51
|
Langemann D, Pellerin L, Peters A. Making sense of AMPA receptor trafficking by modeling molecular mechanisms of synaptic plasticity. Brain Res 2008; 1207:60-72. [DOI: 10.1016/j.brainres.2008.01.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/14/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
52
|
Variant brain-derived neurotrophic factor (Val66Met) alters adult olfactory bulb neurogenesis and spontaneous olfactory discrimination. J Neurosci 2008; 28:2383-93. [PMID: 18322085 DOI: 10.1523/jneurosci.4387-07.2008] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurogenesis, the division, migration, and differentiation of new neurons, occurs throughout life. Brain derived neurotrophic factor (BDNF) has been identified as a potential signaling molecule regulating neurogenesis in the subventricular zone (SVZ), but its functional consequences in vivo have not been well defined. We report marked and unexpected deficits in survival but not proliferation of newly born cells of adult knock-in mice containing a variant form of BDNF [a valine (Val) to methionine (Met) substitution at position 66 in the prodomain of BDNF (Val66Met)], a genetic mutation shown to lead to a selective impairment in activity-dependent BDNF secretion. Utilizing knock-out mouse lines, we identified BDNF and tyrosine receptor kinase B (TrkB) as the critical molecules for the observed impairments in neurogenesis, with p75 knock-out mice showing no effect on cell proliferation or survival. We then localized the activated form of TrkB to a discrete population of cells, type A migrating neuroblasts, and demonstrate a decrease in TrkB phosphorylation in the SVZ of Val66Met mutant mice. With these findings, we identify TrkB signaling, potentially through activity dependent release of BDNF, as a critical step in the survival of migrating neuroblasts. Utilizing a behavioral task shown to be sensitive to disruptions in olfactory bulb neurogenesis, we identified specific impairments in spontaneous olfactory discrimination, but not general olfactory sensitivity or habituation to olfactory stimuli in BDNF mutant mice. Through these observations, we have identified novel links between genetic variant BDNF and adult neurogenesis in vivo, which may contribute to significant impairments in olfactory function.
Collapse
|
53
|
Iwakura Y, Nawa H, Sora I, Chao MV. Dopamine D1 receptor-induced signaling through TrkB receptors in striatal neurons. J Biol Chem 2008; 283:15799-806. [PMID: 18381284 DOI: 10.1074/jbc.m801553200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In addition to its role as a neurotransmitter, dopamine can stimulate neurite outgrowth and morphological effects upon primary neurons. To investigate the signal transduction mechanisms used by dopamine in developing striatal neurons, we focused upon the effects of activating the dopamine D1 receptor. Using the D1 receptor agonist SKF38393, we found that Trk neurotrophin receptors were activated in embryonic day 18 striatal neurons. K-252a, a Trk tyrosine kinase inhibitor, and a dopamine D1 receptor antagonist could block the effects of SKF38393. The increase in TrkB phosphorylation was not the result of increased neurotrophin production. Induction of TrkB activity by SKF38393 was accompanied by the phosphorylation of several Trk signaling proteins, including phospholipase Cgamma, Akt, and MAPK. Biotinylation experiments followed by immunostaining by phospho-TrkB-specific antibodies indicated that the mechanism involved increased TrkB surface expression by dopamine D1 receptor activation. This increase in cell surface TrkB expression was dependent upon an increase in intracellular Ca(2+). These results indicate that stimulation of dopamine D1 receptors can be coupled to the neurotrophin receptor signaling to mediate the effects of dopamine upon striatal neurons.
Collapse
Affiliation(s)
- Yuriko Iwakura
- Molecular Neurobiology Program, Kimmel Center at Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
54
|
Zivadinov R, Weinstock-Guttman B, Benedict R, Tamaño-Blanco M, Hussein S, Abdelrahman N, Durfee J, Ramanathan M. Preservation of gray matter volume in multiple sclerosis patients with the Met allele of the rs6265 (Val66Met) SNP of brain-derived neurotrophic factor. Hum Mol Genet 2007; 16:2659-68. [PMID: 17656372 DOI: 10.1093/hmg/ddm189] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To investigate the association of the rs6265 (Val66Met) single nucleotide polymorphism (SNP) of brain-derived neurotrophic factor (BDNF) with brain morphometry and functional status as measured by quantitative magnetic resonance imaging (MRI) and neurocognitive testing in multiple sclerosis (MS) patients. BDNF is released by neurons and by immune cells in MS brain. The rs6265 SNP variation of BDNF causes substitution of valine (Val) for methionine (Met) and interferes with activity-dependent BDNF secretion. A total of 209 treated MS patients (161 females; 48 males) underwent clinical brain MRI and were genotyped for the BDNF rs6265 Val66Met SNP. A subset of 108 patients had neurocognitive testing for processing speed, memory and executive function. The MRI measurements included T2 and T1-lesion volume (LV); normalized brain volume measures of whole brain (WB) volume, white and gray matter volume (NWMV and NGMV) and the diffusion-weighted imaging measure of WB mean parenchyma diffusivity (MPD). The Met66 allele status was positively associated with NGMV (P = 0.015, standardized beta = 0.15) and negatively associated with T2-LV (P = 0.041, standardized beta = -0.14). There were no significant associations between Met66 allele status and T1-LV, NWMV or MPD. On the Paced Serial Addition Test (PASAT), a trend (P = 0.057) favoring the Met66 allele group was observed. There were no significant associations between Met66 allele status and other neurocognitive measures. The BDNF Met66 allele is associated with lower damage as evidenced by measurement of NGMV and T2-LV in MS patients.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, State University of New York, Buffalo, NY 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Nakata H, Nakamura S. Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signaling. FEBS Lett 2007; 581:2047-54. [PMID: 17482902 DOI: 10.1016/j.febslet.2007.04.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/25/2022]
Abstract
The change in the number of post-synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamatergic receptors (AMPARs) by neuronal activity is recognized as a molecular basis of synaptic plasticity. Here, we show that Ca(2+) transients evoked by brain-derived neurotrophic factor (BDNF) induce translocation of a subunit of AMPAR, GluR1, but not NMDAR, to the post-synaptic membrane in cultured cortical pyramidal neurons. Among BDNF-induced Ca(2+) transients, that dependent on IP3R was fully required, while store-operated calcium influx through the non-selective cation channel TRPC (transient receptor potential canonical) was partially required for the GluR1 up-regulation, suggesting that spatial and temporal calcium signaling regulate translocation of GluR1 to the polarized membrane domain.
