51
|
The Discovery and Structural Investigation of the IP3 Receptor and the Associated IRBIT Protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:281-304. [DOI: 10.1007/978-94-007-2888-2_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
52
|
Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006767. [PMID: 21441584 DOI: 10.1101/cshperspect.a006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca(2+)](i)) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca(2+)](i) increase(s) in the egg, which is generally induced during fertilization. The [Ca(2+)](i) increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca(2+)](i) at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca(2+)](i) signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca(2+)](i) responses. Here, we will discuss the events of egg activation regulated by increases in [Ca(2+)](i), the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca(2+)](i) responses in these species.
Collapse
|
53
|
Frégeau MO, Régimbald-Dumas Y, Guillemette G. Positive regulation of inositol 1,4,5-trisphosphate-induced ca2+release by mammalian target of rapamycin (mTOR) in RINm5F cells. J Cell Biochem 2011; 112:723-33. [DOI: 10.1002/jcb.23006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
54
|
Harr MW, Distelhorst CW. Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol 2010; 2:a005579. [PMID: 20826549 DOI: 10.1101/cshperspect.a005579] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Calcium is a versatile and dynamic 2nd messenger that is essential for the survival of all higher organisms. In cells that undergo activation or excitation, calcium is released from the endoplasmic/sarcoplasmic reticulum to activate calcium-dependent kinases and phosphatases, thereby regulating numerous cellular processes; for example, apoptosis and autophagy. In the case of apoptosis, endogenous ligands or pharmacological agents induce prolonged cytosolic calcium elevation, which in turn leads to cell death. In contrast, there is now evidence that calcium regulates autophagy by several mechanisms, and these may be important for maintaining cell survival. Here we summarize what is known about how calcium regulates these life and death decisions. We pay particular attention to pathways that have been described in lymphocytes and cardiomyocytes, as these systems provide optimal models for understanding calcium signaling in the context of normal cell physiology.
Collapse
Affiliation(s)
- Michael W Harr
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
55
|
Betzenhauser MJ, Yule DI. Regulation of inositol 1,4,5-trisphosphate receptors by phosphorylation and adenine nucleotides. CURRENT TOPICS IN MEMBRANES 2010; 66:273-98. [PMID: 22353484 DOI: 10.1016/s1063-5823(10)66012-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Matthew J Betzenhauser
- Department of Physiology and Cellular Biophysics, Columbia University Medical School, New York City, New York, USA
| | | |
Collapse
|
56
|
Tovey SC, Dedos SG, Rahman T, Taylor EJA, Pantazaka E, Taylor CW. Regulation of inositol 1,4,5-trisphosphate receptors by cAMP independent of cAMP-dependent protein kinase. J Biol Chem 2010; 285:12979-89. [PMID: 20189985 PMCID: PMC2857138 DOI: 10.1074/jbc.m109.096016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 02/11/2010] [Indexed: 12/02/2022] Open
Abstract
In HEK cells stably expressing type 1 receptors for parathyroid hormone (PTH), PTH causes a sensitization of inositol 1,4,5-trisphosphate receptors (IP(3)R) to IP(3) that is entirely mediated by cAMP and requires cAMP to pass directly from type 6 adenylyl cyclase (AC6) to IP(3)R2. Using DT40 cells expressing single subtypes of mammalian IP(3)R, we demonstrate that high concentrations of cAMP similarly sensitize all IP(3)R isoforms to IP(3) by a mechanism that does not require cAMP-dependent protein kinase (PKA). IP(3) binding to IP(3)R2 is unaffected by cAMP, and sensitization is not mediated by the site through which ATP potentiates responses to IP(3). In single channel recordings from excised nuclear patches of cells expressing IP(3)R2, cAMP alone had no effect, but it increased the open probability of IP(3)R2 activated by a submaximal concentration of IP(3) alone or in combination with a maximally effective concentration of ATP. These results establish that cAMP itself increases the sensitivity of all IP(3)R subtypes to IP(3). For IP(3)R2, this sensitization results from cAMP binding to a novel site that increases the efficacy of IP(3). Using stably expressed short hairpin RNA to reduce expression of the G-protein, G alpha(s), we demonstrate that attenuation of AC activity by loss of G alpha(s) more substantially reduces sensitization of IP(3)R by PTH than does comparable direct inhibition of AC. This suggests that G alpha(s) may also specifically associate with each AC x IP(3)R complex. We conclude that all three subtypes of IP(3)R are regulated by cAMP independent of PKA. In HEK cells, where IP(3)R2 selectively associates with AC6, G alpha(s) also associates with the AC x IP(3)R signaling junction.
Collapse
MESH Headings
- Adenylyl Cyclases/genetics
- Adenylyl Cyclases/metabolism
- Animals
- Cell Line
- Cyclic AMP/genetics
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- GTP-Binding Protein alpha Subunits/genetics
- GTP-Binding Protein alpha Subunits/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate/genetics
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Rats
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Stephen C. Tovey
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Skarlatos G. Dedos
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Taufiq Rahman
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Emily J. A. Taylor
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Evangelia Pantazaka
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Colin W. Taylor
- From the Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| |
Collapse
|
57
|
Robinson LJ, Blair HC, Barnett JB, Zaidi M, Huang CLH. Regulation of bone turnover by calcium-regulated calcium channels. Ann N Y Acad Sci 2010; 1192:351-7. [PMID: 20392259 PMCID: PMC11610510 DOI: 10.1111/j.1749-6632.2009.05219.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium plays multiple roles in osteoclast formation, survival, and activity. Intracellular calcium is determined both by the release of intracellular stores and the influx of extracellular calcium through a variety of calcium channels. Osteoclasts express several classes of calcium channels, including ryanodine receptors (RyRs), inositol-1,4,5-trisphosphate receptors (IP(3)Rs), and calcium release-activated calcium channels (CRACs), which respond to depletion of intracellular stores. IP(3)R2 is expressed in osteoclast precursors and activated by cytokines that stimulate osteoclast differentiation. In mature osteoclasts, the IP(3)R1 isoform is highly expressed and is implicated in nitric oxide-cGMP-stimulated processes. RyR calcium channels may contribute to the release of intracellular calcium stores, while RyR2 in the plasma membrane may act to limit osteoclast activity based on extracellular calcium concentration. Orai, through regulation by endoplasmic reticular store-sensing proteins, including Stim-1, may also mediate calcium influx and act as a signal amplifier for calcium release by other calcium channels. Together, these receptors allow intracellular Ca(2+) signals to modulate bone turnover and, through calcium-sensing functions, allow coupling of osteoclast activity to extracellular conditions and integrating additional cytokine and nitric oxide signals via transient intracellular calcium signals.
Collapse
Affiliation(s)
- Lisa J Robinson
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | |
Collapse
|
58
|
Resende RR, Adhikari A, da Costa JL, Lorençon E, Ladeira MS, Guatimosim S, Kihara AH, Ladeira LO. Influence of spontaneous calcium events on cell-cycle progression in embryonal carcinoma and adult stem cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:246-60. [PMID: 19958796 DOI: 10.1016/j.bbamcr.2009.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 10/28/2009] [Accepted: 11/18/2009] [Indexed: 01/11/2023]
Abstract
Spontaneous Ca(2+) events have been observed in diverse stem cell lines, including carcinoma and mesenchymal stem cells. Interestingly, during cell cycle progression, cells exhibit Ca(2+) transients during the G(1) to S transition, suggesting that these oscillations may play a role in cell cycle progression. We aimed to study the influence of promoting and blocking calcium oscillations in cell proliferation and cell cycle progression, both in neural progenitor and undifferentiated cells. We also identified which calcium stores are required for maintaining these oscillations. Both in neural progenitor and undifferentiated cells calcium oscillations were restricted to the G1/S transition, suggesting a role for these events in progression of the cell cycle. Maintenance of the oscillations required calcium influx only through inositol 1,4,5-triphosphate receptors (IP(3)Rs) and L-type channels in undifferentiated cells, while neural progenitor cells also utilized ryanodine-sensitive stores. Interestingly, promoting calcium oscillations through IP(3)R agonists increased both proliferation and levels of cell cycle regulators such as cyclins A and E. Conversely, blocking calcium events with IP(3)R antagonists had the opposite effect in both undifferentiated and neural progenitor cells. This suggests that calcium events created by IP(3)Rs may be involved in cell cycle progression and proliferation, possibly due to regulation of cyclin levels, both in undifferentiated cells and in neural progenitor cells.
