51
|
Bai J, Zhang J, Wu J, Shen L, Zeng J, Ding J, Wu Y, Gong Z, Li A, Xu S, Zhou J, Li G. JWA regulates melanoma metastasis by integrin alphaVbeta3 signaling. Oncogene 2009; 29:1227-37. [PMID: 19946336 DOI: 10.1038/onc.2009.408] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
JWA, a newly identified novel microtubule-associated protein (MAP), was recently demonstrated to be indispensable for the rearrangement of actin cytoskeleton and activation of MAPK cascades induced by arsenic trioxide (As(2)O(3)) and phorbol ester (PMA). JWA depletion blocked the inhibitory effect of As(2)O(3) on HeLa cell migration, but enhanced cell migration after PMA treatment. As cancer cell migration is a hallmark of tumor metastasis and the functional role of JWA in cancer metastasis is not understood, here we show that JWA has an important role in melanoma metastasis. Our data demonstrated that JWA knockdown increased the adhesion and invasion abilities of melanoma cells. Furthermore, JWA knockdown in B16-F10 and A375 melanoma cells significantly promoted the formation and growth of metastatic colonies in vivo. Moreover, in the tumor biopsies from human melanoma patients, JWA expression was significantly decreased in malignant melanoma compared with normal nevi. In addition, we found that JWA knockdown could intensify tumor integrin alpha(V)beta(3) signaling by regulating nuclear factor Sp1. These findings suggest that JWA suppresses melanoma metastasis and may serve a potential therapeutic target for human melanoma.
Collapse
Affiliation(s)
- J Bai
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Pawlikowski B, Lee L, Zuo J, Kramer RH. Analysis of human muscle stem cells reveals a differentiation-resistant progenitor cell population expressing Pax7 capable of self-renewal. Dev Dyn 2009; 238:138-49. [PMID: 19097049 DOI: 10.1002/dvdy.21833] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Studies using mouse models have established a critical role for resident satellite stem cells in skeletal muscle development and regeneration, but little is known about this paradigm in human muscle. Here, using human muscle stem cells, we address their lineage progression, differentiation, migration, and self-renewal. Isolated human satellite cells expressed alpha7-integrin and other definitive muscle markers, were highly motile on laminin substrates and could undergo efficient myotube differentiation and myofibrillogenesis. However, only a subpopulation of the myoblasts expressed Pax7 and displayed a variable lineage progression as measured by desmin and MyoD expression. Analysis identified a differentiation-resistant progenitor cell population that was Pax7+/desmin- and capable of self-renewal. This study extends our understanding of the role of Pax7 in regulating human satellite stem cell differentiation and self-renewal.
Collapse
Affiliation(s)
- Bradley Pawlikowski
- Department of Cell and Tissue Biology, University of California San Francisco, School of Dentistry, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
53
|
Pak4, a novel Gab1 binding partner, modulates cell migration and invasion by the Met receptor. Mol Cell Biol 2009; 29:3018-32. [PMID: 19289496 DOI: 10.1128/mcb.01286-08] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, induces epithelial cell dispersal, invasion, and morphogenesis, events that require remodeling of the actin cytoskeleton. The scaffold protein Gab1 is essential for these biological responses downstream from Met. We have identified p21-activated kinase 4 (Pak4) as a novel Gab1-interacting protein. We show that in response to HGF, Gab1 and Pak4 associate and colocalize at the cell periphery within lamellipodia. The association between Pak4 and Gab1 is dependent on Gab1 phosphorylation but independent of Pak4 kinase activity. The interaction is mediated through a region in Gab1, which displays no homology to known Gab1 interaction motifs and through the guanine exchange factor-interacting domain of Pak4. In response to HGF, Gab1 and Pak4 synergize to enhance epithelial cell dispersal, migration, and invasion, whereas knockdown of Pak4 attenuates these responses. A Gab1 mutant unable to recruit Pak4 fails to promote epithelial cell dispersal and an invasive morphogenic program in response to HGF, demonstrating a physiological requirement for Gab1-Pak4 association. These data demonstrate a novel association between Gab1 and Pak4 and identify Pak4 as a key integrator of cell migration and invasive growth downstream from the Met receptor.
Collapse
|
54
|
Abstract
Integrins are cell surface transmembrane receptors that recognize and bind to extracellular matrix proteins and counter receptors. Binding of activated integrins to their ligands induces a vast number of structural and signaling changes within the cell. Large, multimolecular complexes assemble onto the cytoplasmic tails of activated integrins to engage and organize the cytoskeleton, and activate signaling pathways that ultimately lead to changes in gene expression. Additionally, integrin-mediated signaling intersects with growth factor-mediated signaling through various levels of cross-talk. This review discusses recent work that has tremendously broadened our understanding of the complexity of integrin-mediated signaling.
Collapse
|
55
|
Li Y, Dudley AT. Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes. Development 2009; 136:1083-92. [PMID: 19224985 DOI: 10.1242/dev.023820] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bone growth is driven by cell proliferation and the subsequent hypertrophy of chondrocytes arranged in columns of discoid cells that resemble stacks of coins. However, the molecular mechanisms that direct column formation and the importance of columnar organization to bone morphogenesis are not known. Here, we show in chick that discoid proliferative chondrocytes orient the division plane to generate daughter cells that are initially displaced laterally and then intercalate into the column. Downregulation of frizzled (Fzd) signaling alters the dimensions of long bones and produces cell-autonomous changes in proliferative chondrocyte organization characterized by arbitrary division planes and altered cell stacking. These defects are phenocopied by disruption of noncanonical effector pathways but not by inhibitors of canonical Fzd signaling. These findings demonstrate that the regulation of cell polarity and cell arrangement by noncanonical Fzd signaling plays important roles in generating the unique morphological characteristics that shape individual cartilage elements.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Biochemistry, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
56
|
Abstract
The availability of multi-photon intravital microscopy has recently allowed researchers to start to visualise the dynamic behaviour of cancer cells in vivo. This imaging has revealed that many cancer cells ranging from carcinoma to melanoma move in an amoeboid manner in order to invade surrounding tissue and escape from the primary tumour. This mode on cell motility is extremely rapid and does not require the activity of proteases to degrade the extra-cellular matrix (ECM). This review details the techniques that are available to study cell motility in vivo and discusses the current knowledge about the mechanisms of amoeboid cell motility.
