the risk of BP immunogenicity and their role in mitigating this risk.
Collapse
Affiliation(s)
- Myriam Nabhan
- Inserm, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marc Pallardy
- Inserm, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| | - Isabelle Turbica
- Inserm, Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
70
|
Anami Y, Tsuchikama K. Next-generation Antibody-drug Conjugates (ADCs): Exploring New Frontiers with Chemical Approaches. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Kyoji Tsuchikama
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston
| |
Collapse
|
71
|
Chamberlain P, Rup B. Immunogenicity Risk Assessment for an Engineered Human Cytokine Analogue Expressed in Different Cell Substrates. AAPS JOURNAL 2020; 22:65. [PMID: 32291556 DOI: 10.1208/s12248-020-00443-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 11/30/2022]
Abstract
The purpose of this article is to illustrate how performance of an immunogenicity risk assessment at the earliest stage of product development can be instructive for critical early decision-making such as choice of host system for expression of a recombinant therapeutic protein and determining the extent of analytical characterization and control of heterogeneity in co- and post-translational modifications. Application of a risk-based approach for a hypothetical recombinant DNA analogue of a human endogenous cytokine with immunomodulatory functions is described. The manner in which both intrinsic and extrinsic factors could interact to influence the relative scale of risk associated with expression in alternative hosts, namely Chinese hamster ovary (CHO) cells, Pichia pastoris, Escherichia coli, or Nicotinia tabacum is considered in relation to the development of the investigational product to treat an autoimmune condition. The article discusses how particular product-related variants (primary amino acid sequence modifications and post-translational glycosylation or other modifications) and process-derived impurities (host cell proteins, endotoxins, beta-glucans) associated with the different expression systems might influence the impact of immunogenicity on overall clinical benefit versus risk for a therapeutic protein candidate that has intrinsic MHC Class II binding potential. The implications of the choice of expression system for relative risk are discussed in relation to specific actions for evaluation and measures for risk mitigation, including use of in silico and in vitro methods to understand intrinsic immunogenic potential relative to incremental risk associated with non-human glycan and protein impurities. Finally, practical guidance on presentation of this information in regulatory submissions to support clinical development is provided.
Collapse
Affiliation(s)
- Paul Chamberlain
- NDA Advisory Board, NDA Regulatory Science Ltd, Grove House, Guildford Road, Leatherhead, Surrey, KT22 9DF, UK.
| | - Bonita Rup
- Bonnie Rup Consulting, LLC, Reading, Massachusetts, USA
| |
Collapse
|
72
|
Rahman N, Islam MM, Unzai S, Miura S, Kuroda Y. Nanometer-Sized Aggregates Generated Using Short Solubility Controlling Peptide Tags Do Increase the In Vivo Immunogenicity of a Nonimmunogenic Protein. Mol Pharm 2020; 17:1629-1637. [DOI: 10.1021/acs.molpharmaceut.0c00071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nafsoon Rahman
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Mohammad Monirul Islam
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Satoru Unzai
- Department of Frontier Bioscience, Faculty of Bioscience and Applied Chemistry, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - Shiho Miura
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Sciences, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan
| |
Collapse
|
73
|
Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical Stability of Monoclonal Antibodies: A Review. J Pharm Sci 2020; 109:169-190. [DOI: 10.1016/j.xphs.2019.08.009] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/10/2023]
|
74
|
Gambe-Gilbuena A, Shibano Y, Krayukhina E, Torisu T, Uchiyama S. Automatic Identification of the Stress Sources of Protein Aggregates Using Flow Imaging Microscopy Images. J Pharm Sci 2020; 109:614-623. [DOI: 10.1016/j.xphs.2019.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
|
75
|
Watanabe H, Yoshida C, Ooishi A, Nakai Y, Ueda M, Isobe Y, Honda S. Histidine-Mediated Intramolecular Electrostatic Repulsion for Controlling pH-Dependent Protein-Protein Interaction. ACS Chem Biol 2019; 14:2729-2736. [PMID: 31596562 DOI: 10.1021/acschembio.9b00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions that can be controlled by environmental triggers have immense potential in various biological and industrial applications. In the current study, we aimed to engineer a pH-dependent protein-protein interaction that employs intramolecular electrostatic repulsion through a structure-guided histidine substitution approach. We implemented this strategy on Streptococcal protein G, an affinity ligand for immunoglobulin G, and showed that even a single point mutation effectively improved the pH sensitivity of the binding interactions without adversely affecting its structural stability or its innate binding function. Depending on the pH of the environment, the protein-protein interaction was disrupted by the electrostatic repulsion between the substituted histidine and its neighboring positively charged residues. Structurally, the substituted histidine residue was located adjacent to a lysine residue that could form hydrogen bonds with immunoglobulin G. Thermodynamically, the introduced electrostatic repulsion was reflected in the significant loss of the exothermic heat of the binding under acidic conditions, whereas accompanying enthalpy-entropy compensation partly suppressed the improvement of the pH sensitivity. Thus, the engineered pH-sensitive protein G could enable antibody purification under mildly acidic conditions. This intramolecular design can be combined with conventional protein-protein interface design. Moreover, the method proposed here provides us with additional design criteria for optimization of pH-dependent molecular interactions.
