51
|
Lupiañez CB, Villaescusa MT, Carvalho A, Springer J, Lackner M, Sánchez-Maldonado JM, Canet LM, Cunha C, Segura-Catena J, Alcazar-Fuoli L, Solano C, Fianchi L, Pagano L, Potenza L, Aguado JM, Luppi M, Cuenca-Estrella M, Lass-Flörl C, Einsele H, Vázquez L, Ríos-Tamayo R, Loeffler J, Jurado M, Sainz J. Common Genetic Polymorphisms within NFκB-Related Genes and the Risk of Developing Invasive Aspergillosis. Front Microbiol 2016; 7:1243. [PMID: 27570521 PMCID: PMC4982195 DOI: 10.3389/fmicb.2016.01243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/26/2016] [Indexed: 12/02/2022] Open
Abstract
Invasive Aspergillosis (IA) is an opportunistic infection caused by Aspergillus, a ubiquitously present airborne pathogenic mold. A growing number of studies suggest a major host genetic component in disease susceptibility. Here, we evaluated whether 14 single-nucleotide polymorphisms within NFκB1, NFκB2, RelA, RelB, Rel, and IRF4 genes influence the risk of IA in a population of 834 high-risk patients (157 IA and 677 non-IA) recruited through a collaborative effort involving the aspBIOmics consortium and four European clinical institutions. No significant overall associations between selected SNPs and the risk of IA were found in this large cohort. Although a hematopoietic stem cell transplantation (HSCT)-stratified analysis revealed that carriers of the IRF4rs12203592T/T genotype had a six-fold increased risk of developing the infection when compared with those carrying the C allele (ORREC = 6.24, 95%CI 1.25–31.2, P = 0.026), the association of this variant with IA risk did not reach significance at experiment-wide significant threshold. In addition, we found an association of the IRF4AATC and IRF4GGTC haplotypes (not including the IRF4rs12203592T risk allele) with a decreased risk of IA but the magnitude of the association was similar to the one observed in the single-SNP analysis, which indicated that the haplotypic effect on IA risk was likely due to the IRF4rs12203592 SNP. Finally, no evidence of significant interactions among the genetic markers tested and the risk of IA was found. These results suggest that the SNPs on the studied genes do not have a clinically relevant impact on the risk of developing IA.
Collapse
Affiliation(s)
- Carmen B Lupiañez
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - María T Villaescusa
- Hematology Department, University Hospital of SalamancaSalamanca, Spain; Hematology Department, Jiménez Díaz FoundationMadrid, Spain
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Jan Springer
- Universitätsklinikum Würzburg, Medizinische Klinik II Würzburg, Germany
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck Innsbruck, Austria
| | - José M Sánchez-Maldonado
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada Granada, Spain
| | - Luz M Canet
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada Granada, Spain
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga, Portugal
| | - Juana Segura-Catena
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - Laura Alcazar-Fuoli
- Mycology Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Carlos Solano
- Hematology Department, Clinic University Hospital of Valencia Valencia, Spain
| | - Luana Fianchi
- Istituto di Ematologia, Università Cattolica del S. Cuore Rome, Italy
| | - Livio Pagano
- Istituto di Ematologia, Università Cattolica del S. Cuore Rome, Italy
| | - Leonardo Potenza
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia AOU Policlinico, Modena, Italy
| | - José M Aguado
- Unit of Infectious Diseases, University Hospital 12 de Octubre, Research Institute of Hospital 12 de Octubre (i+12) Madrid, Spain
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia AOU Policlinico, Modena, Italy
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III Madrid, Spain
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck Innsbruck, Austria
| | - Hermann Einsele
- Universitätsklinikum Würzburg, Medizinische Klinik II Würzburg, Germany
| | - Lourdes Vázquez
- Hematology Department, University Hospital of Salamanca Salamanca, Spain
| | | | - Rafael Ríos-Tamayo
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - Jurgen Loeffler
- Universitätsklinikum Würzburg, Medizinische Klinik II Würzburg, Germany
| | - Manuel Jurado
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS GranadaGranada, Spain; Hematology Department, Virgen de las Nieves University HospitalGranada, Spain
| |
Collapse
|
52
|
Ralhan A, Laval J, Lelis F, Ballbach M, Grund C, Hector A, Hartl D. Current Concepts and Controversies in Innate Immunity of Cystic Fibrosis Lung Disease. J Innate Immun 2016; 8:531-540. [PMID: 27362371 PMCID: PMC6738757 DOI: 10.1159/000446840] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic infection and inflammation. The inflammatory response in CF is dominated by the activation of the innate immune system. Bacteria and fungi represent the key pathogens chronically colonizing the CF airways. In response, innate immune pattern recognition receptors, expressed by airway epithelial and myeloid cells, sense the microbial threat and release chemoattractants to recruit large numbers of neutrophils into CF airways. However, neutrophils fail to efficiently clear the invading pathogens, but instead release harmful proteases and oxidants and finally cause tissue injury. Here, we summarize and discuss current concepts and controversies in the field of innate immunity in CF lung disease, facing the ongoing questions of whether inflammation is good or bad in CF and how innate immune mechanisms could be harnessed therapeutically.
Collapse
Affiliation(s)
- Anjali Ralhan
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Julie Laval
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Felipe Lelis
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Marlene Ballbach
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Charlotte Grund
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Andreas Hector
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
| | - Dominik Hartl
- Department of Pediatrics I, University of Tübingen, Tübingen, Germany
- Immunology, Inflammation and Infectious Diseases (I3) Discovery and Translational Area, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
53
|
Angelini F, Di Matteo G, Balestrero S, Brunetti E, Mancino G, Rossi P, Galli E. Nuclear Factor κB Activity is Increased in Peripheral Blood Mononuclear Cells of Children Affected by Atopic and Non-Atopic Eczema. Int J Immunopathol Pharmacol 2016; 20:59-67. [PMID: 17346428 DOI: 10.1177/039463200702000107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Atopic and non-atopic eczema is an inflammatory cutaneous disease which is common in childhood and is associated with a dysregulation of the immune system. Many genes encoding immune receptors, cytokines, chemokines, chemokine receptors, and adhesion molecules involved in the development of the disease are under the control of transcription factors belonging to the nuclear factor (NF)-κB family. To investigate the role of NF-κB in the development of eczema, 20 children, affected by relapsing chronic eczema, were enrolled in this study. Eleven of the 20 children showed IgE immunoreactivity and had a positive prick test. The DNA binding activity of NF-κB in nuclear extracts of the patients' peripheral blood mononuclear cells (PBMC) was examined by electrophoretic mobility shift assay. We found that basal NF-κB-DNA binding activity in PBMC was significantly higher in the eczema patient group in comparison with the same parameter in the healthy age-matched control group. Moreover, we observed a significant correlation between NF-κB-DNA binding activity and patients' clinical score (SCORAD). Based on these observations we speculate that NF-κB can play an important role in the immunopathogenesis of eczema and therefore could be considered as a potential therapeutic target.
Collapse
Affiliation(s)
- F Angelini
- Department of Pediatrics, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
54
|
Polymorphisms in Host Immunity-Modulating Genes and Risk of Invasive Aspergillosis: Results from the AspBIOmics Consortium. Infect Immun 2015; 84:643-57. [PMID: 26667837 DOI: 10.1128/iai.01359-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/05/2015] [Indexed: 01/04/2023] Open
Abstract
Recent studies suggest that immune-modulating single-nucleotide polymorphisms (SNPs) influence the risk of developing cancer-related infections. Here, we evaluated whether 36 SNPs within 14 immune-related genes are associated with the risk of invasive aspergillosis (IA) and whether genotyping of these variants might improve disease risk prediction. We conducted a case-control association study of 781 immunocompromised patients, 149 of whom were diagnosed with IA. Association analysis showed that the IL4Rrs2107356 and IL8rs2227307 SNPs (using dbSNP numbering) were associated with an increased risk of IA (IL4Rrs2107356 odds ratio [OR], 1.92; 95% confidence interval [CI], 1.20 to 3.09; IL8rs2227307 OR, 1.73; 95% CI, 1.06 to 2.81), whereas the IL12Brs3212227 and IFNγrs2069705 variants were significantly associated with a decreased risk of developing the infection (IL12Brs3212227 OR, 0.60; 95% CI, 0.38 to 0.96; IFNγrs2069705 OR, 0.63; 95% CI, 0.41 to 0.97). An allogeneic hematopoietic stem cell transplantation (allo-HSCT)-stratified analysis revealed that the effect observed for the IL4Rrs2107356 and IFNγrs2069705 SNPs was stronger in allo-HSCT (IL4Rrs2107356 OR, 5.63; 95% CI, 1.20 to 3.09; IFNγrs2069705 OR, 0.24; 95% CI, 0.10 to 0.59) than in non-HSCT patients, suggesting that the presence of these SNPs renders patients more vulnerable to infection, especially under severe and prolonged immunosuppressive conditions. Importantly, in vitro studies revealed that carriers of the IFNγrs2069705C allele showed a significantly increased macrophage-mediated neutralization of fungal conidia (P = 0.0003) and, under stimulation conditions, produced higher levels of gamma interferon (IFNγ) mRNA (P = 0.049) and IFNγ and tumor necrosis factor alpha (TNF-α) cytokines (P value for 96 h of treatment with lipopolysaccharide [PLPS-96 h], 0.057; P value for 96 h of treatment with phytohemagglutinin [PPHA-96 h], 0.036; PLPS+PHA-96 h = 0.030; PPHA-72 h = 0.045; PLPS+PHA-72 h = 0.018; PLPS-96 h = 0.058; PLPS+PHA-96 h = 0.0058). Finally, we also observed that the addition of SNPs significantly associated with IA to a model including clinical variables led to a substantial improvement in the discriminatory ability to predict disease (area under the concentration-time curve [AUC] of 0.659 versus AUC of 0.564; P-2 log likehood ratio test = 5.2 · 10(-4) and P50.000 permutation test = 9.34 · 10(-5)). These findings suggest that the IFNγrs2069705 SNP influences the risk of IA and that predictive models built with IFNγ, IL8, IL12p70, and VEGFA variants can used to predict disease risk and to implement risk-adapted prophylaxis or diagnostic strategies.