Collapse
Affiliation(s)
- Hiroko Nakata
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | |
Collapse
|
56
|
Nagano T, Namba H, Abe Y, Aoki H, Takei N, Nawa H. In vivo administration of epidermal growth factor and its homologue attenuates developmental maturation of functional excitatory synapses in cortical GABAergic neurons. Eur J Neurosci 2007; 25:380-90. [PMID: 17284178 DOI: 10.1111/j.1460-9568.2007.05297.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ErbB1 ligand family includes epidermal growth factor (EGF), transforming growth factor-alpha (TGFalpha), heparin-binding EGF-like growth factor, amphiregulin and betacellulin. Previously, we demonstrated that TGFalpha decreases alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors in cultured neocortical gamma-aminobutyric acid (GABA) neurons. In the present study, we examined in vivo effects of EGF and TGFalpha in the mouse neocortex using electrophysiological and biochemical techniques. In mouse neonates, subcutaneously administered EGF penetrated the blood-brain barrier and activated ErbB1 in the neocortex. Daily administration of EGF or TGFalpha attenuates developmental increases in expression of the AMPA receptor subunits (GluR1 and GluR2/3) in the neocortex of postnatal mice. Immunohistochemistry revealed that the reduction in AMPA receptor expression was significant in the GABAergic neurons, especially those positive for parvalbumin. Using cortical slices prepared from EGF-treated mice, we recorded miniature excitatory postsynaptic currents (mEPSCs) in both GABAergic and pyramidal neurons. Subchronic treatment with EGF decreased the amplitude and frequency of mEPSCs in GABAergic neurons, but its effects were negligible on pyramidal neurons. We conclude that EGF or other ErbB1 ligand(s) attenuates a developmental increase in AMPA receptor expression and function in cortical GABAergic neurons.
Collapse
Affiliation(s)
- Tadasato Nagano
- Molecular Neurobiology, Brain Research Institute, Niigata University, 951-8585 Japan
| | | | | | | | | | | |
Collapse
|
57
|
Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 2007; 35:208-19. [PMID: 17428676 DOI: 10.1016/j.mcn.2007.02.019] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 12/19/2022] Open
Abstract
The neurotrophin BDNF regulates the activity-dependent modifications of synaptic strength in the CNS. Physiological and biochemical evidences implicate the NMDA glutamate receptor as one of the targets for BDNF modulation. In the present study, we investigated the effect of BDNF on the expression and plasma membrane abundance of NMDA receptor subunits in cultured hippocampal neurons. Acute stimulation of hippocampal neurons with BDNF differentially upregulated the protein levels of the NR1, NR2A and NR2B NMDA receptor subunits, by a mechanism sensitive to transcription and translation inhibitors. Accordingly, BDNF also increased the mRNA levels for NR1, NR2A and NR2B subunits. The neurotrophin NT3 also upregulated the protein levels of NR2A and NR2B subunits, but was without effect on the NR1 subunit. The amount of NR1, NR2A and NR2B proteins associated with the plasma membrane of hippocampal neurons was differentially increased by BDNF stimulation for 30 min or 24 h. The rapid upregulation of plasma membrane-associated NMDA receptor subunits was correlated with an increase in NMDA receptor activity. The results indicate that BDNF increases the abundance of NMDA receptors and their delivery to the plasma membrane, thereby upregulating receptor activity in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Margarida V Caldeira
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
58
|
Lockhart BP, Rodriguez M, Mourlevat S, Peron P, Catesson S, Villain N, Galizzi JP, Boutin JA, Lestage P. S18986: a positive modulator of AMPA-receptors enhances (S)-AMPA-mediated BDNF mRNA and protein expression in rat primary cortical neuronal cultures. Eur J Pharmacol 2007; 561:23-31. [PMID: 17331496 DOI: 10.1016/j.ejphar.2007.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/22/2006] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
The present study describes the effect of (S)-2,3-dihydro-[3,4]cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide (S18986), a positive allosteric modulator of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors, on (S)-AMPA-mediated increases in brain-derived neurotrophic factor (BDNF) mRNA and protein expression in rat primary cortical neuronal cultures. (S)-AMPA (0.01-300 microM) induced a concentration-dependent increase in BDNF mRNA and protein expression (EC(50)=7 microM) with maximal increases (50-fold) compared to untreated cultures observed between 5 and 12 h, whereas for cellular protein levels, maximal expression was detected at 24 h. S18986 alone (< or =300 microM) failed to increase basal BDNF expression. However, S18986 (300 microM) in the presence of increasing concentrations of (S)-AMPA maximally enhanced AMPA-induced expression of BDNF mRNA and protein levels (3-5-fold). S18986 (100-300 microM) potentiated BDNF mRNA induced by 3 microM (S)-AMPA (2-3-fold). Under similar conditions, the AMPA allosteric modulator cyclothiazide induced a potent stimulation of (S)-AMPA-mediated BDNF expression (40-fold; EC(50)=18 microM), whereas IDRA-21 was inactive. Kinetic studies indicated that S18986 (300 microM) in the presence of 3 microM (S)-AMPA was capable of enhancing BDNF mRNA levels for up to 25 h, compared to 3 microM (S)-AMPA alone. On the other hand, S18986 only partially enhanced kainate-mediated expression of BDNF mRNA, but failed to significantly enhance N-methyl-D-aspartate-stimulated BDNF expression levels. In support of these observations, the competitive AMPA receptor antagonist NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide) but not the selective NMDA-receptor antagonist, (+)-MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], abrogated S18986-induced effects on BDNF expression. S18986-mediated enhancement of (S)-AMPA-evoked BDNF protein expression was markedly attenuated in Ca(2+)-free culture conditions. Furthermore, from a series of kinase inhibitors only the Calmodulin-Kinase II/IV inhibitor (KN-62, 25 microM) significantly inhibited (-85%, P<0.001) AMPA+S18986 stimulated expression of BDNF mRNA. The present study supports the observations that AMPA receptor allosteric modulators can enhance the expression of BDNF mRNA and protein expression via the AMPA receptor in cultured primary neurones. Consequently, the long-term elevation of endogenous BDNF expression by pharmacological intervention with this class of compounds represents a potentially promising therapeutic approach for behavioural disorders implicating cognitive deficits.