Collapse
Affiliation(s)
- R R Resende
- Department of Physics, Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Kwan HY, Huang Y, Yao XQ, Leung FP. Role of cyclic nucleotides in the control of cytosolic Ca2+ levels in vascular endothelial cells. Clin Exp Pharmacol Physiol 2009; 36:857-66. [PMID: 19413591 DOI: 10.1111/j.1440-1681.2009.05199.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
1. Endothelial cells have a key role in the cardiovascular system. Most endothelial cell functions depend on changes in cytosolic Ca(2+) concentrations ([Ca(2+)](i)) to some extent and Ca2+ signalling acts to link external stimuli with the synthesis and release of regulatory factors in endothelial cells. The [Ca(2+)](i) is maintained by a well-balanced Ca(2+) flux across the endoplasmic reticulum and plasma membrane. 2. Cyclic nucleotides, such as cAMP and cGMP, are very important second messengers. The cyclic nucleotides can affect [Ca(2+)](i) directly or indirectly (via the actions of protein kinase (PK) A or PKG-mediated phosphorylation) by regulating Ca(2+) mobilization and Ca(2+) influx. Fine-tuning of [Ca(2+)](i) is also fundamental to protect endothelial cells against damaged caused by the excessive accumulation of Ca(2+). 3. Therapeutic agents that control cAMP and cGMP levels have been used to treat various cardiovascular diseases. 4. The aim of the present review is to discuss: (i) the functions of endothelial cells; (ii) the importance of [Ca(2+)](i) in endothelial cells; (iii) the impact of excessive [Ca(2+)](i) in endothelial cells; and (iv) the balanced control of [Ca(2+)](i) in endothelial cells via involvement of cyclic nucleotides (cAMP and cGMP) and their general effectors.
Collapse
Affiliation(s)
- H Y Kwan
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
60
|
Hashemi SM, Hund TJ, Mohler PJ. Cardiac ankyrins in health and disease. J Mol Cell Cardiol 2009; 47:203-9. [PMID: 19394342 DOI: 10.1016/j.yjmcc.2009.04.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Ankyrins are critical components of ion channel and transporter signaling complexes in the cardiovascular system. Over the past 5 years, ankyrin dysfunction has been linked with abnormal ion channel and transporter membrane organization and fatal human arrhythmias. Loss-of-function variants in the ankyrin-B gene (ANK2) cause "ankyrin-B syndrome" (previously called type 4 long QT syndrome), manifested by a complex cardiac phenotype including ventricular arrhythmias and sudden cardiac death. More recently, dysfunction in the ankyrin-B-based targeting pathway has been linked with a highly penetrant and severe form of human sinus node disease. Ankyrin-G (a second ankyrin gene product) is required for normal expression, membrane localization, and biophysical function of the primary cardiac voltage-gated sodium channel, Na(v)1.5. Loss of the ankyrin-G/Na(v)1.5 interaction is associated with human cardiac arrhythmia (Brugada syndrome). Finally, in the past year ankyrin dysfunction has been associated with more common arrhythmia and cardiovascular disease phenotypes. Specifically, large animal studies reveal striking remodeling of ankyrin-B and associated proteins following myocardial infarction. Additionally, the ANK2 locus has been linked with QT(c) interval variability in the general human population. Together, these findings identify a host of unanticipated and exciting roles for ankyrin polypeptides in cardiac function. More broadly, these findings illustrate the importance of local membrane organization for normal cardiac physiology.
Collapse
Affiliation(s)
- Seyed M Hashemi
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | |
Collapse
|
61
|
Currie S, Rainbow RD, Ewart MA, Kitson S, Pliego EH, Kane KA, McCarron JG. IP(3)R-mediated Ca(2+) release is modulated by anandamide in isolated cardiac nuclei. J Mol Cell Cardiol 2008; 45:804-11. [PMID: 18692061 DOI: 10.1016/j.yjmcc.2008.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 07/03/2008] [Indexed: 12/29/2022]
Abstract
Cannabinoids (CBs) are known to alter coronary vascular tone and cardiac performance. They also exhibit cardioprotective properties, particularly in their ability to limit the damage produced by ischaemia reperfusion injury. The mechanisms underlying these effects are unknown. Here we investigate the intracellular localisation of CB receptors in the heart and examine whether they may modulate localised nuclear Ca(2+) release. In isolated cardiac nuclear preparations, expression of both the inositol 1,4,5-trisphosphate receptor type 2 (IP(3)R) and CB receptors (CB(1)R and CB(2)R) was demonstrated by immunoblotting. Both receptors localised to the nucleus and purity of the nuclear preparations was confirmed by co-expression of the nuclear marker protein nucleolin but absence of cytoplasmic actin. To measure effects of IP(3)R and CBR agonists on nuclear Ca(2+) release, isolated nuclei were loaded with Fluo5N-AM. This dye accumulates in the nuclear envelope. Isolated nuclei responded to IP(3) with rapid and transient Ca(2+) release from the nuclear envelope. Anandamide inhibited this IP(3)-mediated release. Preincubation of nuclear preparations with either the CB(1)R antagonist (AM251) or the CB(2)R antagonist (AM630) reversed anandamide-mediated inhibition to 80% and 60% of control values respectively. When nuclei were pre-treated with both CBR antagonists, anandamide-mediated inhibition of IP(3)-induced Ca(2+) release was completely reversed. These results are the first to demonstrate the existence of cardiac nuclear CB receptors. They are also the first to show that anandamide can negatively modulate IP(3)-mediated nuclear Ca(2+) release. As such, this provides evidence for a novel key mechanism underlying the action of CBs and CBRs in the heart.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Calcium/metabolism
- Cannabinoid Receptor Modulators/pharmacology
- Cardiotonic Agents/pharmacology
- Cell Nucleus/metabolism
- Endocannabinoids
- Guinea Pigs
- Inositol 1,4,5-Trisphosphate Receptors/agonists
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Male
- Myocardium/metabolism
- Phosphoproteins
- Polyunsaturated Alkamides/pharmacology
- RNA-Binding Proteins
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Nucleolin
Collapse
Affiliation(s)
- Susan Currie
- Division of Physiology and Pharmacology, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
62
|
Saino T, Watson EL. Inhibition of serine/threonine phosphatase enhances arachidonic acid-induced [Ca2+]i via protein kinase A. Am J Physiol Cell Physiol 2008; 296:C88-96. [PMID: 18987253 DOI: 10.1152/ajpcell.00281.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) regulates intracellular calcium concentration ([Ca2+]i) in a variety of cell types including salivary cells. In the present study, the effects of serine/threonine phosphatases on AA-induced Ca(2+) signaling in mouse parotid acini were determined. Mice were euthanized with CO2. Treatment of acini with the serine/threonine phosphatase inhibitor calyculin A blocked both thapsigargin- and carbachol-induced Ca2+ entry but resulted in an enhancement of AA-induced Ca2+ release and entry. Effects were mimicked by the protein phosphatase-1 (PP1) inhibitor tautomycin but were inhibited by the PP2A inhibitor okadaic acid. The protein kinase A (PKA) inhibitor PKI(14-22) significantly attenuated AA-induced enhancement of Ca2+ release and entry in the presence of calyculin A, whereas it had no effect on calyculin A-induced inhibition of thapsigargin-induced Ca2+ responses. The ryanodine receptor (RyR) inhibitor, tetracaine, and StHt-31, a peptide known to competitively inhibit type II PKA regulatory subunit binding to PKA-anchoring protein (AKAP), abolished calyculin A enhancement of AA-induced Ca2+ release and entry. StHt-31 also abolished forskolin potentiation of 4-chloro-3-ethylphenol (4-CEP) and AA on Ca2+ release but had no effect on 8-(4-methoxyphenylthio)-2'-O-methyladenosine-3',5'-cAMP potentiation of 4-CEP responses. Results suggest that inhibition of PP1 results in an enhancement of AA-induced [Ca2+]i via PKA, AKAP, and RyRs.
Collapse
Affiliation(s)
- Tomoyuki Saino
- Department of Oral Biology, Box 357132, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
63
|
Ito J, Yoon SY, Lee B, Vanderheyden V, Vermassen E, Wojcikiewicz R, Alfandari D, De Smedt H, Parys JB, Fissore RA. Inositol 1,4,5-trisphosphate receptor 1, a widespread Ca2+ channel, is a novel substrate of polo-like kinase 1 in eggs. Dev Biol 2008; 320:402-13. [PMID: 18621368 PMCID: PMC2895400 DOI: 10.1016/j.ydbio.2008.05.548] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 05/22/2008] [Accepted: 05/22/2008] [Indexed: 12/16/2022]
Abstract
To initiate embryo development, the sperm induces in the egg release of intracellular calcium ([Ca2+](i)). During oocyte maturation, the inositol 1,4,5-trisphosphate receptor (IP(3)R1), the channel implicated, undergoes modifications that enhance its function. We found that IP(3)R1 becomes phosphorylated during maturation at an MPM-2 epitope and that this persists until the fertilization-associated [Ca2+](i) responses cease. We also reported that maturation without ERK activity diminishes IP(3)R1 MPM-2 reactivity and [Ca2+](i) responses. Here, we show that IP(3)R1 is a novel target for Polo-like kinase1 (Plk1), a conserved M-phase kinase, which phosphorylates it at an MPM-2 epitope. Plk1 and IP(3)R1 interact in an M-phase preferential manner, and they exhibit close co-localization in the spindle/spindle poles area. This co-localization is reduced in the absence of ERK activity, as the ERK pathway regulates spindle organization and IP(3)R1 cortical re-distribution. We propose that IP(3)R1 phosphorylation by Plk1, and possibly by other M-phase kinases, underlies the delivery of spatially and temporally regulated [Ca2+](i) signals during meiosis/mitosis and cytokinesis.