Collapse
|
55
|
Yan T, Han J, Yu X. E-cadherin mediates adhesion of Aspergillus fumigatus to non-small cell lung cancer cells. Tumour Biol 2015; 37:10.1007/s13277-015-4195-3. [PMID: 26472726 DOI: 10.1007/s13277-015-4195-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
A spergillus fumigatus is a widely distributed microorganism, and recently, A. fumigatus culture filtrate has been shown to trigger apoptotic cell death in several human cancer cell lines, including non-small lung cancer (NSCLC) cells, A549. Nevertheless, the molecular adhesion of A. fumigatus to these cancer cells to trigger cell death remains unknown. Here, we knocked down E-cadherin in A549 cells and examined its effects on A. fumigatus. The blastospores of A. fumigatus were incubated with the complete protein extracts from A549 cells, using an affinity purification procedure. Preliminary exploration of E-cadherin-interacting protein on the surface of Aspergillus fumigates was done by immunoprecipitation and mass spectrometry analysis. We found that the adhesion of the blastospores to A549 cells was significantly reduced by E-cadherin suppression in A549 cells, suggesting that E-cadherin of A549 cells may mediate the surface adhesion of A. fumigatus blastospore. Mass spectrometry (MS) analysis predicted two binding proteins for E-cadherin on A. fumigatus, AfA24A6.130c and XP_747789. Finally, the growth of E-cadherin-depleted A549 cells significantly increased by infection of A. fumigatus in vivo. Thus, our study suggests that E-cadherin mediates adhesion of A. fumigatus to NSCLC cells to trigger cell death and provides molecular evidence for the treatment of NSCLC with controlled A. fumigatus infection.
Collapse
Affiliation(s)
- Tingxiu Yan
- Department of Cancer Research Treatment Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Junqing Han
- Department of Cancer Research Treatment Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Xiaoming Yu
- Cancer Center, the Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, China.
| |
Collapse
|
56
|
Bhushan B, Homma T, Norton JE, Sha Q, Siebert J, Gupta DS, Schroeder JW, Schleimer RP. Suppression of epithelial signal transducer and activator of transcription 1 activation by extracts of Aspergillus fumigatus. Am J Respir Cell Mol Biol 2015; 53:87-95. [PMID: 25474274 DOI: 10.1165/rcmb.2014-0333oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aspergillus fumigatus (AF) is often pathogenic in immune-deficient individuals and can cause life-threatening infections such as invasive aspergillosis. The pulmonary epithelial response to AF infection and the signaling pathways associated with it have not been completely studied. BEAS-2B cells or primary human bronchial epithelial cells were exposed to extracts of AF and challenged with IFN-β or the Toll-like receptor 3 agonist double-stranded RNA (dsRNA). Cytokine release (B-cell activating factor of the TNF family [BAFF], IFN-γ-induced protein-10 [IP-10], etc.) was assessed. AF extract was separated into low-molecular-weight (LMW) and high-molecular-weight (HMW) fractions using ultra 4 centrifugal force filters to characterize the activity. Real-time PCR was performed with a TaqMan method, and protein estimation was performed using ELISA techniques. Western blot was performed to assess phosphorylation of signal transducer and activator of transcription 1 (STAT1). IFN-β and dsRNA induced messenger RNA (mRNA) expression of BAFF (350- and 452-fold, respectively [n = 3]) and IP-10 (1,081- and 3,044-fold, respectively [n = 3]) in BEAS-2B cells. When cells were pretreated with AF extract for 1 hour and then stimulated with IFN-β or dsRNA for 6 hours, induction of BAFF and IP-10 mRNA was strongly suppressed relative to levels produced by IFN-β and dsRNA alone. When compared with control, soluble BAFF and IP-10 protein levels were maximally suppressed in dsRNA-stimulated wells treated with 1:320 wt/vol AF extract (P < 0.005). Upon molecular size fractionation, a LMW fraction of AF extract had no measurable suppressive effect on IP-10 mRNA expression. However, a HMW fraction of the AF extract significantly suppressed IP-10 expression in BEAS-2B cells that were stimulated with dsRNA or IFN-β. When BEAS-2B cells were pretreated with AF extract and then stimulated with IFN-β, reduced levels of pSTAT1 were observed, with maximum suppression at 4 and 6 hours. Our results show that AF extracts suppressed expression of inflammatory cytokines in association with inhibition of the IFN-β signaling pathway and suppression of the formation of pSTAT1.
Collapse
Affiliation(s)
- Bharat Bhushan
- 1 Division of Otolaryngology-Head and Neck Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago and the Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Tetsuya Homma
- 2 Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,3 Department of Internal Medicine, Division of Respiratory Medicine and Allergology, Showa University School of Medicine, Tokyo, Japan
| | - James E Norton
- 2 Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Quan Sha
- 4 Allergy and Immunology Research Center, Anhui Medical University, Anhui, China
| | - Jason Siebert
- 5 Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Dave S Gupta
- 6 Division of Allergy and Immunology, National Jewish Health, Denver, Colorado
| | - James W Schroeder
- 1 Division of Otolaryngology-Head and Neck Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago and the Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert P Schleimer
- 2 Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
57
|
Bidula S, Sexton DW, Yates M, Abdolrasouli A, Shah A, Wallis R, Reed A, Armstrong-James D, Schelenz S. H-ficolin binds Aspergillus fumigatus leading to activation of the lectin complement pathway and modulation of lung epithelial immune responses. Immunology 2015; 146:281-91. [PMID: 26133042 DOI: 10.1111/imm.12501] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is an opportunistic fungal pathogen that typically infects the lungs of immunocompromised patients leading to a high mortality. H-Ficolin, an innate immune opsonin, is produced by type II alveolar epithelial cells and could participate in lung defences against infections. Here, we used the human type II alveolar epithelial cell line, A549, to determine the involvement of H-ficolin in fungal defence. Additionally, we investigated the presence of H-ficolin in bronchoalveolar lavage fluid from transplant patients during pneumonia. H-Ficolin exhibited demonstrable binding to A. fumigatus conidia via l-fucose, d-mannose and N-acetylglucosamine residues in a calcium- and pH-dependent manner. Moreover, recognition led to lectin complement pathway activation and enhanced fungal association with A549 cells. Following recognition, H-ficolin opsonization manifested an increase in interleukin-8 production from A549 cells, which involved activation of the intracellular signalling pathways mitogen-activated protein kinase MAPK kinase 1/2, p38 MAPK and c-Jun N-terminal kinase. Finally, H-ficolin concentrations were significantly higher in bronchoalveolar lavage fluid of patients with lung infections compared with control subjects (n = 16; P = 0·00726). Receiver operating characteristics curve analysis further highlighted the potential of H-ficolin as a diagnostic marker for lung infection (area under the curve = 0·77; P < 0·0001). Hence, H-ficolin participates in A. fumigatus defence through the activation of the lectin complement pathway, enhanced fungus-host interactions and modulated immune responses.
Collapse
Affiliation(s)
- Stefan Bidula
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Darren W Sexton
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK
| | - Matthew Yates
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alireza Abdolrasouli
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Anand Shah
- Section of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Russell Wallis
- Departments of Infection, Immunity and Inflammation and Biochemistry, University of Leicester, Leicester, UK
| | - Anna Reed
- Department of Lung Transplantation, Harefield Hospital, Middlesex, UK
| | | | - Silke Schelenz
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich, UK.,Department of Microbiology, Royal Brompton Hospital, London, UK
| |
Collapse
|
58
|
Shen L, Liu Y. Prostaglandin E2 blockade enhances the pulmonary anti-Cryptococcus neoformans immune reaction via the induction of TLR-4. Int Immunopharmacol 2015; 28:376-81. [PMID: 26122137 DOI: 10.1016/j.intimp.2015.06.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
The present study aimed to explore whether the inhibition of prostaglandin E2 enhances pulmonary anti-Cryptococcus neoformans immunity. Lung colony forming unit (CFU) assays demonstrated that the cryptococcal infection was dramatically depressed in mice given EP2 and EP4 or single EP antagonist treatment compared to the untreated wild type mice (p<0.05), leading to the increased survival of the infected mice by 8-9 days or 2-4 days, respectively. RT-PCR and flow cytometry assays showed that the expression of IFN-γ, IL-17, IL-22 in M1 macrophages and IL-10 in M2 macrophages increased significantly at 1 week post-infection in mice with either EP2 or EP4 blockade (p<0.05). The polarization of alveolar macrophages showed that, at 1 week post infection, the alveolar macrophages in untreated wild type mice, TLR4(-/-) mice and TLR4(-/-) mice with EP2 and EP4 blockade were strongly M2 polarized, whereas the alveolar macrophages in wild type mice with EP2 and EP4 blockade were M1 polarized. In conclusion, the blockade of EP2 and EP4 promotes mouse survival after cryptococcus infection by promoting the production of cytokines via TLR4, as well as the enhanced M1 polarization of alveolar macrophages.
Collapse
Affiliation(s)
- Liyun Shen
- Department of Hematology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China.
| | - Ying Liu
- Department of Pneumology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China
| |
Collapse
|
59
|
Boita M, Heffler E, Pizzimenti S, Raie A, Saraci E, Omedè P, Bussolino C, Bucca C, Rolla G. Regulation of B-cell-activating factor expression on the basophil membrane of allergic patients. Int Arch Allergy Immunol 2015; 166:208-12. [PMID: 25924578 DOI: 10.1159/000381343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/27/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To investigate the modulation of B-cell-activating factor (BAFF) expression on the basophil membrane of allergic patients. BAFF is an important regulator of B-cell activation, proliferation and immunoglobulin production, which may play a role in respiratory allergic diseases in promoting the production of IgE by B cells. METHODS Peripheral blood samples of 10 patients with allergic rhinitis, 3 with severe asthma and fungal sensitization (SAFS), 3 with allergic bronchopulmonary aspergillosis (ABPA) and 11 healthy controls were assessed regarding BAFF (CD257) expression using the basophil activation test before and after stimulation with IgE and allergens, as well IgE-independent stimuli, like fMLP, lipotheichoic acid from Staphylococcus aureus (LTA-SA) and lipopolysaccharide (LPS). RESULTS BAFF membrane expression did not change after IgE and allergen stimulation both in patients and controls, while it was upregulated by Aspergillus stimulation, both in sensitized patients and controls. In both patients and controls, BAFF expression was significantly upregulated following LTA-SA and β-1,3-glucan exposure (toll-like receptor-2 ligands), but not following LPS stimulation. CONCLUSIONS Basophils from allergic and healthy subjects constitutively express membrane BAFF, which is not upregulated by IgE or specific allergens but by TLR-2 ligands (LTA-SA and β-1,3-glucan). Aspergillus fumigatus stimulation was able to upregulate BAFF expression on the basophils of sensitized asthmatic patients, but not via IgE-dependent mechanisms, since results did not differ between the patient and control groups. These findings suggest that basophils may contribute to the polyclonal production of IgE commonly observed in patients with SAFS and ABPA.
