51
|
Antioxidant Status, Lipid Peroxidation and Protein Oxidation in Type 2 Diabetic Patients; Beneficial Effects of Supplementation with Carnosine: A Randomized, Double-Blind, Placebo-Controlled Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2018. [DOI: 10.5812/ircmj.64116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
52
|
Keytsman C, Blancquaert L, Wens I, Missine M, Noten PV, Vandenabeele F, Derave W, Eijnde BO. Muscle carnosine in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Relat Disord 2018; 21:24-29. [PMID: 29454153 DOI: 10.1016/j.msard.2018.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/31/2018] [Accepted: 02/09/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Muscle carnosine is related to contractile function (Ca++ handling) and buffering of exercise-induced acidosis. As these muscular functions are altered in Multiple Sclerosis (MS) it is relevant to understand muscle carnosine levels in MS. METHODS Tibialis anterior muscle carnosine was measured in an animal MS model (EAE, experimental autoimmune encephalomyelitis, n = 40) and controls (CON, n = 40) before and after exercise training (EAEEX, CONEX, 10d, 1 h/d, 24 m/min treadmill running) or sedentary conditions (EAESED, CONSED). Human m. vastus lateralis carnosine of healthy controls (HC, n = 22) and MS patients (n = 24) was measured. RESULTS EAE muscle carnosine levels were decreased (p < .0001) by ~ 40% to ~ 64% at 10d and 17d following EAE induction (respectively) regardless of exercise (p = .823). Similarly, human MS muscle carnosine levels were decreased (- 25%, p = .03). CONCLUSION Muscle carnosine concentrations in an animal MS model and MS patients are substantially reduced. In EAE exercise therapy does not restore this.
Collapse
Affiliation(s)
- Charly Keytsman
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building A, Diepenbeek, Belgium.
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Inez Wens
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building A, Diepenbeek, Belgium
| | - Maarten Missine
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Pieter Van Noten
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building A, Diepenbeek, Belgium
| | - Frank Vandenabeele
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building A, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Bert O Eijnde
- REVAL Rehabilitation Research Center, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Agoralaan Building A, Diepenbeek, Belgium
| |
Collapse
|
53
|
Wang H, He Z, Luo L, Zhao X, Lu Z, Luo T, Li M, Zhang Y. An aldo-keto reductase, Bbakr1, is involved in stress response and detoxification of heavy metal chromium but not required for virulence in the insect fungal pathogen, Beauveria bassiana. Fungal Genet Biol 2018; 111:7-15. [DOI: 10.1016/j.fgb.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 01/28/2023]
|
54
|
Nelson MAM, Baba SP, Anderson EJ. Biogenic Aldehydes as Therapeutic Targets for Cardiovascular Disease. Curr Opin Pharmacol 2017; 33:56-63. [PMID: 28528297 DOI: 10.1016/j.coph.2017.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
Aldehydes are continuously formed in biological systems through enzyme-dependent and spontaneous oxidation of lipids, glucose, and primary amines. These highly reactive, biogenic electrophiles can become toxic via covalent modification of proteins, lipids and DNA. Thus, agents that scavenge aldehydes through conjugation have therapeutic value for a number of major cardiovascular diseases. Several commonly-prescribed drugs (e.g., hydralazine) have been shown to have potent aldehyde-conjugating properties which may contribute to their beneficial effects. Herein, we briefly describe the major sources and toxicities of biogenic aldehydes in cardiovascular system, and provide an overview of drugs that are known to have aldehyde-conjugating effects. Some compounds of phytochemical origin, and histidyl-dipeptides with emerging therapeutic value in this area are also discussed.
Collapse
Affiliation(s)
- Margaret-Ann M Nelson
- Department of Pharmacology & Toxicology, East Carolina University, Greenville, NC, USA
| | - Shahid P Baba
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY, USA
| | - Ethan J Anderson
- Department of Pharmaceutical Sciences & Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
55
|
Grasso GI, Bellia F, Arena G, Satriano C, Vecchio G, Rizzarelli E. Multitarget trehalose-carnosine conjugates inhibit Aβ aggregation, tune copper(II) activity and decrease acrolein toxicity. Eur J Med Chem 2017; 135:447-457. [PMID: 28475972 DOI: 10.1016/j.ejmech.2017.04.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/06/2017] [Accepted: 04/22/2017] [Indexed: 01/12/2023]
Abstract
Increasing evidence is accumulating, showing that neurodegenerative disorders are somehow associated with the toxicity of amyloid aggregates, metal ion dyshomeostasis as well as with products generated by oxidative stress. Within the biological oxidation products, acrolein does have a prominent role. A promising strategy to deal with the above neurogenerative disorders is to use multi-functions bio-molecules. Herein, we show how a class of bio-conjugates takes advantage of the antiaggregating, antioxidant and antiglycating properties of trehalose and carnosine. Their ability to sequester acrolein and to inhibit both self- and metal-induced aggregation is here reported. The copper(II) coordination properties of a new trehalose-carnosine conjugate and the relative antioxidant effects have also been investigated.