Collapse
Affiliation(s)
- S Pinner
- Tumour Cell Biology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, LONDON WC2A 3PX, United Kingdom.
| | | |
Collapse
|
57
|
Zhao SY, Sun Y, Lai ZS, Nan QZ, Li K, Zhang ZS. Inhibition of migration and invasion of colorectal cancer cells via deletion of Rac1 with RNA interference. Mol Cell Biochem 2008; 322:179-84. [DOI: 10.1007/s11010-008-9955-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/28/2008] [Indexed: 10/21/2022]
|
58
|
Abair TD, Sundaramoorthy M, Chen D, Heino J, Ivaska J, Hudson BG, Sanders CR, Pozzi A, Zent R. Cross-talk between integrins alpha1beta1 and alpha2beta1 in renal epithelial cells. Exp Cell Res 2008; 314:3593-604. [PMID: 18809396 DOI: 10.1016/j.yexcr.2008.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 08/07/2008] [Accepted: 08/07/2008] [Indexed: 01/01/2023]
Abstract
The collagen-binding integrins alpha1beta1 and alpha2beta1 have profoundly different functions, yet they are often co-expressed in epithelial cells. When both integrins are expressed in the same cell, it has been suggested that alpha1beta1 negatively regulates integrin alpha2beta1-dependent functions. In this study we utilized murine ureteric bud (UB) epithelial cells, which express no functionally detectable levels of endogenous integrins alpha1beta1 and alpha2beta1, to determine the mechanism whereby this regulation occurs. We demonstrate that UB cells expressing integrin alpha2beta1, but not alpha1beta1 adhere, migrate and proliferate on collagen I as well as form cellular cords in 3D collagen I gels. Substitution of the transmembrane domain of the integrin alpha2 subunit with that of alpha1 results in decreased cell adhesion, migration and cord formation. In contrast, substitution of the integrin alpha2 cytoplasmic tail with that of alpha1, decreases cell migration and cord formation, but increases proliferation. When integrin alpha1 and alpha2 subunits are co-expressed in UB cells, the alpha1 subunit negatively regulates integrin alpha2beta1-dependent cord formation, adhesion and migration and this inhibition requires expression of both alpha1 and alpha2 tails. Thus, we provide evidence that the transmembrane and cytoplasmic domains of the alpha2 integrin subunit, as well as the alpha1 integrin subunit, regulate integrin alpha2beta1 cell function.
Collapse
Affiliation(s)
- Tristin D Abair
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Causeret F, Terao M, Jacobs T, Nishimura YV, Yanagawa Y, Obata K, Hoshino M, Nikolic M. The p21-activated kinase is required for neuronal migration in the cerebral cortex. ACTA ACUST UNITED AC 2008; 19:861-75. [PMID: 18701438 DOI: 10.1093/cercor/bhn133] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The normal formation and function of the mammalian cerebral cortex depend on the positioning of its neurones, which occurs in a highly organized, layer-specific manner. The correct morphology and movement of neurones rely on synchronized regulation of their actin filaments and microtubules. The p21-activated kinase (Pak1), a key cytoskeletal regulator, controls neuronal polarization, elaboration of axons and dendrites, and the formation of dendritic spines. However, its in vivo role in the developing nervous system is unclear. We have utilized in utero electroporation into mouse embryo cortices to reveal that both loss and gain of Pak1 function affect radial migration of projection neurones. Overexpression of hyperactivated Pak1 predominantly caused neurones to arrest in the intermediate zone (IZ) with apparently misoriented and disorganized leading projections. Loss of Pak1 disrupted the morphology of migrating neurones, which accumulated in the IZ and deep cortical layers. Unexpectedly, a significant number of neurones with reduced Pak1 expression aberrantly entered into the normally cell-sparse marginal zone, suggesting their inability to cease migrating that may be due to their impaired dissociation from radial glia. Our findings reveal the in vivo importance of temporal and spatial regulation of the Pak1 kinase during key stages of cortical development.
Collapse
Affiliation(s)
- Frédéric Causeret
- Department of Cellular and Molecular Neuroscience, Imperial College School of Medicine, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Tsuruta D, Kobayashi H, Imanishi H, Sugawara K, Ishii M, Jones JCR. Laminin-332-integrin interaction: a target for cancer therapy? Curr Med Chem 2008; 15:1968-75. [PMID: 18691052 PMCID: PMC2992754 DOI: 10.2174/092986708785132834] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For many years, extracellular matrix (ECM) was considered to function as a tissue support and filler. However, we now know that ECM proteins control many cellular events through their interaction with cell-surface receptors and cytoplasmic signaling pathways. For example, they regulate cell proliferation, cell division, cell adhesion, cell migration, and apoptosis. We focus in this review on a laminin isoform, laminin-332 (formerly termed laminin-5), a major component of the basement membrane (BM) of skin and other epithelial tissues. It is composed of 3 subunits (alpha3beta3 and gamma3 and interacts with at least two integrin receptors expressed by epithelial cells (alpha3beta1 and alpha6beta4 integrin. Mutations in either laminin-332 or integrin alpha6beta4 result in junctional epidermolysis bullosa, a blistering skin disease, while targeting of laminin-332 by autoantibodies in cicatricial pemphigoid leads to dysadhesion of epithelial cells from their underlying connective tissue. Abnormal expression of laminin-332 and its integrin receptors is also a hallmark of certain tumor types and is believed to promote invasion of colon, breast and skin cancer cells. Moreover, there is emerging evidence that laminin-332 and its protease degradation products are not only found at the leading front of several tumors but also likely induce and/or promote tumor cell migration. Thus, in this review, we focus specifically on the role of laminin-332 and its integrin receptors in adhesion, proliferation, and migration/invasion of cancer cells. Finally, we discuss strategies for the development of laminin-332-based antagonists for the treatment of malignant tumors.