Collapse
Affiliation(s)
- Hideki Watanabe
- The National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba 305-8566, Japan
| | - Chuya Yoshida
- The National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba 305-8566, Japan
| | - Ayako Ooishi
- The National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba 305-8566, Japan
| | - Yasuto Nakai
- Daicel Corporation, Innovation Park, 1239, Shinzaike, Aboshi, Himeji, Hyogo 671-1283, Japan
| | - Momoko Ueda
- Daicel Corporation, Innovation Park, 1239, Shinzaike, Aboshi, Himeji, Hyogo 671-1283, Japan
| | - Yutaka Isobe
- Daicel Corporation, Innovation Park, 1239, Shinzaike, Aboshi, Himeji, Hyogo 671-1283, Japan
| | - Shinya Honda
- The National Institute of Advanced Industrial Science and Technology, 1-1-1, Higashi, Tsukuba 305-8566, Japan
| |
Collapse
|
76
|
|
77
|
Current In Vitro Assays for Prediction of T Cell Mediated Immunogenicity of Biotherapeutics and Manufacturing Impurities. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09412-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
78
|
Shocking Data on Parcel Shipments of Protein Solutions. J Pharm Sci 2019; 109:690-695. [PMID: 31689428 PMCID: PMC6941214 DOI: 10.1016/j.xphs.2019.10.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022]
Abstract
An early-phase development shipping study was designed to interrogate the stability of liquid formulations under normal shipping conditions. Parcel shipments were made between Seattle, WA, and Indianapolis, IN, during 2018-2019. Each parcel contained a data recorder that tracked the shipment by GPS and measured shock and temperature. During the transport process, the parcels received up to 40 shock events with strengths ranging from 8 to 36G. After shipment, the formulations without polysorbate showed considerable increases in submicron and visible particles while little to no change occurred when polysorbate was present. Samples dropped repeatedly from a height of 18 inches to produce a shock of ∼25G caused visible particle formation with little increase in the subvisible particles, suggesting that other factors, such as vibration, in addition to the shock, were necessary to produce particle formation. These results provide a basis for further studies in the relationships between physical stability of mAbs and the challenges introduced by the shipment network, specifically shock and vibration. The findings indicate that the shock events as measured are repeatable and attributable to the layout of the sorting facility.
Collapse
|
79
|
Bar-Yoseph H, Pressman S, Blatt A, Gerassy Vainberg S, Maimon N, Starosvetsky E, Ungar B, Ben-Horin S, Shen-Orr SS, Chowers Y. Infliximab-Tumor Necrosis Factor Complexes Elicit Formation of Anti-Drug Antibodies. Gastroenterology 2019; 157:1338-1351.e8. [PMID: 31401142 DOI: 10.1053/j.gastro.2019.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Some patients develop anti-drug antibodies (ADAs), which reduce the efficacy of infliximab, a monoclonal antibody against tumor necrosis factor (TNF), in the treatment of immune-mediated diseases, including inflammatory bowel diseases. ADAs arise inconsistently, and it is not clear what factors determine their formation. We investigated features of the immune system, the infliximab antibody, and its complex with TNF that might contribute to ADA generation. METHODS C57BL/6 mice were given injections of infliximab and recombinant human TNF or infliximab F(ab')2 fragments. Blood samples were collected every 2-3 days for 2 weeks and weekly thereafter for up to 6 weeks; infliximab-TNF complexes and ADAs were measured by enzyme-linked immunosorbent assay (ELISA). Intestinal biopsy and blood samples were obtained from patients having endoscopy who had received infliximab therapy for inflammatory bowel diseases; infliximab-TNF complexes were measured with ELISA. Infliximab-specific plasma cells were detected in patient tissue samples by using mass cytometry. We studied activation of innate immune cells in peripheral blood mononuclear cells (PBMCs) from healthy donors incubated with infliximab or infliximab-TNF complexes; toll-like receptors (TLRs) were blocked with antibodies, endocytosis was blocked with the inhibitor PitStop2, and cytokine expression was measured by real-time polymerase chain reaction and ELISAs. Uptake of infliximab and infliximab-TNF complexes by THP-1 cells was measured with confocal microscopy. RESULTS Mice given increasing doses of infliximab produced increasing levels of ADAs. Blood samples from mice given injections of human TNF and infliximab contained infliximab-TNF complexes; complex formation was associated with ADA formation with an area under the curve of 0.944 (95% confidence interval, 0.851-1.000; P = .003). Intestinal tissues from patients, but not blood samples, contained infliximab-TNF complexes and infliximab-specific plasma cells. Incubation of PBMCs with infliximab-TNF complexes resulted in a 4.74-fold increase in level of interleukin (IL) 1β (IL1B) messenger RNA (P for comparison = .005), increased IL1B protein secretion, and a 2.69-fold increase in the expression of TNF messenger RNA (P for comparison = 0.013) compared with control PBMCs. Infliximab reduced only IL1B and TNF expression. Antibodies against TLR2 or TLR4 did not block the increases in IL1B or TNF expression, but endocytosis was required. THP-1 cells endocytosed higher levels of infliximab-TNF complexes than infliximab alone. CONCLUSIONS In mice, we found ADA formation to increase with dose of infliximab given and concentration of infliximab-TNF complexes detected in blood. Based on studies of human intestinal tissues and blood samples, we propose that infliximab-TNF complexes formed in the intestine are endocytosed by and activate innate immune cells, which increase expression of IL1B and TNF and production of antibodies against the drug complex. It is therefore important to optimize the infliximab dose to a level that is effective but does not activate an innate immune response against the drug-TNF complex.