Collapse
Affiliation(s)
- Junya Ito
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Sook-Young Yoon
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Bora Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Veerle Vanderheyden
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, K.U.Leuven, Campus Gasthuisberg, O&N1 bus 00802, B-3000 Leuven, Belgium
| | - Elke Vermassen
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, K.U.Leuven, Campus Gasthuisberg, O&N1 bus 00802, B-3000 Leuven, Belgium
| | - Richard Wojcikiewicz
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY 13210
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| | - Humbert De Smedt
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, K.U.Leuven, Campus Gasthuisberg, O&N1 bus 00802, B-3000 Leuven, Belgium
| | - Jan B. Parys
- Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, K.U.Leuven, Campus Gasthuisberg, O&N1 bus 00802, B-3000 Leuven, Belgium
| | - Rafael A. Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
64
|
Rong Y, Distelhorst CW. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 2008; 70:73-91. [PMID: 17680735 DOI: 10.1146/annurev.physiol.70.021507.105852] [Citation(s) in RCA: 276] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bcl-2 family members are important regulators of cell survival and cell death. Researchers have focused mainly on mitochondria, where both proapoptotic and antiapoptotic family members function to regulate the release of cytochrome c and other mediators of apoptosis. However, as reviewed here, Bcl-2 family members also operate on another front, the endoplasmic reticulum (ER), to both positively and negatively regulate the release of Ca2+. There is abundant evidence that Ca2+ signals trigger apoptosis in response to a wide variety of agents and conditions. Conversely, Ca2+ signals can also mediate cell survival. Recent findings indicate that Bcl-2 interacts with inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ channels on the ER, regulating their opening in response to IP3- and thus inhibiting IP3-mediated Ca2+ signals that induce apoptosis while enhancing Ca2+ signals that support cell survival.
Collapse
Affiliation(s)
- Yiping Rong
- Department of Medicine and Pharmacology, Comprehensive Cancer Center and University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
65
|
Guido M, Fagundes DJ, Ynouye CM, Pontes ERJC, Takita LC, Amaral EGSD, Teruya R, Paes MC, Brasileiro JL, Aydos RD. Apoptotic effects of inositol hexaphosphate on biomarker Itpr3 in induced colon rat carcinogenesis. Acta Cir Bras 2008; 23:157-64. [DOI: 10.1590/s0102-86502008000200008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 12/11/2007] [Indexed: 11/22/2022] Open
Abstract
PURPOSE: To study the effect of the modulation of inositol hexaphosphate (IP6) in the biological immunohistochemistry expression of cellular signaling marker apoptosis, in model of carcinogenesis of colon induced by azoxymethane (AOM). METHODS: Wistar rats (N=112) distributed in 4 groups (n=28): Control; B, AOM (5 mg kg-1, 2x, to break week 3); C, IP6 (in water 1%, six weeks); D, IP6+AOM. Weekly euthanasia (n=7), from week three. Immunohistochemistry of ascendant colon with biological marker inositol 1,4,5 triphosphate receptor type III (Itpr3). Quantification of the immune-expression with use of computer-assisted image processing. Analysis statistics of the means between groups, weeks in groups, groups in weeks, and established significance when p<0.05. RESULTS: One proved significant difference between groups in the expression of Itpr3, p<0.0001; with Itpr3 reduction of BxD group, p<0.001. CONCLUSION: Inositol hexaphosphate promotes modulation of biological markers with reduction of Itpr3 in carcinogenesis of colon.
Collapse
|
66
|
Joseph SK, Hajnóczky G. IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond. Apoptosis 2008; 12:951-68. [PMID: 17294082 DOI: 10.1007/s10495-007-0719-7] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) serve to discharge Ca(2+) from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca(2+)-dependent apoptosis. In particular we focus on the regulation of IP(3)Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP(3)Rs in apoptosis may be independent of their ion-channel function. The role of IP(3)Rs in delivering Ca(2+) to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial proximity of mitochondria and ER membranes.
Collapse
Affiliation(s)
- Suresh K Joseph
- Department of Pathology & Cell Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA.
| | | |
Collapse
|
67
|
Barrera NP, Morales B, Villalon M. ATP and adenosine trigger the interaction of plasma membrane IP3 receptors with protein kinase A in oviductal ciliated cells. Biochem Biophys Res Commun 2008; 364:815-21. [PMID: 18163243 DOI: 10.1016/j.bbrc.2007.10.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have demonstrated that adenosine did not produce any change of intracellular free Ca2+ concentration ([Ca2+]i) in oviductal ciliated cells; however, it increased the ATP-induced Ca2+ influx through the activation of protein kinase A (PKA). Uncaging of IP3 and cAMP triggered a larger Ca2+ influx than did IP3 alone. Furthermore, the IP3 effect was abolished by Xestospongin C, an IP3 receptor blocker. Whole-cell recordings demonstrated the presence of an ATP-induced Ca2+ current, and the addition of adenosine increased the peak of this current. This effect was not observed in the presence of H-89, a PKA inhibitor. Using excised macro-patches of plasma membrane, IP3 generated a current, which was higher in the presence of the catalytic PKA subunit and this current was blocked by Xestospongin C. We show here that activation of plasma membrane IP3 receptors directly triggers Ca2+ influx in response to ATP and that these receptors are modulated by adenosine-activated PKA.
Collapse
Affiliation(s)
- Nelson P Barrera
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 IEW, United Kingdom.
| | | | | |
Collapse
|
68
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that induces the release of Ca(2+) from the endoplasmic reticulum (ER). The IP(3) receptor (IP(3)R) was discovered as a developmentally regulated glyco-phosphoprotein, P400, that was missing in strains of mutant mice. IP(3)R can allosterically and dynamically change its form in a reversible manner. The crystal structures of the IP(3)-binding core and N-terminal suppressor sequence of IP(3)R have been identified. An IP(3) indicator (known as IP(3)R-based IP(3) sensor) was developed from the IP(3)-binding core. The IP(3)-binding core's affinity to IP(3) is very similar among the three isoforms of IP(3)R; instead, the N-terminal IP(3) binding suppressor region is responsible for isoform-specific IP(3)-binding affinity tuning. Various pathways for the trafficking of IP(3)R have been identified; for example, the ER forms a meshwork upon which IP(3)R moves by lateral diffusion, and vesicular ER subcompartments containing IP(3)R move rapidly along microtubles using a kinesin motor. Furthermore, IP(3)R mRNA within mRNA granules also moves along microtubules. IP(3)Rs are involved in exocrine secretion. ERp44 works as a redox sensor in the ER and regulates IP(3)R1 activity. IP(3) has been found to release Ca(2+), but it also releases IRBIT (IP(3)R-binding protein released with IP(3)). IRBIT is a pseudo-ligand for IP(3) that regulates the frequency and amplitude of Ca(2+) oscillations through IP(3)R. IRBIT binds to pancreas-type Na, bicarbonate co-transporter 1, which is important for acid-base balance. The presence of many kinds of binding partners, like homer, protein 4.1N, huntingtin-associated protein-1A, protein phosphatases (PPI and PP2A), RACK1, ankyrin, chromogranin, carbonic anhydrase-related protein, IRBIT, Na,K-ATPase, and ERp44, suggest that IP(3)Rs form a macro signal complex and function as a center for signaling cascades. The structure of IP(3)R1, as revealed by cryoelectron microscopy, fits closely with these molecules.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute and Calcium Oscillation Project, ICORP-SORST, Hirosawa, Wako-shi, Saitama, Japan
| |
Collapse
|
69
|
Jang DJ, Guo M, Wang D. Proteomic and biochemical studies of calcium- and phosphorylation-dependent calmodulin complexes in Mammalian cells. J Proteome Res 2007; 6:3718-28. [PMID: 17696464 DOI: 10.1021/pr0703268] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein conformational changes due to cofactor binding (e.g., metal ions, heme) and/or post-translational modifications (e.g., phosphorylation) modulate dynamic protein complexes. Calmodulin (CaM) plays an essential role in regulating calcium signaling and homeostasis. Herein, we report a straightforward and systematic approach to identify potential calcium- and phosphorylation-dependent CaM complexes in a proteome-wide manner. We have identified over 120 CaM-associated proteins encompassing four different classes of CaM binding in HeLa cells, namely, calcium-dependent and phosphorylation-dependent (e.g., EDD1), calcium-dependent and phosphorylation-independent (e.g., myosin IE), calcium-independent and phosphorylation-dependent (e.g., DDX3), and calcium-independent and phosphorylation-independent (e.g., DDX5). To demonstrate the utility of our method in understanding biological pathways, we showed that in vivo phosphorylation of inositol 1,4,5-triphosphate receptor type 1 (IP3R1) at Ser1598 significantly reduced the affinity of its Ca2+-dependent CaM binding. However, phosphorylation of IP3R1 did not substantially affect its Ca2+-independent CaM binding. These results shed new lights on the mechanism underlying the marked increase of Ca2+ release due to IP3R1 phosphorylation. We further showed that staurosporine-sensitive kinase(s) and phosphatase PP1 play a critical role in modulating the phosphorylation-dependent CaM binding of IP3R1. Our method may serve as a general strategy to identify and characterize phosphorylation-dependent protein complexes, to pinpoint the phosphorylation sites and associated kinase(s) and phosphatase(s) involved in the protein-protein interactions, and to functionally characterize these complexes in mammalian cells.