Collapse
Affiliation(s)
- Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
61
|
Zegers M. Roles of P21-activated kinases and associated proteins in epithelial wound healing. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:253-98. [PMID: 18544501 DOI: 10.1016/s1937-6448(08)00606-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The primary function of epithelia is to provide a barrier between the extracellular environment and the interior of the body. Efficient epithelial repair mechanisms are therefore crucial for homeostasis. The epithelial wound-healing process involves highly regulated morphogenetic changes of epithelial cells that are driven by dynamic changes of the cytoskeleton. P21-activated kinases are serine/threonine kinases that have emerged as important regulators of the cytoskeleton. These kinases, which are activated downsteam of the Rho GTPases Rac and cd42, were initially mostly implicated in the regulation of cell migration. More recently, however, these kinases were shown to have many additional functions that are relevant to the regulation of epithelial wound healing. Here, we provide an overview of the morphogenetic changes of epithelial cells during wound healing and the many functions of p21-activated kinases in these processes.
Collapse
Affiliation(s)
- Mirjam Zegers
- Department of Surgery, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
62
|
Schneider H, Mühle C, Pacho F. Biological function of laminin-5 and pathogenic impact of its deficiency. Eur J Cell Biol 2007; 86:701-17. [PMID: 17000025 DOI: 10.1016/j.ejcb.2006.07.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 07/20/2006] [Accepted: 07/20/2006] [Indexed: 01/13/2023] Open
Abstract
The basement membrane glycoprotein laminin-5 is a key component of the anchoring complex connecting keratinocytes to the underlying dermis. It is secreted by keratinocytes as a cross-shaped heterotrimer of alpha3, beta3 and gamma2 chains and serves as a ligand of various transmembrane receptors, thereby regulating keratinocyte adhesion, motility and proliferation. In intact skin, laminin-5 provides essential links to both the hemidesmosomal alpha6beta4 integrin and the collagen type VII molecules which form the anchoring fibrils inserting into the dermis. If the basement membrane is injured, laminin-5 production increases rapidly. It then serves as a scaffold for cell migration, initiates the formation of hemidesmosomes and accelerates basement membrane restoration at the dermal-epidermal junction. Mutations of the laminin-5 genes or auto-antibodies against one of the subunits of laminin-5 may lead to a significant lack of this molecule in the epidermal basement membrane zone. The major contributions of laminin-5 to the resistance of the epidermis against frictional stress but also for basement membrane regeneration and repair of damaged skin are reflected by the phenotype of Herlitz junctional epidermolysis bullosa, which is caused by an inherited absence of functional laminin-5. This lethal disease becomes manifest in widespread blistering of skin and mucous membranes, impaired wound healing and chronic erosions containing exuberant granulation tissue. Here, we discuss current understanding of the biological functions of laminin-5, the pathogenic impact of its deficiency and implications on molecular approaches towards a therapy of junctional epidermolysis bullosa.
Collapse
Affiliation(s)
- Holm Schneider
- Department of Experimental Medicine I, Nikolaus Fiebiger Centre of Molecular Medicine, University of Erlangen-Nürnberg, Glückstr. 6, D-91054 Erlangen, Germany; Children's Hospital, University of Erlangen-Nürnberg, Germany.
| | | | | |
Collapse
|
63
|
Burthem J, Rees-Unwin K, Mottram R, Adams J, Lucas GS, Spooncer E, Whetton AD. The rho-kinase inhibitors Y-27632 and fasudil act synergistically with imatinib to inhibit the expansion of ex vivo CD34(+) CML progenitor cells. Leukemia 2007; 21:1708-14. [PMID: 17554385 DOI: 10.1038/sj.leu.2404762] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence from cell line-based studies indicates that rho-kinase may play a role in the leukaemic transformation of human cells mediated by the BCR/ABL tyrosine kinase, manifest clinically as chronic myeloid leukaemia (CML). We therefore employed two separate inhibitors, Y-27632 and fasudil, to inhibit the activity of rho-kinase against ex vivo CD34(+) cells collected from patients with CML. We compared the effects of rho-kinase inhibition in those cells with the effects of direct inhibition of BCR/ABL using the specific inhibitor imatinib. We found that inhibition of rho-kinase inhibited the effective proliferation, and reduced survival of CML progenitor cells. When combined with imatinib, rho-kinase inhibition added to the anti-proliferative and pro-apoptotic effects of the BCR/ABL inhibitor. Our studies may indicate therapeutic benefit in some cases for the combination of rho-kinase inhibitors with imatinib.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/therapeutic use
- Amides/therapeutic use
- Antigens, CD34/metabolism
- Benzamides
- Cell Proliferation/drug effects
- Drug Synergism
- Enzyme Inhibitors/therapeutic use
- Fusion Proteins, bcr-abl
- Humans
- Imatinib Mesylate
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Piperazines/therapeutic use
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Pyridines/therapeutic use
- Pyrimidines/therapeutic use
- Stem Cells
- Tumor Cells, Cultured/drug effects
- rho-Associated Kinases
Collapse
Affiliation(s)
- J Burthem
- Division of Laboratory and Regenerative Medicine, Stopford Building, Manchester, UK.
