51
|
Zhang DH, Yin HD, Li JJ, Wang Y, Yang CW, Jiang XS, DU HR, Liu YP. KLF5 regulates chicken skeletal muscle atrophy via the canonical Wnt/β-catenin signaling pathway. Exp Anim 2020; 69:430-440. [PMID: 32641593 PMCID: PMC7677084 DOI: 10.1538/expanim.20-0046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent studies in mice suggested that KLF5 (Kruppel like factor 5), a zinc-finger transcription factor, plays an important role in skeletal muscle development and regeneration. As an important factor in the process of muscle development, KLF5 participates in the regulation of the cell cycle, cell survival, and cell dryness under different environmental conditions, but it is not clear whether KLF5 participates in muscle atrophy. Therefore, we investigated whether KLF5 can regulate the atrophy of chicken satellite cells in vitro and examined its mechanism of action. qPCR showed that KLF5 gene knockdown promoted the expression of key genes in muscle atrophy. Subsequently, we sequenced and analyzed the transcriptomes of KLF5 silenced and control cells, and we showed that the differentially expressed genes were mainly enriched in 10 signaling pathways (P<0.05), with differential gene and enrichment analyses indicating that the Wnt signaling pathways are extremely important. In conclusion, our results indicate that KLF5 may regulate the atrophy of chicken skeletal muscle through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dong-Hao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Hua-Dong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Jing-Jing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| | - Chao-Wu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang, Sichuan province, Chengdu 610066, China
| | - Xiao-Song Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang, Sichuan province, Chengdu 610066, China
| | - Hua-Rui DU
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, 7 Niusha Road, Jinjiang, Sichuan province, Chengdu 610066, China
| | - Yi-Ping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan province, Chengdu 611130, China
| |
Collapse
|
52
|
Kenzo-Kagawa B, Vieira WF, Cogo JC, da Cruz-Höfling MA. Muscle proteolysis via ubiquitin-proteasome system (UPS) is activated by BthTx-I Lys49 PLA 2 but not by BthTx-II Asp49 PLA 2 and Bothrops jararacussu venom. Toxicol Appl Pharmacol 2020; 402:115119. [PMID: 32619552 DOI: 10.1016/j.taap.2020.115119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 01/26/2023]
Abstract
Bites by viperid snakes belonging to Bothrops genus produce fast and intense local edema, inflammation, bleeding and myonecrosis. In this study, we investigated the role of Myogenic Regulatory Factors (MRFs: MyoD; Myog), negatively regulated by GDF-8 (Myostatin), and ubiquitin-proteasome system pathway (UPS: MuRF-1; Fbx-32) in gastrocnemius muscle regeneration after Bothrops jararacussu snake venom (Bjussu) or its isolated phospholipase A2 myotoxins, BthTx-I (Lys-49 PLA2) and BthTx-II (Asp-49 PLA2) injection. Male Swiss mice received a single intra-gastrocnemius injection of crude Bjussu, at a dose/volume of 0.83 mg/kg/20 μl, and BthTx-I or BthTx-II, at a dose/volume of 2.5 mg/kg/20 μl. Control mice (Sham) received an injection of sterile saline solution (NaCl 0.9%; 20 μl). At 24, 48, 72 and 96 h post injection, right gastrocnemius was collected for protein expression analyses. Based on the temporal expressional dynamics of MyoD, Myog and GDF-8/Myostatin, it was possible to propose that the myogenesis pathway was impacted most badly by BthTx-II followed by BthTx-I and lastly by B. jararacussu venom, thus suggesting that catalytic activity has likely inhibitory role on the satellite cells-mediated reparative myogenesis pathway. Inversely, the catalytic activity seems to be not a determinant for the activation of proteins ubiquitination by MuRF-1 and Fbx-32/Atrogin-1 E3 proteasome ligases, given proteolysis pathway through UPS was activated neither after Bjussu, nor after BthTx-II, but just after the catalytically-inactive BthTx-I Lys-49 PLA2-homologue exposure. The findings of this study disclose interesting perspective for further mechanistic studies about pathways that take part in the atrophy and repair after permanent damage induced by bothropic snakebites.
Collapse
Affiliation(s)
- Bruno Kenzo-Kagawa
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Willians Fernando Vieira
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - José Carlos Cogo
- Faculty of Biomedical Engineering, Brazil University, Itaquera, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
53
|
Hesketh SJ, Sutherland H, Lisboa PJ, Jarvis JC, Burniston JG. Adaptation of rat fast‐twitch muscle to endurance activity is underpinned by changes to protein degradation as well as protein synthesis. FASEB J 2020; 34:10398-10417. [DOI: 10.1096/fj.202000668rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Stuart J. Hesketh
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Paulo J. Lisboa
- Department of Applied Mathematics Liverpool John Moores University Liverpool UK
| | - Jonathan C. Jarvis
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
| | - Jatin G. Burniston
- Research Institute for Sport & Exercise Sciences Liverpool John Moores University Liverpool UK
- Liverpool Centre for Cardiovascular Science Liverpool John Moores University Liverpool UK
| |
Collapse
|
54
|
O'Brien ME, Londino J, McGinnis M, Weathington N, Adair J, Suber T, Kagan V, Chen K, Zou C, Chen B, Bon J, Mallampalli RK. Tumor Necrosis Factor Alpha Regulates Skeletal Myogenesis by Inhibiting SP1 Interaction with cis-Acting Regulatory Elements within the Fbxl2 Gene Promoter. Mol Cell Biol 2020; 40:e00040-20. [PMID: 32205409 PMCID: PMC7261720 DOI: 10.1128/mcb.00040-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023] Open
Abstract
FBXL2 is an important ubiquitin E3 ligase component that modulates inflammatory signaling and cell cycle progression, but its molecular regulation is largely unknown. Here, we show that tumor necrosis factor alpha (TNF-α), a critical cytokine linked to the inflammatory response during skeletal muscle regeneration, suppressed Fbxl2 mRNA expression in C2C12 myoblasts and triggered significant alterations in cell cycle, metabolic, and protein translation processes. Gene silencing of Fbxl2 in skeletal myoblasts resulted in increased proliferative responses characterized by activation of mitogen-activated protein (MAP) kinases and nuclear factor kappa B and decreased myogenic differentiation, as reflected by reduced expression of myogenin and impaired myotube formation. TNF-α did not destabilize the Fbxl2 transcript (half-life [t1/2], ∼10 h) but inhibited SP1 transactivation of its core promoter, localized to bp -160 to +42 within the proximal 5' flanking region of the Fbxl2 gene. Chromatin immunoprecipitation and gel shift studies indicated that SP1 interacted with the Fbxl2 promoter during cellular differentiation, an effect that was less pronounced during proliferation or after TNF-α exposure. TNF-α, via activation of JNK, mediated phosphorylation of SP1 that impaired its binding to the Fbxl2 promoter, resulting in reduced transcriptional activity. The results suggest that SP1 transcriptional activation of Fbxl2 is required for skeletal muscle differentiation, a process that is interrupted by a key proinflammatory myopathic cytokine.IMPORTANCE Skeletal muscle regeneration and repair involve the recruitment and proliferation of resident satellite cells that exit the cell cycle during the process of myogenic differentiation to form myofibers. We demonstrate that the ubiquitin E3 ligase subunit FBXL2 is essential for skeletal myogenesis through its important effects on cell cycle progression and cell proliferative signaling. Further, we characterize a new mechanism whereby sustained stimulation by a major proinflammatory cytokine, TNF-α, regulates skeletal myogenesis by inhibiting the interaction of SP1 with the Fbxl2 core promoter in proliferating myoblasts. Our findings contribute to the understanding of skeletal muscle regeneration through the identification of Fbxl2 as both a critical regulator of myogenic proliferative processes and a susceptible gene target during inflammatory stimulation by TNF-α in skeletal muscle. Modulation of Fbxl2 activity may have relevance to disorders of muscle wasting associated with sustained proinflammatory signaling.
Collapse
Affiliation(s)
- Michael E O'Brien
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - James Londino
- Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart Lung Research Institute, Columbus, Ohio, USA
| | - Marcus McGinnis
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Jessica Adair
- Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart Lung Research Institute, Columbus, Ohio, USA
| | - Tomeka Suber
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valerian Kagan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kong Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bill Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jessica Bon
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K Mallampalli
- Pulmonary, Critical Care, and Sleep Medicine, The Ohio State University Wexner Medical Center, Davis Heart Lung Research Institute, Columbus, Ohio, USA
| |
Collapse
|
55
|
Wagatsuma A, Arakawa M, Matsumoto H, Matsuda R, Hoshino T, Mabuchi K. Cobalt chloride, a chemical hypoxia-mimicking agent, suppresses myoblast differentiation by downregulating myogenin expression. Mol Cell Biochem 2020; 470:199-214. [PMID: 32451753 DOI: 10.1007/s11010-020-03762-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/16/2020] [Indexed: 12/17/2022]
Abstract
Cobalt chloride can create hypoxia-like state in vitro (referred to as chemical hypoxia). Several studies have suggested that chemical hypoxia may cause deleterious effects on myogenesis. The intrinsic underlying mechanisms of myoblast differentiation, however, are not fully understood. Here, we show that cobalt chloride strongly suppresses myoblast differentiation in a dose-dependent manner. The impaired myoblast differentiation is accompanied by downregulation of myogenic regulatory factor myogenin. Under chemical hypoxia, myogenin stability is decreased at mRNA and protein levels. A muscle-specific E3 ubiquitin ligase MAFbx, which can target myogenin protein for proteasomal degradation, is upregulated along with changes in Akt/Foxo and AMPK/Foxo signaling pathways. A proteasome inhibitor completely prevents cobalt chloride-mediated decrease in myogenin protein. These results suggest that cobalt chloride might modulate myogenin expression at post-transcriptional and post-translational levels, resulting in the failure of the myoblasts to differentiate into myotubes.