Collapse
Affiliation(s)
- Haggai Bar-Yoseph
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Sigal Pressman
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Alexandra Blatt
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | | | - Naama Maimon
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Elina Starosvetsky
- Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Bella Ungar
- Department of Gastroenterology, Chaim Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shomron Ben-Horin
- Department of Gastroenterology, Chaim Sheba Medical Center, Ramat-Gan, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai S Shen-Orr
- Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Yehuda Chowers
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel; Bruce Rappaport School of Medicine, Technion Israel Institute of Technology, Haifa, Israel; Clinical Research Institute, Rambam Health Care Campus, Haifa, Israel.
| | | |
Collapse
|
80
|
Wälchli R, Vermeire PJ, Massant J, Arosio P. Accelerated Aggregation Studies of Monoclonal Antibodies: Considerations for Storage Stability. J Pharm Sci 2019; 109:595-602. [PMID: 31676272 DOI: 10.1016/j.xphs.2019.10.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/06/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Aggregation of mAbs is a crucial concern with respect to their safety and efficacy. Among the various properties of protein aggregates, it is emerging that their size can potentially impact their immunogenicity. Therefore, stability studies of antibody formulations should not only evaluate the rate of monomer loss but also determine the size distribution of the protein aggregates, which in turn depends on the aggregation mechanism. Here, we study the aggregation behavior of different formulations of 2 monoclonal immunoglobulins (IgGs) in the temperature range from 5°C to 50°C over 52 weeks of storage. We show that the aggregation kinetics of both antibodies follow non-Arrhenius behavior and that the aggregation mechanisms change between 40°C and 5°C, leading to different types of aggregates. Specifically, for a given monomer conversion, dimer formation dominates at low temperatures, while larger aggregates are formed at higher temperatures. We further show that the stability ranking of different molecules as well as of different formulations is drastically different at 40°C and 5°C while it correlates better between 30°C and 5°C. Our findings have implications for the level of information provided by accelerated aggregation studies with respect to protein stability under storage conditions.
Collapse
Affiliation(s)
- Ruben Wälchli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Pieter-Jan Vermeire
- UCB Pharma, BioTech Sciences, Formulation Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Jan Massant
- UCB Pharma, BioTech Sciences, Formulation Development, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| |
Collapse
|
81
|
Tada M, Aoyama M, Ishii-Watabe A. Fcγ Receptor Activation by Human Monoclonal Antibody Aggregates. J Pharm Sci 2019; 109:576-583. [PMID: 31676270 DOI: 10.1016/j.xphs.2019.10.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 01/11/2023]
Abstract
Protein aggregates are a potential risk factor for immunogenicity. The measurement, characterization, and control of protein aggregates in drug products are indispensable for the development of biopharmaceuticals, including therapeutic mAbs. In this study, Fcγ receptor (FcγR)-expressing reporter cell lines were used to analyze the FcγR-activation properties of mAb aggregates. Comparison of aggregates of mAbs harboring different IgG subclasses revealed that the FcγR-activation profiles of the mAb aggregates were dependent on IgG subclass. In addition, aggregates of Fc-engineered mAb with enhanced FcγR-activation properties exhibited stronger activation of FcγRs than was observed in the wild-type aggregates, whereas aggregates of Fc-engineered mAb with decreased FcγR-activation properties showed reduced activation. These results suggest that FcγR activation by mAb aggregates depends greatly on the Fc functions of the native (nonaggregated) mAbs. We also showed that aggregates of mAbs smaller than 1 μm in size have the potential to directly activate FcγRs. Unintended immune cell activation can be induced on account of FcγR activation by mAb aggregates and such FcγR activation may contribute to immunogenicity, and therefore, analysis of the FcγR-activation properties of mAb aggregates using FcγR-expressing reporter cell lines is a promising approach for the characterization of mAb aggregates.
Collapse
Affiliation(s)
- Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| | - Michihiko Aoyama
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
82
|
Joh NH, Thomas L, Christian TR, Verlinsky A, Jiao N, Allotta N, Jawa V, Cao S, Narhi LO, Joubert MK. Silicone Oil Particles in Prefilled Syringes With Human Monoclonal Antibody, Representative of Real-World Drug Products, Did Not Increase Immunogenicity in In Vivo and In Vitro Model Systems. J Pharm Sci 2019; 109:845-853. [PMID: 31628922 DOI: 10.1016/j.xphs.2019.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Silicone oil is a lubricant for prefilled syringes (PFS), a common primary container for biotherapeutics. Silicone oil particles (SiOP) shed from PFS are a concern for patients due to their potential for increased immunogenicity and therefore also of regulatory concern. To address the safety concern in a context of manufacturing and distribution of drug product (DP), SiOP was increased (up to ∼25,000 particles/mL) in PFS filled with mAb1, a fully human antibody drug, by simulated handling of DP mimicked by drop shock. These samples are characterized in a companion report (Jiao N et al. J Pharm Sci. 2020). The risk of immunogenicity was then assessed using in vitro and in vivo immune model systems. The impact of a common DP excipient, polysorbate 80, on both the formation and biological consequences of SiOP was also tested. SiOP was found associated with (1) minimal cytokine secretion from human peripheral blood mononuclear cells, (2) no response in cell lines that report NF-κB/AP-1 signaling, and (3) no antidrug antibodies or significant cytokine production in transgenic Xeno-het mice, whether or not mAb1 or polysorbate 80 was present. These results suggest that SiOP in mAb1, representative of real-world DP in PFS, poses no increased risk of immunogenicity.