Collapse
Affiliation(s)
- Monica Boita
- Division of Allergy and Immunology, Department of Medical Science, Azienda Ospedaliera Ordine Mauriziano Umberto I, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Amarsaikhan N, Templeton SP. Co-recognition of β-glucan and chitin and programming of adaptive immunity to Aspergillus fumigatus. Front Microbiol 2015; 6:344. [PMID: 25954267 PMCID: PMC4404911 DOI: 10.3389/fmicb.2015.00344] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/07/2015] [Indexed: 12/29/2022] Open
Abstract
The prevalence of fungal infections has increased concurrently with increases in immune suppressive therapies and susceptible individuals. Opportunistic fungal pathogens such as Aspergillus fumigatus may exhibit invasive growth and dissemination resulting in a high mortality rate. Herein, we discuss how immune sensing of germination directs innate immune responses and programs adaptive responses that could promote or impair immune protection during periods of heightened susceptibility. In infected individuals, Th1 responses are the most protective, while Th2 responses lead to poor disease outcomes. In particular, the roles of β-glucan and chitin co-recognition in shaping Th1- and Th2-type immunity to fungal infection are explored. We discuss how fungal responses to environmental stresses could result in decreased immune protection from infection, particularly in response to anti-fungal drugs that target β-glucan synthesis. Furthermore, we consider how experimental modulation of host-pathogen interactions might elucidate the mechanisms of protective and detrimental immunity and the potential of current and future studies to promote the development of improved treatments for patients that respond poorly to existing therapies.
Collapse
Affiliation(s)
- Nansalmaa Amarsaikhan
- Department of Microbiology and Immunology, Indiana University School of Medicine - Terre Haute , Terre Haute, IN, USA
| | - Steven P Templeton
- Department of Microbiology and Immunology, Indiana University School of Medicine - Terre Haute , Terre Haute, IN, USA
| |
Collapse
|
61
|
Karki R, Man SM, Malireddi RKS, Gurung P, Vogel P, Lamkanfi M, Kanneganti TD. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 2015; 17:357-368. [PMID: 25704009 DOI: 10.1016/j.chom.2015.01.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 12/23/2022]
Abstract
Invasive pulmonary aspergillosis is a leading cause of infection-associated mortality in immunocompromised individuals. Aspergillus fumigatus infection produces ligands that could activate inflammasomes, but the contribution of these host defenses remains unclear. We show that two inflammasome receptors, AIM2 and NLRP3, recognize intracellular A. fumigatus and collectively induce protective immune responses. Mice lacking both AIM2 and NLRP3 fail to confine Aspergillus hyphae to inflammatory foci, leading to widespread hyphal dissemination to lung blood vessels. These mice succumb to infection more rapidly than WT mice or mice lacking a single inflammasome receptor. AIM2 and NLRP3 activation initiates assembly of a single cytoplasmic inflammasome platform, composed of the adaptor protein ASC along with caspase-1 and caspase-8. Combined actions of caspase-1 and caspase-8 lead to processing of pro-inflammatory cytokines IL-1β and IL-18 that critically control the infection. Thus, AIM2 and NLRP3 form a dual cytoplasmic surveillance system that orchestrates responses against A. fumigatus infection.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Si Ming Man
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mohamed Lamkanfi
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | | |
Collapse
|
62
|
Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog 2015; 11:e1004643. [PMID: 25659141 PMCID: PMC4450068 DOI: 10.1371/journal.ppat.1004643] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs) containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs). The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.
Collapse
|
63
|
Jhingran A, Kasahara S, Shepardson KM, Junecko BAF, Heung LJ, Kumasaka DK, Knoblaugh SE, Lin X, Kazmierczak BI, Reinhart TA, Cramer RA, Hohl TM. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog 2015; 11:e1004589. [PMID: 25621893 PMCID: PMC4306481 DOI: 10.1371/journal.ppat.1004589] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022] Open
Abstract
Aspergillus fumigatus forms ubiquitous airborne conidia that humans inhale on a daily basis. Although respiratory fungal infection activates the adaptor proteins CARD9 and MyD88 via C-type lectin, Toll-like, and interleukin-1 family receptor signals, defining the temporal and spatial pattern of MyD88- and CARD9-coupled signals in immune activation and fungal clearance has been difficult to achieve. Herein, we demonstrate that MyD88 and CARD9 act in two discrete phases and in two cellular compartments to direct chemokine- and neutrophil-dependent host defense. The first phase depends on MyD88 signaling because genetic deletion of MyD88 leads to delayed induction of the neutrophil chemokines CXCL1 and CXCL5, delayed neutrophil lung trafficking, and fatal pulmonary damage at the onset of respiratory fungal infection. MyD88 expression in lung epithelial cells restores rapid chemokine induction and neutrophil recruitment via interleukin-1 receptor signaling. Exogenous CXCL1 administration reverses murine mortality in MyD88-deficient mice. The second phase depends predominately on CARD9 signaling because genetic deletion of CARD9 in radiosensitive hematopoietic cells interrupts CXCL1 and CXCL2 production and lung neutrophil recruitment beyond the initial MyD88-dependent phase. Using a CXCL2 reporter mouse, we show that lung-infiltrating neutrophils represent the major cellular source of CXCL2 during CARD9-dependent recruitment. Although neutrophil-intrinsic MyD88 and CARD9 function are dispensable for neutrophil conidial uptake and killing in the lung, global deletion of both adaptor proteins triggers rapidly progressive invasive disease when mice are challenged with an inoculum that is sub-lethal for single adapter protein knockout mice. Our findings demonstrate that distinct signal transduction pathways in the respiratory epithelium and hematopoietic compartment partially overlap to ensure optimal chemokine induction, neutrophil recruitment, and fungal clearance within the respiratory tract. Our understanding of how epithelial and hematopoietic cells in the lung coordinate immunity against inhaled fungal conidia (spores) remains limited. The mold Aspergillus fumigatus is a major cause of infectious mortality in immune compromised patients. Host defense against A. fumigatus involves the activation of two host signal transducers, MyD88 and CARD9, leading to neutrophil recruitment to the infection site. In this study, we define how MyD88- and CARD9-coupled signals operate in epithelial and hematopoietic compartments to regulate neutrophil-mediated defense against A. fumigatus. Our studies support a two-stage model in which MyD88 activation in epithelial cells, via the interleukin-1 receptor, supports the rapid induction of neutrophil-recruiting chemokines. This process is essential for the first phase of neutrophil recruitment. Mortality observed in MyD88-deficient mice can be significantly reversed by administration of a chemokine termed CXCL1 to infected airways. The second phase of neutrophil recruitment is initiated by CARD9 signaling in hematopoietic cells. Loss of both phases of chemokine induction and neutrophil recruitment dramatically increases murine susceptibility to tissue-invasive disease. In sum, our study defines a temporal sequence of events, initiated by interleukin-1 receptor/MyD88 signaling in the pulmonary epithelium and propagated by CARD9 signaling in hematopoietic cells, that induces protective immunity against inhaled fungal conidia.
Collapse
Affiliation(s)
- Anupam Jhingran
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Shinji Kasahara
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Kelly M Shepardson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth University, Hanover, New Hampshire, United States of America
| | - Beth A Fallert Junecko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lena J Heung
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Debra K Kumasaka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Sue E Knoblaugh
- Comparative Medicine Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Xin Lin
- Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Barbara I Kazmierczak
- Department of Medicine and Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Todd A Reinhart
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth University, Hanover, New Hampshire, United States of America
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America; Immunology Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
64
|
Barreto-Bergter E, Figueiredo RT. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 2014; 4:145. [PMID: 25353009 PMCID: PMC4196476 DOI: 10.3389/fcimb.2014.00145] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides such as α- and β-glucans, chitin, and glycoproteins extensively modified with both N- and O-linked carbohydrates are the major components of fungal surfaces. The fungal cell wall is an excellent target for the action of antifungal agents, since most of its components are absent from mammalian cells. Recognition of these carbohydrate-containing molecules by the innate immune system triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. This review will discuss the structure of surface fungal glycoconjugates and polysaccharides and their recognition by innate immune receptors.
Collapse
Affiliation(s)
- Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Unidade de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
65
|
Mercier E, Peters IR, Farnir F, Lavoué R, Day M, Clercx C, Peeters D. Assessment of Toll-like receptor 2, 4 and 9 SNP genotypes in canine sino-nasal aspergillosis. BMC Vet Res 2014; 10:187. [PMID: 25266752 PMCID: PMC4143572 DOI: 10.1186/s12917-014-0187-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 08/11/2014] [Indexed: 11/13/2022] Open
Abstract
Background The exact aetiology of canine sino-nasal aspergillosis (SNA) is unknown. In man, dysfunction in innate immunity, particularly in the function of pattern recognition receptors, is implicated in the pathogenesis of inflammatory sino-nasal disease and in fungal diseases. Associations between single nucleotide polymorphisms (SNPs) in Toll-like receptors (TLRs) and these diseases have been identified. Similarly, in dogs SNPs in genes encoding TLRs may be important in the pathogenesis of SNA. The aims of the present study were (1) to identify the presence of non-synonymous SNPs in the coding regions of the TLR2, 4 and 9 genes in dogs suffering from SNA, and (2) to investigate the SNP genotypes in dogs with SNA compared with a control population. Results Direct sequencing of nine dogs of various breeds with SNA revealed two non-synonymous SNPs in the coding region of TLR2, eight in TLR4 and four in TLR9. These non-synonymous SNPs were further evaluated in a case-control study of affected Golden Retrievers, Labrador Retrievers, Rottweilers and Beaucerons. Genotyping was performed using a combination of allele-specific primers and hydrolysis probe assays in 31 dogs with SNA and 31controls. No significant difference in minor allele frequency was identified between these groups, for all studied SNPs, in any of the four breeds. Conclusions These findings do not support a role for non-synonymous SNPs in the TLR 2, 4 and 9 coding regions in the pathogenesis of canine SNA, but do not exclude a role for innate immunity in the pathogenesis of the disease.