Collapse
Affiliation(s)
- Deok-Jin Jang
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 84-171, Berkeley, California 94720, USA
| | | | | |
Collapse
|
70
|
Bollig A, Xu L, Thakur A, Wu J, Kuo TH, Liao JD. Regulation of intracellular calcium release and PP1α in a mechanism for 4-hydroxytamoxifen-induced cytotoxicity. Mol Cell Biochem 2007; 305:45-54. [PMID: 17646931 DOI: 10.1007/s11010-007-9526-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/23/2007] [Indexed: 02/06/2023]
Abstract
Treatment with tamoxifen, or its metabolite 4-hydroxytamoxifen (4OHT), has cytostatic and cytotoxic effects on breast cancer cells in vivo and in culture. Although the effectiveness of 4OHT as an anti-breast cancer agent is due to its action as an estrogen receptor-alpha (ERalpha) antagonist, evidences show that 4OHT is also cytotoxic for ERalpha-negative breast cancer cells and can be effective therapy against tumors that lack estrogen receptors. These findings underscore 4OHT signaling complexities and belie the most basic understandings of 4OHT action and resistance. Here, we have investigated the effects of 4OHT on Ca2+ homeostasis and cell death in breast cancer cells in culture. Measurement of Ca2+ signaling in breast cancer cells showed that 4OHT treatment altered Ca2+ homeostasis and was cytotoxic for both an ERalpha+ and an ERalpha- cell line, MCF-7 and MDA-MB-231, respectively. Further investigation lead us to the novel discovery that 4OHT-induced increase of ATP-dependent Ca2+ release from the endoplasmic reticulum correlated with 4OHT-induced upregulation of protein phosphatase 1alpha (PP1alpha) and the inositol 1,4,5-trisphosphate receptor (IP3R). Blocking 4OHT-induced PP1alpha upregulation by siRNA strategy reduced the effects of 4OHT on both Ca2+ signaling and cytotoxicity. Results from these investigations strongly suggest a role for PP1alpha upregulation in a mechanism for 4OHT-induced changes to Ca2+ signaling that ultimately contribute to the cytotoxic effects of 4OHT.
Collapse
Affiliation(s)
- Aliccia Bollig
- Karmanos Cancer Institute, Wayne State University, 110 E Warren, HWCRC room 731, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
71
|
Hermansson NO, Morgan DGA, Drmota T, Larsson N. Adenosine is not a direct GHSR agonist--artificial cross-talk between GHSR and adenosine receptor pathways. Acta Physiol (Oxf) 2007; 190:77-86. [PMID: 17428235 DOI: 10.1111/j.1365-201x.2007.01691.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To assess if adenosine is a direct growth hormone secretagogue receptor (GHSR) agonist by investigating the mechanism behind adenosine induced calcium release in human embryonic kidney 293s (HEK) cells expressing GHSR. METHODS Calcium mobilization, cyclic adenosine monophosphate (cAMP) and IP(3) experiments were performed using HEK cells stably expressing GHSR and/or adenosine A(2B) receptor (A(2B)R). RESULTS Adenosine has been widely reported as a GHSR agonist. In our hands, adenosine and forskolin stimulated calcium release from IP(3) controlled stores in HEK-GHSR cells but not in non-transfected HEK cells. This release was not accompanied by increased IP(3) levels. The calcium release was both cholera toxin and U73122 sensitive, indicating the involvement of both Galpha(s)/adenylyl cyclase and Galpha(q/11)/phospholipase C pathways. Importantly, the GHSR inverse agonist [D-Arg(1) D-Phe(5) D-Trp(7,9) Leu(11)]-Substance P (SP-analogue) blocked the adenosine stimulated calcium release, demonstrating that GHSR is involved. Assessment of the GHSR-dependent calcium release using adenosine receptor agonists and antagonists resulted in a rank order of potencies resembling the profile of A(2B)R. A(2B)R over-expression in HEK-GHSR cells enhanced potency and efficacy of the adenosine induced calcium release without increasing IP(3) production. Moreover, A(2B)R over-expression in HEK cells potentiated NECA-induced cAMP production. However, GHSR expression had no effect on intracellular cAMP production. CONCLUSION In HEK-GHSR cells adenosine activates endogenously expressed A(2B)R resulting in calcium mobilization. We hypothesize that the responsible mechanism is cAMP-dependent sensitization of IP(3) receptors for the high basal level of IP(3) caused by GHSR constitutive activity. Altogether, our results demonstrate that adenosine is not a direct GHSR agonist.
Collapse
Affiliation(s)
- N-O Hermansson
- Department of Lead Generation, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | | |
Collapse
|
72
|
van Oort RJ, Wehrens XHT. Subcellular targeting of phosphatases: a novel function of ankyrins. Am J Physiol Heart Circ Physiol 2007; 293:H15-6. [PMID: 17449551 DOI: 10.1152/ajpheart.00467.2007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
73
|
Bhasin N, Cunha SR, Mudannayake M, Gigena MS, Rogers TB, Mohler PJ. Molecular basis for PP2A regulatory subunit B56alpha targeting in cardiomyocytes. Am J Physiol Heart Circ Physiol 2007; 293:H109-19. [PMID: 17416611 DOI: 10.1152/ajpheart.00059.2007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2A (PP2A) is a multifunctional protein phosphatase with critical roles in excitable cell signaling. In the heart, PP2A function is linked with modulation of beta-adrenergic signaling and has been suggested to regulate key ion channels and transporters including Na/Ca exchanger, ryanodine receptor, inositol 1,4,5-trisphosphate receptor, and Na/K ATPase. Although many of the functional roles and molecular targets for PP2A in heart are known, little is established regarding the cellular pathways that localize specific PP2A isoform activities to subcellular sites. We report that the PP2A regulatory subunit B56alpha is an in vivo binding partner for ankyrin-B, an adapter protein required for normal subcellular localization of the Na/Ca exchanger, Na/K ATPase, and inositol 1,4,5-trisphosphate receptor. Ankyrin-B and B56alpha are colocalized and coimmunoprecipitate in primary cardiomyocytes. Using multiple strategies, we identified the structural requirements on B56alpha for ankyrin-B association as a 13 residue motif in the B56alpha COOH terminus not present in other B56 family polypeptides. Finally, we report that reduced ankyrin-B expression in primary ankyrin-B(+/-) cardiomyocytes results in disorganized distribution of B56alpha that can be rescued by exogenous expression of ankyrin-B. These new data implicate ankyrin-B as a critical targeting component for PP2A in heart and identify a new class of signaling proteins targeted by ankyrin polypeptides.
Collapse
Affiliation(s)
- Naina Bhasin
- Department of Internal Medicine, Division of Cardiology, University of Iowa Carver College of Medicine, 285 Newton Road, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
75
|
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA.
| | | | | | | |
Collapse
|
76
|
Caron AZ, Chaloux B, Arguin G, Guillemette G. Protein kinase C decreases the apparent affinity of the inositol 1,4,5-trisphosphate receptor type 3 in RINm5F cells. Cell Calcium 2007; 42:323-31. [PMID: 17320950 DOI: 10.1016/j.ceca.2007.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 12/18/2006] [Accepted: 01/11/2007] [Indexed: 12/31/2022]
Abstract
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel which plays a major role in Ca2+ signalling. Three isoforms of IP3R have been identified (IP3R-1, IP3R-2 and IP3R-3) and most cell types express different proportions of each isoform. The differences between the pharmacological and functional properties of the various isoforms of IP3R are poorly known. RINm5F cells who express almost exclusively (approximately 90%) the IP3R-3, represent an interesting model to study this particular isoform. Here, we investigated a regulatory mechanism by which protein kinase C (PKC) may influence IP3R-3-mediated Ca2+ release. With an immunoprecipitation approach we confirmed that RINm5F cells express almost exclusively the IP3R-3 isoform. With an in vitro phosphorylation approach, we showed that the immunopurified IP3R-3 was efficiently phosphorylated by exogenous PKC. With a direct in cellulo approach and an indirect in cellulo back-phosphorylation approach we showed that phorbol-12-myristate-13-acetate (PMA) causes the phosphorylation of IP3R-3 in intact RINm5F cells. In saponin-permeabilized RINm5F cells, 3-induced Ca2+ release was reduced after a pre-treatment with PMA. PMA also reduced the Ca2+ response of intact RINm5F cells stimulated with carbachol and EGF, two agonists that use different receptor types to activate phospholipase C. These results suggest the existence of a negative feedback mechanism involving two components of the Ca2+ signalling cascade, whereby activated PKC dampens IP3R-3 activity.