Collapse
Affiliation(s)
| | | | | | | | - Nancy Jiao
- Amgen Inc., Thousand Oaks, California 91320
| | | | - Vibha Jawa
- Amgen Inc., Thousand Oaks, California 91320
| | - Shawn Cao
- Amgen Inc., Thousand Oaks, California 91320
| | | | | |
Collapse
|
83
|
Jaccoulet E, Daniel T, Prognon P, Caudron E. Forced Degradation of Monoclonal Antibodies After Compounding: Impact on Routine Hospital Quality Control. J Pharm Sci 2019; 108:3252-3261. [DOI: 10.1016/j.xphs.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/16/2019] [Accepted: 06/04/2019] [Indexed: 10/26/2022]
|
84
|
Growth Hormone Aggregates Activation of Human Dendritic Cells Is Controlled by Rac1 and PI3 Kinase Signaling Pathways. J Pharm Sci 2019; 109:927-932. [PMID: 31520643 DOI: 10.1016/j.xphs.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The presence of protein aggregates in biological products is suggested to promote immunogenicity, leading to the production of anti-drug antibodies with neutralizing capacities. This suggests a CD4+ T-cell dependent adaptive immune response, thus a pivotal role for antigen-presenting cells, such as dendritic cells (DCs). We previously showed that human growth hormone aggregates induced DC maturation, with notably an increase in CXCL10 production. DC phenotypic modifications were sufficient to promote allogeneic CD4+ T-cell proliferation with Th1 polarization. In this work, we identified the main intracellular signaling pathways involved in DC activation by human growth hormone aggregates, showing that aggregates induced p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and c-Jun N-terminal kinase phosphorylation, as well as nuclear factor κB subunit p65 nuclear translocation. Next, investigating the implication of Rho GTPases and phosphoinositide 3-kinase (PI3K) in activated DC showed that Rac1 and Cdc42 regulated the phosphorylation of MAP kinases, whereas PI3K was only implicated in c-Jun N-terminal kinase phosphorylation. Furthermore, we showed that Rac1 and PI3K pathways, but not Cdc42, regulated the production of CXCL10 via the MAP kinases and nuclear factor κB. Taken together, our results bring new insight on how protein aggregates could induce DC activation, leading to a better understanding of aggregates role in therapeutic proteins immunogenicity.
Collapse
|
85
|
Schack MM, Dahl K, Rades T, Groenning M, Carpenter JF. Spectroscopic Evidence of Tertiary Structural Differences Between Insulin Molecules in Fibrils. J Pharm Sci 2019; 108:2871-2879. [DOI: 10.1016/j.xphs.2019.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/01/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
|
86
|
Agarwal S, Sahni N, Hickey JM, Robertson GA, Sitrin R, Cryz S, Joshi SB, Volkin DB. Characterizing and Minimizing Aggregation and Particle Formation of Three Recombinant Fusion-Protein Bulk Antigens for Use in a Candidate Trivalent Rotavirus Vaccine. J Pharm Sci 2019; 109:394-406. [PMID: 31400346 PMCID: PMC6941221 DOI: 10.1016/j.xphs.2019.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
In a companion paper, the structural integrity, conformational stability, and degradation mechanisms of 3 recombinant fusion-protein antigens comprising a non-replicating rotavirus (NRRV) vaccine candidate (currently being evaluated in early-stage clinical trials) are described. In this work, we focus on the aggregation propensity of the 3 NRRV antigens coupled to formulation development studies to identify common frozen bulk candidate formulations. The P2-VP8-P[8] antigen was most susceptible to shaking and freeze-thaw-induced aggregation and particle formation. Each NRRV antigen formed aggregates with structurally altered protein (with exposed apolar regions and intermolecular β-sheet) and dimers containing a non-native disulfide bond. From excipient screening studies with P2-VP8-P[8], sugars or polyols (e.g., sucrose, trehalose, mannitol, sorbitol) and various detergents (e.g., Pluronic F-68, polysorbate 20 and 80, PEG-3350) were identified as stabilizers against aggregation. By combining promising additives, candidate bulk formulations were optimized to not only minimize agitation-induced aggregation, but also particle formation due to freeze-thaw stress of P2-VP8-P[8] antigen. Owing to limited material availability, stabilization of the P2-VP8-P[4] and P2-VP8-P[6] was confirmed with the lead candidate P2-VP8-P[8] formulations. The optimization of these bulk NRRV candidate formulations is discussed in the context of subsequent drug product formulations in the presence of aluminum adjuvants.