Collapse
Affiliation(s)
- Brian Paul Lockhart
- Servier Research Institute, Division of Molecular Pharmacology and Pathophysiology, 125, Chemin de ronde, 78290 Croissy-sur-Seine, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Guo L, Wang Y. Glutamate stimulates glutamate receptor interacting protein 1 degradation by ubiquitin-proteasome system to regulate surface expression of GluR2. Neuroscience 2007; 145:100-9. [PMID: 17207582 DOI: 10.1016/j.neuroscience.2006.11.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 11/15/2006] [Accepted: 11/15/2006] [Indexed: 11/30/2022]
Abstract
The glutamate receptor interacting protein 1 (GRIP1) is a scaffolding protein in postsynaptic density (PSD), tethering AMPA receptors to other signaling proteins. Here we report that glutamate stimulation caused a rapid reduction in protein levels of GRIP1, but not that of glutamate receptor (GluR) 1, GluR2 and protein interacting with C kinase 1 (PICK1) in rat primary cortical neuron cultures. Down-regulation of GRIP1 by glutamate was blocked by carbobenzoxyl-leucinyl-leucinyl-leucinal (MG132), a proteasome inhibitor and by expression of K48R-ubiquitin, a dominant negative form of ubiquitin. The GRIP1 reduction was inhibited by MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, but not by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an AMPA receptor antagonist. EGTA and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra acetic acid tetrakis (BAPTA), two Ca2+ chelators, but not nifedipine, an L-type Ca2+ channel blocker, prevented GRIP1 degradation. Furthermore, MG132 prevented glutamate-stimulated reduction in surface amount of GluR2, and knockdown of GRIP1 by RNAi against GRIP1 reduced surface GluR2 in neurons. Our results suggest that glutamate induces GRIP1 degradation by proteasome through an NMDA receptor-Ca2+ pathway and that GRIP1 degradation may play an important role in regulating GluR2 surface expression.
Collapse
Affiliation(s)
- L Guo
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, Chinese Academy of Science, 320 Yue-Yang Road, Shanghai 200031, PR China
| | | |
Collapse
|
60
|
Shishido Y, Tanaka T, Piao YS, Araki K, Takei N, Higashiyama S, Nawa H. Activity-dependent shedding of heparin-binding EGF-like growth factor in brain neurons. Biochem Biophys Res Commun 2006; 348:963-70. [PMID: 16901467 DOI: 10.1016/j.bbrc.2006.07.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 07/23/2006] [Indexed: 01/08/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is initially produced as a membrane-anchored precursor (pro-HB-EGF) and subsequently liberated from the cell membrane through ectodomain shedding. Here, we characterized the molecular regulation of pro-HB-EGF shedding in the central nervous system. Cultured neocortical or hippocampal neurons were transfected with the alkaline-phosphatase-tagged pro-HB-EGF gene and stimulated with various neurotransmitters. Both kainate and N-methyl-D-aspartate, but not agonists for metabotropic glutamate receptors, promoted pro-HB-EGF shedding and HB-EGF release, which were attenuated by an exocytosis blocker and metalloproteinase inhibitors. In the brain of transgenic mice over-expressing human pro-HB-EGF, kainate-induced seizure activity decreased content of pro-HB-EGF-like immunoreactivity and conversely increased levels of soluble HB-EGF. There was concomitant phosphorylation of EGF receptors (ErbB1) following seizures, suggesting that seizure activities liberated HB-EGF and activated neighboring ErbB1 receptors. Therefore, we propose that glutamatergic neurotransmission in the central nervous system plays a crucial role in regulating ectodomain shedding of pro-HB-EGF.