Collapse
|
66
|
Chotirmall SH, McElvaney NG. Fungi in the cystic fibrosis lung: bystanders or pathogens? Int J Biochem Cell Biol 2014; 52:161-73. [PMID: 24625547 DOI: 10.1016/j.biocel.2014.03.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/21/2014] [Accepted: 03/02/2014] [Indexed: 12/25/2022]
Abstract
Improvement to the life expectancy of people with cystic fibrosis (PWCF) brings about novel challenges including the need for evaluation of the role of fungi in the cystic fibrosis (CF) lung. To determine if such organisms represent bystanders or pathogens affecting clinical outcomes we review the existing knowledge from a clinical, biochemical, inflammatory and immunological perspective. The prevalence and importance of fungi in the CF airway has likely been underestimated with the most frequently isolated filamentous fungi being Aspergillus fumigatus and Scedosporium apiospermum and the major yeast Candida albicans. Developing non-culture based microbiological methods for fungal detection has improved both our classification and understanding of their clinical consequences including localized, allergic and systemic infections. Cross-kingdom interaction between bacteria and fungi are discussed as is the role of biofilms further affecting clinical outcome. A combination of host and pathogen-derived factors determines if a particular fungus represents a commensal, colonizer or pathogen in the setting of CF. The underlying immune state, disease severity and treatment burden represent key host variables whilst fungal type, form, chronicity and virulence including the ability to evade immune recognition determines the pathogenic potential of a specific fungus at a particular point in time. Further research in this emerging field is warranted to fully elucidate the spectrum of disease conferred by the presence of fungi in the CF airway and the indications for therapeutic interventions.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland.
| |
Collapse
|
67
|
Hafen GM, Hartl D, Regamey N, Casaulta C, Latzin P. Allergic bronchopulmonary aspergillosis: the hunt for a diagnostic serological marker in cystic fibrosis patients. Expert Rev Mol Diagn 2014; 9:157-64. [DOI: 10.1586/14737159.9.2.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
68
|
Abstract
Eosinophils are recruited to the airways as a prominent feature of the asthmatic inflammatory response where they are broadly perceived as promoting pathophysiology. Respiratory virus infections exacerbate established asthma; however, the role of eosinophils and the nature of their interactions with respiratory viruses remain uncertain. To explore these questions, we established acute infection with the rodent pneumovirus, pneumonia virus of mice (PVM), in 3 distinct mouse models of Th2 cytokine-driven asthmatic inflammation. We found that eosinophils recruited to the airways of otherwise naïve mice in response to Aspergillus fumigatus, but not ovalbumin sensitization and challenge, are activated by and degranulate specifically in response to PVM infection. Furthermore, we demonstrate that activated eosinophils from both Aspergillus antigen and cytokine-driven asthma models are profoundly antiviral and promote survival in response to an otherwise lethal PVM infection. Thus, although activated eosinophils within a Th2-polarized inflammatory response may have pathophysiologic features, they are also efficient and effective mediators of antiviral host defense.
Collapse
|
69
|
Kurokawa CS, Araujo JP, Soares AMVC, Sugizaki MF, Peraçoli MTS. Pro- and Anti-Inflammatory Cytokines Produced by Human Monocytes ChallengedIn VitrowithParacoccidioides brasiliensis. Microbiol Immunol 2013; 51:421-8. [PMID: 17446681 DOI: 10.1111/j.1348-0421.2007.tb03929.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monocytes and macrophages play a central role in innate and adaptive immune response against systemic fungal infections. Imbalances in suppressor or stimulatory cytokine secretion caused by these cells may influence disease development, microorganism death, and the nature of the adaptive immune response. This study analyzed the monocyte cytokine profiles of healthy individuals challenged with high and low virulent strains of P. brasiliensis and mRNA cytokine expression kinetics by reverse transcription polymerase chain reaction (RT-PCR). Peripheral blood monocytes from healthy volunteers were cultured in vitro with and without virulent (Pb18) or low virulence (Pb265) strains from P. brasiliensis viable yeast cells. Interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor-alpha (TNF-alpha), and transforming growth factor-beta (TGF-beta1) were measured in culture supernatants by enzyme immunoassay (ELISA), and mRNA cytokine expression was determined by RT-PCR at 0, 4, 8, 12, 18 and 48 hr. Both P. brasiliensis strains induced monocyte production of IL-1beta, IL-6, IL-10 and TNF-alpha. Pb18 induced higher levels of IL-1beta, IL-6, and IL-10 than Pb265. IL-8 and TGF-beta1 levels were not significantly different from those cultured without stimulus. The mRNA cytokine expression was similar to supernatant cytokines measured by ELISA. In vitro monocyte challenge with virulent P. brasiliensis strain induces earlier and higher levels of pro- and anti-inflammatory cytokines than low virulence strain.
Collapse
Affiliation(s)
- Cilmery Suemi Kurokawa
- Department of Pediatrics, Botucatu Medical School, São Paulo State University, Botucatu, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
70
|
Rizzo A, Losacco A, Carratelli CR. Lactobacillus crispatus modulates epithelial cell defense against Candida albicans through Toll-like receptors 2 and 4, interleukin 8 and human β-defensins 2 and 3. Immunol Lett 2013; 156:102-9. [PMID: 24120511 DOI: 10.1016/j.imlet.2013.08.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/07/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022]
Abstract
Lactobacilli are members of the normal mucosal microflora of most animals. Probiotic bacteria, such as Lactobacilli, play a major role in the maintenance of a healthy urogenital tract by preventing the colonization of pathogenic bacteria. The potentially probiotic strain Lactobacillus crispatus (ATCC 33820) was investigated for its capacity to influence the innate immune response of HeLa epithelial cells to Candida albicans. In addition, its capacity to modulate the toll-like receptor (TLR) expression of HeLa cells was investigated by Western blot. When HeLa cells were pre-treated with the L. crispatus and infected with C. albicans, the interleukin-8 levels were significantly lower than without pre-treatment. Also, the effect of L. crispatus on innate immunity was enhanced by its capacity to increase the effect of human β-defensin 3 against C. albicans growth. Pre-treating HeLa cells with L. crispatus attenuated the yeast's virulence, as demonstrated by its reduced adhesion and growth on human epithelial cells. Our findings indicated, also, that after contact with C. albicans, epithelial cells expressed more TLR2/4 than non-infected cells, whereas pre-treatment with L. crispatus downregulated the TLR2/4 expression by epithelial cells stimulated with C. albicans. In conclusion, our results show that L. crispatus promotes epithelial cell defense against C. albicans infection through the involvement of TLR2/4, IL-8 and human β-defensin 2 and 3, thus suggesting a probiotic potential of this Lactobacillus as an anti-infective agent against C. albicans.
Collapse
Affiliation(s)
- Antonietta Rizzo
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology, Faculty of Medicine and Surgery, Second University of Naples, Naples, Italy
| | | | | |
Collapse
|
71
|
The immune interplay between the host and the pathogen in Aspergillus fumigatus lung infection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:693023. [PMID: 23984400 PMCID: PMC3745895 DOI: 10.1155/2013/693023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/14/2013] [Indexed: 12/22/2022]
Abstract
The interplay between Aspergillus fumigatus and the host immune response in lung infection has been subject of studies over the last years due to its importance in immunocompromised patients. The multifactorial virulence factors of A. fumigatus are related to the fungus biological characteristics, for example, structure, ability to grow and adapt to high temperatures and stress conditions, besides capability of evading the immune system and causing damage to the host. In this context, the fungus recognition by the host innate immunity occurs when the pathogen disrupts the natural and chemical barriers followed by the activation of acquired immunity. It seems clear that a Th1 response has a protective role, whereas Th2 reactions are often associated with higher fungal burden, and Th17 response is still controversial. Furthermore, a fine regulation of the effector immunity is required to avoid excessive tissue damage associated with fungal clearance, and this role could be attributed to regulatory T cells. Finally, in this work we reviewed the aspects involved in the complex interplay between the host immune response and the pathogen virulence factors, highlighting the immunological issues and the importance of its better understanding to the development of novel therapeutic approaches for invasive lung aspergillosis.
Collapse
|
72
|
Chotirmall SH, Al-Alawi M, Mirkovic B, Lavelle G, Logan PM, Greene CM, McElvaney NG. Aspergillus-associated airway disease, inflammation, and the innate immune response. BIOMED RESEARCH INTERNATIONAL 2013; 2013:723129. [PMID: 23971044 PMCID: PMC3736487 DOI: 10.1155/2013/723129] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/24/2013] [Indexed: 01/19/2023]
Abstract
Aspergillus moulds exist ubiquitously as spores that are inhaled in large numbers daily. Whilst most are removed by anatomical barriers, disease may occur in certain circumstances. Depending on the underlying state of the human immune system, clinical consequences can ensue ranging from an excessive immune response during allergic bronchopulmonary aspergillosis to the formation of an aspergilloma in the immunocompetent state. The severest infections occur in those who are immunocompromised where invasive pulmonary aspergillosis results in high mortality rates. The diagnosis of Aspergillus-associated pulmonary disease is based on clinical, radiological, and immunological testing. An understanding of the innate and inflammatory consequences of exposure to Aspergillus species is critical in accounting for disease manifestations and preventing sequelae. The major components of the innate immune system involved in recognition and removal of the fungus include phagocytosis, antimicrobial peptide production, and recognition by pattern recognition receptors. The cytokine response is also critical facilitating cell-to-cell communication and promoting the initiation, maintenance, and resolution of the host response. In the following review, we discuss the above areas with a focus on the innate and inflammatory response to airway Aspergillus exposure and how these responses may be modulated for therapeutic benefit.
Collapse
|
73
|
Grube M, Loeffler J, Mezger M, Krüger B, Echtenacher B, Hoffmann P, Edinger M, Einsele H, Andreesen R, Holler E. TLR5 stop codon polymorphism is associated with invasive aspergillosis after allogeneic stem cell transplantation. Med Mycol 2013; 51:818-25. [PMID: 23862689 DOI: 10.3109/13693786.2013.809630] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) have been associated with an increased incidence of invasive aspergillosis (IA) after allogeneic stem cell transplantation (allo-SCT). We analyzed 41 patients with proven/probable IA after allo-SCT for an association of SNPs, within the TLR2, TLR4, TLR5, TLR9, and NOD2/CARD15 genes, with susceptibility to IA. The control group consisted of 130 patients who had allo-SCT but did not develop IA. While no association was found for donor SNPs and the recipients' risk of IA, analysis of recipient SNPs showed a significant association between the presence of recipient TLR5-Stop SNP (1174C> T) and the incidence of IA (P = 0.004). Multivariate analysis demonstrated that the recipient TLR5-Stop SNP appeared as an independent risk factor for IA after allo-SCT. Our study suggests that TLR5 is involved in host defense against Aspergillus fumigatus, and that the recipient TLR5-Stop SNP represents a risk factor for the development of IA after allo-SCT.