Collapse
Affiliation(s)
- Giuseppa Ida Grasso
- Institute of Biostructure and Bioimaging, National Research Council (CNR), via P. Gaifami 18, 95126, Catania, Italy.
| | - Francesco Bellia
- Institute of Biostructure and Bioimaging, National Research Council (CNR), via P. Gaifami 18, 95126, Catania, Italy.
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Graziella Vecchio
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Enrico Rizzarelli
- Institute of Biostructure and Bioimaging, National Research Council (CNR), via P. Gaifami 18, 95126, Catania, Italy; Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
56
|
Albrecht T, Schilperoort M, Zhang S, Braun JD, Qiu J, Rodriguez A, Pastene DO, Krämer BK, Köppel H, Baelde H, de Heer E, Anna Altomare A, Regazzoni L, Denisi A, Aldini G, van den Born J, Yard BA, Hauske SJ. Carnosine Attenuates the Development of both Type 2 Diabetes and Diabetic Nephropathy in BTBR ob/ob Mice. Sci Rep 2017; 7:44492. [PMID: 28281693 PMCID: PMC5345040 DOI: 10.1038/srep44492] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/08/2017] [Indexed: 01/05/2023] Open
Abstract
We previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyuric) ob/ob mice, a type 2 diabetes model which develops a phenotype that closely resembles advanced human DN. Treatment of BTBR ob/ob mice with 4 mM carnosine for 18 weeks reduced plasma glucose and HbA1c, concomitant with elevated insulin and C-peptide levels. Also, albuminuria and kidney weights were reduced in carnosine-treated mice, which showed less glomerular hypertrophy due to a decrease in the surface area of Bowman's capsule and space. Carnosine treatment restored the glomerular ultrastructure without affecting podocyte number, resulted in a modified molecular composition of the expanded mesangial matrix and led to the formation of carnosine-acrolein adducts. Our results demonstrate that treatment with carnosine improves glucose metabolism, albuminuria and pathology in BTBR ob/ob mice. Hence, carnosine could be a novel therapeutic strategy to treat patients with DN and/or be used to prevent DN in patients with diabetes.
Collapse
Affiliation(s)
- Thomas Albrecht
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Maaike Schilperoort
- The Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Shiqi Zhang
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jana D Braun
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Jiedong Qiu
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Angelica Rodriguez
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Diego O Pastene
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Bernhard K Krämer
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Hannes Köppel
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Hans Baelde
- The Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Emile de Heer
- The Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Luca Regazzoni
- The Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Alessandra Denisi
- The Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- The Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, Groningen, the Netherlands
| | - Benito A Yard
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Sibylle J Hauske
- Department of Nephrology, Endocrinology and Rheumatology, Fifth Department of Medicine, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| |
Collapse
|
57
|
Blancquaert L, Baba SP, Kwiatkowski S, Stautemas J, Stegen S, Barbaresi S, Chung W, Boakye AA, Hoetker JD, Bhatnagar A, Delanghe J, Vanheel B, Veiga‐da‐Cunha M, Derave W, Everaert I. Carnosine and anserine homeostasis in skeletal muscle and heart is controlled by β-alanine transamination. J Physiol 2016; 594:4849-63. [PMID: 27062388 PMCID: PMC5009790 DOI: 10.1113/jp272050] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/05/2016] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS Using recombinant DNA technology, the present study provides the first strong and direct evidence indicating that β-alanine is an efficient substrate for the mammalian transaminating enzymes 4-aminobutyrate-2-oxoglutarate transaminase and alanine-glyoxylate transaminase. The concentration of carnosine and anserine in murine skeletal and heart muscle depends on circulating availability of β-alanine, which is in turn controlled by degradation of β-alanine in liver and kidney. Chronic oral β-alanine supplementation is a popular ergogenic strategy in sports because it can increase the intracellular carnosine concentration and subsequently improve the performance of high-intensity exercises. The present study can partly explain why the β-alanine supplementation protocol is so inefficient, by demonstrating that exogenous β-alanine can be effectively routed toward oxidation. ABSTRACT The metabolic fate of orally ingested β-alanine is largely unknown. Chronic β-alanine supplementation is becoming increasingly popular for improving high-intensity exercise performance because it is the rate-limiting precursor of the dipeptide carnosine (β-alanyl-l-histidine) in muscle. However, only a small fraction (3-6%) of the ingested β-alanine is used for carnosine synthesis. Thus, the present study aimed to investigate the putative contribution of two β-alanine transamination enzymes, namely 4-aminobutyrate-2-oxoglutarate transaminase (GABA-T) and alanine-glyoxylate transaminase (AGXT2), to the homeostasis of carnosine and its methylated analogue anserine. We found that, when transfected into HEK293T cells, recombinant mouse and human GABA-T and AGXT2 are able to transaminate β-alanine efficiently. The reaction catalysed by GABA-T is inhibited by vigabatrin, whereas both GABA-T and AGXT2 activity is inhibited by aminooxyacetic acid (AOA). Both GABA-T and AGXT2 are highly expressed in the mouse liver and kidney and the administration of the inhibitors effectively reduced their enzyme activity in liver (GABA-T for vigabatrin; GABA-T and AGXT2 for AOA). In vivo, injection of AOA in C57BL/6 mice placed on β-alanine (0.1% w/v in drinking water) for 2 weeks lead to a 3-fold increase in circulating β-alanine levels and to significantly higher levels of carnosine and anserine in skeletal muscle and heart. By contrast, specific inhibition of GABA-T by vigabatrin did not affect carnosine and anserine levels in either tissue. Collectively, these data demonstrate that homeostasis of carnosine and anserine in mammalian skeletal muscle and heart is controlled by circulating β-alanine levels, which are suppressed by hepatic and renal β-alanine transamination upon oral β-alanine intake.