Collapse
Affiliation(s)
- Annabelle Z Caron
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | |
Collapse
|
77
|
Regimbald-Dumas Y, Arguin G, Fregeau MO, Guillemette G. cAMP-dependent protein kinase enhances inositol 1,4,5-trisphosphate-induced Ca2+ release in AR4-2J cells. J Cell Biochem 2007; 101:609-18. [PMID: 17203464 DOI: 10.1002/jcb.21221] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3)R), a ligand-gated Ca(2+) channel, plays an important role in the control of intracellular Ca(2+). There are three subtypes of IP(3)R that are differentially distributed among cell types. AR4-2J cells express almost exclusively the IP(3)R-2 subtype. The purpose of this study was to investigate the effect of cAMP-dependent protein kinase (PKA) on the activity of IP(3)R-2 in AR4-2J cells. We showed that immunoprecipitated IP(3)R-2 is a good substrate for PKA. Using a back-phosphorylation approach, we showed that endogenous PKA phosphorylates IP(3)R-2 in intact AR4-2J cells. Pretreatment with PKA enhanced IP(3)-induced Ca(2+) release in permeabilized AR4-2J cells. Pretreatment with the cAMP generating agent's forskolin and vasoactive intestinal peptide (VIP) enhanced carbachol (Cch)-induced and epidermal growth factor (EGF)-induced Ca(2+) responses in intact AR4-2J cells. Our results are consistent with an enhancing effect of PKA on IP(3)R-2 activity. This conclusion supports the emerging concept of crosstalk between Ca(2+) signaling and cAMP pathways and thus provides another way by which Ca(2+) signals are finely encoded within non-excitable cells.
Collapse
Affiliation(s)
- Yannik Regimbald-Dumas
- Department of Pharmacology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | | | | | | |
Collapse
|
78
|
Bai GR, Yang LH, Huang XY, Sun FZ. Inositol 1,4,5-trisphosphate receptor type 1 phosphorylation and regulation by extracellular signal-regulated kinase. Biochem Biophys Res Commun 2006; 348:1319-27. [PMID: 16925983 DOI: 10.1016/j.bbrc.2006.07.208] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
Type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) is a widely expressed intracellular calcium-release channel found in many cell types. The operation of IP(3)R1 is regulated through phosphorylation by multiple protein kinases. Extracellular signal-regulated kinase (ERK) has been found involved in calcium signaling in distinct cell types, but the underlying mechanisms remain unclear. Here, we present evidence that ERK1/2 and IP(3)R1 bind together through an ERK binding motif in mouse cerebellum in vivo as well as in vitro. ERK-phosphorylating serines (Ser 436) was identified in mouse IP(3)R1 and Ser 436 phosphorylation had a suppressive effect on IP(3) binding to the recombinant N-terminal 604-amino acid residues (N604). Moreover, phosphorylation of Ser 436 in R(224-604) evidently enhance its interaction with the N-terminal "suppressor" region (N223). At last, our data showed that Ser 436 phosphorylation in IP(3)R1 decreased Ca(2+) releasing through IP(3)R1 channels.
Collapse
Affiliation(s)
- Gui-Rong Bai
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, PR China.
| | | | | | | |
Collapse
|
79
|
Xu L, Kong D, Zhu L, Zhu W, Andrews DW, Kuo TH. Suppression of IP3-mediated calcium release and apoptosis by Bcl-2 involves the participation of protein phosphatase 1. Mol Cell Biochem 2006; 295:153-65. [PMID: 16874461 DOI: 10.1007/s11010-006-9285-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/10/2006] [Indexed: 11/28/2022]
Abstract
The involvement and potential interdependence of inositol trisphosphate (IP3) receptors and Bcl-2 in the regulation of Ca2+ signaling is not clear. Here, we have explored the mechanism(s) of how Bcl-2 suppresses the IP3-sensitive Ca2+ release in MCF-7 cells focusing on the possible role of protein phosphatase 1 (PP1). We found that through influences on protein-protein interaction, Bcl-2 may alter the balance between the effects of phosphatase (PP1) and kinase (PKA) on the IP3 R1 signaling complex. Using various experimental approaches including phosphatase inhibition and RNAi, we show that Bcl-2 by competing with IP3R1 for the binding of PP1 can reduce the IP3-mediated calcium signal and protect cells from mitochondrial dysfunction and cell death.
Collapse
Affiliation(s)
- Liping Xu
- Department of Pathology, Wayne State University School of Medicine, 540 E. Canfield, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptor is a Ca(2+) release channel localized on the endoplasmic reticulum (ER) and plays an important role in neuronal function. IP(3) receptor was discovered as a developmentally regulated protein missing in the cerebellar mutant mice. Recent studies indicate that IP(3)Rs are involved in early development and neuronal plasticity. IP(3) works to release IRBIT from the IP(3) binding core in addition to release Ca(2+). IRBIT binds to and activates Na, Bicarbonate cotransporter. Electron microscopic study show the IP(3) receptor has allosteric property to change its form from square to windmill in the presence of Ca(2+). IP(3)R associates with ERp44, a redox sensor, Homer, other proteins and is transported as vesicular ER on microtubules. All these data suggests IP(3) receptor/CA(2+) channel works as a signaling center inside cells.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- The Institute of Medical Science, The University of Tokyo, RIKEN, Brain Science Institute, Calcium Oscillation Project, SORST, JST, Tokyo, Japan.
| |
Collapse
|
81
|
Neylon CB, Fowler CJ, Furness JB. Regulation of the slow afterhyperpolarization in enteric neurons by protein kinase A. Auton Neurosci 2006; 126-127:258-63. [PMID: 16647306 DOI: 10.1016/j.autneu.2006.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
The slow after-hyperpolarization (sAHP) following the action potential is an important determinant of the firing patterns of enteric neurons. The channel responsible for the sAHP thus serves as a critical control point at which neurotransmitters and inflammatory mediators modulate gut motility. Many of these receptor-evoked pathways are known to inhibit the sAHP and, thus, excite enteric neurons. They act through protein kinase A (PKA) which is a strong inhibitor of the sAHP current while protein phosphatases enhance the current. Increasing evidence suggests that the sAHP is mediated by the opening of intermediate-conductance Ca-activated potassium (IK) channels. This neuronal IK channel, previously known to be expressed in a variety of non-excitable cells, is strongly influenced by protein kinases. Investigation of the molecular basis for the modulation of IK channels by protein phosphorylation indicates that there are multiple mechanisms of channel control. Inhibition of channel activity by PKA involves phosphorylation sites located within the calmodulin-binding domain of the channel. The localization of these sites within the region involved in Ca2+ activation suggests that PKA-mediated phosphorylation of the channel opposes the conformational changes caused by binding of Ca/calmodulin, which would otherwise lead to opening of the channel. We suggest that the channel exists as a macromolecular complex involving calmodulin, protein kinases, protein phosphatase and possibly other proteins. The regulation of the channel through kinases and phophatases results in exquisite control of neuronal firing and subsequent modulation of enteric reflexes.
Collapse
Affiliation(s)
- Craig B Neylon
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville 3010, Australia.
| | | | | |
Collapse
|
82
|
Zhong F, Davis MC, McColl KS, Distelhorst CW. Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. ACTA ACUST UNITED AC 2006; 172:127-37. [PMID: 16391001 PMCID: PMC2063540 DOI: 10.1083/jcb.200506189] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To investigate the effect of Bcl-2 on Ca2+ signaling in T cells, we continuously monitored Ca2+ concentration in Bcl-2–positive and –negative clones of the WEHI7.2 T cell line after T cell receptor (TCR) activation by anti-CD3 antibody. In Bcl-2–negative cells, high concentrations of anti-CD3 antibody induced a transient Ca2+ elevation, triggering apoptosis. In contrast, low concentrations of anti-CD3 antibody induced Ca2+ oscillations, activating the nuclear factor of activated T cells (NFAT), a prosurvival transcription factor. Bcl-2 blocked the transient Ca2+ elevation induced by high anti-CD3, thereby inhibiting apoptosis, but did not inhibit Ca2+ oscillations and NFAT activation induced by low anti-CD3. Reduction in the level of all three inositol 1,4,5-trisphosphate (InsP3) receptor subtypes by small interfering RNA inhibited the Ca2+ elevation induced by high but not low anti-CD3, suggesting that Ca2+ responses to high and low anti-CD3 may have different requirements for the InsP3 receptor. Therefore, Bcl-2 selectively inhibits proapoptotic Ca2+ elevation induced by strong TCR activation without hindering prosurvival Ca2+ signals induced by weak TCR activation.