Collapse
Affiliation(s)
- Matthias Grube
- * Abteilung Hämatologie/Onkologie, Universitätsklinikum Regensburg , Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kyrmizi I, Gresnigt MS, Akoumianaki T, Samonis G, Sidiropoulos P, Boumpas D, Netea MG, van de Veerdonk FL, Kontoyiannis DP, Chamilos G. Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. THE JOURNAL OF IMMUNOLOGY 2013; 191:1287-99. [PMID: 23817424 DOI: 10.4049/jimmunol.1300132] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aspergillus fumigatus is the predominant airborne fungal pathogen in immunocompromised patients. Genetic defects in NADPH oxidase (chronic granulomatous disease [CGD]) and corticosteroid-induced immunosupression lead to impaired killing of A. fumigatus and unique susceptibility to invasive aspergillosis via incompletely characterized mechanisms. Recent studies link TLR activation with phagosome maturation via the engagement of autophagy proteins. In this study, we found that infection of human monocytes with A. fumigatus spores triggered selective recruitment of the autophagy protein LC3 II in phagosomes upon fungal cell wall swelling. This response was induced by surface exposure of immunostimulatory β-glucans and was mediated by activation of the Dectin-1 receptor. LC3 II recruitment in A. fumigatus phagosomes required spleen tyrosine kinase (Syk) kinase-dependent production of reactive oxygen species and was nearly absent in monocytes of patients with CGD. This pathway was important for control of intracellular fungal growth, as silencing of Atg5 resulted in impaired phagosome maturation and killing of A. fumigatus. In vivo and ex vivo administration of corticosteroids blocked LC3 II recruitment in A. fumigatus phagosomes via rapid inhibition of phosphorylation of Src and Syk kinases and downstream production of reactive oxygen species. Our studies link Dectin-1/Syk kinase signaling with autophagy-dependent maturation of A. fumigatus phagosomes and uncover a potential mechanism for development of invasive aspergillosis in the setting of CGD and corticosteroid-induced immunosupression.
Collapse
Affiliation(s)
- Irene Kyrmizi
- Department of Medicine, University of Crete, 71300 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Gresnigt MS, Becker KL, Smeekens SP, Jacobs CWM, Joosten LAB, van der Meer JWM, Netea MG, van de Veerdonk FL. Aspergillus fumigatus-induced IL-22 is not restricted to a specific Th cell subset and is dependent on complement receptor 3. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:5629-39. [PMID: 23645883 DOI: 10.4049/jimmunol.1202601] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Th cell responses induced by Aspergillus fumigatus have been extensively investigated in mouse models. However, the requirements for differentiation and the characteristics of A. fumigatus-induced human Th cell subsets remain poorly defined. We demonstrate that A. fumigatus induces Th1 and Th17 subsets in human PBMCs. Moreover, we show that the cytokine IL-22 is not restricted to a specific Th subset, in contrast to IL-17A. The pattern recognition and cytokine pathways that skew these Aspergillus-induced Th cell responses are TLR4- and IL-1-, IL-23-, and TNF-α-dependent. These pathways are of specific importance for production of the cytokines IL-17A and IL-22. Additionally, our data reveal that the dectin-1/Syk pathway is redundant and that TLR2 has an inhibitory effect on Aspergillus-induced IL-17A and IL-22 production. Notably, blocking complement receptor (CR)3 significantly reduced Aspergillus-induced Th1 and Th17 responses, and this was independent on the activation of the complement system. CR3 is a known receptor for β-1,3-glucan; however, blocking CR3 had significant effects on Th cell responses induced by heat-killed Aspergillus conidia, which have minimal β-glucan expression on their cell surface. Collectively, these data characterize the human Th cell subsets induced by Aspergillus, demonstrate that the capability to produce IL-22 is not restricted to a specific T cell subset, and provide evidence that CR3 might play a significant role in the adaptive host defense against Aspergillus, although the ligand and its action remain to be elucidated.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Department of Medicine, Radboud University Nijmegen Medical Center, 6525 GA Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, Adams YF, Mikulski Z, Khorram N, Rosenthal P, Broide DH, Croft M. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. ACTA ACUST UNITED AC 2013; 210:775-88. [PMID: 23547101 PMCID: PMC3620360 DOI: 10.1084/jem.20121849] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3(+) iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3(+) Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma.
Collapse
Affiliation(s)
- Pejman Soroosh
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Gladiator A, Trautwein-Weidner K, Bär E, LeibundGut-Landmann S. Arming Th17 Cells for Antifungal Host Defense. CURRENT FUNGAL INFECTION REPORTS 2013. [DOI: 10.1007/s12281-013-0130-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
78
|
Lass-Flörl C, Roilides E, Löffler J, Wilflingseder D, Romani L. Minireview: host defence in invasive aspergillosis. Mycoses 2013; 56:403-13. [PMID: 23406508 DOI: 10.1111/myc.12052] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aspergillus is a saprophytic fungus, which mainly becomes pathogenic in immunosuppressed hosts. A failure of host defences results in a diverse set of illnesses, ranging from chronic colonisation, aspergilloma, invasive disease and hypersensitivity. A key concept in immune responses to Aspergillus species is that host susceptibility determines the morphological form, antigenic structure and physical location of the fungus. Traditionally, innate immunity has been considered as a first line of defence and activates adaptive immune mechanisms by the provision of specific signals; innate and adaptive immune responses are intimately linked. The T-helper cell (TH 1) response is associated with increased production of inflammatory cytokines IFN-γ, IL-2 and IL-12 and stimulation of antifungal effector cells. Alternatively, TH 2-type responses are associated with suppression of antifungal effector cell activity, decreased production of IFN-γ and increased concentrations of IL-4 and IL-10, which promote humoral responses to Aspergillus. The host's defensive capacity is defined by the sum of resistance and tolerance. Resistance displays the ability to limit fungal burden and elimination of the pathogen, and tolerance means the ability to limit host damage caused by immune response.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
79
|
Gresnigt MS, Netea MG, van de Veerdonk FL. Pattern recognition receptors and their role in invasive aspergillosis. Ann N Y Acad Sci 2013; 1273:60-7. [PMID: 23230838 DOI: 10.1111/j.1749-6632.2012.06759.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pattern recognition receptors (PRRs) are germline receptors that recognize conserved structures on microorganisms. Several PRRs have been identified in the recent years that are involved in the immune response against Aspergillus fumigatus. The role of PRRs in invasive pulmonary aspergillosis becomes especially apparent in the setting of an immunocompromised status of the host because of the redundancy of many PRRs in the host defense against A. fumigatus. Studies that investigated the PRRs and their effector pathways in invasive aspergillosis have led to a better understanding of the pathogenesis of invasive aspergillosis in immunocompromised patients. This knowledge may pave the way for novel diagnostic and immunomodulatory treatment strategies that are needed to overcome the high mortality associated with invasive A. fumigatus infection in immunocompromised patients.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Department of Medicine, Radboud University, Nijmegen Medical Center, Nijmegen Institute for Infection, Inflammation, and Immunity, Nijmegen, the Netherlands
| | | | | |
Collapse
|
80
|
Gresnigt MS, Rösler B, Jacobs CWM, Becker KL, Joosten LAB, van der Meer JWM, Netea MG, Dinarello CA, van de Veerdonk FL. The IL-36 receptor pathway regulates Aspergillus fumigatus-induced Th1 and Th17 responses. Eur J Immunol 2012; 43:416-26. [PMID: 23147407 DOI: 10.1002/eji.201242711] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/28/2012] [Accepted: 11/05/2012] [Indexed: 11/09/2022]
Abstract
IL-1 drives Th responses, particularly Th17, in host defense. Sharing the same co-receptor, the IL-1 family member IL-36 exhibits properties similar to those of IL-1. In the present study, we investigated the role of IL-36 in Aspergillus fumigatus-induced human Th responses. We observed that different morphological forms of A. fumigatus variably increase steady-state mRNA of IL-36 subfamily members. IL-36α is not significantly induced by any morphological form of Aspergillus. Most strikingly, IL-36γ is significantly induced by live A. fumigatus conidia and heat-killed hyphae, whereas IL-36Ra (IL-36 receptor antagonist) is significantly induced by heat-killed conidia, hyphae, and live conidia. We also observed that IL-36γ expression is dependent on the dectin-1/Syk and TLR4 signaling pathway. In contrast, TLR2 and CR3 inhibit IL-36γ expression. The biological relevance of IL-36 induction by Aspergillus is demonstrated by experiments showing that inhibition of the IL-36 receptor by IL-36Ra reduces Aspergillus-induced IL-17 and IFN-γ. These data describe that IL-36-dependent signals are a novel cytokine pathway that regulates Th responses induced by A. fumigatus, and demonstrate a role for TLR4 and dectin-1 in the induction of IL-36γ.
Collapse
Affiliation(s)
- Mark S Gresnigt
- Department of Medicine, Radboud University Nijmegen Medical Centre and Nijmegen Institute for Infection, Inflammation, and Immunity, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Svirshchevskaya E, Zubkov D, Mouyna I, Berkova N. Innate Immunity and the Role of Epithelial Barrier During Aspergillus fumigatus Infection. ACTA ACUST UNITED AC 2012; 8:254-261. [PMID: 23255875 PMCID: PMC3520052 DOI: 10.2174/157339512800671985] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 06/16/2011] [Accepted: 06/29/2011] [Indexed: 11/22/2022]
Abstract
Fungi are the most important eukaryotic infective agents in Europe which largely overpass parasite infections. Total number of people dying of fungal infection is increasing and this trend is likely to continue due to the increase in immunosuppressive treatments. The opportunistic pathogen Aspergillus fumigatus (Af) is a saprophytic filamentous fungus that can cause invasive pulmonary diseases in immuno-compromised hosts. In veterinary medicine aspergillosis is also a recurrent problem since it infects various species, birds are particularly susceptible. It propagates through airborne conidia (spores), which are inhaled into the small airways where they may germinate and initiate an infection. The host epithelium has permanent contact with the environment and a multitude of diverse microorganisms, resulting in a network of the host’s defense mechanisms. Pathogens use various strategies to invade epithelial barriers, to exploit eukaryotic host function to their own benefit and disseminate throughout the host using the epithelium as a reservoir. The current revue will discuss the ways how epithelial and innate immunity cells can contlol Af infection. We will focus on Af strategies for the host’s invasion, antifungal innate immune response and antimicrobial activities of the respiratory epithelial cells.