Collapse
Affiliation(s)
- Laura Blancquaert
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Shahid P. Baba
- Diabetes and Obesity CenterDepartment of MedicineUniversity of LouisvilleLouisvilleKTUSA
| | - Sebastian Kwiatkowski
- Laboratory of Physiological Chemistryde Duve InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Jan Stautemas
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Sanne Stegen
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Silvia Barbaresi
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Weiliang Chung
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Adjoa A. Boakye
- Diabetes and Obesity CenterDepartment of MedicineUniversity of LouisvilleLouisvilleKTUSA
| | - J. David Hoetker
- Diabetes and Obesity CenterDepartment of MedicineUniversity of LouisvilleLouisvilleKTUSA
| | - Aruni Bhatnagar
- Diabetes and Obesity CenterDepartment of MedicineUniversity of LouisvilleLouisvilleKTUSA
| | - Joris Delanghe
- Department of Clinical ChemistryGhent University HospitalGhentBelgium
| | - Bert Vanheel
- Department of Basic Medical SciencesDivision of PhysiologyGhent UniversityGhentBelgium
| | - Maria Veiga‐da‐Cunha
- Laboratory of Physiological Chemistryde Duve InstituteUniversité Catholique de LouvainBrusselsBelgium
| | - Wim Derave
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| | - Inge Everaert
- Department of Movement and Sports SciencesGhent UniversityGhentBelgium
| |
Collapse
|
58
|
Stegen S, Stegen B, Aldini G, Altomare A, Cannizzaro L, Orioli M, Gerlo S, Deldicque L, Ramaekers M, Hespel P, Derave W. Plasma carnosine, but not muscle carnosine, attenuates high-fat diet-induced metabolic stress. Appl Physiol Nutr Metab 2016; 40:868-76. [PMID: 26307517 DOI: 10.1139/apnm-2015-0042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is growing in vivo evidence that the dipeptide carnosine has protective effects in metabolic diseases. A critical unanswered question is whether its site of action is tissues or plasma. This was investigated using oral carnosine versus β-alanine supplementation in a high-fat diet rat model. Thirty-six male Sprague-Dawley rats received a control diet (CON), a high-fat diet (HF; 60% of energy from fat), the HF diet with 1.8% carnosine (HFcar), or the HF diet with 1% β-alanine (HFba), as β-alanine can increase muscle carnosine without increasing plasma carnosine. Insulin sensitivity, inflammatory signaling, and lipoxidative stress were determined in skeletal muscle and blood. In a pilot study, urine was collected. The 3 HF groups were significantly heavier than the CON group. Muscle carnosine concentrations increased equally in the HFcar and HFba groups, while elevated plasma carnosine levels and carnosine-4-hydroxy-2-nonenal adducts were detected only in the HFcar group. Elevated plasma and urine N(ε)-(carboxymethyl)lysine in HF rats was reduced by ∼50% in the HFcar group but not in the HFba group. Likewise, inducible nitric oxide synthase mRNA was decreased by 47% (p < 0.05) in the HFcar group, but not in the HFba group, compared with HF rats. We conclude that plasma carnosine, but not muscle carnosine, is involved in preventing early-stage lipoxidation in the circulation and inflammatory signaling in the muscle of rats.