Collapse
Affiliation(s)
- Fei Zhong
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
83
|
Watras J, Fink CC, Loew LM. Endogenous inhibitors of InsP3-induced Ca2+ release in neuroblastoma cells. Brain Res 2006; 1055:60-72. [PMID: 16095574 DOI: 10.1016/j.brainres.2005.06.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/25/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
Cerebellar Purkinje neurons and neuroblastoma N1E-115 cells require 10-50 times more InsP3 to induce Ca2+ release than do a variety of non-neuronal cells (including astrocytes, hepatocytes, endothelial cells, or smooth muscle cells). Given the importance of InsP3-induced Ca2+ release for the development of synaptic plasticity in Purkinje neurons, a low InsP3 sensitivity may facilitate the integration of numerous synaptic inputs before initiating a change in synaptic strength. In the present study, attention is directed at the mechanism underlying this low InsP3 sensitivity of Ca2+ release. We show that permeabilization of neuroblastoma cells with saponin increased InsP3 sensitivity of Ca2+ release, indicating the presence of a diffusible, cytosolic inhibitor(s) of Ca2+ release. Consistent with this hypothesis, gel filtration of the neuroblastoma cytosol yielded three peaks that inhibited InsP3-induced Ca2+ release from permeabilized cells. The prominent inhibitory peak decreased the InsP3 sensitivity of Ca2+ release from permeabilized cells, did not bind 3H-InsP3, and was present in sufficient levels to account for the low InsP3 sensitivity of Ca2+ release in intact neuroblastoma cells. Purification of this prominent inhibitory fraction yielded a protein band that was identified by mass spectrometry as stress-induced phosphoprotein 1 (mSTI1). Furthermore, immunoprecipitation of mSTI1 decreased the inhibitory activity of N1E-115 cytosol, indicating that mSTI1 contributes to the inhibition of InsP3-induced Ca2+ release. Thus, the low InsP3 sensitivity of Ca2+ release in neuroblastoma cells can be explained by the presence of cytosolic inhibitors of Ca2+ release and include stress-induced phosphoprotein 1.
Collapse
Affiliation(s)
- James Watras
- Department of Pharmacology, University of Connecticut Health Center, Farmington, CT 06032, USA.
| | | | | |
Collapse
|
84
|
Boyden PA, ter Keurs H. Would modulation of intracellular Ca2+ be antiarrhythmic? Pharmacol Ther 2005; 108:149-79. [PMID: 16038982 DOI: 10.1016/j.pharmthera.2005.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 01/10/2023]
Abstract
Under several types of conditions, reversal of steps of excitation-contraction coupling (RECC) can give rise to nondriven electrical activity. In this review we explore those conditions for several cardiac cell types (SA, atrial, Purkinje, ventricular cells). We find that abnormal spontaneous Ca2+ release from intracellular Ca2+ stores, aberrant Ca2+ influx from sarcolemmal channels or abnormal Ca2+ surges in nonuniform muscle can be the initiators of the RECC. Often, with such increases in Ca2+, spontaneous Ca2+ waves occur and lead to membrane depolarizations. Because the change in membrane voltage is produced by Ca2+-dependent changes in ion channel function, we also review here what is known about the molecular interaction of Ca2+ and several Ca2+-dependent processes, including the intracellular Ca2+ release channels implicated in the genetic basis of some forms of human arrhythmias. Finally, we review what is known about the effectiveness of several agents in modifying such Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Penelope A Boyden
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, NY 10032, USA.
| | | |
Collapse
|
85
|
Aromolaran AAS, Blatter LA. Modulation of intracellular Ca2+ release and capacitative Ca2+ entry by CaMKII inhibitors in bovine vascular endothelial cells. Am J Physiol Cell Physiol 2005; 289:C1426-36. [PMID: 16093279 DOI: 10.1152/ajpcell.00262.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of inhibitors of CaMKII on intracellular Ca2+ signaling were examined in single calf pulmonary artery endothelial (CPAE) cells using indo-1 microfluorometry to measure cytoplasmic Ca2+ concentration ([Ca2+]i). The three CaMKII inhibitors, KN-93, KN-62, and autocamtide-2-related inhibitory peptide (AIP), all reduced the plateau phase of the [Ca2+]i transient evoked by stimulation with extracellular ATP. Exposure to KN-93 or AIP alone in the presence of 2 mM extracellular Ca2+ resulted in a dose-dependent increase of [Ca2+]i consisting of a rapid and transient Ca2+ spike followed by a small sustained plateau phase of elevated [Ca2+]i. Exposure to KN-93 in the absence of extracellular Ca2+ caused a transient rise of [Ca2+]i, suggesting that exposure to CaMKII inhibitors directly triggered release of Ca2+ from intracellular endoplasmic reticulum (ER) Ca2+ stores. Repetitive stimulation with KN-93 and ATP, respectively, revealed that both components released Ca2+ largely from the same store. Pretreatment of CPAE cells with the membrane-permeable inositol 1,4,5-trisphosphate (IP3) receptor blocker 2-aminoethoxydiphenyl borate caused a significant inhibition of the KN-93-induced Ca2+ response, suggesting that exposure to KN-93 affects Ca2+ release from an IP3-sensitive store. Depletion of Ca2+ stores by exposure to ATP or to the ER Ca2+ pump inhibitor thapsigargin triggered robust capacitative Ca2+ entry (CCE) signals in CPAE cells that could be blocked effectively with KN-93. The data suggest that in CPAE cells, CaMKII modulates Ca2+ handling at different levels. The use of CaMKII inhibitors revealed that in CPAE cells, the most profound effects of CaMKII are inhibition of release of Ca2+ from intracellular stores and activation of CCE.
Collapse
|
86
|
Visochek L, Steingart RA, Vulih-Shultzman I, Klein R, Priel E, Gozes I, Cohen-Armon M. PolyADP-ribosylation is involved in neurotrophic activity. J Neurosci 2005; 25:7420-8. [PMID: 16093393 PMCID: PMC6725295 DOI: 10.1523/jneurosci.0333-05.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/31/2005] [Accepted: 06/30/2005] [Indexed: 01/25/2023] Open
Abstract
PolyADP-ribosylation is a transient posttranslational modification of proteins, mainly catalyzed by poly(ADP-ribose)polymerase-1 (PARP-1). This highly conserved nuclear protein is activated rapidly in response to DNA nick formation and promotes a fast DNA repair. Here, we examine a possible association between polyADP-ribosylation and the activity of neurotrophins and neuroprotective peptides taking part in life-or-death decisions in mammalian neurons. The presented results indicate an alternative mode of PARP-1 activation in the absence of DNA damage by neurotrophin-induced signaling mechanisms. PARP-1 was activated in rat cerebral cortical neurons briefly exposed to NGF-related nerve growth factors and to the neuroprotective peptides NAP (the peptide NAPVSIPQ, derived from the activity-dependent neuroprotective protein ADNP) and ADNF-9 (the peptide SALLRSIPA, derived from the activity-dependent neurotrophic factor ADNF) In addition, polyADP-ribosylation was involved in the neurotrophic activity of NGF-induced and NAP-induced neurite outgrowth in differentiating pheochromocytoma 12 cells as well as in the neuroprotective activity of NAP in neurons treated with the Alzheimer's disease neurotoxin beta-amyloid. A fast loosening of the highly condensed chromatin structure by polyADP-ribosylation of histone H1, which renders DNA accessible to transcription and repair, may underlie the role of polyADP-ribosylation in neurotrophic activity.
Collapse
Affiliation(s)
- Leonid Visochek
- The Neufeld Cardiac Research Institute, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | |
Collapse
|
87
|
Hur EM, Park YS, Huh YH, Yoo SH, Woo KC, Choi BH, Kim KT. Junctional membrane inositol 1,4,5-trisphosphate receptor complex coordinates sensitization of the silent EGF-induced Ca2+ signaling. ACTA ACUST UNITED AC 2005; 169:657-67. [PMID: 15911880 PMCID: PMC2171708 DOI: 10.1083/jcb.200411034] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) is a highly versatile intracellular signal that regulates many different cellular processes, and cells have developed mechanisms to have exquisite control over Ca(2+) signaling. Epidermal growth factor (EGF), which fails to mobilize intracellular Ca(2+) when administrated alone, becomes capable of evoking [Ca(2+)](i) increase and exocytosis after bradykinin (BK) stimulation in chromaffin cells. Here, we provide evidence that this sensitization process is coordinated by a macromolecular signaling complex comprised of inositol 1,4,5-trisphosphate receptor type I (IP(3)R1), cAMP-dependent protein kinase (PKA), EGF receptor (EGFR), and an A-kinase anchoring protein, yotiao. The IP(3)R complex functions as a focal point to promote Ca(2+) release in two ways: (1) it facilitates PKA-dependent phosphorylation of IP(3)R1 in response to BK-induced elevation of cAMP, and (2) it couples the plasmalemmal EGFR with IP(3)R1 at the Ca(2+) store located juxtaposed to the plasma membrane. Our study illustrates how the junctional membrane IP(3)R complex connects different signaling pathways to define the fidelity and specificity of Ca(2+) signaling.
Collapse
Affiliation(s)
- Eun-Mi Hur
- National Research Laboratory of Molecular Neurophysiology, Pohang University of Science and Technology, Hyo-ja dong, San31, Pohang, 790-784, South Korea
| | | | | | | | | | | | | |
Collapse
|
88
|
Oda K, Matsuoka Y, Funahashi A, Kitano H. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 2005; 1:2005.0010. [PMID: 16729045 PMCID: PMC1681468 DOI: 10.1038/msb4100014] [Citation(s) in RCA: 734] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Accepted: 04/28/2005] [Indexed: 11/09/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML).