Collapse
Affiliation(s)
- Akira Wagatsuma
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
- Department of Communication, Tokyo Women's Christian University, Tokyo, Japan.
| | - Masayuki Arakawa
- Institute of Microbial Chemistry, Biology Division, Laboratory of Virology, Tokyo, Japan
| | - Hanano Matsumoto
- Department of Food and Health Science, Faculty of Human Life Sciences, Jissen Women's University, Tokyo, Japan
| | - Ryoichi Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Hoshino
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Mabuchi
- Department of Information Physics and Computing, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
56
|
Abstract
Significance: Regular contractile activity plays a critical role in maintaining skeletal muscle morphological integrity and physiological function. If the muscle is forced to stop contraction, such as during limb immobilization (IM), the IGF/Akt/mTOR signaling pathway that normally stimulates protein synthesis and inhibits proteolysis will be suppressed, whereas the FoxO-controlled catabolic pathways such as ubiquitin-proteolysis and autophagy/mitophagy will be activated and dominate, resulting in muscle fiber atrophy. Recent Advances: Mitochondria occupy a central position in the regulation of both protein synthesis and degradation through several redox-sensitive pathways, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), mitochondrial fusion and fission proteins, mitophagy, and sirtuins. Prolonged IM downregulates PGC-1α due to AMPK (5'-AMP-activated protein kinase) and FoxO activation, thus decreasing mitochondrial biogenesis and causing oxidative damage. Decrease of mitochondrial inner membrane potential and increase of mitochondrial fission can trigger cascades of mitophagy leading to loss of mitochondrial homeostasis (mitostasis), inflammation, and apoptosis. The phenotypic outcomes of these disorders are compromised muscle function and fiber atrophy. Critical Issues: Given the molecular mechanism of the pathogenesis, it is imperative that the integrity of intracellular signaling be restored to prevent the deterioration. So far, overexpression of PGC-1α via transgene and in vivo DNA transfection has been found to be effective in ameliorating mitostasis and reduces IM-induced muscle atrophy. Nutritional supplementation of select amino acids and phytochemicals also provides mechanistic and practical insights into the prevention of muscle disuse atrophy. Future Directions: In light of the importance of mitochondria in regulating the various critical signaling pathways, future work should focus on exploring new epigenetic strategies to restore mitostasis and redox balance.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Dongwook Yeo
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Chounghun Kang
- Departmet Physical Education, Inha University, Incheon, South Korea
| |
Collapse
|
57
|
de la Vega E, González N, Cabezas F, Montecino F, Blanco N, Olguín H. USP7-dependent control of myogenin stability is required for terminal differentiation in skeletal muscle progenitors. FEBS J 2020; 287:4659-4677. [PMID: 32115872 DOI: 10.1111/febs.15269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022]
Abstract
Satellite cells (SCs) are myogenic progenitors responsible for skeletal muscle regeneration and maintenance. Upon activation, SCs enter a phase of robust proliferation followed by terminal differentiation. Underlying this myogenic progression, the sequential expression of muscle regulatory transcription factors (MRFs) and the downregulation of transcription factor paired box gene 7 (Pax7) are key steps regulating SC fate. In addition to transcriptional regulation, post-translational control of Pax7 and the MRFs provides another layer of spatiotemporal control to the myogenic process. In this context, previous work showed that Pax7 is ubiquitinated by the E3 ligase neural precursor cell-expressed developmentally downregulated protein 4 and interacts with several proteins related to the ubiquitin-proteasome system, including the deubiquitinase ubiquitin-specific protease 7 (USP7). Although USP7 functions in diverse cellular contexts, its role(s) during myogenesis remains poorly explored. Here, we show that USP7 is transiently expressed in adult muscle progenitors, correlating with the onset of myogenin expression, while it is downregulated in newly formed myotubes/myofibers. Acute inhibition of USP7 activity upon muscle injury results in persistent expression of early regeneration markers and a significant reduction in the diameter of regenerating myofibers. At the molecular level, USP7 downregulation or pharmacological inhibition impairs muscle differentiation by affecting myogenin stability. Co-immunoprecipitation and in vitro activity assays indicate that myogenin is a novel USP7 target for deubiquitination. These results suggest that USP7 regulates SC myogenic progression by enhancing myogenin stability.
Collapse
Affiliation(s)
- Eduardo de la Vega
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia González
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Cabezas
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián Montecino
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natasha Blanco
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo Olguín
- Laboratory of Tissue Repair and Adult Stem Cells, Molecular and Cell Biology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
58
|
Langendorf EK, Rommens PM, Drees P, Mattyasovszky SG, Ritz U. Detecting the Effects of the Glucocorticoid Dexamethasone on Primary Human Skeletal Muscle Cells-Differences to the Murine Cell Line. Int J Mol Sci 2020; 21:E2497. [PMID: 32260276 PMCID: PMC7177793 DOI: 10.3390/ijms21072497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle atrophy is characterized by a decrease in muscle fiber size as a result of a decreased protein synthesis, which leads to degradation of contractile muscle fibers. It can occur after denervation and immobilization, and glucocorticoids (GCs) may also increase protein breakdown contributing to the loss of muscle mass and myofibrillar proteins. GCs are already used in vitro to induce atrophic conditions, but until now no studies with primary human skeletal muscle existed. Therefore, this study deals with the effects of the GC dexamethasone (dex) on primary human myoblasts and myotubes. After incubation with 1, 10, and 100 µM dex for 48 and 72 h, gene and protein expression analyses were performed by qPCR and Western blot. Foxo, MuRF-1, and MAFbx were significantly upregulated by dex, and there was increased gene expression of myogenic markers. However, prolonged incubation periods demonstrated no Myosin protein degradation, but an increase of MuRF-1 expression. In conclusion, applying dex did not only differently affect primary human myoblasts and myotubes, as differences were also observed when compared to murine cells. Based on our findings, studies using cell lines or animal cells should be interpreted with caution as signaling transduction and functional behavior might differ in diverse species.
Collapse
Affiliation(s)
| | | | | | | | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (E.K.L.); (P.M.R.); (P.D.); (S.G.M.)
| |
Collapse
|
59
|
da Fonseca GWP, Farkas J, Dora E, von Haehling S, Lainscak M. Cancer Cachexia and Related Metabolic Dysfunction. Int J Mol Sci 2020; 21:ijms21072321. [PMID: 32230855 PMCID: PMC7177950 DOI: 10.3390/ijms21072321] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cachexia is a complex multifactorial syndrome marked by a continuous depletion of skeletal muscle mass associated, in some cases, with a reduction in fat mass. It is irreversible by nutritional support alone and affects up to 74% of patients with cancer-dependent on the underlying type of cancer-and is associated with physical function impairment, reduced response to cancer-related therapy, and higher mortality. Organs, like muscle, adipose tissue, and liver, play an important role in the progression of cancer cachexia by exacerbating the pro- and anti-inflammatory response initially activated by the tumor and the immune system of the host. Moreover, this metabolic dysfunction is produced by alterations in glucose, lipids, and protein metabolism that, when maintained chronically, may lead to the loss of skeletal muscle and adipose tissue. Although a couple of drugs have yielded positive results in increasing lean body mass with limited impact on physical function, a single therapy has not lead to effective treatment of this condition. Therefore, a multimodal intervention, including pharmacological agents, nutritional support, and physical exercise, may be a reasonable approach for future studies to better understand and prevent the wasting of body compartments in patients with cancer cachexia.
Collapse
Affiliation(s)
- Guilherme Wesley Peixoto da Fonseca
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo SP 05403-900, Brazil or
- Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), DE-37075 Goettingen, Germany
| | - Jerneja Farkas
- Research Unit, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
- National Institute of Public Health, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Eva Dora
- Division of Cardiology, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, University Medicine Göttingen (UMG), DE-37075 Goettingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Goettingen, DE-37099 Goettingen, Germany
- Correspondence: (S.v.H.); (M.L.); Tel.: +49-551-3920-911 (S.v.H.); +386-251-23-733 (M.L.); Fax: +49-551-3920-918 (S.v.H.); Fax: +386-252-11-007 (M.L.)
| | - Mitja Lainscak
- Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Division of Cardiology, General Hospital Murska Sobota, SI-9000 Murska Sobota, Slovenia;
- Correspondence: (S.v.H.); (M.L.); Tel.: +49-551-3920-911 (S.v.H.); +386-251-23-733 (M.L.); Fax: +49-551-3920-918 (S.v.H.); Fax: +386-252-11-007 (M.L.)
| |
Collapse
|
60
|
Biswas AK, Acharyya S. Cancer-Associated Cachexia: A Systemic Consequence of Cancer Progression. ANNUAL REVIEW OF CANCER BIOLOGY 2020; 4:391-411. [DOI: 10.1146/annurev-cancerbio-030419-033642] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Cancer is a life-threatening disease that has plagued humans for centuries. The vast majority of cancer-related mortality results from metastasis. Indeed, the invasive growth of metastatic cancer cells in vital organs causes fatal organ dysfunction, but metastasis-related deaths also result from cachexia, a debilitating wasting syndrome characterized by an involuntary loss of skeletal muscle mass and function. In fact, about 80% of metastatic cancer patients suffer from cachexia, which often renders them too weak to tolerate standard doses of anticancer therapies and makes them susceptible to death from cardiac and respiratory failure. The goals of this review are to highlight important findings that help explain how cancer-induced systemic changes drive the development of cachexia and to discuss unmet challenges and potential therapeutic strategies targeting cachexia to improve the quality of life and survival of cancer patients.
Collapse
Affiliation(s)
- Anup K. Biswas
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Swarnali Acharyya
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
61
|
Nakagawa T, Nakayama K, Nakayama KI. Knockout Mouse Models Provide Insight into the Biological Functions of CRL1 Components. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:147-171. [PMID: 31898227 DOI: 10.1007/978-981-15-1025-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CRL1 complex, also known as the SCF complex, is a ubiquitin ligase that in mammals consists of an adaptor protein (SKP1), a scaffold protein (CUL1), a RING finger protein (RBX1, also known as ROC1), and one of about 70 F-box proteins. Given that the F-box proteins determine the substrate specificity of the CRL1 complex, the variety of these proteins allows the generation of a large number of ubiquitin ligases that promote the degradation or regulate the function of many substrate proteins and thereby control numerous key cellular processes. The physiological and pathological functions of these many CRL1 ubiquitin ligases have been studied by the generation and characterization of knockout mouse models that lack specific CRL1 components. In this chapter, we provide a comprehensive overview of these mouse models and discuss the role of each CRL1 component in mouse physiology and pathology.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
62
|
Ji LL, Yeo D. Cellular mechanism of immobilization-induced muscle atrophy: A mini review. SPORTS MEDICINE AND HEALTH SCIENCE 2019; 1:19-23. [PMID: 35782462 PMCID: PMC9219315 DOI: 10.1016/j.smhs.2019.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
It is well-established that regular contraction maintains morphological and functional integrity of skeletal muscle, whereas rigorous exercise training can upregulate muscle metabolic and contractile function. However, when muscles stop contraction, such as during immobilization (IM) and denervation, withdrawal of IGF/Akt/mTOR signaling allows FoxO-controlled protein degradation pathways to dominate. Mitochondria play an important role in regulating both protein synthesis and degradation via several redox sensitive signaling pathways such as mitochondrial biogenesis, fusion and fission dynamics, ubiquitin-proteolysis, autophagy/mitophagy, and apoptosis. During prolonged IM, downregulation of PGC-1α and increased mitochondrial oxidative damage facilitate fission protein and inflammatory cytokine production and activate mitophagic process, leading to a vicious cycle of protein degradation. This “mitostasis theory of muscle atrophy” is the opposite pathway of hormesis, which defines enhanced muscle function with contractile overload. The demonstration that PGC-1α overexpression via transgene or in vivo DNA transfection can successfully restore mitochondrial homeostasis and reverse myocyte atrophy supports such a proposition. Understanding the mechanism governing mitostasis can be instrumental to the treatment of muscle atrophy associated with bedrest, cancer cachexia and sarcopenia.