Collapse
Affiliation(s)
- Yuji Shishido
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
61
|
Gao L, Blair LAC, Marshall J. CaMKII-independent effects of KN93 and its inactive analog KN92: Reversible inhibition of L-type calcium channels. Biochem Biophys Res Commun 2006; 345:1606-10. [PMID: 16730662 DOI: 10.1016/j.bbrc.2006.05.066] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
Widely regarded as a specific and potent inhibitor of CaM kinases, especially CaMKII, KN93 has long been used to investigate the possible roles of CaMKII in a wide range of biological functions and systems, such as cultured cells, primary neurons, and brain slices. However, here we present evidence showing that KN93 and its structural analog KN92, which does not inhibit CaMKII, exert an unexpected, reversible, and specific reduction of currents of L-type calcium channels (CaV1.3 and CaV1.2), as compared to N-type calcium channels (CaV2.2). This effect is dependent not only on incubation time, but also on the dose of KN93 or KN92. Moreover, the effect appears to be independent of endocytosis, exocytosis, and proteasome activity. Washout and return to normal media rescues the L channel currents. Conversely, the structurally unrelated CaMKII inhibitor, AIP, fails to mimic the KN93/KN92 effect on L channel currents. Together, our data suggest that, in addition to inhibiting CaMKII, KN93 also affects CaV1.3 and CaV1.2 calcium channels in a CaMKII-independent manner.
Collapse
Affiliation(s)
- Lei Gao
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
62
|
Namba H, Nagano T, Iwakura Y, Xiong H, Jourdi H, Takei N, Nawa H. Transforming growth factor alpha attenuates the functional expression of AMPA receptors in cortical GABAergic neurons. Mol Cell Neurosci 2006; 31:628-41. [PMID: 16443372 PMCID: PMC3683556 DOI: 10.1016/j.mcn.2005.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/05/2005] [Accepted: 12/08/2005] [Indexed: 02/04/2023] Open
Abstract
In the developing neocortex, brain-derived neurotrophic factor (BDNF) exerts a trophic activity to increase the expression and channel activity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor subunits. Here, we demonstrate that the epidermal growth factor (EGF) receptor (ErbB1) ligands exert the opposite biological activity in cultured neocortical neurons. Subchronic stimulation of ErbB1 with transforming growth factor alpha (TGFalpha), EGF, or heparin-binding EGF (HB-EGF) down-regulated protein expression of the GluR1 AMPA receptor subunit in cultured neocortical neurons. In agreement, TGFalpha treatment decreased the Bmax of [3H] AMPA binding and GluR1 mRNA levels. Immunocytochemistry revealed that the decrease in GluR1 was most pronounced in multipolar GABAergic neurons. To examine the physiological consequences, we recorded AMPA-evoked currents as well as miniature excitatory postsynaptic currents in morphologically identified putative GABAergic neurons in culture. Subchronic TGFalpha treatment decreased AMPA-triggered currents as well as the amplitude and frequency of miniature excitatory postsynaptic currents. An ErbB1 tyrosine kinase inhibitor, PD153035, inhibited the TGFalpha effect. Moreover, TGFalpha counteracted the neurotrophic activity of BDNF on AMPA receptor expression. Co-application of TGFalpha with BDNF blocked the BDNF-triggered up-regulation of AMPA receptor expression and currents. These observations reveal a negative regulatory activity of the ErbB1 ligand, TGFalpha, which reduces the input sensitivity of cortical GABAergic neurons to attenuate their inhibitory function.
Collapse
Affiliation(s)
- Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
63
|
Martínez-Turrillas R, Del Río J, Frechilla D. Sequential changes in BDNF mRNA expression and synaptic levels of AMPA receptor subunits in rat hippocampus after chronic antidepressant treatment. Neuropharmacology 2005; 49:1178-88. [PMID: 16143352 DOI: 10.1016/j.neuropharm.2005.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/19/2005] [Accepted: 07/13/2005] [Indexed: 10/25/2022]
Abstract
Increased expression of brain-derived neurotrophic factor (BDNF) appears to be involved in the mechanism of action of antidepressant drugs. It has also been proposed that potentiation of the AMPA receptor (AMPAR) function may be useful in the treatment of depression. Here we looked for the time course of the effect of different doses of two antidepressants, desipramine (DMI) and paroxetine (PAR), which differentially affect monoamine reuptake, on BDNF mRNA expression in hippocampal subfields (CA1, CA3 and dentate gyrus) and levels of AMPAR subunits in total and membrane-enriched extracts from rat hippocampus. Acute antidepressant treatment changed neither BDNF mRNA expression nor AMPAR subunit levels. In chronic treatments, rats were treated daily with the antidepressants for 7-21 days. PAR produced a time- and dose-dependent increase of BDNF expression in the three hippocampal subfields examined. On the contrary, the effect of DMI on BDNF mRNA was neither dose- nor time-dependent. In rats receiving the same chronic antidepressant treatments, PAR produced a dose-dependent increase of GluR1 and GluR2/3 levels in the membrane fraction after a 3-week treatment, and not at earlier times. DMI increased the membrane levels of AMPAR subunits after a 3-week treatment with the lower dose tested. However, a higher dose, 15 mg/kg, did not produce any change in AMPAR subunits and reduced membrane levels of alpha-tubulin and PSD-95, possibly indicating a disorganization of membrane scaffolding proteins. The results suggest that paroxetine, but not desipramine, enhances synaptic plasticity in the hippocampus by increasing BDNF mRNA expression, which determines a later AMPAR subunit trafficking to synaptic membranes.