Collapse
Affiliation(s)
- Sanne Stegen
- a Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| | - Bram Stegen
- a Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| | - Giancarlo Aldini
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Alessandra Altomare
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Luca Cannizzaro
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Marica Orioli
- b Department of Pharmaceutical Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133 Milan, Italy
| | - Sarah Gerlo
- c VIB Department of Medical Protein Research, Ghent University, Albert Baertsoenkaai 3, 9000 Ghent, Belgium
| | - Louise Deldicque
- d Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, Box 1500, 3001 Leuven, Belgium
| | - Monique Ramaekers
- d Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, Box 1500, 3001 Leuven, Belgium
| | - Peter Hespel
- d Department of Kinesiology, Research Group in Exercise Physiology, KU Leuven, Tervuursevest 101, Box 1500, 3001 Leuven, Belgium
| | - Wim Derave
- a Department of Movement and Sport Sciences, Ghent University, Watersportlaan 2, 9000 Ghent, Belgium
| |
Collapse
|
59
|
A carnosine intervention study in overweight human volunteers: bioavailability and reactive carbonyl species sequestering effect. Sci Rep 2016; 6:27224. [PMID: 27265207 PMCID: PMC4893669 DOI: 10.1038/srep27224] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Carnosine is a natural dipeptide able to react with reactive carbonyl species, which have been recently associated with the onset and progression of several human diseases. Herein, we report an intervention study in overweight individuals. Carnosine (2 g/day) was orally administered for twelve weeks in order to evaluate its bioavailability and metabolic fate. Two carnosine adducts were detected in the urine samples of all subjects. Such adducts are generated from a reaction with acrolein, which is one of the most toxic and reactive compounds among reactive carbonyl species. However, neither carnosine nor adducts have been detected in plasma. Urinary excretion of adducts and carnosine showed a positive correlation although a high variability of individual response to carnosine supplementation was observed. Interestingly, treated subjects showed a significant decrease in the percentage of excreted adducts in reduced form, accompanied by a significant increase of the urinary excretion of both carnosine and carnosine-acrolein adducts. Altogether, data suggest that acrolein is entrapped in vivo by carnosine although the response to its supplementation is possibly influenced by individual diversities in terms of carnosine dietary intake, metabolism and basal production of reactive carbonyl species.
Collapse
|
60
|
de Courten B, Jakubova M, de Courten MP, Kukurova IJ, Vallova S, Krumpolec P, Valkovic L, Kurdiova T, Garzon D, Barbaresi S, Teede HJ, Derave W, Krssak M, Aldini G, Ukropec J, Ukropcova B. Effects of carnosine supplementation on glucose metabolism: Pilot clinical trial. Obesity (Silver Spring) 2016; 24:1027-34. [PMID: 27040154 DOI: 10.1002/oby.21434] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/17/2015] [Accepted: 11/24/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Carnosine is a naturally present dipeptide in humans and an over-the counter food additive. Evidence from animal studies supports the role for carnosine in the prevention and treatment of diabetes and cardiovascular disease, yet there is limited human data. This study investigated whether carnosine supplementation in individuals with overweight or obesity improves diabetes and cardiovascular risk factors. METHODS In a double-blind randomized pilot trial in nondiabetic individuals with overweight and obesity (age 43 ± 8 years; body mass index 31 ± 4 kg/m(2) ), 15 individuals were randomly assigned to 2 g carnosine daily and 15 individuals to placebo for 12 weeks. Insulin sensitivity and secretion, glucose tolerance (oral glucose tolerance test), blood pressure, plasma lipid profile, skeletal muscle ((1) H-MRS), and urinary carnosine levels were measured. RESULTS Carnosine concentrations increased in urine after supplementation (P < 0.05). An increase in fasting insulin and insulin resistance was hampered in individuals receiving carnosine compared to placebo, and this remained significant after adjustment for age, sex, and change in body weight (P = 0.02, P = 0.04, respectively). Two-hour glucose and insulin were both lower after carnosine supplementation compared to placebo in individuals with impaired glucose tolerance (P < 0.05). CONCLUSIONS These pilot intervention data suggest that carnosine supplementation may be an effective strategy for prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Barbora de Courten
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, Victoria, Australia
| | - Michaela Jakubova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Maximilian Pj de Courten
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Ivica Just Kukurova
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Silvia Vallova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Patrik Krumpolec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Valkovic
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Timea Kurdiova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Davide Garzon
- Department of Pharmaceutical Sciences, Universitàdegli Studi Di Milano, Milan, Italy
| | - Silvia Barbaresi
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Helena J Teede
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, Victoria, Australia
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Martin Krssak
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Universitàdegli Studi Di Milano, Milan, Italy
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
61
|
Jargin SV. On the use of carnosine and antioxidants: A letter from Russia. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:317-9. [PMID: 27366359 PMCID: PMC4927138 DOI: 10.5455/jice.20160409010229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/09/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Sergei V Jargin
- Department of Public Health, Peoples' Friendship University of Russia, Moscow, Russia
| |
Collapse
|
62
|
Baye E, Ukropcova B, Ukropec J, Hipkiss A, Aldini G, de Courten B. Physiological and therapeutic effects of carnosine on cardiometabolic risk and disease. Amino Acids 2016; 48:1131-49. [PMID: 26984320 DOI: 10.1007/s00726-016-2208-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022]
Abstract
Obesity, type 2 diabetes (T2DM) and cardiovascular disease (CVD) are the most common preventable causes of morbidity and mortality worldwide. They represent major public health threat to our society. Increasing prevalence of obesity and T2DM contributes to escalating morbidity and mortality from CVD and stroke. Carnosine (β-alanyl-L-histidine) is a dipeptide with anti-inflammatory, antioxidant, anti-glycation, anti-ischaemic and chelating roles and is available as an over-the-counter food supplement. Animal evidence suggests that carnosine may offer many promising therapeutic benefits for multiple chronic diseases due to these properties. Carnosine, traditionally used in exercise physiology to increase exercise performance, has potential preventative and therapeutic benefits in obesity, insulin resistance, T2DM and diabetic microvascular and macrovascular complications (CVD and stroke) as well as number of neurological and mental health conditions. However, relatively little evidence is available in humans. Thus, future studies should focus on well-designed clinical trials to confirm or refute a potential role of carnosine in the prevention and treatment of chronic diseases in humans, in addition to advancing knowledge from the basic science and animal studies.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia.,Department of Public Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.,Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alan Hipkiss
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia. .,Diabetes and Vascular Medicine Unit, Monash Health, Clayton, VIC, 3168, Australia.