Collapse
Affiliation(s)
- Li Li Ji
- Corresponding author. 111 Cooke Hall, 1900 University Avenue SE, Minneapolis, MN, 55455, USA.
| | | |
Collapse
|
63
|
Valladares-Ide D, Peñailillo L, Collao N, Marambio H, Deldicque L, Zbinden-Foncea H. Activation of protein synthesis, regeneration, and MAPK signaling pathways following repeated bouts of eccentric cycling. Am J Physiol Endocrinol Metab 2019; 317:E1131-E1139. [PMID: 31593504 DOI: 10.1152/ajpendo.00216.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this study was to examine the activation of skeletal muscle signaling pathways related to protein synthesis and the gene expression of regeneration/degradation markers following repeated bouts of eccentric cycling. Nine untrained men (25.4 ± 1.9 yr) performed two 30-min eccentric cycling bouts (ECC1, ECC2) at 85% of maximal concentric workload, separated by 2 wk. Muscle biopsies were taken from the vastus lateralis before and 2 h after each bout. Indirect markers of muscle damage were assessed before and 24-48 h after exercise. Changes in the Akt/mammalian target of rapamycin (mTOR)/rbosomal protein S6 kinase 1 (S6K1)/ribosomal protein S6 (rpS6) and MAPK signaling pathways were measured by Western blot and changes in mRNA expression of IL-6 and IL-1β, and myogenic regulatory factors (MRFs) were measured by real-time PCR. ECC1 induced greater increases in indirect markers of muscle damage compared with ECC2. Phosphorylation of S6K1 and rpS6 increased after both exercise bouts (P < 0.05), whereas phosphorylation of mTOR increased after ECC2 only (P = 0.03). Atrogin-1 mRNA expression decreased after ECC1 and ECC2 (P < 0.05) without changes in muscle RING-finger protein-1 mRNA. Basal mRNA levels of myoblast determination protein-1 (MyoD), MRF4, and myogenin were higher 2 wk after ECC1 (P < 0.05). MRF4 mRNA increased after ECC1 and ECC2 (P < 0.05), whereas MyoD mRNA expression increased only after ECC1 (P = 0.03). Phosphorylation of JNK and p38 MAPK increased after both exercise bouts (P < 0.05), similar to IL-6 and IL-1β mRNA expression. All together, these results suggest that differential regulation of the mTOR pathway and MRF expression could mediate the repeated bout effect observed between an initial and secondary bout of eccentric exercise.
Collapse
Affiliation(s)
- Denisse Valladares-Ide
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Luis Peñailillo
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Nicolás Collao
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Hugo Marambio
- Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| | - Louise Deldicque
- Institute of Neuroscience, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Hermann Zbinden-Foncea
- Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Centro de Salud Deportiva, Clínica Santa María, Santiago, Chile
| |
Collapse
|
64
|
Girgis CM, Cha KM, So B, Tsang M, Chen J, Houweling PJ, Schindeler A, Stokes R, Swarbrick MM, Evesson FJ, Cooper ST, Gunton JE. Mice with myocyte deletion of vitamin D receptor have sarcopenia and impaired muscle function. J Cachexia Sarcopenia Muscle 2019; 10:1228-1240. [PMID: 31225722 PMCID: PMC6903451 DOI: 10.1002/jcsm.12460] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND It has long been recognized that vitamin D deficiency is associated with muscle weakness and falls. Vitamin D receptor (VDR) is present at very low levels in normal muscle. Whether vitamin D plays a direct role in muscle function is unknown and is a subject of hot debate. Myocyte-specific deletion of VDR would provide a strategy to answer this question. METHODS Myocyte-specific vitamin D receptor (mVDR) null mice were generated by crossing human skeletal actin-Cre mice with floxed VDR mice. The effects of gene deletion on the muscle phenotype were studied in terms of body tissue composition, muscle tissue histology, and gene expression by real-time PCR. RESULTS Unlike whole-body VDR knockout mice, mVDR mice showed a normal body size. The mVDR showed a distinct muscle phenotype featuring reduced proportional lean mass (70% vs. 78% of lean mass), reduced voluntary wheel-running distance (22% decrease, P = 0.009), reduced average running speed, and reduced grip strength (7-16% reduction depending on age at testing). With their decreased voluntary exercise, and decreased lean mass, mVDR have increased proportional fat mass at 20% compared with 13%. Surprisingly, their muscle fibres showed slightly increased diameter, as well as the presence of angular fibres and central nuclei suggesting ongoing remodelling. There were, however, no clear changes in fibre type and there was no increase in muscle fibrosis. VDR is a transcriptional regulator, and changes in the expression of candidate genes was examined in RNA extracted from skeletal muscle. Alterations were seen in myogenic gene expression, and there was decreased expression of cell cycle genes cyclin D1, D2, and D3 and cyclin-dependent kinases Cdk-2 and Cdk-4. Expression of calcium handling genes sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCA) Serca2b and Serca3 was decreased and Calbindin mRNA was lower in mVDR muscle. CONCLUSIONS This study demonstrates that vitamin D signalling is needed for myocyte function. Despite the low level of VDR protein normally found muscle, deleting myocyte VDR had important effects on muscle size and strength. Maintenance of normal vitamin D signalling is a useful strategy to prevent loss of muscle function and size.
Collapse
Affiliation(s)
- Christian M Girgis
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, New South Wales, Australia.,Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Department of Diabetes and Endocrinology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Kuan Minn Cha
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin So
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Tsang
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer Chen
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter J Houweling
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Aaron Schindeler
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Orthopaedic Research and Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Westmead, Australia
| | - Rebecca Stokes
- The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Michael M Swarbrick
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Frances J Evesson
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, The Discipline of Child and Adolescent Health, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Sandra T Cooper
- Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Kids Neuroscience Centre, The Children's Hospital at Westmead, The Discipline of Child and Adolescent Health, Children's Medical Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jenny E Gunton
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, New South Wales, Australia.,Faculty of Health and Medicine, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia.,Division of Immunology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
65
|
Lipid accumulation and mitochondrial abnormalities are associated with fiber atrophy in the skeletal muscle of rats with collagen-induced arthritis. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158574. [PMID: 31747539 DOI: 10.1016/j.bbalip.2019.158574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) has a negative impact on muscle mass, and reduces patient's mobility and autonomy. Furthermore, RA is associated with metabolic comorbidities, notably in lipid homeostasis by unknown mechanisms. To understand the links between the loss in muscle mass and the metabolic abnormalities, arthritis was induced in male Sprague Dawley rats (n = 11) using the collagen-induced arthritis model. Rats immunized with bovine type II collagen were compared to a control group of animals (n = 11) injected with acetic acid and complete Freund's adjuvant. The clinical severity of the ensuing arthritis was evaluated weekly by a semi-quantitative score. Skeletal muscles from the hind limb were used for the histological analysis and exploration of mitochondrial activity, lipid accumulation, metabolism and regenerative capacities. A significant atrophy in tibialis anterior muscle fibers was observed in the arthritic rats despite a non-significant decrease in the weight of the muscles. Despite moderate inflammation, accumulation of triglycerides (P < 0.05), reduced mitochondrial DNA copy number (P < 0.05) and non-significant dysfunction in mitochondrial cytochrome c oxidase activity were found in the gastrocnemius muscle. Concomitantly, our results suggested an activation of the muscle specific E3 ubiquitin ligases MuRF-1 and MAFbx. Finally, the adipose tissue from the arthritic rats exhibited decreased PPARγ mRNA suggesting reduced adipogenic capacities. In conclusion, the reduced adipose tissue adipogenic capacity and skeletal muscle mitochondrial capacity are probably involved in the activation of protein catabolism, inhibition of myogenesis, accumulation of lipids and fiber atrophy in the skeletal muscle during RA.
Collapse
|
66
|
Ramesh M, Campos JC, Lee P, Song Y, Hernandez G, Sin J, Tucker KC, Saadaeijahromi H, Gurney M, Ferreira JCB, Andres AM. Mitophagy protects against statin-mediated skeletal muscle toxicity. FASEB J 2019; 33:11857-11869. [PMID: 31365836 PMCID: PMC6902735 DOI: 10.1096/fj.201900807rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
The deleterious effects of statins on skeletal muscle are well known, but the mechanism associated with these effects remains unresolved. Statins are associated with mitochondrial damage, which may contribute to muscle myopathy. Here we demonstrate that simvastatin induces mitophagy in skeletal muscle cells and hypothesized that attenuating this process by silencing the mitophagy adapter p62/sequestosome-1 (SQSTM1) might mitigate myotoxicity. Surprisingly, silencing p62/SQSTM1 in differentiated C2C12 muscle cells exacerbated rather than attenuated myotoxicity. This inhibition of mitophagy in the face of statin challenge correlated with increased release of cytochrome c to the cytosol, activation of caspase-3, and lactate dehydrogenase (LDH) release. Correspondingly, targeted knockdown of Parkin, a canonical E3 ubiquitin ligase important for mitophagy, mirrored the effects of p62/SQSTM1 silencing. To corroborate these findings in vivo, we treated Parkin knockout mice with simvastatin for 2 wk. In line with our findings in vitro, these mitophagy-compromised mice displayed reduced spontaneous activity, loss of grip strength, and increased circulating levels of muscle damage marker LDH. Our findings demonstrate that mitophagy is an important mechanism to resist statin-induced skeletal muscle damage.-Ramesh, M., Campos, J. C., Lee, P., Song, Y., Hernandez, G., Sin, J., Tucker, K. C., Saadaeijahromi, H., Gurney, M., Ferreira, J. C. B., Andres, A. M. Mitophagy protects against statin-mediated skeletal muscle toxicity.
Collapse
Affiliation(s)
- Mridula Ramesh
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | - Juliane C. Campos
- Cedars-Sinai Medical Center, Los Angeles, California, USA
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Pamela Lee
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | - Yang Song
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Genaro Hernandez
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | - Jon Sin
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kyle C. Tucker
- Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Michael Gurney
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, California, USA
| | | | | |
Collapse
|
67
|
Shen S, Yu H, Gan L, Ye Y, Lin L. Natural constituents from food sources: potential therapeutic agents against muscle wasting. Food Funct 2019; 10:6967-6986. [PMID: 31599912 DOI: 10.1039/c9fo00912d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skeletal muscle wasting is highly correlated with not only reduced quality of life but also higher morbidity and mortality. Although an increasing number of patients are suffering from various kinds of muscle atrophy and weakness, there is still no effective therapy available, and skeletal muscle is considered as an under-medicated organ. Food provided not only essential macronutrients but also functional substances involved in the modulation of the physiological systems of our body. Natural constituents from commonly consumed dietary plants, either extracts or compounds, have attracted more and more attention to be developed as agents for preventing and treating muscle wasting due to their safety and effectiveness, as well as structural diversity. This review provides an overview of the mechanistic aspects of muscle wasting, and summarizes the extracts and compounds from food sources as potential therapeutic agents against muscle wasting.