Collapse
Affiliation(s)
- Rebeca Martínez-Turrillas
- Department of Pharmacology, School of Medicine, University of Navarra, Apartado 177, 31080 Pamplona, Spain
| | | | | |
Collapse
|
64
|
YOKOMAKU D, JOURDI H, KAKITA A, NAGANO T, TAKAHASHI H, TAKEI N, NAWA H. ErbB1 receptor ligands attenuate the expression of synaptic scaffolding proteins, GRIP1 and SAP97, in developing neocortex. Neuroscience 2005; 136:1037-47. [PMID: 16226841 PMCID: PMC3659789 DOI: 10.1016/j.neuroscience.2005.08.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/23/2005] [Accepted: 08/04/2005] [Indexed: 01/01/2023]
Abstract
Scaffolding proteins containing postsynaptic density-95/discs large/zone occludens-1 (PDZ) domains interact with synaptic receptors and cytoskeletal components and are therefore implicated in synaptic development and plasticity. Little is known, however, about what regulates the expression of PDZ proteins and how the levels of these proteins influence synaptic development. Here, we show that ligands for epidermal growth factor receptors (ErbB1) decrease a particular set of PDZ proteins and negatively influence synaptic formation or maturation. In short-term neocortical cultures, concentrations of epidermal growth factor and amphiregulin (2-9 pM) decreased the expression of glutamate receptor interacting protein 1 (GRIP1) and synapse-associated protein 97 kDa (SAP97) without affecting postsynaptic density-95 (PSD-95) levels and glial proliferation. In long-term cultures, epidermal growth factor treatment resulted in a decrease in the frequency of pan-PDZ-immunoreactive aggregates on dendritic processes. A similar activity on the same PDZ proteins was observed in the developing neocortex following epidermal growth factor administration to rat neonates. Immunoblotting revealed that administered epidermal growth factor from the periphery activated brain ErbB1 receptors and decreased GRIP1 and SAP97 protein levels in the neocortex. Laser-confocal imaging indicated that epidermal growth factor administration suppressed the formation of pan-PDZ-immunoreactive puncta and dispersed those structures in vivo as well. These findings revealed a novel negative activity of ErbB1 receptor ligands that attenuates the expression of the PDZ proteins and inhibits postsynaptic maturation in developing neocortex.
Collapse
Affiliation(s)
- D. YOKOMAKU
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
| | - H. JOURDI
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
| | - A. KAKITA
- Brain Resource Center, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - T. NAGANO
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
| | - H. TAKAHASHI
- Department of Pathology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - N. TAKEI
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
| | - H. NAWA
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Asahimachi-dori 1-757, Niigata 951-8585, Japan
- Corresponding author. Fax: +81-25-227-0815. (H. Nawa)
| |
Collapse
|
65
|
Wang Y, Manis PB. Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J Neurophysiol 2005; 94:1814-24. [PMID: 15901757 PMCID: PMC1941703 DOI: 10.1152/jn.00374.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Age-related hearing loss (AHL) typically starts from high-frequency regions of the cochlea and over time invades lower-frequency regions. During this progressive hearing loss, sound-evoked activity in spiral ganglion cells is reduced. DBA mice have an early onset of AHL. In this study, we examined synaptic transmission at the endbulb of Held synapse between auditory nerve fibers and bushy cells in the anterior ventral cochlear nucleus (AVCN). Synaptic transmission in hearing-impaired high-frequency areas of the AVCN was altered in old DBA mice. The spontaneous miniature excitatory postsynaptic current (mEPSC) frequency was substantially reduced (about 60%), and mEPSCs were significantly slower (about 115%) and smaller (about 70%) in high-frequency regions of old (average age 45 days) DBA mice compared with tonotopically matched regions of young (average age 22 days) DBA mice. Moreover, synaptic release probability was about 30% higher in high-frequency regions of young DBA than that in old DBA mice. Auditory nerve-evoked EPSCs showed less rectification in old DBA mice, suggesting recruitment of GluR2 subunits into the AMPA receptor complex. No similar age-related changes in synaptic release or EPSCs were found in age-matched, normal hearing young and old CBA mice. Taken together, our results suggest that auditory nerve activity plays a critical role in maintaining normal synaptic function at the endbulb of Held synapse after the onset of hearing. Auditory nerve activity regulates both presynaptic (release probability) and postsynaptic (receptor composition and kinetics) function at the endbulb synapse after the onset of hearing.
Collapse
Affiliation(s)
- Yong Wang
- 1115 Bioinformatics Bldg, CB#7070, Department of Otolaryngology/Head and Neck Surgery, University of North Carolina, Chapel Hill, North Carolina 27599-7070, USA.
| | | |
Collapse
|
66
|
Thomas P, Smart TG. HEK293 cell line: A vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 2005; 51:187-200. [PMID: 15862464 DOI: 10.1016/j.vascn.2004.08.014] [Citation(s) in RCA: 459] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2004] [Indexed: 11/25/2022]
Abstract
The HEK cell line has been extensively used as an expression tool for recombinant proteins since it was generated over 25 years ago. Although of epithelial origin, its biochemical machinery is capable of carrying out most of the post-translational folding and processing required to generate functional, mature protein from a wide spectrum of both mammalian and non-mammalian nucleic acids. Though popular as a transient expression system, this cell type has also seen wide use in stably transfected forms (i.e. transformed cells) to study a variety of cell-biological questions in neurobiology. The principal attributes which have made the HEK cell a popular choice among electrophysiologists to study isolated receptor channels include; its quick and easy reproduction and maintenance; amenability to transfection using a wide variety of methods; high efficiency of transfection and protein production; faithful translation and processing of proteins; and small cell size with minimal processes appropriate for voltage-clamp experimentation. These, and other attributes, also mean that complementary biochemical/cell biological evaluations of expressed proteins can be performed in concert with functional analyses to establish detailed pharmacological and biophysical profiles for the action of new drugs and their targets. The increased amount of sequence information available from the human genome has placed greater emphasis upon heterologous cell expression systems as targets for high throughput structure-function evaluation of novel drug targets and disease markers. Here we have highlighted some of the innate characteristics of the HEK cell in order that its suitability as a vehicle for the expression of a gene product can be assessed for particular needs. We have also detailed some of the standard methods used for transfection and obtaining functional data from electrophysiological recording techniques.