| |
Collapse
|
63
|
Colzani M, De Maddis D, Casali G, Carini M, Vistoli G, Aldini G. Reactivity, Selectivity, and Reaction Mechanisms of Aminoguanidine, Hydralazine, Pyridoxamine, and Carnosine as Sequestering Agents of Reactive Carbonyl Species: A Comparative Study. ChemMedChem 2016; 11:1778-89. [DOI: 10.1002/cmdc.201500552] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/19/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Mara Colzani
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Danilo De Maddis
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Gaia Casali
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences; Università degli Studi di Milano; via Mangiagalli, 25 20133 Milano Italy
| |
Collapse
|
64
|
Structural Elucidation of a Carnosine-Acrolein Adduct and its Quantification in Human Urine Samples. Sci Rep 2016; 6:19348. [PMID: 26783107 PMCID: PMC4726056 DOI: 10.1038/srep19348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022] Open
Abstract
Aldehydes accumulate in inflammation, during myocardial infarction and have been associated with pain symptoms. One pathway of aldehyde detoxification is the conjugation with carnosine. A 3-methylpyridinium carnosine adduct from the reaction of carnosine and acrolein was characterized using extensive spectroscopic measurements. The adduct with urinary concentrations of 1.82 ± 0.68 nmol/mg of creatinine is one of the most abundant acrolein metabolites in urine and opens promising therapeutic strategies for carnosine.
Collapse
|
65
|
de Courten B, Kurdiova T, de Courten MPJ, Belan V, Everaert I, Vician M, Teede H, Gasperikova D, Aldini G, Derave W, Ukropec J, Ukropcova B. Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans. PLoS One 2015; 10:e0138707. [PMID: 26439389 PMCID: PMC4595442 DOI: 10.1371/journal.pone.0138707] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/02/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Carnosine is a naturally present dipeptide abundant in skeletal muscle and an over-the counter food additive. Animal data suggest a role of carnosine supplementation in the prevention and treatment of obesity, insulin resistance, type 2 diabetes and cardiovascular disease but only limited human data exists. METHODS AND RESULTS Samples of vastus lateralis muscle were obtained by needle biopsy. We measured muscle carnosine levels (high-performance liquid chromatography), % body fat (bioimpedance), abdominal subcutaneous and visceral adiposity (magnetic resonance imaging), insulin sensitivity (euglycaemic hyperinsulinemic clamp), resting energy expenditure (REE, indirect calorimetry), free-living ambulatory physical activity (accelerometers) and lipid profile in 36 sedentary non-vegetarian middle aged men (45±7 years) with varying degrees of adiposity and glucose tolerance. Muscle carnosine content was positively related to % body fat (r = 0.35, p = 0.04) and subcutaneous (r = 0.38, p = 0.02) but not visceral fat (r = 0.17, p = 0.33). Muscle carnosine content was inversely associated with insulin sensitivity (r = -0.44, p = 0.008), REE (r = -0.58, p<0.001) and HDL-cholesterol levels (r = -0.34, p = 0.048). Insulin sensitivity and physical activity were the best predictors of muscle carnosine content after adjustment for adiposity. CONCLUSION Our data shows that higher carnosine content in human skeletal muscle is positively associated with insulin resistance and fasting metabolic preference for glucose. Moreover, it is negatively associated with HDL-cholesterol and basal energy expenditure. Intervention studies targeting insulin resistance, metabolic and cardiovascular disease risk factors are necessary to evaluate its putative role in the prevention and management of type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Barbora de Courten
- Monash Centre for Health, Research and Implementation, School of Public health and Preventive Medicine, Melbourne, Australia
| | - Timea Kurdiova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Vitazoslav Belan
- Department of Radiology, University Hospital Bratislava, Comenius University, Bratislava, Slovakia
| | - Inge Everaert
- Department of Movement and Sport Sciences, Ghent University, Belgium
| | - Marek Vician
- Surgery Department, Slovak Medical University, Bratislava, Slovakia
| | - Helena Teede
- Monash Centre for Health, Research and Implementation, School of Public health and Preventive Medicine, Melbourne, Australia
| | - Daniela Gasperikova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Belgium
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
66
|