Collapse
Affiliation(s)
- Sanjeev Agarwal
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Neha Sahni
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - George A Robertson
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Robert Sitrin
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Stanley Cryz
- The Center for Vaccine Innovation and Access, PATH, 455 Massachusetts Avenue NW Suite 1000, Washington, District of Columbia 20001
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| |
Collapse
|
87
|
An Assessment of the Ability of Submicron- and Micron-Size Silicone Oil Droplets in Dropped Prefillable Syringes to Invoke Early- and Late-Stage Immune Responses. J Pharm Sci 2019; 108:2278-2287. [DOI: 10.1016/j.xphs.2019.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/21/2022]
|
88
|
Falconer RJ. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol Adv 2019; 37:107412. [PMID: 31254660 DOI: 10.1016/j.biotechadv.2019.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023]
Abstract
Liquid formulation of therapeutic proteins is a maturing technology. Demand for products that are easy to use in the clinic or that are amenable to self-administration make a ready to use liquid formulation desirable. Most modern liquid formulations have a simple composition; comprising a buffer, a tonicity modifier, a surfactant, sometimes a stabiliser, the therapeutic protein and water. Recent formulations of monoclonal antibodies often use histidine or acetate as the buffer, sucrose or trehalose as the tonicity modifier and polysorbate 20 or 80 as the surfactant with a pH of 5.7 +/- 0.4. The mechanisms for the behaviour of excipients is still debated by academics so formulation design is still a black art. Fortunately, a statistical approach like design of experiment is suitable for formulation development and has been successful when combined with accelerated stability experimentation. The development of prefilled syringes and pens has added low viscosity and shear resistance to the quality attributes for a successful formulation. To achieve patient compliance for self-administration, formulations that cause minimal pain and tissue damage is also desirable.
Collapse
Affiliation(s)
- Robert J Falconer
- Department of Chemical Engineering & Advanced Materials, University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
89
|
Kinderman F, Yerby B, Jawa V, Joubert MK, Joh NH, Malella J, Herskovitz J, Xie J, Ferbas J, McBride HJ. Impact of Precipitation of Antibody Therapeutics After Subcutaneous Injection on Pharmacokinetics and Immunogenicity. J Pharm Sci 2019; 108:1953-1963. [DOI: 10.1016/j.xphs.2019.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
|
90
|
Wong NA, Uchida NV, Dissanayake TU, Patel M, Iqbal M, Woehl TJ. Detection and Sizing of Submicron Particles in Biologics With Interferometric Scattering Microscopy. J Pharm Sci 2019; 109:881-890. [PMID: 31160046 DOI: 10.1016/j.xphs.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/17/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
Abstract
We demonstrate the application of interferometric scattering microscopy (IFS) for characterizing submicron particles in stir-stressed monoclonal antibody. IFS uses a layered silicon sensor and modified optical microscope to rapidly visualize and determine the particle size distribution (PSD) of submicron particles based on their scattering intensity, which is directly proportional to particle mass. Limits for particle size and optimal solution concentration were established for IFS characterization of submicron particles. We critically compare IFS data with dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) and find IFS is superior to NTA and DLS for determining the realistic shape of the number-based PSD, whereas NTA and DLS provide superior information about absolute particle size. Together, IFS, NTA, and DLS provide complementary information on submicron particles and enable quantitative characterization of the PSD of submicron aggregates. Finally, we explore quantifying particle size with IFS by developing a calibration curve for particle scattering intensity based on correlative scanning electron microscopy imaging. We found that only a subset of isotropic-shaped particles followed the expected proportionality between IFS intensity and particle mass. Overall, this study demonstrates IFS is a simple approach for detecting and quantifying submicron aggregate PSD in protein-based therapeutics.
Collapse
Affiliation(s)
- Nathan A Wong
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742
| | - Nina V Uchida
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742
| | - Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742
| | - Mehulkumar Patel
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Maira Iqbal
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, College Park, Maryland 20742.
| |
Collapse
|
91
|
Dingman R, Balu-Iyer SV. Immunogenicity of Protein Pharmaceuticals. J Pharm Sci 2019; 108:1637-1654. [PMID: 30599169 PMCID: PMC6720129 DOI: 10.1016/j.xphs.2018.12.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Protein therapeutics have drastically changed the landscape of treatment for many diseases by providing a regimen that is highly specific and lacks many off-target toxicities. The clinical utility of many therapeutic proteins has been undermined by the potential development of unwanted immune responses against the protein, limiting their efficacy and negatively impacting its safety profile. This review attempts to provide an overview of immunogenicity of therapeutic proteins, including immune mechanisms and factors influencing immunogenicity, impact of immunogenicity, preclinical screening methods, and strategies to mitigate immunogenicity.
Collapse
Affiliation(s)
- Robert Dingman
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214
| | - Sathy V Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14214.
| |
Collapse
|
92
|
Anzengruber J, Feichtinger M, Bärnthaler P, Haider N, Ilas J, Pruckner N, Benamara K, Scheiflinger F, Reipert BM, Malisauskas M. How Full-Length FVIII Benefits from Its Heterogeneity - Insights into the Role of the B-Domain. Pharm Res 2019; 36:77. [PMID: 30937539 PMCID: PMC6443606 DOI: 10.1007/s11095-019-2599-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/27/2019] [Indexed: 11/19/2022]
Abstract
Purpose To explore how the natural heterogeneity of human coagulation factor VIII (FVIII) and the processing of its B-domain specifically modulate protein aggregation. Methods Recombinant FVIII (rFVIII) molecular species containing 70% or 20% B-domain, and B-domain-deleted rFVIII (BDD-rFVIII), were separated from full-length recombinant FVIII (FL-rFVIII). Purified human plasma-derived FVIII (pdFVIII) was used as a comparator. Heterogeneity and aggregation of the various rFVIII molecular species, FL-rFVIII and pdFVIII were analysed by SDS-PAGE, dynamic light scattering, high-performance size-exclusion chromatography and flow cytometry-based particle analysis. Results FL-rFVIII and pdFVIII were heterogeneous in nature and demonstrated similar resistance to aggregation under physical stress. Differences were observed between these and among rFVIII molecular species. FVIII molecular species exhibited diverging aggregation pathways dependent on B-domain content. The propensity to form aggregates increased with decreasing proportions of B-domain, whereas the opposite was observed for oligomer formation. Development of cross-β sheet-containing aggregates in BDD-rFVIII induced effective homologous seeding and faster aggregation. Naturally heterogeneous FL-rFVIII and pdFVIII displayed the lowest propensity to aggregate in all experiments. Conclusions These results demonstrate that pdFVIII and FL-rFVIII have similar levels of molecular heterogeneity, and suggest that heterogeneity and the B-domain are involved in stabilising FVIII by modulating its aggregation pathway. Electronic supplementary material The online version of this article (10.1007/s11095-019-2599-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Anzengruber
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria.