Collapse
Affiliation(s)
- Elena Svirshchevskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russian Federation, Russia
| | | | | | | |
Collapse
|
82
|
Rubino I, Coste A, Le Roy D, Roger T, Jaton K, Boeckh M, Monod M, Latgé JP, Calandra T, Bochud PY. Species-specific recognition of Aspergillus fumigatus by Toll-like receptor 1 and Toll-like receptor 6. J Infect Dis 2012; 205:944-54. [PMID: 22315281 DOI: 10.1093/infdis/jir882] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aspergillus fumigatus causes invasive aspergillosis, a potentially fatal infection in oncohematological patients. Innate immune detection of A. fumigatus involves Toll-like receptor (TLR) 4 and TLR2, which forms a heterodimer with either TLR1 or TLR6. The role of those coreceptors in Aspergillus sensing is unknown. METHODS Cytokine production was measured in bone marrow-derived macrophages (BMDMs) from wild-type (WT) and TLR-deficient mice after incubation with a WT and an immunogenic RodA-deficient (ΔrodA-47) strain of A. fumigatus and in lungs from these mice after intranasal mold inoculation. Aspergillus fumigatus-mediated NF-κB activation was measured in HEK293T cells transfected with plasmids expressing mouse or human TLRs. RESULTS Bone marrow-derived macrophages from TLR1- and TLR6-deficient mice produced lower amounts of interleukin 12p40, CXCL2, interleukin 6, and tumor necrosis factor α than BMDMs from WT mice after stimulation with A. fumigatus. Lungs from TLR1- and TLR6-deficient mice had diminished CXCL1 and CXCL2 production and increased fungal burden after intranasal inoculation of ΔrodA A. fumigatus compared with lungs from WT mice. ΔrodA strain-mediated NF-κB activation was observed in HEK293T cells expressing mouse TLR2/1, mouse TLR2/6, and human TLR2/1 but not human TLR2/6. CONCLUSIONS Innate immune detection of A. fumigatus is mediated by TLR4 and TLR2 together with TLR1 or TLR6 in mice and TLR1 but not TLR6 in humans.
Collapse
Affiliation(s)
- Ivana Rubino
- Department of Medicine, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Toll- and NOD-like receptor mRNA expression in canine sino-nasal aspergillosis and idiopathic lymphoplasmacytic rhinitis. Vet Immunol Immunopathol 2012; 145:618-24. [PMID: 22321737 DOI: 10.1016/j.vetimm.2012.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 01/10/2012] [Accepted: 01/14/2012] [Indexed: 12/20/2022]
Abstract
The pathogenesis of canine sino-nasal aspergillosis (SNA) and lymphoplasmacytic rhinitis (LPR) remains poorly understood. The innate immune system is implicated in the etiology of human chronic rhinosinusitis. Therefore, we hypothesized that dysfunction in innate immunity could be implicated in the pathogenesis of SNA and LPR. Expression of messenger RNA (mRNA) encoding Toll-like receptors (TLRs) 1-10 and NOD-like receptors (NODs) 1 and 2 in nasal mucosal biopsies from SNA or LPR dogs was compared with mucosa from healthy controls. Gene expression was quantified using quantitative real-time reverse transcriptase polymerase chain reaction normalized against multiple housekeeper genes. All TLR and NOD genes were quantified in all samples. SNA was associated with significantly increased expression of TLRs 1-4, 6-10; and NOD2, relative to controls. LPR was associated with significantly increased expression of TLRs 1, 2, 6-8, relative to controls. There was significantly more expression of TLRs 1, 4, 6-10 and NOD2 in SNA dogs than in LPR dogs. The significance of these differences in the pathogenesis of these diseases is yet to be determined.
Collapse
|
84
|
Tighe RM, Potts EN, Feng F, Li Z, Frush B, He YW, Corry DB, Noble PW, Hollingsworth JW. Extracellular Matrix Protein Mindin is Required for the Complete Allergic Response to Fungal-Associated Proteinase. ACTA ACUST UNITED AC 2012; 2011. [PMID: 23560245 PMCID: PMC3613851 DOI: 10.4172/2155-6121.s1-001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Asthma remains an important cause of morbidity and mortality with an incidence that continues to rise. Despite the importance of this disease, the mechanisms by which the host develops allergic airways disease remain poorly understood. The development of allergic airways disease appears to be contingent on activation of both the innate and adaptive immune system, but little is known about the cross-talk between these two systems. The extracellular matrix protein mindin (Spondin 2) has been previously demonstrated to have functional roles in both the innate and adaptive immunological responses. Previous work supports that pulmonary challenge with fungal-associated allergenic proteinase (FAP) induces an innate allergic response. We hypothesized that mindin would modify the biological response to FAP. Saline or FAP was administered by oropharyngeal aspiration to C57BL/6 wild type or mindin-null mice every 4 days for a total of five exposures. FAP exposed C57BL/6 mice developed enhanced airway hyperresponsiveness (AHR) to methacholine challenge and increased neutrophils and eosinophils in the bronchoalveolar lavage as compared to saline exposed controls. These responses were significantly reduced in mindin-null mice exposed to FAP. FAP challenge was associated with a broad induction of cytokines (IL-1β, TNFα, Th1, Th2, and IL-17), chemokines, and growth factors, which were reduced in mindin-null mice exposed to FAP. RNA expression in lung monocytes for representative M1 and M2 activation markers were increased by FAP, but were independent of mindin. Our observations support that challenge with FAP results in activation of both innate and adaptive immune signaling pathways in a manner partially dependent on mindin. These findings suggest a potential role for the extracellular matrix protein mindin in cross-talk between the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Figueiredo RT, Carneiro LAM, Bozza MT. Fungal surface and innate immune recognition of filamentous fungi. Front Microbiol 2011; 2:248. [PMID: 22194732 PMCID: PMC3242297 DOI: 10.3389/fmicb.2011.00248] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
The innate immune system performs specific detection of molecules from infectious agents through pattern recognition receptors. This recognition triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. Infections caused by filamentous fungi have increased in incidence and represent an important cause of mortality and morbidity especially in individuals with immunosuppression. This review will discuss the innate immune recognition of filamentous fungi molecules and its importance to infection control and disease.
Collapse
Affiliation(s)
- Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Pólo de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | | | |
Collapse
|
86
|
Targeted disruption of nonribosomal peptide synthetase pes3 augments the virulence of Aspergillus fumigatus. Infect Immun 2011; 79:3978-92. [PMID: 21746855 PMCID: PMC3187245 DOI: 10.1128/iai.00192-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nonribosomal peptide synthesis (NRPS) is a documented virulence factor for the opportunistic pathogen Aspergillus fumigatus and other fungi. Secreted or intracellularly located NRP products include the toxic molecule gliotoxin and the iron-chelating siderophores triacetylfusarinine C and ferricrocin. No structural or immunologically relevant NRP products have been identified in the organism. We investigated the function of the largest gene in A. fumigatus, which encodes the NRP synthetase Pes3 (AFUA_5G12730), by targeted gene deletion and extensive phenotypic analysis. It was observed that in contrast to other NRP synthetases, deletion of pes3 significantly increases the virulence of A. fumigatus, whereby the pes3 deletion strain (A. fumigatus Δpes3) exhibited heightened virulence (increased killing) in invertebrate (P < 0.001) and increased fungal burden (P = 0.008) in a corticosteroid model of murine pulmonary aspergillosis. Complementation restored the wild-type phenotype in the invertebrate model. Deletion of pes3 also resulted in increased susceptibility to the antifungal, voriconazole (P < 0.01), shorter germlings, and significantly reduced surface β-glucan (P = 0.0325). Extensive metabolite profiling revealed that Pes3 does not produce a secreted or intracellularly stored NRP in A. fumigatus. Macrophage infections and histological analysis of infected murine tissue indicate that Δpes3 heightened virulence appears to be mediated by aberrant innate immune recognition of the fungus. Proteome alterations in A. fumigatus Δpes3 strongly suggest impaired germination capacity. Uniquely, our data strongly indicate a structural role for the Pes3-encoded NRP, a finding that appears to be novel for an NRP synthetase.
Collapse
|
87
|
Ramirez-Ortiz ZG, Lee CK, Wang JP, Boon L, Specht CA, Levitz SM. A nonredundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus. Cell Host Microbe 2011; 9:415-24. [PMID: 21575912 DOI: 10.1016/j.chom.2011.04.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 03/14/2011] [Accepted: 04/11/2011] [Indexed: 01/22/2023]
Abstract
While plasmacytoid dendritic cells (pDCs), a natural type I interferon (IFN)-producing cell type, are regarded as critical for innate immunity to viruses, their role in defense against fungal infections remains unknown. We examined the interactions of pDCs with hyphae of the invasive human fungal pathogen Aspergillus fumigatus. Human pDCs spread over hyphae and inhibited their growth. Antifungal activity was retained in pDC lysates, did not require direct fungal contact, and was partially reversed by zinc. Incubation with hyphae resulted in pDC cytotoxicity, partly due to fungal gliotoxin secretion. Following hyphal stimulation, pDCs released proinflammatory cytokines via a TLR9-independent mechanism. Pulmonary challenge of mice with A. fumigatus resulted in a substantial influx of pDCs into lungs, and pDC-depleted mice were hypersusceptible to invasive aspergillosis. These data demonstrate the antifungal activity of pDCs against A. fumigatus and establish their nonredundant role in host defenses against invasive aspergillosis in vivo.