Collapse
Affiliation(s)
- Kanae Oda
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
| | - Yukiko Matsuoka
- The Systems Biology Institute, Tokyo, Japan
- ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Akira Funahashi
- The Systems Biology Institute, Tokyo, Japan
- ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Tokyo, Japan
- Department of Fundamental Science and Technology, Keio University, Tokyo, Japan
- ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, Tokyo, Japan
- Sony Computer Science Laboratories, Inc., Tokyo, Japan
| |
Collapse
|
89
|
Brooks CL, Dunphy GB. Protein kinase A affectsGalleria mellonella(Insecta: Lepidoptera) larval haemocyte non‐self responses. Immunol Cell Biol 2005; 83:150-9. [PMID: 15748211 DOI: 10.1111/j.1440-1711.2005.01316.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used the protein kinase A (PKA) specific activator Sp-8-Br-cAMPS and type I inhibitor Rp-8-Br-cAMPS alone and in combination to define the role of PKA in the non-self responses of larval Galleria mellonella haemocytes in vitro and in vivo. Active PKA depressed haemocyte responses whereas PKA inhibition enhanced activities, including bacterial phagocytosis, the number of haemocytes with adherent bacteria, bacterial-induced haemocytic protein release and haemocyte adhesion to slides in vitro, as well as in vivo bacterial removal from the haemolymph. Non-attached haemocytes had more PKA activity than attached haemocytes; therefore, active PKA limited haemocyte response to foreign materials. We found that (i) PKA inhibitor alone induced non-self responses, including haemocyte protein discharge and lowered haemocyte counts in vivo, and induced nodulation; (ii) the enzyme activator produced effects opposite to those of the inhibitor; and (iii) together, the modulators offset each others' effects and influenced haemocyte lysate PKA activity. These findings establish PKA as a mediator of haemocytic non-self responses.
Collapse
Affiliation(s)
- Cory L Brooks
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|
90
|
Hulme JT, Scheuer T, Catterall WA. Regulation of cardiac ion channels by signaling complexes: role of modified leucine zipper motifs. J Mol Cell Cardiol 2005; 37:625-31. [PMID: 15350835 DOI: 10.1016/j.yjmcc.2004.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 01/15/2004] [Accepted: 04/23/2004] [Indexed: 10/26/2022]
Abstract
Modulation of ion channels by protein phosphorylation is a dynamic process precisely controlled by the opposing actions of protein kinases and phosphoprotein phosphatases. It is well accepted that the targeting and localization of such signaling enzymes to discrete subcellular compartments or substrates is an important regulatory mechanism ensuring specificity of signaling events in response to local stimuli. Compartmentalization of these enzymes is achieved through association with anchoring or adaptor proteins that target them to subcellular organelles or tether them directly to target substrates via protein-protein interactions. Recently, a novel role for modified leucine zipper motifs in targeting kinases and phosphatases via anchoring proteins has been described for three families of cardiac ion channels: ryanodine-sensitive calcium (Ca(2+)) release channels, voltage-gated Ca(2+) channels, and delayed rectifier potassium (K(+)) channels. This review will summarize the recent advances made on the regulation of cardiac ion channels by these macromolecular signaling complexes in the normal and diseased heart.
Collapse
Affiliation(s)
- Joanne T Hulme
- Department of Pharmacology, University of Washington, Box 357280, Seattle, WA 98195 7280, USA
| | | | | |
Collapse
|
91
|
Jellerette T, Kurokawa M, Lee B, Malcuit C, Yoon SY, Smyth J, Vermassen E, De Smedt H, Parys JB, Fissore RA. Cell cycle-coupled [Ca(2+)](i) oscillations in mouse zygotes and function of the inositol 1,4,5-trisphosphate receptor-1. Dev Biol 2004; 274:94-109. [PMID: 15355791 DOI: 10.1016/j.ydbio.2004.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 06/12/2004] [Accepted: 06/12/2004] [Indexed: 11/20/2022]
Abstract
Sperm entry in mammalian eggs initiates oscillations in the concentration of free calcium ([Ca(2+)](i)). In mouse eggs, oscillations start at metaphase II (MII) and conclude as the zygotes progress into interphase and commence pronuclear (PN) formation. The inositol 1,4,5-trisphosphate receptor (IP(3)R-1), which underlies the oscillations, undergoes degradation during this transition, suggesting that one or more of the eggs' Ca(2+)-releasing machinery components may be regulated in a cell cycle-dependent manner, thereby coordinating [Ca(2+)](i) responses with the cell cycle. To ascertain the site(s) of interaction, we initiated oscillations at different stages of the cell cycle in zygotes with different IP(3)R-1 mass. In addition to sperm, we used two other agonists: porcine sperm factor (pSF), which stimulates production of IP(3), and adenophostin A, a non-hydrolyzable analogue of IP(3). None of the agonists tested induced oscillations at interphase, suggesting that neither decreased IP(3)R-1 mass nor lack of production or excessive IP(3) degradation can account for the insensitivity to IP(3) at this stage. Moreover, the releasable Ca(2+) content of the stores did not change by interphase, but it did decrease by first mitosis. More importantly, experiments revealed that IP(3)R-1 sensitivity and possibly IP(3) binding were altered at interphase, and our data demonstrate stage-specific IP(3)R-1 phosphorylation by M-phase kinases. Accordingly, increasing the activity of M-phase kinases restored the oscillatory-permissive state in zygotes. We therefore propose that the restriction of oscillations in mouse zygotes to the metaphase stage may be coordinated at the level of IP(3)R-1 and that this involves cell cycle stage-specific receptor phosphorylation.
Collapse
Affiliation(s)
- Teru Jellerette
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Vermassen E, Fissore RA, Nadif Kasri N, Vanderheyden V, Callewaert G, Missiaen L, Parys JB, De Smedt H. Regulation of the phosphorylation of the inositol 1,4,5-trisphosphate receptor by protein kinase C. Biochem Biophys Res Commun 2004; 319:888-93. [PMID: 15184066 DOI: 10.1016/j.bbrc.2004.05.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 11/30/2022]
Abstract
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)<or=2microM) and this inhibition was further potentiated by calmodulin (CaM), while the Ca(2+)-independent CaM mutant CaM(1234) was ineffective. Ca(2+) and CaM, however, did not inhibit IP(3)R3 phosphorylation by PKC. Taken together, these findings show that Ca(2+) and CaM differentially regulate the PKC-mediated phosphorylation of IP(3)R1 and IP(3)R3 and are indicative for a role for the inhibition of IP(3)R1 phosphorylation by Ca(2+) and CaM in the negative slope of the bell-shaped effect of Ca(2+) on IP(3)R function.
Collapse
Affiliation(s)
- Elke Vermassen
- Laboratory of Physiology, K.U. Leuven Campus Gasthuisberg O/N, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
The inositol 1,4,5 trisphosphate (IP3) receptor (IP3R) is a Ca2+ release channel that responds to the second messenger IP3. Exquisite modulation of intracellular Ca2+ release via IP3Rs is achieved by the ability of IP3R to integrate signals from numerous small molecules and proteins including nucleotides, kinases, and phosphatases, as well as nonenzyme proteins. Because the ion conduction pore composes only approximately 5% of the IP3R, the great bulk of this large protein contains recognition sites for these substances. Through these regulatory mechanisms, IP3R modulates diverse cellular functions, which include, but are not limited to, contraction/excitation, secretion, gene expression, and cellular growth. We review the unique properties of the IP3R that facilitate cell-type and stimulus-dependent control of function, with special emphasis on protein-binding partners.
Collapse
Affiliation(s)
- Randen L Patterson
- Department of Neuroscience, Johns Hopkins University, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
94
|
Anderson KA, Noeldner PK, Reece K, Wadzinski BE, Means AR. Regulation and function of the calcium/calmodulin-dependent protein kinase IV/protein serine/threonine phosphatase 2A signaling complex. J Biol Chem 2004; 279:31708-16. [PMID: 15143065 DOI: 10.1074/jbc.m404523200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase IV (CaMKIV) is a member of the broad substrate specificity class of Ca(2+)/calmodulin (CaM)-dependent protein kinases and functions as a potent stimulator of Ca(2+)-dependent gene expression. Activation of CaMKIV is a transient, tightly regulated event requiring both Ca(2+)/CaM binding and phosphorylation of the kinase on T200 by an upstream CaMK kinase (CaMKK). Previously, CaMKIV was shown to stably associate with protein serine/threonine phosphatase 2A (PP2A), which was proposed to play a role in negatively regulating the kinase. Here we report that the Ca(2+)/CaM binding-autoinhibitory domain of CaMKIV is required for association of the kinase with PP2A and that binding of PP2A and Ca(2+)/CaM appears to be mutually exclusive. We demonstrate that inhibition of the CaMKIV/PP2A association in cells results in enhanced CaMKIV-mediated gene transcription that is independent of Ca(2+)/CaM. The enhanced transcriptional activity correlates with the elevated level of phospho-T200 that accumulates when CaMKIV is prevented from interacting with PP2A. Collectively, these data suggest a molecular basis for the sequential activation and inactivation of CaMKIV. First, in response to an increase in intracellular Ca(2+), CaMKIV binds Ca(2+)/CaM and becomes phosphorylated on T200 by CaMKK. These events result in the generation of autonomous activity required for CaMKIV-mediated transcriptional regulation. The CaMKIV-associated PP2A then dephosphorylates CaMKIV T200, thereby terminating autonomous activity and CaMKIV-mediated gene transcription.