| | - Martin Feichtinger
- Technical Operations, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Philipp Bärnthaler
- Technical Operations, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Norbert Haider
- Technical Operations, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Josenato Ilas
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Nina Pruckner
- Technical Operations, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Karima Benamara
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | | | - Birgit M Reipert
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| | - Mantas Malisauskas
- Research & Development, Baxalta Innovations GmbH, a Takeda company, Vienna, Austria
| |
Collapse
|
93
|
Morgan H, Tseng SY, Gallais Y, Leineweber M, Buchmann P, Riccardi S, Nabhan M, Lo J, Gani Z, Szely N, Zhu CS, Yang M, Kiessling A, Vohr HW, Pallardy M, Aswad F, Turbica I. Evaluation of in vitro Assays to Assess the Modulation of Dendritic Cells Functions by Therapeutic Antibodies and Aggregates. Front Immunol 2019; 10:601. [PMID: 31001248 PMCID: PMC6455063 DOI: 10.3389/fimmu.2019.00601] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 03/06/2019] [Indexed: 01/14/2023] Open
Abstract
Therapeutic antibodies have the potential to induce immunogenicity leading to the development of anti-drug antibodies (ADA) that consequently may result in reduced serum drug concentrations, a loss of efficacy or potential hypersensitivity reactions. Among other factors, aggregated antibodies have been suggested to promote immunogenicity, thus enhancing ADA production. Dendritic cells (DC) are the most efficient antigen-presenting cell population and are crucial for the initiation of T cell responses and the subsequent generation of an adaptive immune response. This work focuses on the development of predictive in vitro assays that can monitor DC maturation, in order to determine whether drug products have direct DC stimulatory capabilities. To this end, four independent laboratories aligned a common protocol to differentiate human monocyte-derived DC (moDC) that were treated with either native or aggregated preparations of infliximab, natalizumab, adalimumab, or rituximab. These drug products were subjected to different forms of physical stress, heat and shear, resulting in aggregation and the formation of subvisible particles. Each partner developed and optimized assays to monitor diverse end-points of moDC maturation: measuring the upregulation of DC activation markers via flow cytometry, analyzing cytokine, and chemokine production via mRNA and protein quantification and identifying cell signaling pathways via quantification of protein phosphorylation. These study results indicated that infliximab, with the highest propensity to form aggregates when heat-stressed, induced a marked activation of moDC as measured by an increase in CD83 and CD86 surface expression, IL-1β, IL-6, IL-8, IL-12, TNFα, CCL3, and CCL4 transcript upregulation and release of respective proteins, and phosphorylation of the intracellular signaling proteins Syk, ERK1/2, and Akt. In contrast, natalizumab, which does not aggregate under these stress conditions, induced no DC activation in any assay system, whereas adalimumab or rituximab aggregates induced only slight parameter variation. Importantly, the data generated in the different assay systems by each partner site correlated and supported the use of these assays to monitor drug-intrinsic propensities to drive maturation of DC. This moDC assay is also a valuable tool as an in vitro model to assess the intracellular mechanisms that drive DC activation by aggregated therapeutic proteins.
Collapse
Affiliation(s)
- Hannah Morgan
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Su-Yi Tseng
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Yann Gallais
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Margret Leineweber
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Pascale Buchmann
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Sabrina Riccardi
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Myriam Nabhan
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Jeannette Lo
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Zaahira Gani
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Natacha Szely
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Cornelia S Zhu
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Ming Yang
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Andrea Kiessling
- Translational Immunology, Discovery & Investigative Safety, Preclinical Safety, Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Hans-Werner Vohr
- Immunotoxicology, Pharmaceuticals, Research and Development, Bayer AG, Wuppertal, Germany
| | - Marc Pallardy
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Fred Aswad
- Biologics Research, Lead Discovery, Immunoprofiling, Bayer US LLC, San Francisco, CA, United States
| | - Isabelle Turbica
- Inflammation, Chimiokines et Immunopathologie, INSERM, Fac. de pharmacie - Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
94
|
Senga Y, Imamura H, Ogura T, Honda S. In-Solution Microscopic Imaging of Fractal Aggregates of a Stressed Therapeutic Antibody. Anal Chem 2019; 91:4640-4648. [PMID: 30888793 DOI: 10.1021/acs.analchem.8b05979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aggregates of therapeutic proteins that can contaminate drug products during manufacture is a growing concern for the pharmaceutical industry because the aggregates are potentially immunogenic. Electron microscopy is a typical, indispensable method for imaging nanometer- to micrometer-sized structures. Nevertheless, it is not ideal because it must be performed with ex situ monitoring under high-vacuum conditions, where the samples could be altered by staining and drying. Here, we introduce a scanning electron-assisted dielectric microscopy (SE-ADM) technique for in-solution imaging of monoclonal immunoglobulin G (IgG) aggregates without staining and drying. Remarkably, SE-ADM allowed assessment of the size and morphology of the IgG aggregates in solution by completely excluding drying-induced artifacts. SE-ADM was also beneficial to study IgG aggregation caused by temporary acid exposure followed by neutralization, pH-shift stress. A box-counting analysis of the SE-ADM images provided fractal dimensions of the larger aggregates, which complemented the fractal dimensions of the smaller aggregates measured by light scattering. The scale-free or self-similarity nature of the fractal aggregates indicated that a common mechanism for antibody aggregation existed between the smaller and larger aggregates. Consequently, SE-ADM is a useful method for characterizing protein aggregates to bridge the gaps that occur among conventional analytical methods, such as those related to in situ/ ex situ techniques or size/morphology assessments.