Collapse
Affiliation(s)
- Zaida G Ramirez-Ortiz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
88
|
Han X, Yu R, Zhen D, Tao S, Schmidt M, Han L. β-1,3-Glucan-induced host phospholipase D activation is involved in Aspergillus fumigatus internalization into type II human pneumocyte A549 cells. PLoS One 2011; 6:e21468. [PMID: 21760893 PMCID: PMC3132740 DOI: 10.1371/journal.pone.0021468] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/30/2011] [Indexed: 12/21/2022] Open
Abstract
The internalization of Aspergillus fumigatus into lung epithelial cells is a process that depends on host cell actin dynamics. The host membrane phosphatidylcholine cleavage driven by phospholipase D (PLD) is closely related to cellular actin dynamics. However, little is known about the impact of PLD on A. fumigatus internalization into lung epithelial cells. Here, we report that once germinated, A. fumigatus conidia were able to stimulate host PLD activity and internalize more efficiently in A549 cells without altering PLD expression. The internalization of A. fumigatus in A549 cells was suppressed by the downregulation of host cell PLD using chemical inhibitors or siRNA interference. The heat-killed swollen conidia, but not the resting conidia, were able to activate host PLD. Further, β-1,3-glucan, the core component of the conidial cell wall, stimulated host PLD activity. This PLD activation and conidia internalization were inhibited by anti-dectin-1 antibody. Indeed, dectin-1, a β-1,3-glucan receptor, was expressed in A549 cells, and its expression profile was not altered by conidial stimulation. Finally, host cell PLD1 and PLD2 accompanied A. fumigatus conidia during internalization. Our data indicate that host cell PLD activity induced by β-1,3-glucan on the surface of germinated conidia is important for the efficient internalization of A. fumigatus into A549 lung epithelial cells.
Collapse
Affiliation(s)
- Xuelin Han
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Rentao Yu
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Dongyu Zhen
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Sha Tao
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Martina Schmidt
- Department Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Li Han
- Department for Hospital Infection Control and Research, Institute of Disease Control and Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
89
|
Chai LYA, Vonk AG, Kullberg BJ, Netea MG. Immune response to Aspergillus fumigatus in compromised hosts: from bedside to bench. Future Microbiol 2011; 6:73-83. [PMID: 21162637 DOI: 10.2217/fmb.10.158] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The relevance of studies aimed at understanding host immune response against Aspergillus fumigatus takes on much significance given that all patients with invasive aspergillosis are invariably immunocompromised. This article attempts to correlate relevant findings from recent experimental studies to clinical observations made by the physician at the bedside. It is hoped that the increased understanding of host-fungus immune interaction may pave the way for the development of new management strategies against this difficult-to-treat fungal disease.
Collapse
Affiliation(s)
- Louis Y A Chai
- Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
90
|
Hasenberg M, Behnsen J, Krappmann S, Brakhage A, Gunzer M. Phagocyte responses towards Aspergillus fumigatus. Int J Med Microbiol 2011; 301:436-44. [PMID: 21571589 DOI: 10.1016/j.ijmm.2011.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The saprophytic fungus Aspergillus fumigatus is a mold which is ubiquitously present in the environment. It produces large numbers of spores, called conidia that we constantly inhale with the breathing air. Healthy individuals normally do not suffer from true fungal infections with this pathogen. A normally robust resistance against Aspergillus is based on the presence of a very effective immunological defense system in the vertebrate body. Inhaled conidia are first encountered by lung-resident alveolar macrophages and then by neutrophil granulocytes. Both cell types are able to effectively ingest and destroy the fungus. Although some responses of the adaptive immune system develop, the key protection is mediated by innate immunity. The importance of phagocytes for defense against aspergillosis is also supported by large numbers of animal studies. Despite the production of aggressive chemicals that can extracellularly destroy fungal pathogens, the main effector mechanism of the innate immune system is phagocytosis. Very recently, the production of extracellular neutrophil extracellular traps (NETs) consisting of nuclear DNA has been added to the armamentarium that innate immune cells use against infection with Aspergillus. Phagocyte responses to Aspergillus are very broad, and a number of new observations have added to this complexity in recent years. To summarize established and newer findings, we will give an overview on current knowledge of the phagocyte system for the protection against Aspergillus.
Collapse
Affiliation(s)
- Mike Hasenberg
- Otto-von-Guericke University Magdeburg, Institute for Molecular and Clinical Immunology, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
91
|
Nakaira-Takahagi E, Golim MA, Bannwart CF, Puccia R, Peraçoli MTS. Interactions between TLR2, TLR4, and mannose receptors with gp43 from Paracoccidioides brasiliensis induce cytokine production by human monocytes. Med Mycol 2011; 49:694-703. [PMID: 21417682 DOI: 10.3109/13693786.2011.565485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The glycoprotein gp43 is an immunodominant antigen secreted by Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis. The present study evaluated whether gp43 can interact with toll-like (TLR2, TLR4) and mannose (MR) receptors on the surface of human monocytes, and how that affects their expression and cytokine production. Monocytes were incubated with or without monoclonal antibodies anti-TLR2, anti-TLR4, or anti-MR, individually or in combination, prior to the addition of gp43. The gp43 binding to monocyte surface, as well as expression of TLR2, TLR4, and MRs were analyzed by flow cytometry, while production of TNF-α and IL-10 was monitored by ELISA. The results suggested that gp43 binds to TLR2, TLR4, and MR receptors, with TLR2 and MR having the strongest effect. All three receptors influenced the production of IL-10, while TNF-α production was associated with expression of TLR4 and MR. The modulatory effect of gp43 was demonstrated by high levels of TLR4 expression associated with increased production of TNF-α after 4 h of culture. Alternatively, high levels of TLR2 expression, and elevated production of IL-10, were detected after 18 h. We showed that interaction between gp43 and monocytes may affect the innate immune response by modulating the expression of the pattern recognition receptors TLR2, TLR4 and MR, as well as production of pro- and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Erika Nakaira-Takahagi
- Departamento de Microbiologia e Imunologia, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
92
|
Sharon H, Amar D, Levdansky E, Mircus G, Shadkchan Y, Shamir R, Osherov N. PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death. PLoS One 2011; 6:e17509. [PMID: 21412410 PMCID: PMC3055868 DOI: 10.1371/journal.pone.0017509] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/04/2011] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus is the most commonly encountered mold pathogen of humans, predominantly infecting the respiratory system. Colonization and penetration of the lung alveolar epithelium is a key but poorly understood step in the infection process. This study focused on identifying the transcriptional and cell-signaling responses activated in A549 alveolar carcinoma cells incubated in the presence of A. fumigatus wild-type and ΔPrtT protease-deficient germinating conidia and culture filtrates (CF). Microarray analysis of exposed A549 cells identified distinct classes of genes whose expression is altered in the presence of germinating conidia and CF and suggested the involvement of both NFkB and MAPK signaling pathways in mediating the cellular response. Phosphoprotein analysis of A549 cells confirmed that JNK and ERK1/2 are phosphorylated in response to CF from wild-type A. fumigatus and not phosphorylated in response to CF from the ΔPrtT protease-deficient strain. Inhibition of JNK or ERK1/2 kinase activity substantially decreased CF-induced cell damage, including cell peeling, actin-cytoskeleton damage, and reduction in metabolic activity and necrotic death. These results suggest that inhibition of MAPK-mediated host responses to treatment with A. fumigatus CF decreases cellular damage, a finding with possible clinical implications.
Collapse
Affiliation(s)
- Haim Sharon
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel.
| | | | | | | | | | | | | |
Collapse
|
93
|
Cunha C, Romani L, Carvalho A. Cracking the Toll-like receptor code in fungal infections. Expert Rev Anti Infect Ther 2011; 8:1121-37. [PMID: 20954879 DOI: 10.1586/eri.10.93] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Innate control of fungal infection requires the specific recognition of invariant fungal molecular structures by a variety of innate immune receptors, including Toll-like receptors. In addition to the role in inducing protective immune responses, Toll-like receptor engagement may paradoxically favor fungal infections, by inducing inflammatory pathology and impairing antifungal immunity. Although the dissection of complex genetic traits modulating susceptibility to fungal infections is complex, the contribution of host genetics may hold the key to elucidating new risk factors for these severe, often fatal diseases. Understanding host-pathogen interactions at the innate immune interface will eventually lead to the development of new therapeutics and genetic markers in fungal infections.
Collapse
Affiliation(s)
- Cristina Cunha
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, 06126 Perugia, Italy
| | | | | |
Collapse
|
94
|
Fukahori S, Matsuse H, Tsuchida T, Kawano T, Tomari S, Fukushima C, Kohno S. Aspergillus fumigatus regulates mite allergen-pulsed dendritic cells in the development of asthma. Clin Exp Allergy 2011; 40:1507-15. [PMID: 20412133 DOI: 10.1111/j.1365-2222.2010.03520.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The role in allergic asthma development of the immune response against fungi with concomitant exposure to other common aeroallergens has yet to be determined. In particular, there is little understanding of how inhaled fungi affect the host response to mite allergens. OBJECTIVE To characterize the in vitro and in vivo effects of concurrent exposure of Aspergillus fumigatus (Af) and Dermatophagoides farinae (Derf) on dendritic cells (DCs) in the development of allergic asthma. METHODS Murine bone marrow-derived DCs were pulsed with Derf and/or live or heat-inactivated Af. Cytokine production and the expression of pathogen recognition receptors (PRRs) were determined in vitro. Subsequently, these DCs were inoculated into the airway of naïve mice to assess the development of allergic airway inflammation in vivo. The effect of antibodies against PRRs was also evaluated. RESULTS Live Af significantly enhanced IL-10 production and the expression of Toll-like receptor (TLR) 2 and Dectin-1 in Derf-pulsed DCs. Live Af infection significantly attenuated Derf-pulsed DC-induced allergic airway inflammation in vivo. Antibodies against either TLR2 or Dectin-1 significantly reversed the inhibitory effects of live Af in the development of Derf-pulsed DC-induced allergic airway inflammation. CONCLUSION Concurrent exposure of DCs to fungal antigens has profound influences on the subsequent mite allergen-induced allergic airway inflammation. Live Af could regulate the functions of airway DCs in the development of mite allergen-induced allergic airway inflammation via regulation of their PRRs. Our results suggest that concurrent exposure to pathogens such as fungi and mite allergens has profound influences on the subsequent allergen-induced allergic airway inflammation. Furthermore, modulating PRR signalling could provide a therapeutic regimen for the development of asthma.