| | | | | | | | | | | | | |
Collapse
|
64
|
Gieni RS, Hendzel MJ. Mechanotransduction from the ECM to the genome: Are the pieces now in place? J Cell Biochem 2007; 104:1964-87. [PMID: 17546585 DOI: 10.1002/jcb.21364] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal "prestressed" structure and its "hardwired" interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
65
|
Abstract
Basement membranes can be a barrier to tumour growth, but basement membrane molecules, including laminins, are also important autocrine factors produced by cancers to promote tumorigenesis. Many studies have shown the importance of laminin 332 (previously known as laminin 5) in this process, especially in squamous cell carcinoma. Through interactions with several cell-surface receptors (including alpha6beta4 and alpha3beta1 integrins, epidermal growth factor receptor and syndecan 1) and other basement membrane components (including type VII collagen), laminin 332 drives tumorigenesis through phosphatidylinositol-3 kinase (PI3K) and RAC1 activation, promoting tumour invasion and cell survival. The extracellular interactions of laminin 332 appear amenable to antibody-mediated therapies.
Collapse
|
66
|
Abstract
Reactive oxygen species (ROS) are recently proposed to be involved in tumor metastasis which is a complicated processes including epithelial-mesenchymal transition (EMT), migration, invasion of the tumor cells and angiogenesis around the tumor lesion. ROS generation may be induced intracellularly, in either NADPH oxidase- or mitochondria-dependent manner, by growth factors and cytokines (such as TGFbeta and HGF) and tumor promoters (such as TPA) capable of triggering cell adhesion, EMT and migration. As a signaling messenger, ROS are able to oxidize the critical target molecules such as PKC and protein tyrosine phosphates (PTPs), which are relevant to tumor cell invasion. PKC contain multiple cysteine residues that can be oxidized and activated by ROS. Inactivation of multiple PTPs by ROS may relieve the tyrosine phosphorylation-dependent signaling. Two of the down-stream molecules regulated by ROS are MAPK and PAK. MAPKs cascades were established to be a major signal pathway for driving tumor cell metastasis, which are mediated by PKC, TGF-beta/Smad and integrin-mediated signaling. PAK is an effector of Rac-mediated cytoskeletal remodeling that is responsible for cell migration and angiogenesis. There are several transcriptional factors such as AP1, Ets, Smad and Snail regulating a lot of genes relevant to metastasis. AP-1 and Smad can be activated by PKC activator and TGF-beta1, respectively, in a ROS dependent manner. On the other hand, Est-1 can be upregulated by H2O2 via an antioxidant response element in the promoter. The ROS-regulated genes relevant to EMT and metastasis include E-cahedrin, integrin and MMP. Comprehensive understanding of the ROS-triggered signaling transduction, transcriptional activation and regulation of gene expressions will help strengthen the critical role of ROS in tumor progression and devising strategy for chemo-therapeutic interventions.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Department of Medical Technology, Tzu Chi University, No. 701, Chung Yang Rd, Sec 3, Hualien 970, Taiwan.
| |
Collapse
|
67
|
Wojciak-Stothard B, Torondel B, Tsang LYF, Fleming I, Fisslthaler B, Leiper JM, Vallance P. The ADMA/DDAH pathway is a critical regulator of endothelial cell motility. J Cell Sci 2007; 120:929-42. [PMID: 17327280 DOI: 10.1242/jcs.002212] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide production associated with abnormal blood vessel growth and repair, however, the mechanism of action of ADMA is not well understood. We studied the role of exogenous and endogenous ADMA in the regulation of cell motility and actin cytoskeleton in porcine pulmonary endothelial cells (PAECs) and pulmonary microvascular endothelial cells (PMECs) from knockout mice that lack one of the enzyme metabolising ADMA, dimethylarginine dimethylaminohydrolase I (DDAHI) as well as endothelial cells overexpressing DDAH in vitro. We show that ADMA induced stress fibre and focal adhesion formation and inhibited cell motility in primary pulmonary endothelial cells. The effects of ADMA depended on the activity of RhoA and Rho kinase and were reversed by overexpression of DDAH, nitric oxide donors and protein kinase G activator, 8-bromo-cGMP. ADMA also inhibited the activities of Rac1 and Cdc42 in cells but these changes had a minor effect on cell motility. Endogenous ADMA increased RhoA activity and inhibited cell motility in PMECs from DDAHI knockout mice and inhibited angiogenesis in vitro. These results are the first demonstration that metabolism of cardiovascular risk factor ADMA regulates endothelial cell motility, an important factor in angiogenesis and vascular repair.