Collapse
Affiliation(s)
- Yukako Senga
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Hiroshi Imamura
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Toshihiko Ogura
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| | - Shinya Honda
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi, Tsukuba , Ibaraki 305-8566 , Japan
| |
Collapse
|
95
|
Kraus T, Lubitz A, Schließer U, Giese C, Reuschel J, Brecht R, Engert J, Winter G. Evaluation of a 3D Human Artificial Lymph Node as Test Model for the Assessment of Immunogenicity of Protein Aggregates. J Pharm Sci 2019; 108:2358-2366. [PMID: 30797781 DOI: 10.1016/j.xphs.2019.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022]
Abstract
The immunogenicity of protein aggregates has been investigated in numerous studies. Nevertheless, it is still unknown which kind of protein aggregates enhance immunogenicity the most. The ability of the currently used in vitro and in vivo systems regarding their predictability of immunogenicity in humans is often questionable, and results are partially contradictive. In this study, we used a 2D in vitro assay and a complex 3D human artificial lymph node model to predict the immunogenicity of protein aggregates of bevacizumab and adalimumab. The monoclonal antibodies were exposed to different stress conditions such as light, heat, and mechanical stress to trigger the formation of protein aggregates and particles, and samples were analyzed thoroughly. Cells and culture supernatants were harvested and analyzed for dendritic cell marker and cytokines. Our study in the artificial lymph node model revealed that bevacizumab after exposure to heat triggered a TH1- and proinflammatory immune response, whereas no trend of immune responses was seen for adalimumab after exposure to different stress conditions. The human artificial lymph node model represents a new test model for testing the immunogenicity of protein aggregates combining the relevance of a 3D human system with the rather easy handling of an in vitro setup.
Collapse
Affiliation(s)
- Teresa Kraus
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr.5, D-81377 Munich, Germany.
| | - Annika Lubitz
- ProBioGen AG, Department Cell and Tissue Services, Goethestraße 54, D-13086 Berlin, Germany
| | - Ulrike Schließer
- ProBioGen AG, Department Cell and Tissue Services, Goethestraße 54, D-13086 Berlin, Germany
| | - Christoph Giese
- ProBioGen AG, Department Cell and Tissue Services, Goethestraße 54, D-13086 Berlin, Germany
| | - Jana Reuschel
- ProBioGen AG, Department Cell and Tissue Services, Goethestraße 54, D-13086 Berlin, Germany
| | - René Brecht
- ProBioGen AG, Department Cell and Tissue Services, Goethestraße 54, D-13086 Berlin, Germany
| | - Julia Engert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr.5, D-81377 Munich, Germany
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr.5, D-81377 Munich, Germany
| |
Collapse
|
96
|
Deng Y, Govers C, Bastiaan-Net S, van der Hulst N, Hettinga K, Wichers HJ. Hydrophobicity and aggregation, but not glycation, are key determinants for uptake of thermally processed β-lactoglobulin by THP-1 macrophages. Food Res Int 2019; 120:102-113. [PMID: 31000219 DOI: 10.1016/j.foodres.2019.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/10/2023]
Abstract
The aim of this study is to investigate the immunological relevance of modifications of food protein structure due to thermal processing. We investigated the uptake of β-lactoglobulin, treated with 3 different processing methods, by THP-1 macrophages: wet heating (60 °C in solution) and high- or low-temperature (130 °C or 50 °C, respectively) dry heating, combined with either of 8 types of saccharides or without saccharide. The processing method that was applied significantly affected the uptake of BLG by THP-1 macrophages, while the type of saccharide only had an influence in high-temperature dry heated samples. A set of physicochemical parameters of processed samples was determined, to determine the samples' molecular weight, hydrophobicity, amyloid-like structure, surface charge and secondary structure. Analysis of protein structure alterations indicated the uptake to be linked to the wet heating processing method and percentage of α-helix structure, amyloid-like structures, polymers, and hydrophobicity. We hypothesize that both amyloid-like structures and molecular weight were related to the increased hydrophobicity and therefore postulate that the exposure of hydrophobic regions is the leading physicochemical characteristic for the observed uptake of wet heated BLG samples by THP-1 macrophages. This work demonstrates how differential thermal processing of foods, through protein modification, can have an impact on its interaction with the immune system.