Stegen S, Sigal RJ, Kenny GP, Khandwala F, Yard B, De Heer E, Baelde H, Peersman W, Derave W. Aerobic and resistance training do not influence plasma carnosinase content or activity in type 2 diabetes. Am J Physiol Endocrinol Metab 2015; 309:E663-9. [PMID: 26389600 DOI: 10.1152/ajpendo.00142.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/04/2015] [Indexed: 01/03/2023]
Abstract
A particular allele of the carnosinase gene (CNDP1) is associated with reduced plasma carnosinase activity and reduced risk for nephropathy in diabetic patients. On the one hand, animal and human data suggest that hyperglycemia increases plasma carnosinase activity. On the other hand, we recently reported lower carnosinase activity levels in elite athletes involved in high-intensity exercise compared with untrained controls. Therefore, this study investigates whether exercise training and the consequent reduction in hyperglycemia can suppress carnosinase activity and content in adults with type 2 diabetes. Plasma samples were taken from 243 males and females with type 2 diabetes (mean age = 54.3 yr, SD = 7.1) without major microvascular complications before and after a 6-mo exercise training program [4 groups: sedentary control (n = 61), aerobic exercise (n = 59), resistance exercise (n = 63), and combined exercise training (n = 60)]. Plasma carnosinase content and activity, hemoglobin (Hb) A1c, lipid profile, and blood pressure were measured. A 6-mo exercise training intervention, irrespective of training modality, did not decrease plasma carnosinase content or activity in type 2 diabetic patients. Plasma carnosinase content and activity showed a high interindividual but very low intraindividual variability over the 6-mo period. Age and sex, but not Hb A1c, were significantly related to the activity or content of this enzyme. It can be concluded that the beneficial effects of exercise training on the incidence of diabetic complications are probably not related to a lowering effect on plasma carnosinase content or activity.
Collapse
Affiliation(s)
- Sanne Stegen
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Ronald J Sigal
- Departments of Medicine, Cardiac Sciences, and Community Health Sciences, Cumming School of Medicine, Faculties of Medicine and Kinesiology, University of Calgary, Calgary, Alberta, Canada; School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Glen P Kenny
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Benito Yard
- 5th Medical Department, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Emile De Heer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Hans Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; and
| | - Wim Peersman
- Department of Family Medicine and Primary Health Care, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium;
| |
Collapse
|
67
|
Caster DJ, Korte EA, Merchant ML, Klein JB, Wilkey DW, Rovin BH, Birmingham DJ, Harley JB, Cobb BL, Namjou B, McLeish KR, Powell DW. Autoantibodies targeting glomerular annexin A2 identify patients with proliferative lupus nephritis. Proteomics Clin Appl 2015; 9:1012-20. [PMID: 25824007 DOI: 10.1002/prca.201400175] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/10/2015] [Accepted: 03/26/2015] [Indexed: 11/09/2022]
Abstract
PURPOSE Patients with systemic lupus erythematosus (SLE) frequently develop lupus nephritis (LN), a complication frequently leading to end stage kidney disease. Immune complex deposition in the glomerulus is central to the development of LN. Using a targeted proteomic approach, we tested the hypothesis that autoantibodies targeting glomerular antigens contribute to the development of LN. EXPERIMENTAL DESIGN Human podocyte and glomerular proteins were separated by SDS-PAGE and immunoblotted with sera from SLE patients with and without LN. The regions of those gels corresponding to reactive bands observed with sera from LN patients were analyzed using LC-MS/MS. RESULTS LN reactive bands were seen at approximately 50 kDa in podocyte extracts and between 36 and 50 kDa in glomerular extracts. Those bands were analyzed by LC-MS/MS and 102 overlapping proteins were identified. Bioinformatic analysis determined that 36 of those proteins were membrane associated, including a protein previously suggested to contribute to glomerulonephritis and LN, annexin A2. By ELISA, patients with proliferative LN demonstrated significantly increased antibodies against annexin A2. CONCLUSION AND CLINICAL RELEVANCE Proteomic approaches identified multiple candidate antigens for autoantibodies in patients with LN. Serum antibodies against annexin A2 were significantly elevated in subjects with proliferative LN, validating those antibodies as potential biomarkers.