Collapse
Affiliation(s)
- Beata Wojciak-Stothard
- BHF Laboratories, Department of Medicine, University College London, 5 University Street, London, WC1 E6JJ, UK.
| | | | | | | | | | | | | |
Collapse
|
68
|
Lallier TE, Miner QW, Sonnier J, Spencer A. A simple cell motility assay demonstrates differential motility of human periodontal ligament fibroblasts, gingival fibroblasts, and pre-osteoblasts. Cell Tissue Res 2007; 328:339-54. [PMID: 17265007 DOI: 10.1007/s00441-006-0372-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 12/18/2006] [Indexed: 10/23/2022]
Abstract
During periodontal regeneration, multiple cell types can invade the wound site, thereby leading to repair. Cell motility requires interactions mediated by integrin receptors for the extracellular matrix (ECM), which might be useful in guiding specific cell populations into the periodontal defect. Our data demonstrate that fibroblasts exhibit differential motility when grown on ECM proteins. Specifically, gingival fibroblasts are twice as motile as periodontal ligament fibroblasts, whereas osteoblasts are essentially non-motile. Collagens promote the greatest motility of gingival fibroblasts in the following order: collagen III>collagen V>collagen I. Differences in motility do not correlate with cell proliferation or integrin expression. Osteoblasts display greater attachment to collagens than does either fibroblast population, but lower motility. Gingival fibroblast motility on collagen I is generally mediated by alpha2 integrins, whereas motility on collagen III involves alpha1 integrins. Other integrins (alpha10 or alpha11) may also contribute to gingival fibroblast motility. Thus, ECM proteins do indeed differentially promote the cell motility of periodontal cells. Because of their greater motility, gingival fibroblasts have more of a potential to invade periodontal wound sites and to contribute to regeneration. This finding may explain the formation of disorganized connective tissue masses rather than the occurrence of the true regeneration of the periodontium.
Collapse
Affiliation(s)
- Thomas E Lallier
- Department of Cell Biology and Anatomy, Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Science Center, School of Dentistry, New Orleans, LA 70119, USA.
| | | | | | | |
Collapse
|
69
|
Wei Y, Tang CH, Kim Y, Robillard L, Zhang F, Kugler MC, Chapman HA. Urokinase receptors are required for alpha 5 beta 1 integrin-mediated signaling in tumor cells. J Biol Chem 2006; 282:3929-39. [PMID: 17145753 DOI: 10.1074/jbc.m607989200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Up-regulation of urokinase receptors is common during tumor progression and thought to promote invasion and metastasis. Urokinase receptors bind urokinase and a set of beta1 integrins, but it remains unclear to what degree urokinase receptor/integrin binding is important to beta1 integrin signaling. Using site-directed mutagenesis, single amino acid mutants of the urokinase receptor were identified that fail to associate with either alpha3beta1 (D262A) or alpha5beta1 (H249A) but associate normally with urokinase. To study the effects of these mutations on beta1 integrin function, endogenous urokinase receptors were first stably silenced in tumor cell lines HT1080 and H1299, and then wild type or mutant receptors were expressed. Knockdown of urokinase receptors resulted in markedly reduced fibronectin and alpha5beta1-dependent ERK activation and metalloproteinase MMP-9 expression. Re-expression of wild type or D262A mutant receptors but not the alpha5beta1 binding-deficient H249A mutant reconstituted fibronectin responses. Because urokinase receptor.alpha5beta1 complexes bind in the fibronectin heparin-binding domain (Type III 12-14) whereas alpha5beta1 primarily binds in the RGD-containing domain (Type III 7-10), signaling pathways leading to ERK and MMP-9 responses were dissected. Binding to III 7-10 led to Src/focal adhesion kinase activation, whereas binding to III 7-14 caused Rac 1 activation. Tumor cells engaging fibronectin required both Type III 7-10- and 12-14-initiated signals to activate ERK and up-regulate MMP-9. Thus urokinase receptor binding to alpha5beta1 is required for maximal responses to fibronectin and tumor cell invasion, and this operates through an enhanced Src/Rac/ERK signaling pathway.
Collapse
Affiliation(s)
- Ying Wei
- Pulmonary and Critical Care Division, Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, California 94143-0111, USA.
| | | | | | | | | | | | | |
Collapse
|
70
|
Gringel A, Walz D, Rosenberger G, Minden A, Kutsche K, Kopp P, Linder S. PAK4 and alphaPIX determine podosome size and number in macrophages through localized actin regulation. J Cell Physiol 2006; 209:568-79. [PMID: 16897755 DOI: 10.1002/jcp.20777] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Podosomes are actin-rich adhesion structures typical for monocytic cells and are implicated in migration and invasion. Major modes of podosome regulation include RhoGTPase signaling and actin regulatory pathways. However, it is not clearly understood how these signals induce highly localized changes in podosome formation and dynamics. Here, we show that the RhoGTPase effector PAK4, a member of the p21 associated kinase family, and its regulator alphaPIX (PAK-interacting exchange factor), are central to podosome formation in primary human macrophages. Immunofluorescence, biochemical and microarray data indicate that PAK4 acts as physiological regulator of podosomes in this system. Accordingly, transfection of a specific shRNA, as well as expression of PAK4 truncation mutants, resulted in reduced numbers of podosomes per cell. Moreover, expression of kinase active or inactive PAK4 mutants enhanced or reduced the size of individual podosomes, respectively, indicating a modulatory influence of PAK4 kinase activity on podosome size. Similar to the results gained with PAK4, cellular/overexpressed PIX was shown to be closely associated with podosomes. Moreover, both overexpression of alphaPIX wt and a mutant lacking the SH3 domain led to coalescence of podosomes. In sum, we propose that PAK4 and alphaPIX can induce highly localized changes in actin dynamics and thereby regulate size and number of podosomes in primary human macrophages.