Collapse
Affiliation(s)
- Shengnan Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Lishe Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Ye
- State Key Laboratory of Drug Research, and Natural Products Chemistry Department, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
68
|
Abstract
It is well established that mitochondria play a critical role in the metabolic and physiological adaptation of skeletal muscle to enhanced contractile activity. Several redox-sensitive signaling pathways such as PGC-1α, AMPK, IGF/Akt/mTOR, SIRT, NFκB, and FoxO are involved with extensive crosstalk to regulate vital cellular functions such as mitochondrial biogenesis, mitochondrial fusion and fission dynamics, autophagy/mitophagy, and apoptosis under altered demand and stress. However, when muscles cease contraction, such as during immobilization and denervation, mitochondria undergo a series of detrimental changes characterized by downregulation of PGC-1α and antioxidant defense, increased ROS generation, activated FoxO, NFκB, and inflammation, enhanced ubiquitination, and finally mitophagy and apoptotic cascades. The phenotypic outcome of the discord of mitochondrial homeostasis is elevated proteolysis and muscle atrophy. The demonstration that PGC-1α overexpression via transgene or in vivo DNA transfection can restore mitochondrial homeostasis and reverse myocyte atrophy supports the "mitostasis theory of muscle atrophy".
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Dongwook Yeo
- The Laboratory of Physiological Hygiene and Exercise Science, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| |
Collapse
|
69
|
Partial Inhibition of mTORC1 in Aged Rats Counteracts the Decline in Muscle Mass and Reverses Molecular Signaling Associated with Sarcopenia. Mol Cell Biol 2019; 39:MCB.00141-19. [PMID: 31308131 PMCID: PMC6751631 DOI: 10.1128/mcb.00141-19] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022] Open
Abstract
There is a lack of pharmacological interventions available for sarcopenia, a progressive age-associated loss of muscle mass, leading to a decline in mobility and quality of life. We found mTORC1 (mammalian target of rapamycin complex 1), a well-established positive modulator of muscle mass, to be surprisingly hyperactivated in sarcopenic muscle. There is a lack of pharmacological interventions available for sarcopenia, a progressive age-associated loss of muscle mass, leading to a decline in mobility and quality of life. We found mTORC1 (mammalian target of rapamycin complex 1), a well-established positive modulator of muscle mass, to be surprisingly hyperactivated in sarcopenic muscle. Furthermore, partial inhibition of the mTORC1 pathway counteracted sarcopenia, as determined by observing an increase in muscle mass and fiber type cross-sectional area in select muscle groups, again surprising because mTORC1 signaling has been shown to be required for skeletal muscle mass gains in some models of hypertrophy. Additionally, several genes related to senescence were downregulated and gene expression indicators of neuromuscular junction denervation were diminished using a low dose of a “rapalog” (a pharmacological agent related to rapamycin). Therefore, partial mTORC1 inhibition may delay the progression of sarcopenia by directly and indirectly modulating multiple age-associated pathways, implicating mTORC1 as a therapeutic target to treat sarcopenia.
Collapse
|
70
|
Li J, Hu Y, Li L, Wang Y, Li Q, Feng C, Lan H, Gu X, Zhao Y, Larsson M, Hu X, Li N. A Discovery of a Genetic Mutation Causing Reduction of Atrogin-1 Expression in Broiler Chicken Muscle. Front Genet 2019; 10:716. [PMID: 31475031 PMCID: PMC6704234 DOI: 10.3389/fgene.2019.00716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022] Open
Abstract
Chickens are bred all over the world and have significant economic value as one of the major agricultural animals. The growth rate of commercial broiler chickens is several times higher than its Red Jungle fowl (RJF) ancestor. To further improve the meat production of commercial chickens, it is quite important to decipher the genetic mechanism of chicken growth traits. In this study, we found that broiler chickens exhibited lower levels of E3 ubiquitin ligase muscle atrophy F-box (MAFbx or Atrogin-1) relative to its RJF ancestor. As a ubiquitin ligase, Atrogin-1 plays a crucial role in muscle development in which its up-regulation often indicates the activation of muscle atrophic pathways. Here, we showed that the Atrogin-1 expression variance partly affects chicken muscle growth rates among different breeds. Furthermore, we demonstrated that the reduced expression of Atrogin-1 in broiler chickens was ascribed to a single nucleotide polymorphism (SNP), which inhibited the binding of transcription regulators and attenuated the enhancer activity. The decreased Atrogin-1 in broiler chickens suppresses the catabolism of muscle protein and preserves muscle mass. Our study facilitates the understanding of the molecular mechanism of chicken muscle development and has a high translational impact in chicken breeding.
Collapse
Affiliation(s)
- Jinxiu Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yiqing Hu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Li Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yuzhe Wang
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Qinghe Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Chungang Feng
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - He Lan
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Xiaorong Gu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Mårten Larsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Xiaoxiang Hu
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratories of Agro-biotechnology, College of Biological Science, China Agricultural University, Beijing, China.,National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
71
|
Abstract
Skeletal muscle atrophy is a common side effect of most human diseases. Muscle loss is not only detrimental for the quality of life but it also dramatically impairs physiological processes of the organism and decreases the efficiency of medical treatments. While hypothesized for years, the existence of an atrophying programme common to all pathologies is still incompletely solved despite the discovery of several actors and key regulators of muscle atrophy. More than a decade ago, the discovery of a set of genes, whose expression at the mRNA levels were similarly altered in different catabolic situations, opened the way of a new concept: the presence of atrogenes, i.e. atrophy-related genes. Importantly, the atrogenes are referred as such on the basis of their mRNA content in atrophying muscles, the regulation at the protein level being sometimes more complicate to elucidate. It should be noticed that the atrogenes are markers of atrophy and that their implication as active inducers of atrophy is still an open question for most of them. While the atrogene family has grown over the years, it has mostly been incremented based on data coming from rodent models. Whether the rodent atrogenes are valid for humans still remain to be established. An "atrogene" was originally defined as a gene systematically up- or down-regulated in several catabolic situations. Even if recent works often restrict this notion to the up-regulation of a limited number of proteolytic enzymes, it is important to keep in mind the big picture view. In this review, we provide an update of the validated and potential rodent atrogenes and the metabolic pathways they belong, and based on recent work, their relevance in human physio-pathological situations. We also propose a more precise definition of the atrogenes that integrates rapid recovery when catabolic stimuli are stopped or replaced by anabolic ones.
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France.
| | - Cécile Polge
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| |
Collapse
|
72
|
Ninfali C, Siles L, Darling DS, Postigo A. Regulation of muscle atrophy-related genes by the opposing transcriptional activities of ZEB1/CtBP and FOXO3. Nucleic Acids Res 2019; 46:10697-10708. [PMID: 30304480 PMCID: PMC6237734 DOI: 10.1093/nar/gky835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/09/2018] [Indexed: 01/01/2023] Open
Abstract
Multiple physiopathological and clinical conditions trigger skeletal muscle atrophy through the induction of a group of proteins (atrogenes) that includes components of the ubiquitin–proteasome and autophagy-lysosomal systems. Atrogenes are induced by FOXO transcription factors, but their regulation is still not fully understood. Here, we showed that the transcription factor ZEB1, best known for promoting tumor progression, inhibits muscle atrophy and atrogene expression by antagonizing FOXO3-mediated induction of atrogenes. Compared to wild-type counterparts, hindlimb immobilization in Zeb1-deficient mice resulted in enhanced muscle atrophy and higher expression of a number of atrogenes, including Atrogin-1/Fbxo32, MuRF1/Trim63, Ctsl, 4ebp1, Gabarapl1, Psma1 and Nrf2. Likewise, in the C2C12 myogenic cell model, ZEB1 knockdown augmented both myotube diameter reduction and atrogene upregulation in response to nutrient deprivation. Mechanistically, ZEB1 directly represses in vitro and in vivo Fbxo32 and Trim63 promoter transcription in a stage-dependent manner and in a reverse pattern with MYOD1. ZEB1 bound to the Fbxo32 promoter in undifferentiated myoblasts and atrophic myotubes, but not in non-atrophic myotubes, where it is displaced by MYOD1. ZEB1 repressed both promoters through CtBP-mediated inhibition of FOXO3 transcriptional activity. These results set ZEB1 as a new target in therapeutic approaches to clinical conditions causing muscle mass loss.
Collapse
Affiliation(s)
- Chiara Ninfali
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain
| | - Laura Siles
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain
| | - Douglas S Darling
- Center for Genetics and Molecular Medicine and Department of Immunology and Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| | - Antonio Postigo
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona 08036, Spain.,Molecular Targets Program, James G. Brown Cancer Center, Louisville, KY 40202, USA.,ICREA, Barcelona 08010, Spain
| |
Collapse
|
73
|
Rao VV, Sangiah U, Mary KA, Akira S, Mohanty A. Role of Akirin1 in the regulation of skeletal muscle fiber-type switch. J Cell Biochem 2019; 120:11284-11304. [PMID: 30746755 DOI: 10.1002/jcb.28406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/19/2018] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
Akirin1 is a highly conserved ubiquitously expressed nuclear protein. Owing to its strong nuclear localization signal and protein-protein interaction properties, Akirin1 has been speculated to regulate transcription of target genes as a cofactor. Previous studies have reported Akirin1 as a downstream target of myostatin, a potent negative regulator of myogenesis. Mice lacking myostatin displayed enhanced Akirin1 gene expression. Further, in vitro evidence has shown Akirin1 overexpression leads to hypertrophy in C2 C 12 myotubes. In this study, we used Akirin1 knockout mice as a model system to further elucidate the function of Akirin1 in fully differentiated skeletal muscle. Akirin1 knockout mice did not show any obvious phenotypic difference when compared with wild type. However, promoter-reporter assay suggested that Akirin1 regulated the transcription of muscle-specific RING finger 1 (MuRF-1), an important E3 ubiquitin ligase in skeletal muscle. Furthermore, ablation of Akirin1 resulted in increased type IIa and decreased type I muscle fibers, which was further supported by an increase in Myh2 and decrease in Myh7 gene expression. Also, histochemical studies for succinate dehydrogenase activity revealed a less oxidative muscle in the absence of Akirin1. Together, our study suggests a novel role of Akirin1 in maintaining the muscle fiber type and regulation of the metabolic activity of the skeletal muscle.