Collapse
Affiliation(s)
- Philip Thomas
- Department of Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | |
Collapse
|
67
|
Jourdi H, Lu X, Yanagihara T, Lauterborn JC, Bi X, Gall CM, Baudry M. Prolonged positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induces calpain-mediated PSD-95/Dlg/ZO-1 protein degradation and AMPA receptor down-regulation in cultured hippocampal slices. J Pharmacol Exp Ther 2005; 314:16-26. [PMID: 15784649 DOI: 10.1124/jpet.105.083873] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged exposure of cultured hippocampal slices to CX614 [2H,3H,6aH-pyrrolidino[2'',1''-3',2']1,3-oxazino[6',5'-5,4]-benzo[e]1,4-dioxan 10-one], a positive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAr) modulator, decreases receptor response to synaptic stimulation, an effect that could reflect reduced receptor expression. The present study investigates this down-regulation and its underlying mechanisms using cultured rat hippocampal slices. Chronic treatment with CX614 gradually reduced levels of glutamate receptor (GluR)1 and GluR2/3 AMPAr subunits and of their anchoring proteins synapse-associated protein 97 (SAP97) and glutamate receptor interacting protein 1 (GRIP1) through 48 h. Decline in SAP97 and GRIP1 levels was associated with increased abundance of lower molecular weight bands, suggesting degradation of these proteins. CX614 effects were partially reversible after drug removal. GluR1 and GluR2/3 down-regulation and their slow recovery were associated with similar changes in SAP97 and GRIP1 levels. Treatment with CX614 for 48 h significantly reduced AMPAr mRNA levels in hippocampus, whereas 8-h exposure did not. Blockade of ionotropic glutamate receptors prevented CX614-induced decrease in AMPAr subunits and mRNA, with regional selectivity, although an AMPAr blocker was more efficacious than an N-methyl-D-aspartate receptor blocker. Blockade of calpain activity reduced CX614-induced degradation of SAP97 and GRIP1 and prevented decreases in AMPAr subunit but not mRNA levels. Treatment with CX614 alone or in combination with glutamate receptor blockers or calpain inhibitor III did not modify lactate dehydrogenase release into culture medium, implying the absence of cell toxicity. We conclude that CX614-induced AMPAr protein loss is primarily mediated by AMPAr activation and involves calpain-dependent proteolysis of SAP97 and GRIP1. CX614-induced suppression of AMPAr gene expression is, however, calpain-independent, and all these effects are not associated with cell damage.
Collapse
Affiliation(s)
- Hussam Jourdi
- Neuroscience Program and Department of Biology, University of Southern California, Los Angeles, CA 90089-2520, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Richardson CA, Leitch B. Phenotype of cerebellar glutamatergic neurons is altered in stargazer mutant mice lacking brain-derived neurotrophic factor mRNA expression. J Comp Neurol 2005; 481:145-59. [PMID: 15562504 DOI: 10.1002/cne.20386] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) influences neuronal survival, differentiation, and maturation. More recently, its role in synapse formation and plasticity has also emerged. In the cerebellum of the spontaneous recessive mutant mouse stargazer (stg) there is a specific and pronounced deficit in BDNF mRNA expression. BDNF protein levels in the cerebellum as a whole are reduced by 70%, while in the granule cells (GCs) there is a selective and near total reduction in BDNF mRNA expression. Recently, we published data demonstrating that inhibitory neurons in the cerebella of stgs have significantly reduced levels (approximately 50%) of gamma-aminobutyric acid (GABA) and fewer, smaller inhibitory synapses compared to wildtype (WT) controls. Our current investigations indicate that the stargazer mutation has an even more pronounced effect on the phenotype of glutamatergic neurons in the cerebellum. There is a profound decrease in the levels of glutamate-immunoreactivity (up to 77%) in stg compared to WT controls. The distribution profile of presynaptic vesicles is also markedly different: stgs have proportionally fewer docked vesicles and fewer vesicles located adjacent to the active zone ready to dock than WTs. Furthermore, the thickness of the postsynaptic density (PSD) at mossy fiber-granule cell (MF-GC) and parallel fiber-Purkinje cell (PF-PC) synapses is severely reduced (up to 33% less than WT controls). The number and length of excitatory synapses, however, appear to be relatively unchanged. It is possible that at least some of theses changes in phenotype are directly attributable to the lack of BDNF in the cerebellum of the stg mutant.
Collapse
Affiliation(s)
- Christine A Richardson
- School of Biological & Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | | |
Collapse
|
69
|
Rose CR, Blum R, Kafitz KW, Kovalchuk Y, Konnerth A. From modulator to mediator: rapid effects of BDNF on ion channels. Bioessays 2004; 26:1185-94. [PMID: 15499580 DOI: 10.1002/bies.20118] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurotrophins (NTs) are [?AUTHOR] a family of structurally related, secreted proteins that regulate the survival, differentiation and maintenance of function of different populations of peripheral and central neurons.1,2 Among these, BDNF (brain-derived neurotrophic factor) has drawn considerable interest because both its synthesis and secretion are increased by physiological levels of activity, indicating a unique role of this neurotrophin in coupling neuronal activity to structural and functional properties of neuronal circuits. In addition to its classical neurotrophic effects, which are evident within hours or days and which usually result from changes in cellular gene expression, BDNF exerts acute effects on synaptic transmission and is involved in the induction of long-term potentiation. Many of these rapid effects of BDNF are mediated by its modulation of ion channel properties following TrkB-mediated activation of intracellular second messenger cascades and protein phosphorylation. However, recent reports have shown that BDNF not only acts as a modulator of ion channels, but can also directly and rapidly gate a Na(+) channel, thereby assigning BDNF the properties of a classical excitatory transmitter. Thus, BDNF, in addition its role as a potent neuromodulator, emerges as an excitatory transmitter-like substance which acutely controls resting membrane potential, neuronal excitability, synaptic transmission and participates in the induction of synaptic plasticity.