Collapse
Affiliation(s)
- Alexandra Gringel
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Pettenkoferstr, München, Germany
| | | | | | | | | | | | | |
Collapse
|
71
|
Wu WS, Tsai RK, Chang CH, Wang S, Wu JR, Chang YX. Reactive Oxygen Species Mediated Sustained Activation of Protein Kinase C α and Extracellular Signal-Regulated Kinase for Migration of Human Hepatoma Cell Hepg2. Mol Cancer Res 2006; 4:747-58. [PMID: 17050668 DOI: 10.1158/1541-7786.mcr-06-0096] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) can trigger growth inhibition, epithelial-mesenchymal transition (EMT)-like cell scattering, and migration of hepatoma cells HepG2 in a protein kinase C-alpha (PKC-alpha)-dependent manner. Saikosaponin a, an ingredient of antitumorigenic Chinese herb Sho-Saiko-to, inhibited cell growth but did not induce EMT-like cell scattering and cell migration of HepG2. Saikosaponin a and TPA induced transient (for 30 minutes) and sustained (until 6 hours) phosphorylation of extracellular signal-regulated kinase (ERK), respectively. Generation of the reactive oxygen species (ROS) was induced by TPA, but not saikosaponin a, for 3 hours. As expected, scavengers of ROS, such as superoxide dismutase, catalase, and mannitol, and the thiol-containing antioxidant N-acetylcystein dramatically suppressed the TPA-triggered cell migration but not growth inhibition of HepG2. The generation of ROS induced by TPA was PKC, but not ERK, dependent. On the other hand, scavengers of ROS and N-acetylcystein also prevented PKC activation and ERK phosphorylation induced by TPA. On the transcriptional level, TPA can induce gene expression of integrins alpha5, alpha6, and beta1 and reduce gene expression of E-cahedrin in a PKC- and ROS-dependent manner. In conclusion, ROS play a central role in mediating TPA-triggered sustained PKC and ERK signaling for regulation of gene expression of integrins and E-cahedrin that are responsible for EMT and migration of HepG2.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Department of Medical Technology, Tzu Chi University, No. 701, Chung Yang Road, Section 3, Hualien 970, Taiwan.
| | | | | | | | | | | |
Collapse
|
72
|
Takeda Y, Kazarov AR, Butterfield CE, Hopkins BD, Benjamin LE, Kaipainen A, Hemler ME. Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood 2006; 109:1524-32. [PMID: 17023588 PMCID: PMC1794066 DOI: 10.1182/blood-2006-08-041970] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tetraspanin protein CD151 is abundant on endothelial cells. To determine whether CD151 affects angiogenesis, Cd151-null mice were prepared. Cd151-null mice showed no vascular defects during normal development or during neonatal oxygen-induced retinopathy. However, Cd151-null mice showed impaired pathologic angiogenesis in other in vivo assays (Matrigel plug, corneal micropocket, tumor implantation) and in the ex vivo aortic ring assay. Cd151-null mouse lung endothelial cells (MLECs) showed normal adhesion and proliferation, but marked alterations in vitro, in assays relevant to angiogenesis (migration, spreading, invasion, Matrigel contraction, tube and cable formation, spheroid sprouting). Consistent with these functional impairments, and with the close, preferential association of CD151 with laminin-binding integrins, Cd151-null MLECs also showed selective signaling defects, particularly on laminin substrate. Adhesion-dependent activation of PKB/c-Akt, e-NOS, Rac, and Cdc42 was diminished, but Raf, ERK, p38 MAP kinase, FAK, and Src were unaltered. In Cd151-null MLECs, connections were disrupted between laminin-binding integrins and at least 5 other proteins. In conclusion, CD151 modulates molecular organization of laminin-binding integrins, thereby supporting secondary (ie, after cell adhesion) functions of endothelial cells, which are needed for some types of pathologic angiogenesis in vivo. Selective effects of CD151 on pathologic angiogenesis make it a potentially useful target for anticancer therapy.
Collapse
Affiliation(s)
- Yoshito Takeda
- Dana-Farber Cancer Institute, Vascular Biology Program, Children's Hospital, and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
73
|
Rossi L, Manfredini R, Bertolini F, Ferrari D, Fogli M, Zini R, Salati S, Salvestrini V, Gulinelli S, Adinolfi E, Ferrari S, Di Virgilio F, Baccarani M, Lemoli RM. The extracellular nucleotide UTP is a potent inducer of hematopoietic stem cell migration. Blood 2006; 109:533-42. [PMID: 17008551 DOI: 10.1182/blood-2006-01-035634] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Homing and engraftment of hematopoietic stem cells (HSCs) to the bone marrow (BM) involve a complex interplay between chemokines, cytokines, and nonpeptide molecules. Extracellular nucleotides and their cognate P2 receptors are emerging as key factors of inflammation and related chemotactic responses. In this study, we investigated the activity of extracellular adenosine triphosphate (ATP) and uridine triphosphate (UTP) on CXCL12-stimulated CD34+ HSC chemotaxis. In vitro, UTP significantly improved HSC migration, inhibited cell membrane CXCR4 down-regulation by migrating CD34+ cells, and increased cell adhesion to fibronectin. In vivo, preincubation with UTP significantly enhanced the BM homing efficiency of human CD34+ cells in immunodeficient mice. Pertussis toxin blocked CXCL12- and UTP-dependent chemotactic responses, suggesting that G-protein alpha-subunits (Galphai) may provide a converging signal for CXCR4- and P2Y-activated transduction pathways. In addition, gene expression profiling of UTP- and CXCL12-treated CD34+ cells and in vitro inhibition assays demonstrated that Rho guanosine 5'-triphosphatase (GTPase) Rac2 and downstream effectors Rho GTPase-activated kinases 1 and 2 (ROCK1/2) are involved in UTP-promoted/CXCL12-dependent HSC migration. Our data suggest that UTP may physiologically modulate the homing of HSCs to the BM, in concert with CXCL12, via the activation of converging signaling pathways between CXCR4 and P2Y receptors, involving Galphai proteins and RhoGTPases.