Collapse
Affiliation(s)
- Vanitha Venkoba Rao
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Umamaheswari Sangiah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kavitha Arockia Mary
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shizuo Akira
- Department of Host Defense, Osaka University, Suita, Japan
| | - Abhishek Mohanty
- Department of Molecular Oncology, MVR Cancer Center and Research Institute, Kozhikode, India
| |
Collapse
|
74
|
Seaborne RA, Hughes DC, Turner DC, Owens DJ, Baehr LM, Gorski P, Semenova EA, Borisov OV, Larin AK, Popov DV, Generozov EV, Sutherland H, Ahmetov II, Jarvis JC, Bodine SC, Sharples AP. UBR5 is a novel E3 ubiquitin ligase involved in skeletal muscle hypertrophy and recovery from atrophy. J Physiol 2019; 597:3727-3749. [PMID: 31093990 DOI: 10.1113/jp278073] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/10/2019] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS We have recently identified that a HECT domain E3 ubiquitin ligase, named UBR5, is altered epigenetically (via DNA methylation) after human skeletal muscle hypertrophy, where its gene expression is positively correlated with increasing lean leg mass after training and retraining. In the present study we extensively investigate this novel and uncharacterised E3 ubiquitin ligase (UBR5) in skeletal muscle atrophy, recovery from atrophy and injury, anabolism and hypertrophy. We demonstrated that UBR5 was epigenetically altered via DNA methylation during recovery from atrophy. We also determined that UBR5 was alternatively regulated versus well characterised E3 ligases, MuRF1/MAFbx, at the gene expression level during atrophy, recovery from atrophy and hypertrophy. UBR5 also increased at the protein level during recovery from atrophy and injury, hypertrophy and during human muscle cell differentiation. Finally, in humans, genetic variations of the UBR5 gene were strongly associated with larger fast-twitch muscle fibres and strength/power performance versus endurance/untrained phenotypes. ABSTRACT We aimed to investigate a novel and uncharacterized E3 ubiquitin ligase in skeletal muscle atrophy, recovery from atrophy/injury, anabolism and hypertrophy. We demonstrated an alternate gene expression profile for UBR5 vs. well characterized E3-ligases, MuRF1/MAFbx, where, after atrophy evoked by continuous-low-frequency electrical-stimulation in rats, MuRF1/MAFbx were both elevated, yet UBR5 was unchanged. Furthermore, after recovery of muscle mass post TTX-induced atrophy in rats, UBR5 was hypomethylated and increased at the gene expression level, whereas a suppression of MuRF1/MAFbx was observed. At the protein level, we also demonstrated a significant increase in UBR5 after recovery of muscle mass from hindlimb unloading in both adult and aged rats, as well as after recovery from atrophy evoked by nerve crush injury in mice. During anabolism and hypertrophy, UBR5 gene expression increased following acute loading in three-dimensional bioengineered mouse muscle in vitro, and after chronic electrical stimulation-induced hypertrophy in rats in vivo, without increases in MuRF1/MAFbx. Additionally, UBR5 protein abundance increased following functional overload-induced hypertrophy of the plantaris muscle in mice and during differentiation of primary human muscle cells. Finally, in humans, genetic association studies (>700,000 single nucleotide polymorphisms) demonstrated that the A alleles of rs10505025 and rs4734621 single nucleotide polymorphisms in the UBR5 gene were strongly associated with larger cross-sectional area of fast-twitch muscle fibres and favoured strength/power vs. endurance/untrained phenotypes. Overall, we suggest that: (i) UBR5 comprises a novel E3 ubiquitin ligase that is inversely regulated to MuRF1/MAFbx; (ii) UBR5 is epigenetically regulated; and (iii) UBR5 is elevated at both the gene expression and protein level during recovery from skeletal muscle atrophy and hypertrophy.
Collapse
Affiliation(s)
- Robert A Seaborne
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK.,Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David C Hughes
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Daniel C Turner
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Daniel J Owens
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Leslie M Baehr
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Piotr Gorski
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| | - Ekaterina A Semenova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Oleg V Borisov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Bonn, Germany
| | - Andrey K Larin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Edward V Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Hazel Sutherland
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ildus I Ahmetov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.,Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.,Department of Physical Education, Plekhanov Russian University of Economics, Moscow, Russia.,Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jonathan C Jarvis
- Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Sue C Bodine
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adam P Sharples
- Stem Cells, Ageing and Molecular Physiology Unit, Exercise Metabolism and Adaptation Research Group, Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Institute for Science and Technology in Medicine (ISTM), School of Medicine, Keele University, Keele, UK
| |
Collapse
|
75
|
Recent Data on Cellular Component Turnover: Focus on Adaptations to Physical Exercise. Cells 2019; 8:cells8060542. [PMID: 31195688 PMCID: PMC6627613 DOI: 10.3390/cells8060542] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 12/22/2022] Open
Abstract
Significant progress has expanded our knowledge of the signaling pathways coordinating muscle protein turnover during various conditions including exercise. In this manuscript, the multiple mechanisms that govern the turnover of cellular components are reviewed, and their overall roles in adaptations to exercise training are discussed. Recent studies have highlighted the central role of the energy sensor (AMP)-activated protein kinase (AMPK), forkhead box class O subfamily protein (FOXO) transcription factors and the kinase mechanistic (or mammalian) target of rapamycin complex (MTOR) in the regulation of autophagy for organelle maintenance during exercise. A new cellular trafficking involving the lysosome was also revealed for full activation of MTOR and protein synthesis during recovery. Other emerging candidates have been found to be relevant in organelle turnover, especially Parkin and the mitochondrial E3 ubiquitin protein ligase (Mul1) pathways for mitochondrial turnover, and the glycerolipids diacylglycerol (DAG) for protein translation and FOXO regulation. Recent experiments with autophagy and mitophagy flux assessment have also provided important insights concerning mitochondrial turnover during ageing and chronic exercise. However, data in humans are often controversial and further investigations are needed to clarify the involvement of autophagy in exercise performed with additional stresses, such as hypoxia, and to understand the influence of exercise modality. Improving our knowledge of these pathways should help develop therapeutic ways to counteract muscle disorders in pathological conditions.
Collapse
|
76
|
Song Y, Lin M, Liu Y, Wang ZW, Zhu X. Emerging role of F-box proteins in the regulation of epithelial-mesenchymal transition and stem cells in human cancers. Stem Cell Res Ther 2019; 10:124. [PMID: 30999935 PMCID: PMC6472071 DOI: 10.1186/s13287-019-1222-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence shows that epithelial-mesenchymal transition (EMT) plays a crucial role in tumor invasion, metastasis, cancer stem cells, and drug resistance. Data obtained thus far have revealed that F-box proteins are critically involved in the regulation of the EMT process and stem cell differentiation in human cancers. In this review, we will briefly describe the role of EMT and stem cells in cell metastasis and drug resistance. We will also highlight how numerous F-box proteins govern the EMT process and stem cell survival by controlling their downstream targets. Additionally, we will discuss whether F-box proteins involved in drug resistance are associated with EMT and cancer stem cells. Targeting these F-box proteins might be a potential therapeutic strategy to reverse EMT and inhibit cancer stem cells and thus overcome drug resistance in human cancers.
Collapse
Affiliation(s)
- Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
77
|
Samant SA, Pillai VB, Gupta MP. Cellular mechanisms promoting cachexia and how they are opposed by sirtuins 1. Can J Physiol Pharmacol 2019; 97:235-245. [PMID: 30407871 DOI: 10.1139/cjpp-2018-0479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many chronic diseases are associated with unintentional loss of body weight, which is termed "cachexia". Cachexia is a complex multifactorial syndrome associated with the underlying primary disease, and characterized by loss of skeletal muscle with or without loss of fat tissue. Patients with cachexia face dire symptoms like dyspnea, fatigue, edema, exercise intolerance, and low responsiveness to medical therapy, which worsen quality of life. Because cachexia is not a stand-alone disorder, treating primary disease - such as cancer - takes precedence for the physician, and it remains mostly a neglected illness. Existing clinical trials have demonstrated limited success mostly because of their monotherapeutic approach and late detection of the syndrome. To conquer cachexia, it is essential to identify as many molecular targets as possible using the latest technologies we have at our disposal. In this review, we have discussed different aspects of cachexia, which include various disease settings, active molecular pathways, and recent novel advances made in this field to understand consequences of this illness. We also discuss roles of the sirtuins, the NAD+-dependent lysine deacetylases, microRNAs, certain dietary options, and epigenetic drugs as potential approaches, which can be used to tackle cachexia as early as possible in its course.
Collapse
Affiliation(s)
- Sadhana A Samant
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Vinodkumar B Pillai
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mahesh P Gupta
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
- Department of Surgery, Committee on Molecular and Cellular Physiology, Biological Sciences Division, Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
78
|
Rohm M, Zeigerer A, Machado J, Herzig S. Energy metabolism in cachexia. EMBO Rep 2019; 20:embr.201847258. [PMID: 30890538 DOI: 10.15252/embr.201847258] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
Cachexia is a wasting disorder that accompanies many chronic diseases including cancer and results from an imbalance of energy requirements and energy uptake. In cancer cachexia, tumor-secreted factors and/or tumor-host interactions cause this imbalance, leading to loss of adipose tissue and skeletal and cardiac muscle, which weakens the body. In this review, we discuss how energy enters the body and is utilized by the different organs, including the gut, liver, adipose tissue, and muscle, and how these organs contribute to the energy wasting observed in cachexia. We also discuss futile cycles both between the organs and within the cells, which are often used to fine-tune energy supply under physiologic conditions. Ultimately, understanding the complex interplay of pathologic energy-wasting circuits in cachexia can bring us closer to identifying effective treatment strategies for this devastating wasting disease.
Collapse
Affiliation(s)
- Maria Rohm
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Juliano Machado
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany.,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany .,Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine I, Heidelberg University Hospital, Heidelberg, Germany.,Chair Molecular Metabolic Control, Technical University Munich, Munich, Germany
| |
Collapse
|
79
|
Changchien CY, Lin YH, Cheng YC, Chang HH, Peng YS, Chen Y. Indoxyl sulfate induces myotube atrophy by ROS-ERK and JNK-MAFbx cascades. Chem Biol Interact 2019; 304:43-51. [PMID: 30849338 DOI: 10.1016/j.cbi.2019.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 01/05/2023]
Abstract
Accumulations of uremic toxins has been widely recognized as the major trigger of skeletal muscle loss in chronic kidney disease (CKD), which is defined as uremic sarcopenia. Current study was aimed to examine the effects of representative uremic toxin, indoxyl sulfate (IS), on C2C12 myotubes. The incubation of IS (from 0.1 mM to 1.2 mM) exerted the reduction in myotube diameter without cell survival impairment. Elevated oxidative stress and mitogen-activated protein kinase (MAPKs) phosphorylation were observed after IS stimulation for 1 and 24 h. After N-acetylcysteine (NAC) treatment as antioxidants, the recovery in IS-induced decrease myotube diameter and ERK phosphorylation was observed. This findings were implicit the transduction of p-ERK in IS-induced ROS toxicity. Moreover, the increase of LC3β was found closely with IS treatment in C2C12 myotubes. The reverse effect of NAC on LC3β expression revealed the ROS-responsibility in autophagy regulation of CKD myopathy. The evaluation of IS-treated proteasome system showed increased phospho-myosin light chain, along with the upregulation of muscle atrophy F-box (MAFbx) mRNA and protein. This alteration in MAFbx was also identified in nephrectomy-induced CKD model. Besides, the inhibition of p-JNK was capable to attenuate IS-induced upward change in MAFbx protein expression. These findings indicated that IS-mediated myotube atrophy may manipulate through ROS-ERK axis and JNK-MAFbx regulation in C2C12 cells.
Collapse
Affiliation(s)
- Chih-Ying Changchien
- Dispensary of 3rd Wing, Air Force, Taichung, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Hsuan Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Cheng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Han Chang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Sen Peng
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; College of Electrical and Communication Engineering, Yuan Ze University, Taoyuan City, Taiwan.