Collapse
Affiliation(s)
- Christine R Rose
- Institut für Physiologie, Ludwig-Maximilians-Universität München, Germany
| | | | | | | | | |
Collapse
|
70
|
Hashimoto K, Shimizu E, Iyo M. Critical role of brain-derived neurotrophic factor in mood disorders. ACTA ACUST UNITED AC 2004; 45:104-14. [PMID: 15145621 DOI: 10.1016/j.brainresrev.2004.02.003] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 01/19/2023]
Abstract
The purpose of this review is to integrate what is currently known about the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of mood disorders including major depressive disorder (MDD) and bipolar disorder (BD). We reviewed the pre-clinical and clinical papers demonstrating that BDNF plays a role in the pathophysiology of mood disorders and in the mechanism of action of therapeutic agents. Pre-clinical studies suggest that the expression of BDNF might be a downstream target of antidepressant treatments and mood stabilizers such as lithium and valproate, and that BDNF exerts antidepressant activity in animal models of depression. Furthermore, BDNF protects against stress-induced neuronal damage, and it might affect neurogenesis in the hippocampus, which is thought to be involved in the pathogenesis of mood disorders. Clinical studies have demonstrated that serum levels of BDNF in drug-naive patients with MDD are significantly decreased as compared with normal controls, and that BDNF might be an important agent for therapeutic recovery from MDD. Moreover, recent findings from family-based association studies have suggested that the BDNF gene is a potential risk locus for the development of BD. These findings suggest that BDNF plays a critical role in the pathophysiology of mood disorders and in the activity of therapeutic agents in patients with mood disorders. New agents capable of enhancing BDNF levels may lead aid the development of novel therapeutic drugs for patients with mood disorders.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Department of Psychiatry, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba 260-8670, Japan.
| | | | | |
Collapse
|
71
|
Levenson JM, Choi S, Lee SY, Cao YA, Ahn HJ, Worley KC, Pizzi M, Liou HC, Sweatt JD. A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. J Neurosci 2004; 24:3933-43. [PMID: 15102909 PMCID: PMC6729420 DOI: 10.1523/jneurosci.5646-03.2004] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Consolidation of long-term memory (LTM) is a complex process requiring synthesis of new mRNAs and proteins. Many studies have characterized the requirement for de novo mRNA and protein synthesis; however, few studies have comprehensively identified genes regulated during LTM consolidation. We show that consolidation of long-term contextual memory in the hippocampus triggers altered expression of numerous genes encompassing many aspects of neuronal function. Like contextual memory formation, this altered gene expression required NMDA receptor activation and was specific for situations in which the animal formed an association between a physical context and a sensory stimulus. Using a bioinformatics approach, we found that regulatory elements for several transcription factors are over-represented in the upstream region of genes regulated during consolidation of LTM. Using a knock-out mouse, we found that c-rel, one of the transcription factors identified in our bioinformatics study, is necessary for hippocampus-dependent long-term memory formation.
Collapse
Affiliation(s)
- Jonathan M Levenson
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Jiang B, Kitamura A, Yasuda H, Sohya K, Maruyama A, Yanagawa Y, Obata K, Tsumoto T. Brain-derived neurotrophic factor acutely depresses excitatory synaptic transmission to GABAergic neurons in visual cortical slices. Eur J Neurosci 2004; 20:709-18. [PMID: 15255981 DOI: 10.1111/j.1460-9568.2004.03523.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) acutely modulates synaptic transmission to excitatory neurons in hippocampus and neocortex. The question of whether BDNF acts similarly on excitatory synaptic transmission to GABAergic neurons was eluded in previous studies using cortical slices. To address this question, we used transgenic mice in which expression of green fluorescence protein (GFP) is regulated by glutamic acid decarboxylase 67 (GAD67) promoter. In cortical slices prepared from these GAD67-GFP knock-in mice, we could detect GABAergic neurons under a fluorescent microscope. An application of BDNF rapidly depressed excitatory postsynaptic currents (EPSCs) evoked by layer IV stimulation in most GFP-positive neurons in layer II/III of the cortex. This effect was seen at synapses activated during the BDNF application and blocked by anti-TrkB IgG, indicating that the acute inhibitory action of BDNF is activity-dependent and mediated through TrkB. Paired-pulse ratios of the amplitude of EPSCs to paired stimulation at intervals of 10-100 ms were not significantly changed after BDNF application, suggesting that the site of depression may be postsynaptic. Responses to directly applied glutamate were also depressed by BDNF in most of neurons, being consistent with the interpretation of postsynaptic action of BDNF. The depressive action of BDNF was blocked by an intracellular injection of a Ca(2+) chelator, suggesting that a rise in Ca(2+) is involved in the acute depression of EPSCs. This action of BDNF was seen in 67% of parvalbumin (PV)-positive neurons, but in only 19% of PV-negative neurons, indicating that the depressive action is biased to PV-positive GABAergic neurons.