Collapse
Affiliation(s)
- Kristin A Anderson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
95
|
Soulsby MD, Alzayady K, Xu Q, Wojcikiewicz RJH. The contribution of serine residues 1588 and 1755 to phosphorylation of the type I inositol 1,4,5-trisphosphate receptor by PKA and PKG. FEBS Lett 2004; 557:181-4. [PMID: 14741364 DOI: 10.1016/s0014-5793(03)01487-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type I inositol 1,4,5-trisphosphate receptors can be phosphorylated by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG). To define the site-specificity of these events we analyzed the phosphorylation of mutant receptors expressed in intact cells. These studies showed that S(1588) and S(1755), the serine residues within kinase consensus sequences, are equally sensitive to PKA, that phosphorylation events at these sites are independent of each other, and that PKG predominantly phosphorylates S(1588). These findings provide the basis for understanding the functional consequences of type I inositol 1,4,5-trisphosphate receptor phosphorylation.
Collapse
Affiliation(s)
- Matthew D Soulsby
- Department of Pharmacology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210-2339, USA
| | | | | | | |
Collapse
|
96
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 490] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
97
|
Sieger KA, Mhashilkar AM, Stewart A, Sutton RB, Strube RW, Chen SY, Pataer A, Swisher SG, Grimm EA, Ramesh R, Chada S. The Tumor Suppressor Activity of MDA-7/IL-24 Is Mediated by Intracellular Protein Expression in NSCLC Cells. Mol Ther 2004; 9:355-67. [PMID: 15006602 DOI: 10.1016/j.ymthe.2003.11.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022] Open
Abstract
mda-7/IL-24 (HGMW-approved symbol IL24) is a tumor suppressor gene whose expression is lost during tumor progression. Gene transfer using adenoviral mda-7/IL-24 (Ad-mda7) exhibits minimal toxicity on normal cells while inducing potent apoptosis in a variety of cancer cell lines. Ad-mda7-transduced cells express high levels of MDA-7 protein intracellularly and also secrete a soluble form of MDA-7 protein. In this study, we sought to determine whether the intracellular or secreted MDA-7 protein was responsible for anti-tumor activity in H1299 lung tumor cells. Ad-mda7 transduction of lung tumor cells increased expression of stress-related proteins, including BiP, GADD34, PP2A, caspases 7 and 12, and XBP-1, consistent with activation of the UPR pathway, a key sensor of endoplasmic reticulum (ER)-mediated stress. Blocking secretion of MDA-7 did not inhibit apoptosis, demonstrating that intracellular MDA-7 was responsible for cytotoxicity. Consistent with this result, when applied directly to lung cancer cells, soluble MDA-7 protein exhibited minimal cytotoxic effect. We then generated mda-7 expression constructs using vectors that target the expressed protein to various subcellular compartments, including cytoplasm, nucleus, and ER. Only full-length and ER-targeted MDA-7 elicited cell death in tumor cells. Thus in lung cancer cells, Ad-mda7 activates the UPR stress pathway and induces apoptosis via intracellular MDA-7 expression in the secretory pathway.
Collapse
|
98
|
Tu H, Tang TS, Wang Z, Bezprozvanny I. Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J Biol Chem 2004; 279:19375-82. [PMID: 14982933 DOI: 10.1074/jbc.m313476200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (InsP(3)R) play a key role in intracellular calcium (Ca(2+)) signaling. Three InsP(3)R isoforms are expressed in mammals. Type 1 InsP(3)R (InsP(3)R1) is a predominant neuronal isoform. Neuronal InsP(3)R1 is one of the major substrates of protein kinase A (PKA) phosphorylation. In our previous study (Tang, T. S., Tu, H., Wang, Z., and Bezprozvanny, I. (2003) J. Neurosci. 23, 403-415) we discovered a direct association between InsP(3)R1 and protein phosphatase 1 alpha (PP1 alpha). In functional experiments we demonstrated that phosphorylation by PKA activates InsP(3)R1 and that dephosphorylation by PP1 alpha inhibits InsP(3)R1. To extend these findings, here we investigated the possibility of InsP(3)R1-PKA association. In a series of biochemical experiments we demonstrate the following findings. 1) InsP(3)R1 and PKA associate in the brain. 2) InsP(3)R1-PKA association is mediated by the AKAP9 (Yotiao) multi-functional PKA anchoring protein. 3) InsP(3)R1-AKAP9 association is mediated via the leucine/isoleucine zipper (LIZ) motif in the InsP(3)R1 coupling domain and the fourth LIZ motif in AKAP9. 4) The InsP(3)R association with AKAP9 is specific for type 1 InsP(3)R. 5) Both the SII(+) and the SII(-) coupling domain splice variants of InsP(3)R1 bind to AKAP9. 6) Binding to AKAP9 promotes association of neuronal InsP(3)R1 with the NR1 NMDA receptor; and 7) neuronal InsP(3)R1 associate with PP1 directly via carboxy-terminus and indirectly via AKAP9. The obtained results advance our understanding of cross-talk between cAMP and InsP(3)/Ca(2+) signaling pathways in the brain.
Collapse
Affiliation(s)
- Huiping Tu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9040, USA
| | | | | | | |
Collapse
|
99
|
Bultynck G, Vermassen E, Szlufcik K, De Smet P, Fissore RA, Callewaert G, Missiaen L, De Smedt H, Parys JB. Calcineurin and intracellular Ca2+-release channels: regulation or association? Biochem Biophys Res Commun 2004; 311:1181-93. [PMID: 14623304 DOI: 10.1016/j.bbrc.2003.08.084] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ca(2+)- and calmodulin-dependent phosphatase calcineurin was reported to interact with the inositol 1,4,5-trisphosphate receptor (IP(3)R) and the ryanodine receptor (RyR) and to modulate their phosphorylation status and activity. However, controversial data on the molecular mechanisms involved and on the functional relevance of calcineurin for these channel-complexes have been described. Hence, we will focus on the functional importance of calcineurin for IP(3)R and RyR function and on the different mechanisms by which Ca(2+)-dependent dephosphorylation can affect the gating of those intracellular Ca(2+)-release channels. Since many studies made use of immunosuppressive drugs that are inhibiting calcineurin activity, we will also have to take the different side effects of these drugs into account for the proper interpretation of the effects of calcineurin on intracellular Ca(2+)-release channels. In addition, it became recently known that various other phosphatases and kinases can associate with these channels, thereby forming macromolecular complexes. The relevance of these enzymes for IP(3)R and RyR functioning will be reviewed since in some cases they could interfere with the effects ascribed to calcineurin. Finally, we will discuss the downstream effects of calcineurin on the regulation of the expression levels of intracellular Ca(2+)-release channels as well as the relation between IP(3)R- and RyR-mediated Ca(2+) release and calcineurin-dependent gene expression.
Collapse
Affiliation(s)
- G Bultynck
- Department of Biological Sciences, Stanford University, Gilbert Hall, Room 208B, 371 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Xiao R, Cui ZJ. Mutual dependence of VIP/PACAP and CCK receptor signaling for a physiological role in duck exocrine pancreatic secretion. Am J Physiol Regul Integr Comp Physiol 2004; 286:R189-98. [PMID: 12947031 DOI: 10.1152/ajpregu.00265.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unlike in rodents, CCK has not been established as a physiological regulator in avian exocrine pancreatic secretion. In the isolated duck pancreatic acini, 1 nM CCK was required for stimulation of amylase secretion, maximal effect being achieved at 10 nM; picomolar CCK was without effect. Vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating peptide (PACAP) receptor (VPAC) agonists PACAP-38 and PACAP-27 (10(-12)-10(-7) M) alone had no effect, but made picomolar CCK effective. VPAC agonist VIP 10(-10)-10(-7) M stimulated amylase secretion marginally, but made CCK 10(-12)-10(-10) M effective also. PACAP-27 and VIP both shifted the maximal CCK concentration from 10(-8) to 10(-9) M. This sensitizing effect was mimicked by forskolin. CCK dose dependently induced intracellular Ca2+ concentration ([Ca2+]i) oscillations. PACAP-38 (1 nM), PACAP-27 (1 nM), VIP (10 nM), or forskolin (10 microM) alone did not stimulate [Ca2+]i increase, neither did they modulate CCK (1 nM)-induced oscillations; but when they were added to cells simultaneously exposed to subthreshold CCK (10 pM), calcium spikes emerged. Amylase secretion induced by the simultaneous presence of 10 pM CCK and VPAC agonists was completely blocked by removing extracellular calcium, but the protein kinase C inhibitor staurosporine (1 microM) was without effect. CCK (10 nM)-induced secretion was inhibited by CCK1 receptor antagonist FK480 (1 microM). Gastrin from 10(-12) to 10(-6) M did not stimulate amylase secretion nor did it (100 nM) induce [Ca2+]i increase. The above data suggest that duck pancreatic acini possess both CCK1 and VPAC receptors; simultaneous activation of both is required for each to play a physiological role.
Collapse
Affiliation(s)
- Rui Xiao
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China
| | | |
Collapse
|