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
80
|
Vélez EJ, Balbuena-Pecino S, Capilla E, Navarro I, Gutiérrez J, Riera-Codina M. Effects of β2-adrenoceptor agonists on gilthead sea bream (Sparus aurata) cultured muscle cells. Comp Biochem Physiol A Mol Integr Physiol 2019; 227:179-193. [DOI: 10.1016/j.cbpa.2018.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 01/15/2023]
|
81
|
Saavedra P, Perrimon N. Drosophila as a Model for Tumor-Induced Organ Wasting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:191-205. [PMID: 31520356 DOI: 10.1007/978-3-030-23629-8_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In humans, cancer-associated cachexia is a complex syndrome that reduces the overall quality of life and survival of cancer patients, particularly for those undergoing chemotherapy. The most easily observable sign of cachexia is organ wasting, the dramatic loss of skeletal muscle and adipose tissue mass. Estimates suggest that 80% of patients in advanced stages of cancer show signs of the syndrome and about 20% of cancer patients die directly of cachexia. Because there is no treatment or drug available to ameliorate organ wasting induced by cancer, cachexia is a relevant clinical problem. However, it is unclear how cachexia is mediated, what factors drive interactions between tumors and host tissues, and which markers of cachexia might be used to allow early detection before the observable signs of organ wasting. In this chapter, we review the current mammalian models of cachexia and the need to use new models of study. We also explain recent developments in Drosophila as a model for studying organ wasting induced by tumors and how fly studies can help unravel important mechanisms that drive cachexia. In particular, we discuss what lessons have been learned from tumor models recently reported to induce systemic organ wasting in Drosophila.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. .,Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
82
|
Vassilakos G, Barton ER. Insulin-Like Growth Factor I Regulation and Its Actions in Skeletal Muscle. Compr Physiol 2018; 9:413-438. [PMID: 30549022 DOI: 10.1002/cphy.c180010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) pathway is essential for promoting growth and survival of virtually all tissues. It bears high homology to its related protein insulin, and as such, there is an interplay between these molecules with regard to their anabolic and metabolic functions. Skeletal muscle produces a significant proportion of IGF-1, and is highly responsive to its actions, including increased muscle mass and improved regenerative capacity. In this overview, the regulation of IGF-1 production, stability, and activity in skeletal muscle will be described. Second, the physiological significance of the forms of IGF-1 produced will be discussed. Last, the interaction of IGF-1 with other pathways will be addressed. © 2019 American Physiological Society. Compr Physiol 9:413-438, 2019.
Collapse
Affiliation(s)
- Georgios Vassilakos
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
83
|
Bouchè M, Lozanoska-Ochser B, Proietti D, Madaro L. Do neurogenic and cancer-induced muscle atrophy follow common or divergent paths? Eur J Transl Myol 2018; 28:7931. [PMID: 30662704 PMCID: PMC6317130 DOI: 10.4081/ejtm.2018.7931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/05/2018] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is a dynamic tissue capable of responding to a large variety of physiological stimuli by adjusting muscle fiber size, metabolism and function. However, in pathological conditions such as cancer and neural disorders, this finely regulated homeostasis is impaired leading to severe muscle wasting, reduced muscle fiber size (atrophy), and impaired function. These disease features develop due to enhanced protein breakdown, which relies on two major degradation systems: the ubiquitin-proteasome and the autophagy-lysosome. These systems are independently regulated by different signalling pathways, which in physiological conditions, determine protein and organelle turnover. However, alterations in one or both systems, as it happens in several disorders, leads to enhanced protein breakdown and muscle atrophy. Although this is a common feature in the different types of muscle atrophy, the relative contribution of each of these systems is still under debate. Here, we will briefly describe the regulation and the activity of the ubiquitin-proteasome and the autophagy-lysosome systems during muscle wasting. We will then discuss what we know regarding how these pathways are involved in cancer induced and in neurogenic muscle atrophy, highlighting common and divergent paths. It is now clear that there is no one unifying common mechanism that can be applied to all models of muscle loss. Detailed understanding of the pathways and proteolysis mechanisms involved in each model will hopefully help the development of drugs to counteract muscle wasting in specific conditions.
Collapse
Affiliation(s)
- Marina Bouchè
- DAHFMO, Unit of Histology, Sapienza University of Rome, 00161 Rome, Italy.,Interuniversity Institute of Myology, Italy
| | | | - Daisy Proietti
- DAHFMO, Unit of Histology, Sapienza University of Rome, 00161 Rome, Italy.,IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Luca Madaro
- IRCCS, Fondazione Santa Lucia, Rome, Italy.,Interuniversity Institute of Myology, Italy
| |
Collapse
|
84
|
Upregulation of Heme Oxygenase-1 by Hemin Alleviates Sepsis-Induced Muscle Wasting in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8927104. [PMID: 30533176 PMCID: PMC6250022 DOI: 10.1155/2018/8927104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 11/18/2022]
Abstract
Hemin, an inducer of heme oxygenase-1 (HO-1), can enhance the activation of HO-1. HO-1 exhibits a variety of activities, such as anti-inflammatory, antioxidative, and antiapoptotic functions. The objective of this study was to investigate the effects of hemin on sepsis-induced skeletal muscle wasting and to explore the mechanisms by which hemin exerts its effects. Cecal ligation and perforation (CLP) was performed to create a sepsis mouse model. Mice were randomly divided into four groups: control, CLP, CLP plus group, and CLP-hemin-ZnPP (a HO-1 inhibitor). The weight of the solei from the mice was measured, and histopathology was examined. Cytokines were measured by enzyme-linked immunosorbent assay (ELISA). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting were used to assess the expression levels of HO-1 and atrogin-1. Furthermore, we investigated the antioxidative effects of HO-1 by detecting malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity. CLP led to dramatic skeletal muscle weakness and atrophy, but pretreatment with hemin protected mice against CLP-mediated muscle atrophy. Hemin also induced high HO-1 expression, which resulted in suppressed proinflammatory cytokine and reactive oxygen species (ROS) production. The expression of MuRF1 and atrogin-1, two ubiquitin ligases of the ubiquitin-proteasome system- (UPS-) mediated proteolysis, was also inhibited by increased HO-1 levels. Hemin-mediated increases in HO-1 expression exert protective effects on sepsis-induced skeletal muscle atrophy at least partly by inhibiting the expression of proinflammatory cytokines, UPS-mediated proteolysis, and ROS activation. Therefore, hemin might be a new treatment target against sepsis-induced skeletal muscle atrophy.
Collapse
|
85
|
Endogenous muscle atrophy F-box is involved in the development of cardiac rupture after myocardial infarction. J Mol Cell Cardiol 2018; 126:1-12. [PMID: 30408466 DOI: 10.1016/j.yjmcc.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/07/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022]
Abstract
Muscle atrophy F-box (MAFbx/atrogin-1), an E3 ubiquitin ligase, is a crucial mediator of skeletal muscle atrophy and cardiac hypertrophy in response to pressure overload and exercise. The role of MAFbx in the regulation of cardiac remodeling after myocardial infarction (MI) remains unclear. Permanent coronary ligation of the left coronary artery was performed on MAFbx knockout (KO) and wild-type (WT) mice and MAFbx expression in the WT mice was shown to be significantly increased in the left ventricles after MI. The mortality rate due to post-MI cardiac rupture was significantly decreased in MAFbx KO mice compared to that in the WT mice. DNA microarray and mRNA expression analyses revealed that the upregulation of genes involved in inflammatory processes and cell motility of leukocytes and neutrophils, including Mmp9, Il1b, Cxcl2, and Nlrp3, was significantly attenuated in MAFbx KO mice 1 day after MI. MAFbx downregulation inhibited nuclear factor-κB (Nfkb) activation after MI. Flow cytometry results demonstrated that the myocardial infiltration of neutrophils was suppressed in MAFbx KO mice 1 day after MI. Nlrp3 and Il1b protein levels were decreased in MAFbx KO mice compared with those in the WT mice. MAFbx downregulation significantly attenuated Tnfa-induced Cxcl2, Il1b, and Nlrp3 expression in cardiomyocytes. We conclude that MAFbx plays an important role in the mediation of excessive inflammation, including neutrophil infiltration, inflammasome formation, and production of proinflammatory cytokines through the activation of Nfkb, promoting cardiac rupture after MI.
Collapse
|
86
|
Kao SH, Wu HT, Wu KJ. Ubiquitination by HUWE1 in tumorigenesis and beyond. J Biomed Sci 2018; 25:67. [PMID: 30176860 PMCID: PMC6122628 DOI: 10.1186/s12929-018-0470-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023] Open
Abstract
Ubiquitination modulates a large repertoire of cellular functions and thus, dysregulation of the ubiquitin system results in multiple human diseases, including cancer. Ubiquitination requires an E3 ligase, which is responsible for substrate recognition and conferring specificity to ubiquitination. HUWE1 is a multifaceted HECT domain-containing ubiquitin E3 ligase, which catalyzes both mono-ubiquitination and K6-, K48- and K63-linked poly-ubiquitination of its substrates. Many of the substrates of HUWE1 play a crucial role in maintaining the homeostasis of cellular development. Not surprisingly, dysregulation of HUWE1 is associated with tumorigenesis and metastasis. HUWE1 is frequently overexpressed in solid tumors, but can be downregulated in brain tumors, suggesting that HUWE1 may possess differing cell-specific functions depending on the downstream targets of HUWE1. This review introduces some important discoveries of the HUWE1 substrates, including those controlling proliferation and differentiation, apoptosis, DNA repair, and responses to stress. In addition, we review the signaling pathways HUWE1 participates in and obstacles to the identification of HUWE1 substrates. We also discuss up-to-date potential therapeutic designs using small molecules or ubiquitin variants (UbV) against the HUWE1 activity. These molecular advances provide a translational platform for future bench-to-bed studies. HUWE1 is a critical ubiquitination modulator during the tumor progression and may serve as a possible therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University, No. 91, Hseuh-Shih Rd, Taichung, 40402, Taiwan. .,Drug Development Center, China Medical University, Taichung, 40402, Taiwan.
| | - Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua City, 500, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, China Medical University, No. 91, Hseuh-Shih Rd, Taichung, 40402, Taiwan. .,Drug Development Center, China Medical University, Taichung, 40402, Taiwan. .,Institute of New Drug Development, Taichung, 40402, Taiwan. .,Graduate Institutes of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan. .,Departmet of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
87
|
Scicchitano BM, Dobrowolny G, Sica G, Musarò A. Molecular Insights into Muscle Homeostasis, Atrophy and Wasting. Curr Genomics 2018; 19:356-369. [PMID: 30065611 PMCID: PMC6030854 DOI: 10.2174/1389202919666180101153911] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscle homeostasis is guaranteed by a delicate balance between synthesis and degradation of cell proteins and its alteration leads to muscle wasting and diseases. In this review, we describe the major anabolic pathways that are involved in muscle growth and homeostasis and the proteolytic systems that are over-activated in muscle pathologies. Modulation of these pathways comprises an attractive target for drug intervention.