Collapse
Affiliation(s)
- Lara Rossi
- Institute of Hematology and Medical Oncology L & A Seràgnoli, University of Bologna, and Stem Cell Research Center, S. Orsola-Malpighi Hospital, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Ozeki N, Lim M, Yao CC, Tolar M, Kramer RH. alpha7 integrin expressing human fetal myogenic progenitors have stem cell-like properties and are capable of osteogenic differentiation. Exp Cell Res 2006; 312:4162-80. [PMID: 17054947 PMCID: PMC2766282 DOI: 10.1016/j.yexcr.2006.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 10/24/2022]
Abstract
During muscle development, precursor cells fuse to form myofibers. Following injury in adult muscle, quiescent satellite cells become activated to regenerate muscle in a fashion similar to fetal development. Recent studies indicate that murine skeletal myoblasts can differentiate along multiple cell lineages including the osteoblastic pathway. However, little is known about the multipotency of human myogenic cells. Here, we isolate myogenic precursor cells from human fetal and adult muscle by sorting for the laminin-binding alpha7 integrin and demonstrate their differentiation potential and alteration in adhesive behavior. The alpha7-positive human fetal progenitors were efficient at forming myotubes and a majority expressed known muscle markers including M-cadherin and c-Met, but were heterogeneous for desmin and MyoD expression. To test their pluripotent differentiation potential, enriched populations of alpha7-positive fetal cells were subjected to inductive protocols. Although the myoblasts appeared committed to a muscle lineage, they could be converted to differentiate along the osteoblastic pathway in the presence of BMP-2. Interestingly, osteogenic cells showed altered adhesion and migratory activity that reflected growth factor-induced changes in integrin expression. These results indicate that alpha7-expressing fetal myoblasts are capable of differentiation to osteoblast lineage with a coordinated switch in integrin profiles and may represent a mechanism that promotes homing and recruitment of myogenic stem cells for tissue repair and remodeling.
Collapse
Affiliation(s)
- Nobuaki Ozeki
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
- Department of Endodontics, School of Dentistry, Aichigakuin University, 2–11 Suemori-dori Chikusa-ku, Nagoya, 464–8651, Japan
| | - Moon Lim
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
| | - Chung-Chen Yao
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
| | - Mirek Tolar
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
| | - Randall H. Kramer
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, CA 94143-0640, USA
| |
Collapse
|
75
|
Sroka TC, Pennington ME, Cress AE. Synthetic D-amino acid peptide inhibits tumor cell motility on laminin-5. Carcinogenesis 2006; 27:1748-57. [PMID: 16537560 PMCID: PMC4069207 DOI: 10.1093/carcin/bgl005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell motility is partially dependent on interactions between the integrins and the extracellular matrix. Our previous studies have identified synthetic D-amino acid cell adhesion peptides using a combinatorial screening approach. In this study, we demonstrate that HYD1 (kikmviswkg) completely blocks random haptotactic migration and inhibits invasion of prostate carcinoma cells on laminin-5. This effect is adhesion independent and reversible. The inhibition of migration by HYD1 involves a dramatic remodeling of the actin cytoskeleton resulting in increased stress fiber formation and actin colocalization with cortactin at the cell membrane. HYD1 interacts with alpha6beta1 (not alpha6beta4) and alpha3beta1 integrins and surprisingly elevates laminin-5-dependent intracellular signals including focal adhesion kinase, mitogen-activated protein kinase kinase and extracellular signal-regulated kinase. HYD1 does not contain a previously characterized binding sequence for integrins. A scrambled derivative of HYD1, called HYDS (wiksmkivkg), does not interact with the alpha6 or alpha3 integrin subunits and is not biologically active. Taken together, these results indicate that HYD1 is a biologically active integrin-targeting peptide that reversibly inhibits tumor cell migration on laminin-5 and uncouples phosphotyrosine signaling from cytoskeletal-dependent migration.
Collapse
Affiliation(s)
- Thomas C. Sroka
- Department of Cell Biology and Anatomy, The University of Arizona, Tucson, AZ 85724, USA
| | - Michael E. Pennington
- Department of Cell Biology and Anatomy, The University of Arizona, Tucson, AZ 85724, USA
| | - Anne E. Cress
- Department of Cell Biology and Anatomy, The University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
76
|
Arias-Romero LE, de Jesús Almáraz-Barrera M, Díaz-Valencia JD, Rojo-Domínguez A, Hernandez-Rivas R, Vargas M. EhPAK2, a novel p21-activated kinase, is required for collagen invasion and capping in Entamoeba histolytica. Mol Biochem Parasitol 2006; 149:17-26. [PMID: 16716419 DOI: 10.1016/j.molbiopara.2006.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/03/2006] [Accepted: 04/04/2006] [Indexed: 12/22/2022]
Abstract
p21-activated kinases (PAKs) are a highly conserved family of enzymes that are activated by Rho GTPases. All PAKs contain an N-terminal Cdc42/Rac interacting binding (CRIB) domain, which confers binding to these GTPases, and a C-terminal kinase domain. In addition, some PAKs such as Cla4p, Skm1p and Pak2p contain an N-terminal pleckstrin homology (PH) domain and form a distinct group of PAK proteins involved in cell morphology, cell-cycle and gene transcription. Here, we describe a novel p21-activated kinase, denominated EhPAK2, on the parasitic protozoan Entamoeba histolytica. This is the first reported Entamoeba PAK member that contains a N-terminal PH domain and a highly conserved CRIB domain. EhPAK2 CRIB domain shares 29% of amino acid identity and 53% of amino acid homology with these of DdPAKC from Dictyostelium discoideum and Cla4p from Saccharomyces cerevisiae and binds in vitro and in vivo to EhRacA GTPase. This domain also possesses the conserved residues His123, Phe134 and Trp141, which are important for the interaction with the effector loop and strand beta2 of the GTPase; and the residues Met121 and Phe145, which are specific for the interaction of EhPAK2 with EhRacA. Functional studies of EhPAK2 showed that its C-terminal kinase domain had activity toward myelin basic protein. Cellular studies showed that Entamoeba trophozoites transfected with the vector pExEhNeo/kinase-myc, had a 90% decrease in the ability to invade a collagen matrix as well as severe defects in capping, suggesting the involvement of EhPAK2 in these cellular processes.