Collapse
Affiliation(s)
- Ying Deng
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, The Netherlands
| | - Coen Govers
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands
| | - Shanna Bastiaan-Net
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands
| | - Nina van der Hulst
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands
| | - Kasper Hettinga
- Food Quality and Design, Wageningen University and Research, Wageningen, The Netherlands
| | - Harry J Wichers
- Food and Biobased Research, Wageningen University and Research, P.O.Box 17, 6700 AA Wageningen, The Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
97
|
Kraus T, Winter G, Engert J. Test models for the evaluation of immunogenicity of protein aggregates. Int J Pharm 2019; 559:192-200. [PMID: 30665000 DOI: 10.1016/j.ijpharm.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 11/27/2022]
Abstract
Protein aggregates have been discussed for a long time as a potential risk factor for immunogenicity in patients. Meanwhile, many research groups have investigated the immunogenicity of differently produced aggregates using in vitro or in vivo models. Despite all knowledge gained in these studies still little is known about the mechanisms of immunogenicity and the kind of protein aggregates bearing the greatest risk for immunogenicity. The choice of a suitable test model regarding the predictability of immunogenicity of protein aggregates in humans plays a major role and influences results and conclusions substantially. In this review we will provide an overview of the test models recently used for the evaluation of immunogenicity of protein aggregates; we will discuss advantages and drawbacks regarding their usability and predictive power for immunogenicity in humans.
Collapse
Affiliation(s)
- Teresa Kraus
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5, D-81377 Munich, Germany.
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5, D-81377 Munich, Germany
| | - Julia Engert
- Department of Pharmacy, Pharmaceutical Technology & Biopharmaceutics, Ludwig-Maximilians-Universität München, Butenandtstr. 5, D-81377 Munich, Germany
| |
Collapse
|
98
|
Reipert BM, Anzengruber J, Scheiflinger F. Comparative analysis of marketed factor VIII products: reply. J Thromb Haemost 2019; 17:233-235. [PMID: 30489690 PMCID: PMC6975161 DOI: 10.1111/jth.14349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
99
|
Abstract
The major reasons for developing human monoclonal antibodies were to be able to efficiently manipulate their effector functions while avoiding immunogenicity seen with rodent antibodies. Those effector functions involve interactions with the complement system and naturally occurring Fc receptors on diverse blood white cells. Antibody immunogenicity results from the degree to which the host immune system can recognize and react to these therapeutic agents. Thus far, there is still no generally applicable technology guaranteed to render therapeutic antibodies antigenically silent. This is not to say that the task is impossible, but rather that we need to train the immune system to help us. This can be achieved if we take advantage of natural mechanisms by which an individual can be rendered tolerant of "foreign" antigens, and as a corollary minimize the potential immunogenicity of any contaminating protein aggregates, or "aggregates" arising from antibodies complexing with their antigen. I here summarize our efforts to engineer antibodies to harness optimal effector functions, while also minimizing their immunogenicity. Potential avenues to achieve the latte are predicted from classical work showing that monomeric "foreign" immunoglobulins are good tolerogens, while aggregates of immunoglobulins ate intrinsically immunogenic. Consequently, I argue that one solution to the immunogenicity problem lies in ensuring a temporal quantitative advantage of tolerogenic non-cell-bound monomer over the cell-binding immunogenic form.
Collapse
Affiliation(s)
- Herman Waldmann
- Sir William Dunn School of Pathology, Oxford University, Oxford, UK.
| |
Collapse
|
100
|
Identification of B cell epitopes enhanced by protein unfolding and aggregation. Mol Immunol 2018; 105:181-189. [PMID: 30550980 PMCID: PMC6344229 DOI: 10.1016/j.molimm.2018.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
Abstract
Aggregation of an exemplar therapeutic antibody fragment (scFv) enhances immunogenicity in vivo. Epitope mapping reveals immunogenicity is directed to a specific epitope in aggregate species. Molecular simulation demonstrates biophysical stress enhances epitope presentation. Protein aggregates have distinct immunological profiles to their native counterparts.
Aggregation of therapeutic proteins is a key factor in the generation of unwanted immunogenicity, and can result in reduced serum half-life, neutralization of function and adverse health effects. There is currently little information regarding how aggregates interact with B-cell receptors or cognate antibodies at the protein sequence level, or whether non-native, aggregate-induced epitopes predominate in these interactions. Using an antibody fragment (single chain antibody variable fragment; scFv) that forms aggregates readily at low temperature, anti-scFv IgG antibody responses were generated by intraperitoneal injection of BALB/c strain mice with monomer or aggregate preparations. Aggregate-specific immunosignatures were identified by oligo-peptide microarray fine epitope mapping, using overlapping 15mer peptides based on the linear sequence of scFv, printed onto glass slides. IgG antibodies from mice immunized with aggregated scFv preferentially recognized a patch of overlapping peptides. This region mapped to a β-strand located at the interface between the VH and VL domains. Molecular dynamics simulations indicated that the VL domain is less stable than the VH domain, suggesting the interface region between the two domains becomes exposed during partial unfolding of the scFv during aggregate formation. These data are consistent with the hypothesis that epitopes from partially unfolded states are revealed, or are more fully exposed, in the aggregated state, and that this can augment the IgG antibody response. This observation offers the theoretical possibility that epitopes preferentially associated with aggregates can be identified from the anti-drug antibody serum IgG response which may, in turn, lead to better methods for detection of anti-drug antibody responses, and improved design of therapeutic proteins to control immunogenicity.
Collapse
|