Collapse
Affiliation(s)
- Dawn J Caster
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
| | - Erik A Korte
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jon B Klein
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
| | - Daniel W Wilkey
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Brad H Rovin
- Department of Medicine, the Ohio State University, Columbus, OH, USA
| | - Dan J Birmingham
- Department of Medicine, the Ohio State University, Columbus, OH, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA.,US Department of Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Beth L Cobb
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati, Cincinnati, OH, USA
| | - Kenneth R McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Robley Rex Veterans Affairs Medical Center, Louisville, KY, USA
| | - David W Powell
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
68
|
Conklin DJ, Haberzettl P, Jagatheesan G, Baba S, Merchant ML, Prough RA, Williams JD, Prabhu SD, Bhatnagar A. Glutathione S-transferase P protects against cyclophosphamide-induced cardiotoxicity in mice. Toxicol Appl Pharmacol 2015; 285:136-48. [PMID: 25868843 DOI: 10.1016/j.taap.2015.03.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
High-dose chemotherapy regimens using cyclophosphamide (CY) are frequently associated with cardiotoxicity that could lead to myocyte damage and congestive heart failure. However, the mechanisms regulating the cardiotoxic effects of CY remain unclear. Because CY is converted to an unsaturated aldehyde acrolein, a toxic, reactive CY metabolite that induces extensive protein modification and myocardial injury, we examined the role of glutathione S-transferase P (GSTP), an acrolein-metabolizing enzyme, in CY cardiotoxicity in wild-type (WT) and GSTP-null mice. Treatment with CY (100-300 mg/kg) increased plasma levels of creatine kinase-MB isoform (CK · MB) and heart-to-body weight ratio to a significantly greater extent in GSTP-null than WT mice. In addition to modest yet significant echocardiographic changes following acute CY-treatment, GSTP insufficiency was associated with greater phosphorylation of c-Jun and p38 as well as greater accumulation of albumin and protein-acrolein adducts in the heart. Mass spectrometric analysis revealed likely prominent modification of albumin, kallikrein-1-related peptidase, myoglobin and transgelin-2 by acrolein in the hearts of CY-treated mice. Treatment with acrolein (low dose, 1-5 mg/kg) also led to increased heart-to-body weight ratio and myocardial contractility changes. Acrolein induced similar hypotension in GSTP-null and WT mice. GSTP-null mice also were more susceptible than WT mice to mortality associated with high-dose acrolein (10-20 mg/kg). Collectively, these results suggest that CY cardiotoxicity is regulated, in part, by GSTP, which prevents CY toxicity by detoxifying acrolein. Thus, humans with low cardiac GSTP levels or polymorphic forms of GSTP with low acrolein-metabolizing capacity may be more sensitive to CY toxicity.
Collapse
Affiliation(s)
- Daniel J Conklin
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA.
| | - Petra Haberzettl
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Ganapathy Jagatheesan
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Shahid Baba
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Michael L Merchant
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Division of Nephrology, Department of Medicine, University of Louisville, Louisville, KY 40292, USA
| | - Russell A Prough
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292, USA
| | - Jessica D Williams
- University of Cincinnati College of Medicine, Internal Medicine, Cincinnati, OH 45267, USA
| | - Sumanth D Prabhu
- Division of Cardiovascular Disease, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40292, USA; Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
69
|
Stegen S, Everaert I, Deldicque L, Vallova S, de Courten B, Ukropcova B, Ukropec J, Derave W. Muscle histidine-containing dipeptides are elevated by glucose intolerance in both rodents and men. PLoS One 2015; 10:e0121062. [PMID: 25803044 PMCID: PMC4372406 DOI: 10.1371/journal.pone.0121062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/29/2015] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Muscle carnosine and its methylated form anserine are histidine-containing dipeptides. Both dipeptides have the ability to quench reactive carbonyl species and previous studies have shown that endogenous tissue levels are decreased in chronic diseases, such as diabetes. DESIGN AND METHODS Rodent study: Skeletal muscles of rats and mice were collected from 4 different diet-intervention studies, aiming to induce various degrees of glucose intolerance: 45% high-fat feeding (male rats), 60% high-fat feeding (male rats), cafeteria feeding (male rats), 70% high-fat feeding (female mice). Body weight, glucose-tolerance and muscle histidine-containing dipeptides were assessed. Human study: Muscle biopsies were taken from m. vastus lateralis in 35 males (9 lean, 8 obese, 9 prediabetic and 9 newly diagnosed type 2 diabetic patients) and muscle carnosine and gene expression of muscle fiber type markers were measured. RESULTS Diet interventions in rodents (cafeteria and 70% high-fat feeding) induced increases in body weight, glucose intolerance and levels of histidine-containing dipeptides in muscle. In humans, obese, prediabetic and diabetic men had increased muscle carnosine content compared to the lean (+21% (p>0.1), +30% (p<0.05) and +39% (p<0.05), respectively). The gene expression of fast-oxidative type 2A myosin heavy chain was increased in the prediabetic (1.8-fold, p<0.05) and tended to increase in the diabetic men (1.6-fold, p = 0.07), compared to healthy lean subjects. CONCLUSION Muscle histidine-containing dipeptides increases with progressive glucose intolerance, in male individuals (cross-sectional). In addition, high-fat diet-induced glucose intolerance was associated with increased muscle histidine-containing dipeptides in female mice (interventional). Increased muscle carnosine content might reflect fiber type composition and/or act as a compensatory mechanism aimed at preventing cell damage in states of impaired glucose tolerance.