Collapse
Affiliation(s)
- S Fukahori
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
NF-κB was first discovered and characterized 25 years ago as a key regulator of inducible gene expression in the immune system. Thus, it is not surprising that the clearest biological role of NF-κB is in the development and function of the immune system. Both innate and adaptive immune responses as well as the development and maintenance of the cells and tissues that comprise the immune system are, at multiple steps, under the control of the NF-κB family of transcription factors. Although this is a well-studied area of NF-κB research, new and significant findings continue to accumulate. This review will focus on these areas of recent progress while also providing a broad overview of the roles of NF-κB in mammalian immunobiology.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
96
|
Chai LYA, de Boer MGJ, van der Velden WJFM, Plantinga TS, van Spriel AB, Jacobs C, Halkes CJM, Vonk AG, Blijlevens NM, van Dissel JT, Donnelly PJ, Kullberg BJ, Maertens J, Netea MG. The Y238X stop codon polymorphism in the human β-glucan receptor dectin-1 and susceptibility to invasive aspergillosis. J Infect Dis 2011; 203:736-43. [PMID: 21242599 DOI: 10.1093/infdis/jiq102] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Dectin-1 is the major receptor for fungal β-glucans on myeloid cells. We investigated whether defective Dectin-1 receptor function, because of the early stop codon polymorphism Y238X, enhances susceptibility to invasive aspergillosis (IA) in at-risk patients. METHODS Association of Dectin-1 Y238X polymorphism with occurrence and clinical course of IA was evaluated in 71 patients who developed IA post hematopoietic stem cell transplantation (HSCT) and in another 21 non-HSCT patients with IA. The control group consisted of 108 patients who underwent HSCT. Functional studies were performed to investigate consequences of the Y238X Dectin-1 polymorphism. RESULTS The Y238X allele frequency was higher in non-HSCT patients with IA (19.0% vs 6.9%-7.7%; P < .05). Heterozygosity for Y238X polymorphism in HSCT recipients showed a trend toward IA susceptibility (odds ratio, 1.79; 95% CI, .77-4.19; P = .17) but did not influence clinical course of IA. Functional assays revealed that although peripheral blood mononuclear cells with defective Dectin-1 function due to Y238X responded less efficiently to Aspergillus, corresponding macrophages showed adequate response to Aspergillus. CONCLUSIONS Dectin-1 Y238X heterozygosity has a limited influence on susceptibility to IA and may be important in susceptible non-HSCT patients. This is partly attributable to redundancy inherent in the innate immune system. Larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Louis Y A Chai
- Department of Medicine, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Bhatia S, Fei M, Yarlagadda M, Qi Z, Akira S, Saijo S, Iwakura Y, van Rooijen N, Gibson GA, St. Croix CM, Ray A, Ray P. Rapid host defense against Aspergillus fumigatus involves alveolar macrophages with a predominance of alternatively activated phenotype. PLoS One 2011; 6:e15943. [PMID: 21246055 PMCID: PMC3016416 DOI: 10.1371/journal.pone.0015943] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/01/2010] [Indexed: 01/16/2023] Open
Abstract
The ubiquitous fungus Aspergillus fumigatus is associated with chronic diseases such as invasive pulmonary aspergillosis in immunosuppressed patients and allergic bronchopulmonary aspergillosis (ABPA) in patients with cystic fibrosis or severe asthma. Because of constant exposure to this fungus, it is critical for the host to exercise an immediate and decisive immune response to clear fungal spores to ward off disease. In this study, we observed that rapidly after infection by A. fumigatus, alveolar macrophages predominantly express Arginase 1 (Arg1), a key marker of alternatively activated macrophages (AAMs). The macrophages were also found to express Ym1 and CD206 that are also expressed by AAMs but not NOS2, which is expressed by classically activated macrophages. The expression of Arg1 was reduced in the absence of the known signaling axis, IL-4Rα/STAT6, for AAM development. While both Dectin-1 and TLR expressed on the cell surface have been shown to sense A. fumigatus, fungus-induced Arg1 expression in CD11c+ alveolar macrophages was not dependent on either Dectin-1 or the adaptor MyD88 that mediates intracellular signaling by most TLRs. Alveolar macrophages from WT mice efficiently phagocytosed fungal conidia, but those from mice deficient in Dectin-1 showed impaired fungal uptake. Depletion of macrophages with clodronate-filled liposomes increased fungal burden in infected mice. Collectively, our studies suggest that alveolar macrophages, which predominantly acquire an AAM phenotype following A. fumigatus infection, have a protective role in defense against this fungus.
Collapse
Affiliation(s)
- Shikha Bhatia
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mingjian Fei
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Manohar Yarlagadda
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Zengbiao Qi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka, Japan
| | - Shinobu Saijo
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Yoichiro Iwakura
- Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit, Vanderbilt University Medical Center, Amsterdam, The Netherlands
| | - Gregory A. Gibson
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Claudette M. St. Croix
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Anuradha Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
98
|
Murshid A, Theriault J, Gong J, Calderwood SK. Investigating receptors for extracellular heat shock proteins. Methods Mol Biol 2011; 787:289-302. [PMID: 21898244 DOI: 10.1007/978-1-61779-295-3_22] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular heat shock proteins (HSP) play important roles in cell signaling and immunity. Many of these effects are mediated by cell surface receptors expressed on a wide range of cell types. We have investigated the nature of such proteins by cloning candidate receptors into cells (CHO-K1) with the rare property of being null for HSP binding. Using this approach, we have discovered that Hsp70 binds to a least two classes of receptor: c-type lectin receptors (CLR) and scavenger receptors (SR). However, the nature of the receptor-ligand interactions is not yet clear. Hsp70 can bind to LOX-1 (a member of both the CLR and SR), with the c-type lectin binding domain (CTLD) as well as the SR family members SREC-I and FEEL-1/CLEVER-1/STABILIN-1, which by contrast have arrays of EGF-like repeats in their extracellular domains. In this chapter, we discuss (1) methods for determining HSP receptors, (2) approaches to study of individual receptors in cells that contain multiple such receptors, and (3) methods for investigating HSP receptor function in vivo.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
99
|
Figueiredo RT, Fernandez PL, Dutra FF, González Y, Lopes LC, Bittencourt VCB, Sassaki GL, Barreto-Bergter E, Bozza MT. TLR4 recognizes Pseudallescheria boydii conidia and purified rhamnomannans. J Biol Chem 2010; 285:40714-23. [PMID: 20959459 PMCID: PMC3003371 DOI: 10.1074/jbc.m110.181255] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/14/2010] [Indexed: 01/09/2023] Open
Abstract
Pseudallescheria boydii (Scedosporium apiospermum) is a saprophytic fungus widespread in the environment, and has recently emerged as an agent of localized as well as disseminated infections, particularly mycetoma, in immunocompromised and immunocompetent hosts. We have previously shown that highly purified α-glucan from P. boydii activates macrophages through Toll-like receptor TLR2, however, the mechanism of P. boydii recognition by macrophage is largely unknown. In this work, we investigated the role of innate immune receptors in the recognition of P. boydii. Macrophages responded to P. boydii conidia and hyphae with secretion of proinflammatory cytokines. The activation of macrophages by P. boydii conidia required functional MyD88, TLR4, and CD14, whereas stimulation by hyphae was independent of TLR4 and TLR2 signaling. Removal of peptidorhamnomannans from P. boydii conidia abolished induction of cytokines by macrophages. A fraction highly enriched in rhamnomannans was obtained and characterized by NMR, high performance TLC, and GC-MS. Preparation of rhamnomannans derived from P. boydii triggered cytokine release by macrophages, as well as MAPKs phosphorylation and IκBα degradation. Cytokine release induced by P. boydii-derived rhamnomannans was dependent on TLR4 recognition and required the presence of non-reducing end units of rhamnose of the rhamnomannan, but not O-linked oligosaccharides from the peptidorhamnomannan. These results imply that TLR4 recognizes P. boydii conidia and this recognition is at least in part due to rhamnomannans expressed on the surface of P. boydii.
Collapse
Affiliation(s)
- Rodrigo T. Figueiredo
- From the Departamento de Imunologia, Laboratório de Inflamação e Imunidade, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 941-902 Brazil
- the Pólo de Xerém, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 941-902 Brazil
| | - Patrícia L. Fernandez
- From the Departamento de Imunologia, Laboratório de Inflamação e Imunidade, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 941-902 Brazil
- INDICASAT, Institute of Scientific Investigations and High Technology Services, Ciudad de Panamá, 843-01103 Panamá
| | - Fabianno F. Dutra
- From the Departamento de Imunologia, Laboratório de Inflamação e Imunidade, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 941-902 Brazil
| | - Yissett González
- INDICASAT, Institute of Scientific Investigations and High Technology Services, Ciudad de Panamá, 843-01103 Panamá
| | - Lívia Cristina Lopes
- the Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 941-902 Brazil
| | - Vera Carolina B. Bittencourt
- the Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 941-902 Brazil
- the Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, 20211-040 Brazil, and
| | - Guilherme L. Sassaki
- the Departamento de Bioquímica, Universidade Federal do Paraná, Curitiba, 81531-990 Brazil
| | - Eliana Barreto-Bergter
- the Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 941-902 Brazil
| | - Marcelo T. Bozza
- From the Departamento de Imunologia, Laboratório de Inflamação e Imunidade, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 941-902 Brazil
| |
Collapse
|
100
|
Kasperkovitz PV, Cardenas ML, Vyas JM. TLR9 is actively recruited to Aspergillus fumigatus phagosomes and requires the N-terminal proteolytic cleavage domain for proper intracellular trafficking. THE JOURNAL OF IMMUNOLOGY 2010; 185:7614-22. [PMID: 21059889 DOI: 10.4049/jimmunol.1002760] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TLR9 recognizes unmethylated CpG DNA and induces innate immune responses. TLR9 activation is a multistep process requiring proteolytic cleavage and trafficking to endolysosomal compartments for ligand-induced signaling. However, the rules that govern the dynamic subcellular trafficking for TLR9 after pathogen uptake have not been established. In this study, we demonstrate that uptake of Aspergillus fumigatus conidia induced drastic spatial redistribution of TLR9 to the phagosomal membrane of A. fumigatus-containing phagosomes but not to bead-containing phagosomes in murine macrophages. Specific TLR9 recruitment to the fungal phagosome was consistent using A. fumigatus spores at different germination stages and selected mutants affecting the display of Ags on the fungal cell surface. Spatiotemporal regulation of TLR9 compartmentalization to the A. fumigatus phagosome was independent of TLR2, TLR4, and downstream TLR signaling. Our data demonstrate that the TLR9 N-terminal proteolytic cleavage domain was critical for successful intracellular trafficking and accumulation of TLR9 in CpG-containing compartments and A. fumigatus phagosomal membranes. Our study provides evidence for a model in which A. fumigatus spore phagocytosis by macrophages specifically induces TLR9 recruitment to A. fumigatus phagosomes and may thereby mediate TLR9-induced antifungal innate immune responses.
Collapse
Affiliation(s)
- Pia V Kasperkovitz
- Division of Infectious Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|