Collapse
Affiliation(s)
- Bin Jiang
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi 332-0012 Japan
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
While it has now been well accepted that neurotrophins play an important role in synapse development and plasticity, the specific effects of each neurotrophin on different populations of neurons at different developmental stages have just begun to be worked out. Moreover, the cellular and molecular mechanisms underlying the synaptic function of neurotrophins remain poorly understood. In general, synaptic effects of neurotrophins could be divided into two categories: acute effect on synaptic transmission and plasticity occurring within seconds or minutes after cells are exposed to a neurotrophin, and long-term effect on synaptic structures and function that takes days to accomplish. In this review I have considered the previous findings on neurotrophic regulation of synapses in view of these two categories. Acute and long-term effects of neurotrophins are reexamined in detail in three model systems: the neuromuscular junction, the hippocampus and the visual cortex. Potential molecular mechanisms that mediate the acute or long-term neurotrophic regulation are discussed. Efforts are made to understand the mechanistic differences between the two effects and their relationships. Further study of these mechanisms will help us better understand how neurotrophins can achieve diverse and synapse-specific modulation.
Collapse
Affiliation(s)
- Bai Lu
- Section on Neural Development and Plasticity, NICHD, NIH, Building 49, Rm. 6A80, 49 Convent Dr., MSC4480, Bethesda, MD 20892-4480, USA.
| |
Collapse
|
74
|
Jourdi H, Iwakura Y, Narisawa-Saito M, Ibaraki K, Xiong H, Watanabe M, Hayashi Y, Takei N, Nawa H. Brain-derived neurotrophic factor signal enhances and maintains the expression of AMPA receptor-associated PDZ proteins in developing cortical neurons. Dev Biol 2003; 263:216-30. [PMID: 14597197 PMCID: PMC3683555 DOI: 10.1016/j.ydbio.2003.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Postsynaptic molecules with PDZ domains (PDZ proteins) interact with various glutamate receptors and regulate their subcellular trafficking and stability. In rat neocortical development, the protein expression of AMPA-type glutamate receptor GluR1 lagged behind its mRNA expression and rather paralleled an increase in PDZ protein levels. One of the neurotrophins, brain-derived neurotrophic factor (BDNF), appeared to contribute to this process, regulating the PDZ protein expression. In neocortical cultures, BDNF treatment upregulated SAP97, GRIP1, and Pick1 PDZ proteins. Conversely, BDNF gene targeting downregulated these same PDZ molecules. The BDNF-triggered increases in PDZ proteins resulted in the elevation of their total association with the AMPA receptors GluR1 and GluR2/3, which led to the increase in AMPA receptor proteins. When Sindbis viruses carrying GluR1 or GluR2 C-terminal decoys disrupted their interactions, GluR2 C-terminal decoys inhibited both BDNF-triggered GluR1 and GluR2/3 increases, whereas GluR1 C-terminal decoys blocked only the BDNF-triggered GluR1 increase. In agreement, coexpression of SAP97 and GluR1 in nonneuronal HEK293 cells increased both proteins compared with their single transfection, implying mutual stabilization. This work reveals a novel function of BDNF in postsynaptic development by regulating the PDZ protein expression.
Collapse
Affiliation(s)
- Hussam Jourdi
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Yuriko Iwakura
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Mako Narisawa-Saito
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kyoko Ibaraki
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Huabao Xiong
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy and Embryology, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Center for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
- Corresponding author. Fax: +81-25-227-0815. (H. Nawa)
| |
Collapse
|
75
|
Gomes AR, Correia SS, Carvalho AL, Duarte CB. Regulation of AMPA receptor activity, synaptic targeting and recycling: role in synaptic plasticity. Neurochem Res 2003; 28:1459-73. [PMID: 14570391 DOI: 10.1023/a:1025610122776] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors for the neurotransmitter glutamate are oligomeric structures responsible for most fast excitatory responses in the central nervous system. The activity of AMPA receptors can be directly regulated by protein phosphorylation, which may also affect the interaction with intracellular proteins and, consequently, their recycling and localization to defined postsynaptic sites. This review focuses on recent advances in understanding the dynamic regulation of AMPA receptors, on a short- and long-term basis, and its implications in synaptic plasticity.
Collapse
Affiliation(s)
- André R Gomes
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
76
|
Vicario-Abejón C, Owens D, McKay R, Segal M. Role of neurotrophins in central synapse formation and stabilization. Nat Rev Neurosci 2002; 3:965-74. [PMID: 12461553 DOI: 10.1038/nrn988] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Carlos Vicario-Abejón
- Group of Growth Factors in Vertebrate Development, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28006 Madrid, Spain.
| | | | | | | |
Collapse
|
77
|
Jänisch W, Engel U, Leonhardt T. [Diffuse primary leptomeningeal gliomatosis]. Br J Pharmacol 1992; 153 Suppl 1:S310-24. [PMID: 1805932 DOI: 10.1038/sj.bjp.0707509] [Citation(s) in RCA: 217] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A woman died at the age of 22 years. Lifetime diagnosis had been inflammatory arachnopathy. The course of the disease had taken at least 6 years. Autopsy revealed primary diffuse leptomeningeal astrocytoma of the brain and spinal cord without neoplastic foci in the parenchyma of the central nervous system. Patchy dystrophic calcifications were recorded from the cerebral and cerebellar cortex.
Collapse
Affiliation(s)
- W Jänisch
- Institut für Pathologie, Medizinischen Fakultät (Charité) der Humboldt-Universität zu Berlin, Deutschland
| | | | | |
Collapse
|