Collapse
Affiliation(s)
- Bianca Maria Scicchitano
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Gabriella Dobrowolny
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Gigliola Sica
- Istituto di Istologia e Embriologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1-00168, Roma, Italy
| | - Antonio Musarò
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- DAHFMO-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
88
|
Mota R, Parry TL, Yates CC, Qiang Z, Eaton SC, Mwiza JM, Tulasi D, Schisler JC, Patterson C, Zaglia T, Sandri M, Willis MS. Increasing Cardiomyocyte Atrogin-1 Reduces Aging-Associated Fibrosis and Regulates Remodeling in Vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1676-1692. [PMID: 29758183 DOI: 10.1016/j.ajpath.2018.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/10/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The muscle-specific ubiquitin ligase atrogin-1 (MAFbx) has been identified as a critical regulator of pathologic and physiological cardiac hypertrophy; it regulates these processes by ubiquitinating transcription factors [nuclear factor of activated T-cells and forkhead box O (FoxO) 1/3]. However, the role of atrogin-1 in regulating transcription factors in aging has not previously been described. Atrogin-1 cardiomyocyte-specific transgenic (Tg+) adult mice (α-major histocompatibility complex promoter driven) have normal cardiac function and size. Herein, we demonstrate that 18-month-old atrogin-1 Tg+ hearts exhibit significantly increased anterior wall thickness without functional impairment versus wild-type mice. Histologic analysis at 18 months revealed atrogin-1 Tg+ mice had significantly less fibrosis and significantly greater nuclei and cardiomyocyte cross-sectional analysis. Furthermore, by real-time quantitative PCR, atrogin-1 Tg+ had increased Col 6a4, 6a5, 6a6, matrix metalloproteinase 8 (Mmp8), and Mmp9 mRNA, suggesting a role for atrogin-1 in regulating collagen deposits and MMP-8 and MMP-9. Because atrogin-1 Tg+ mice exhibited significantly less collagen deposition and protein levels, enhanced Mmp8 and Mmp9 mRNA may offer one mechanism by which collagen levels are kept in check in the aged atrogin-1 Tg+ heart. In addition, atrogin-1 Tg+ hearts showed enhanced FoxO1/3 activity. The present study shows a novel link between atrogin-1-mediated regulation of FoxO1/3 activity and reduced collagen deposition and fibrosis in the aged heart. Therefore, targeting FoxO1/3 activity via the muscle-specific atrogin-1 ubiquitin ligase may offer a muscle-specific method to modulate aging-related cardiac fibrosis.
Collapse
Affiliation(s)
- Roberto Mota
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Traci L Parry
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Cecelia C Yates
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhaoyan Qiang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, Tianjin Medical University, Tianjin, China
| | - Samuel C Eaton
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Jean Marie Mwiza
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Deepthi Tulasi
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Jonathan C Schisler
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Cam Patterson
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, New York
| | - Tania Zaglia
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy; Venetian Institute of Molecular Medicine, Padova, Italy
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Dulbecco Telethon Institute, Padova, Italy
| | - Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina; Indiana Center for Musculoskeletal Health and Department of Pathology and Laboratory Medicine, University of Indiana School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
89
|
Santos CP, Aguiar AF, Giometti IC, Mariano TB, de Freitas CEA, Nai GA, de Freitas SZ, Pai-Silva MD, Pacagnelli FL. High final energy of gallium arsenide laser increases MyoD gene expression during the intermediate phase of muscle regeneration after cryoinjury in rats. Lasers Med Sci 2018; 33:843-850. [PMID: 29333581 DOI: 10.1007/s10103-018-2439-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/04/2018] [Indexed: 01/19/2023]
Abstract
The aim of this study was to determine the effects of gallium arsenide (GaAs) laser on IGF-I, MyoD, MAFbx, and TNF-α gene expression during the intermediate phase of muscle regeneration after cryoinjury 21 Wistar rats were divided into three groups (n = 7 per group): untreated with no injury (control group), cryoinjury without GaAs (injured group), and cryoinjury with GaAs (GaAs-injured group). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The region injured was irradiated once a day during 14 days using GaAs laser (904 nm; spot size 0.035 cm2, output power 50 mW; energy density 69 J cm-2; exposure time 4 s per point; final energy 4.8 J). Twenty-four hours after the last application, the right and left TA muscles were collected for histological (collagen content) and molecular (gene expression of IGF-I, MyoD, MAFbx, and TNF-α) analyses, respectively. Data were analyzed using one-way ANOVA at P < 0.05. There were no significant (P > 0.05) differences in collagen density and IGF-I gene expression in all experimental groups. There were similar (P < 0.05) decreases in MAFbx and TNF-α gene expression in the injured and GaAs-injured groups, compared to control group. The MyoD gene expression increased (P = 0.008) in the GaAs-injured group, but not in the injured group (P = 0.338), compared to control group. GaAs laser therapy had a positive effect on MyoD gene expression, but not IGF-I, MAFbx, and TNF-α, during intermediary phases (14 days post-injury) of muscle repair.
Collapse
Affiliation(s)
- Caroline Pereira Santos
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Andreo Fernando Aguiar
- Center of Research in Health Science, North University of Paraná (UNOPAR), Avenue Paris, 675, Jardim Piza, Londrina, PR, 86041-120, Brazil.
| | - Ines Cristina Giometti
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Thaoan Bruno Mariano
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | | | - Gisele Alborghetti Nai
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Selma Zambelli de Freitas
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Maeli Dal Pai-Silva
- Department of Morphology, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Francis Lopes Pacagnelli
- Department of Physical Therapy, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
90
|
van Doeselaar S, Burgering BMT. FOXOs Maintaining the Equilibrium for Better or for Worse. Curr Top Dev Biol 2018; 127:49-103. [PMID: 29433740 DOI: 10.1016/bs.ctdb.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paradigm shift is emerging within the FOXO field and accumulating evidence indicates that we need to reappreciate the role of FOXOs, at least in cancer development. Here, we discuss the possibility that FOXOs are both tumor suppressors as well as promoters of tumor progression. This is mostly dependent on the biological context. Critical to this dichotomous role is the notion that FOXOs are central in preserving cellular homeostasis in redox control, genomic stability, and protein turnover. From this perspective, a paradoxical role in both suppressing and enhancing tumor progression can be reconciled. As many small molecules targeting the PI3K pathway are developed by big pharmaceutical companies and/or are in clinical trial, we will discuss what the consequences may be for the context-dependent role of FOXOs in tumor development in treatment options based on active PI3K signaling in tumors.
Collapse
Affiliation(s)
- Sabina van Doeselaar
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
91
|
Proteolytic systems' expression during myogenesis and transcriptional regulation by amino acids in gilthead sea bream cultured muscle cells. PLoS One 2017; 12:e0187339. [PMID: 29261652 PMCID: PMC5737955 DOI: 10.1371/journal.pone.0187339] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022] Open
Abstract
Proteolytic systems exert an important role in vertebrate muscle controlling protein turnover, recycling of amino acids (AA) or its use for energy production, as well as other functions like myogenesis. In fish, proteolytic systems are crucial for the relatively high muscle somatic index they possess, and because protein is the most important dietary component. Thus in this study, the molecular profile of proteolytic markers (calpains, cathepsins and ubiquitin-proteasome system (UbP) members) were analyzed during gilthead sea bream (Sparus aurata) myogenesis in vitro and under different AA treatments. The gene expression of calpains (capn1, capn3 and capns1b) decreased progressively during myogenesis together with the proteasome member n3; whereas capn2, capns1a, capns1b and ubiquitin (ub) remained stable. Contrarily, the cathepsin D (ctsd) paralogs and E3 ubiquitin ligases mafbx and murf1, showed a significant peak in gene expression at day 8 of culture that slightly decreased afterwards. Moreover, the protein expression analyzed for selected molecules presented in general the same profile of the mRNA levels, which was confirmed by correlation analysis. These data suggest that calpains seem to be more important during proliferation, while cathepsins and the UbP system appear to be required for myogenic differentiation. Concerning the transcriptional regulation by AA, the recovery of their levels after a short starvation period did not show effects on cathepsins expression, whereas it down-regulated the expression of capn3, capns1b, mafbx, murf1 and up-regulated n3. With regards to AA deficiencies, the major changes occurred at day 2, when leucine limitation suppressed ctsb and ctsl expression. Besides at the same time, both leucine and lysine deficiencies increased the expression of mafbx and murf1 and decreased that of n3. Overall, the opposite nutritional regulation observed, especially for the UbP members, points out an efficient and complementary role of these factors that could be useful in gilthead sea bream diets optimization.
Collapse
|
92
|
Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice. Sci Rep 2017; 7:10866. [PMID: 28883493 PMCID: PMC5589872 DOI: 10.1038/s41598-017-11440-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/24/2017] [Indexed: 11/17/2022] Open
Abstract
Sepsis induced loss of muscle mass and function contributes to promote physical inactivity and disability in patients. In this experimental study, mice were sacrificed 1, 4, or 7 days after cecal ligation and puncture (CLP) or sham surgery. When compared with diaphragm, locomotor muscles were more prone to sepsis-induced muscle mass loss. This could be attributed to a greater activation of ubiquitin-proteasome system and an increased myostatin expression. Thus, this study strongly suggests that the contractile activity pattern of diaphragm muscle confers resistance to atrophy compared to the locomotor gastrocnemius muscle. These data also suggest that a strategy aimed at preventing the activation of catabolic pathways and preserving spontaneous activity would be of interest for the treatment of patients with sepsis-induced neuromyopathy.
Collapse
|
93
|
Hai T, Cao C, Shang H, Guo W, Mu Y, Yang S, Zhang Y, Zheng Q, Zhang T, Wang X, Liu Y, Kong Q, Li K, Wang D, Qi M, Hong Q, Zhang R, Wang X, Jia Q, Wang X, Qin G, Li Y, Luo A, Jin W, Yao J, Huang J, Zhang H, Li M, Xie X, Zheng X, Guo K, Wang Q, Zhang S, Li L, Xie F, Zhang Y, Weng X, Yin Z, Hu K, Cong Y, Zheng P, Zou H, Xin L, Xia J, Ruan J, Li H, Zhao W, Yuan J, Liu Z, Gu W, Li M, Wang Y, Wang H, Yang S, Liu Z, Wei H, Zhao J, Zhou Q, Meng A. Pilot study of large-scale production of mutant pigs by ENU mutagenesis. eLife 2017. [PMID: 28639938 PMCID: PMC5505698 DOI: 10.7554/elife.26248] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research. DOI:http://dx.doi.org/10.7554/eLife.26248.001
Collapse
Affiliation(s)
- Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Haitao Shang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Weiwei Guo
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Yanshuang Mu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Shulin Yang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xianlong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Yu Liu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Qingran Kong
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Kui Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dayu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Meng Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qianlong Hong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Rui Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiupeng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qitao Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Yongshun Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Weiwu Jin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jiaojiao Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Menghua Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xiangmo Xie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Xuejuan Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Kenan Guo
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Qinghua Wang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Shibin Zhang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Liang Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Fei Xie
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Yu Zhang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Xiaogang Weng
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Zhi Yin
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Kui Hu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Yimei Cong
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Peng Zheng
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Hailong Zou
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,College of Life Science, Northeast Agricultural University of China, Harbin, China
| | - Leilei Xin
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jihan Xia
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinxue Ruan
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hegang Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiming Zhao
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Yuan
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zizhan Liu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiwang Gu
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Pearl Laboratory Animal Sci. & Tech. Co. Ltd, Guangzhou, China
| | - Ming Li
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Pearl Laboratory Animal Sci. & Tech. Co. Ltd, Guangzhou, China
| | - Yong Wang
- Chinese Swine Mutagenesis Consortium Working Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University of China, Harbin, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medicine, Third Military Medical University, Chongqing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China
| | - Anming Meng
- Chinese Swine Mutagenesis Consortium Guide Group, Chinese Swine Mutagenesis Consortium, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
94
|
Li F, Li X, Peng X, Sun L, Jia S, Wang P, Ma S, Zhao H, Yu Q, Huo H. Ginsenoside Rg1 prevents starvation-induced muscle protein degradation via regulation of AKT/mTOR/FoxO signaling in C2C12 myotubes. Exp Ther Med 2017; 14:1241-1247. [PMID: 28781621 DOI: 10.3892/etm.2017.4615] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/19/2016] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle atrophy is often caused by catabolic conditions including fasting, disuse, aging and chronic diseases, such as chronic obstructive pulmonary disease. Atrophy occurs when the protein degradation rate exceeds the rate of protein synthesis. Therefore, maintaining a balance between the synthesis and degradation of protein in muscle cells is a major way to prevent skeletal muscle atrophy. Ginsenoside Rg1 (Rg1) is a primary active ingredient in Panax ginseng, which is considered to be one of the most valuable herbs in traditional Chinese medicine. In the current study, Rg1 was observed to inhibit the expression of MuRF-1 and atrogin-1 in C2C12 muscle cells in a starvation model. Rg1 also activated the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and forkhead transcription factor O, subtypes 1 and 3a. This phosphorylation was inhibited by LY294002, a phosphatidylinositol 3-kinase inhibitor. These data suggest that Rg1 may participate in the regulation of the balance between protein synthesis and degradation, and that the function of Rg1 is associated with the AKT/mTOR/FoxO signaling pathway.