Collapse
Affiliation(s)
- Sanne Stegen
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Inge Everaert
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Louise Deldicque
- Department of Kinesiology, Exercise Physiology Research Centre, KU Leuven, Heverlee, Belgium
| | - Silvia Vallova
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Barbora de Courten
- Monash Centre for Health, Research and Implementation, Faculty of Medicine, Nursing & Health Sciences, Melbourne, Australia
| | - Barbara Ukropcova
- Department of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
70
|
Blancquaert L, Everaert I, Derave W. Beta-alanine supplementation, muscle carnosine and exercise performance. Curr Opin Clin Nutr Metab Care 2015; 18:63-70. [PMID: 25474013 DOI: 10.1097/mco.0000000000000127] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The use of dietary supplements in sports is widespread as athletes are continuously searching for strategies to increase performance at the highest level. Beta-alanine is such a supplement that became increasingly popular during the past years. This review examines the available evidence regarding the optimization of supplementation, the link between beta-alanine and exercise performance and the underlying ergogenic mechanism. RECENT FINDINGS It has been repeatedly demonstrated that chronic beta-alanine supplementation can augment intramuscular carnosine content. Yet, the factors that determine the loading process, as well as the mechanism by which this has an ergogenic effect, are still debated. On the basis of its biochemical properties, several functions are ascribed to carnosine, of which intramuscular pH buffer and calcium regulator are the most cited ones. In addition, carnosine has antiglycation and antioxidant properties, suggesting it could have a therapeutic potential. SUMMARY On the basis of the millimolar presence of carnosine in mammalian muscles, it must play a critical role in skeletal muscle physiology. The recent number of studies shows that this is related to an improved exercise homeostasis and excitation-contraction coupling. Recent developments have led to the optimization of the beta-alanine supplementation strategies to elevate muscle carnosine content, which are helpful in its application in sports and to potential future therapeutic applications.
Collapse
Affiliation(s)
- Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
71
|
Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther 2014; 144:268-82. [PMID: 24945828 PMCID: PMC4591072 DOI: 10.1016/j.pharmthera.2014.06.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
Several neurodegenerative diseases involve loss of catecholamine neurons-Parkinson disease is a prototypical example. Catecholamine neurons are rare in the nervous system, and why they are vulnerable in PD and related disorders has been mysterious. Accumulating evidence supports the concept of "autotoxicity"-inherent cytotoxicity of catecholamines and their metabolites in the cells in which they are produced. According to the "catecholaldehyde hypothesis" for the pathogenesis of Parkinson disease, long-term increased build-up of 3,4-dihydroxyphenylacetaldehyde (DOPAL), the catecholaldehyde metabolite of dopamine, causes or contributes to the eventual death of dopaminergic neurons. Lewy bodies, a neuropathologic hallmark of PD, contain precipitated alpha-synuclein. Bases for the tendency of alpha-synuclein to precipitate in the cytoplasm of catecholaminergic neurons have also been mysterious. Since DOPAL potently oligomerizes and aggregates alpha-synuclein, the catecholaldehyde hypothesis provides a link between alpha-synucleinopathy and catecholamine neuron loss in Lewy body diseases. The concept developed here is that DOPAL and alpha-synuclein are nodes in a complex nexus of interacting homeostatic systems. Dysfunctions of several processes, including decreased vesicular sequestration of cytoplasmic catecholamines, decreased aldehyde dehydrogenase activity, and oligomerization of alpha-synuclein, lead to conversion from the stability afforded by negative feedback regulation to the instability, degeneration, and system failure caused by induction of positive feedback loops. These dysfunctions result from diverse combinations of genetic predispositions, environmental exposures, stress, and time. The notion of catecholamine autotoxicity has several implications for treatment, disease modification, and prevention. Conversely, disease modification clinical trials would provide key tests of the catecholaldehyde hypothesis.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Irwin J Kopin
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
72
|
|
73
|
Aldini G, Carini M, Yeum KJ, Vistoli G. Novel molecular approaches for improving enzymatic and nonenzymatic detoxification of 4-hydroxynonenal: toward the discovery of a novel class of bioactive compounds. Free Radic Biol Med 2014; 69:145-56. [PMID: 24456906 DOI: 10.1016/j.freeradbiomed.2014.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 11/18/2022]
Abstract
4-Hydroxy-trans-2-nonenal (HNE), an α,β-unsaturated aldehyde generated endogenously by the radical-mediated peroxidation of ω-6 polyunsaturated fatty acids, is a bioactive molecule acting in several physiopathological mechanisms and most of its activity is due to the covalent modification of biomolecules. Although at low and physiological levels HNE acts as an endogenous signaling molecule, a growing bulk of evidence indicates that at high and toxic concentrations, HNE is involved in the onset and propagation of several human diseases. To get more conclusive evidence of HNE as a pathogenetic factor, a pharmacological tool able to inhibit the HNE-induced cellular response is required. Such compound is currently not available, although several molecular strategies have so far been reported with the aim of inhibiting HNE formation or catalyzing its removal. Although most of these are not selective, such strategies have been found to induce several biological responses and would merit further investigation. In this review the various strategies are reported and discussed together with their limits and potentials.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Kyung-Jin Yeum
- Division of Food Bioscience, College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Republic of Korea
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|