Collapse
Affiliation(s)
- Fengyu Li
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xiaoxue Li
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xuewei Peng
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Lili Sun
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Shengnan Jia
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Ping Wang
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Shuang Ma
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Hongyan Zhao
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Qingmiao Yu
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Hongliang Huo
- Laboratory of Molecular and Cellular Physiology, School of Life Science, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
95
|
Abstract
Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.
Collapse
MESH Headings
- Animals
- Humans
- Molecular Targeted Therapy/methods
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/metabolism
- Muscular Diseases/physiopathology
- Muscular Diseases/therapy
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Repressor Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Ryan D Welch
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, United States of America
| | | |
Collapse
|
96
|
Adams V, Reich B, Uhlemann M, Niebauer J. Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol 2017; 313:H72-H88. [PMID: 28476924 DOI: 10.1152/ajpheart.00470.2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
Abstract
For decades, we have known that exercise training exerts beneficial effects on the human body, and clear evidence is available that a higher fitness level is associated with a lower incidence of suffering premature cardiovascular death. Despite this knowledge, it took some time to also incorporate physical exercise training into the treatment plan for patients with cardiovascular disease (CVD). In recent years, in addition to continuous exercise training, further training modalities such as high-intensity interval training and pyramid training have been introduced for coronary artery disease patients. The beneficial effect for patients with CVD is clearly documented, and during the last years, we have also started to understand the molecular mechanisms occurring in the skeletal muscle (limb muscle and diaphragm) and endothelium, two systems contributing to exercise intolerance in these patients. In the present review, we describe the effects of the different training modalities in CVD and summarize the molecular effects mainly in the skeletal muscle and cardiovascular system.
Collapse
Affiliation(s)
- Volker Adams
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Bernhard Reich
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Madlen Uhlemann
- Clinic of Internal Medicine/Cardiology, Heart Center Leipzig, Leipzig University, Leipzig, Germany; and
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation and Research Institute of Molecular Sports Medicine and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
97
|
von Haehling S, Ebner N, Dos Santos MR, Springer J, Anker SD. Muscle wasting and cachexia in heart failure: mechanisms and therapies. Nat Rev Cardiol 2017; 14:323-341. [PMID: 28436486 DOI: 10.1038/nrcardio.2017.51] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β2-adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.
Collapse
Affiliation(s)
- Stephan von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Nicole Ebner
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Marcelo R Dos Santos
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.,Heart Institute (InCor), University of Sao Paulo Medical School, Dr. Arnaldo Avenue, 455 Cerqueira César, 01246903 Sao Paulo, Brazil
| | - Jochen Springer
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | - Stefan D Anker
- Department of Cardiology and Pneumology, University of Göttingen Medical Centre and DZHK (German Centre for Cardiovascular Research), Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.,Division of Cardiology and Metabolism: Heart Failure, Cachexia and Sarcopenia, Department of Internal Medicine and Cardiology, Berlin-Brandenburg Centre for Regenerative Therapies, Charité Medical School, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
98
|
Yun SI, Kim KK. Ubiquitin-specific protease 4 (USP4) suppresses myoblast differentiation by down regulating MyoD activity in a catalytic-independent manner. Cell Signal 2017; 35:48-60. [PMID: 28336234 DOI: 10.1016/j.cellsig.2017.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/28/2017] [Accepted: 03/19/2017] [Indexed: 11/27/2022]
Abstract
For myotube formation, proliferation and differentiation of myoblasts must be tightly regulated by various myogenic regulatory factors (MRFs) such as MyoD, myogenic factor 5 (Myf5), myogenin, and muscle-specific regulatory factor 4 (MRF4). However, it is not clear how the expression or activity of these MRFs is controlled during myogenesis. In this study, we identified ubiquitin-specific protease 4 (USP4), one of deubiquitinating enzymes, as a suppressor of MRFs by demonstrating that a knockdown of USP4 enhances myogenesis by controlling MyoD and the level of myogenesis marker proteins in C2C12 cells. However, it was revealed that the effect of USP4 on myogenesis is independent of its deubiquitinase activity because the catalytic-site mutant has the same inhibitory effects as the wild-type USP4 on myogenesis. We observed that the activity and protein levels of both HDAC1 and HDAC4 are decreased when myoblast differentiation is promoted by the USP4 knockdown. We also found that the role of USP4 in muscle differentiation is correlated with two major signaling pathways in myogenesis, AKT and the p38 mitogen-activated protein kinase pathways. According to these results, we propose that USP4 is a key player in myogenic differentiation; it controls myogenic regulatory factors in a catalytic-independent manner.
Collapse
Affiliation(s)
- Sun-Il Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| |
Collapse
|
99
|
Gokulakrishnan G, Chang X, Fleischmann R, Fiorotto ML. Precocious glucocorticoid exposure reduces skeletal muscle satellite cells in the fetal rat. J Endocrinol 2017; 232:561-572. [PMID: 28096434 PMCID: PMC5321625 DOI: 10.1530/joe-16-0372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/17/2017] [Indexed: 01/07/2023]
Abstract
Perinatal skeletal muscle growth rates are a function of protein and myonuclear accretion. Precocious exposure of the fetus to glucocorticoids (GLC) in utero impairs muscle growth. Reduced muscle protein synthesis rates contribute to this response, but the consequences for myonuclear hyperplasia are unknown. To test the hypothesis that blunting of Pax7+ muscle progenitor cell proliferative activity by GLC in vivo also contributes to reduced fetal muscle growth, pregnant rats were administered dexamethasone (DEX: 1 mg/L drinking water) from embryonic day (ED) 13 to ED21. Their responses were compared to pair-fed (PF) and ad libitum-fed controls (CON). Bromodeoxyuridine (BrdU) was administered before delivery to measure myonuclear accretion. Fetal hind limb and diaphragm muscles were collected at term and analyzed for myofiber cross-sectional area (CSA), total and BrdU+ myonuclei, Pax7+ nuclei, MyoD and myogenin protein and mRNA abundance and myosin heavy chain (MyHC) isoform composition. Mean fiber CSA, myonuclei/myofiber and Pax7+ nuclei/myofiber ratios were reduced in DEX compared to those in CON and PF muscles; CSA/myonucleus, BrdU+/total myonuclei and BrdU+ myonuclei/Pax7+ nuclei were similar among groups. Myogenin abundance was reduced and MyHC-slow was increased in DEX fetuses. The data are consistent with GLC inhibition of muscle progenitor cell proliferation limiting satellite cell and myonuclear accretion. The response of PF-fed compared to CON muscles indicated that decreased food consumption by DEX dams contributed to the smaller myofiber CSA but did not affect Pax7+ nuclear accretion. Thus, the effect on satellite cell reserve and myonuclear number also contributes to the blunting of fetal muscle growth by GLC.
Collapse
Affiliation(s)
- Ganga Gokulakrishnan
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Department of PediatricsTexas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaoyan Chang
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Ryan Fleischmann
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Marta L Fiorotto
- USDA/ARS Children's Nutrition Research CenterDepartment of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
100
|
Tsuchida W, Iwata M, Akimoto T, Matsuo S, Asai Y, Suzuki S. Heat Stress Modulates Both Anabolic and Catabolic Signaling Pathways Preventing Dexamethasone-Induced Muscle Atrophy In Vitro. J Cell Physiol 2017; 232:650-664. [PMID: 27649272 PMCID: PMC5132157 DOI: 10.1002/jcp.25609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 09/19/2016] [Indexed: 12/29/2022]
Abstract
It is generally recognized that synthetic glucocorticoids induce skeletal muscle weakness, and endogenous glucocorticoid levels increase in patients with muscle atrophy. It is reported that heat stress attenuates glucocorticoid-induced muscle atrophy; however, the mechanisms involved are unknown. Therefore, we examined the mechanisms underlying the effects of heat stress against glucocorticoid-induced muscle atrophy using C2C12 myotubes in vitro, focusing on expression of key molecules and signaling pathways involved in regulating protein synthesis and degradation. The synthetic glucocorticoid dexamethasone decreased myotube diameter and protein content, and heat stress prevented the morphological and biochemical glucocorticoid effects. Heat stress also attenuated increases in mRNAs of regulated in development and DNA damage responses 1 (REDD1) and Kruppel-like factor 15 (KLF15). Heat stress recovered the dexamethasone-induced inhibition of PI3K/Akt signaling. These data suggest that changes in anabolic and catabolic signals are involved in heat stress-induced protection against glucocorticoid-induced muscle atrophy. These results have a potentially broad clinical impact because elevated glucocorticoid levels are implicated in a wide range of diseases associated with muscle wasting. J. Cell. Physiol. 232: 650-664, 2017. © 2016 The Authors. Journal of Cellular Physiology published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wakako Tsuchida
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi UniversityHandaAichiJapan
- Program in Physical and Occupational TherapyGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| | - Masahiro Iwata
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi UniversityHandaAichiJapan
- Program in Physical and Occupational TherapyGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| | - Takayuki Akimoto
- Faculty of Sport SciencesWaseda UniversityTokorozawaSaitamaJapan
| | - Shingo Matsuo
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi UniversityHandaAichiJapan
- Program in Physical and Occupational TherapyGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| | - Yuji Asai
- Department of RehabilitationFaculty of Health SciencesNihon Fukushi UniversityHandaAichiJapan
| | - Shigeyuki Suzuki
- Program in Physical and Occupational TherapyGraduate School of MedicineNagoya UniversityNagoyaAichiJapan
| |
Collapse
|