Collapse
Affiliation(s)
- Luis Enrique Arias-Romero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios, Avanzados del IPN, Mexico, DF, Mexico
| | | | | | | | | | | |
Collapse
|
77
|
De Vito P. The sodium/hydrogen exchanger: a possible mediator of immunity. Cell Immunol 2006; 240:69-85. [PMID: 16930575 DOI: 10.1016/j.cellimm.2006.07.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/30/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Immune cells such as macrophages and neutrophils provide the first line of defence of the immune system using phagocytosis, cytokine and chemokine synthesis and release, as well as Reactive Oxygen Species (ROS) generation. Many of these functions are positively coupled with cytoplasmic pH (pHi) and/or phagosomal pH (pHp) modification; an increase in pHi represents an important signal for cytokine and chemokine release, whereas a decrease in pHp can induce an efficient antigen presentation. However, the relationship between pHi and ROS generation is not well understood. In immune cells two main transport systems have been shown to regulate pHi: the Na+/H+ Exchanger (NHE) and the plasmalemmal V-type H+ ATPase. NHE is a family of proteins which exchange Na+ for H+ according to their concentration gradients in an electroneutral manner. The exchanger also plays a key role in several other cellular functions including proliferation, differentiation, apoptosis, migration, and cytoskeletal organization. Since not much is known on the relationship between NHE and immunity, this review outlines the contribution of NHE to different aspects of innate and adaptive immune responses such as phagosomal acidification, NADPH oxidase activation and ROS generation, cytokine and chemokine release as well as T cell apoptosis. The possibility that several pro-inflammatory diseases may be modulated by NHE activity is evaluated.
Collapse
Affiliation(s)
- Paolo De Vito
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
78
|
Reuters I, Weber M, Schulze-Lohoff E. Rho/Rho kinase pathway regulates maintenance of the differentiated tubular epithelial cell phenotype on laminin-1. Nephron Clin Pract 2006; 104:p95-p106. [PMID: 16847378 DOI: 10.1159/000094573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 04/02/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Maintenance of a polarized tubular epithelium by appropriate intracellular signaling and extracellular matrix is critical both in normal renal function as well as in acute and chronic tubular injury. We examined the hypothesis that maintenance of a differentiated epithelial phenotype on the basement membrane glycoprotein laminin-1 is controlled by the Rho/Rho kinase pathway. METHODS Using the tubular epithelial cell lines LLC-PK1 and MDCK which were cultured on laminin-1 vs. collagen IV, we analyzed cell morphology and motility (cohort migration assay) as well as expression of differentiation and dedifferentiation markers (immunofluorescence microscopy). RESULTS Cohort migration of LLC-PK1 cells was significantly slowed down on laminin-1 (10.7 +/- 2.2 m.u. (migratory units)) compared with collagen IV (16.6 +/- 2.3 m.u.; BSA control: 2.8 +/- 2.5 m.u.). Inhibition of the Rho/Rho kinase pathway by C3 exotoxin (1 mug/ml) or the Rho kinase inhibitor Y27632 (10 microM) significantly augmented cohort migration on laminin-1 (14.5 +/- 1.4 and 16.0 +/- 1.8 m.u. vs. 10.7 +/- 2.2 m.u.). In parallel to the increased migratory activity, inhibition of the Rho/Rho kinase pathway resulted in a more mesenchymal phenotype of LLC-PK1 cells on laminin-1 with increased formation of lamellopodia and filopodia, distinct loss of focal contacts and stress fibers, upregulation of the dedifferentiation marker vimentin, and loss of cell-cell contacts with translocation of beta-catenin from the adherens junctions to the cytosol and nucleus. Similarly, cohort migration of MDCK cells was retarded on laminin-1 when compared with collagen IV, and addition of the Rho kinase inhibitor Y27632 resulted in enhanced motility and a change in cell morphology. CONCLUSION The study demonstrates that the Rho/Rho kinase pathway is required to maintain a non-migratory epithelial phenotype of cultured renal tubular LLC-PK1 and MDCK cells on the basement membrane glycoprotein laminin-1.
Collapse
Affiliation(s)
- Irith Reuters
- Department of Medicine I, Cologne General Hospital, Merheim Medical Center, Cologne, Germany
| | | | | |
Collapse
|
79
|
Sogabe Y, Abe M, Yokoyama Y, Ishikawa O. Basic fibroblast growth factor stimulates human keratinocyte motility by Rac activation. Wound Repair Regen 2006; 14:457-62. [PMID: 16939574 DOI: 10.1111/j.1743-6109.2006.00143.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Topical application of human recombinant basic fibroblast growth factor (bFGF) promotes wound healing. bFGF, however, has been reported to have little in vitro effects on keratinocyte compared with other cell types such as endothelial cells or fibroblasts. The aim of this study was to investigate the mechanism(s) of bFGF-stimulated keratinocyte migration. Normal human keratinocytes, seeded on coverslips that were noncoated or coated with type I collagen or fibronectin, were stimulated with bFGF to evaluate their ability to spread. Keratinocyte migration was measured using a Boyden chamber assay. The lysates of keratinocytes, which were plated on noncoated, type I collagen-coated or fibronectin-coated plastic dishes and stimulated with bFGF, were subjected to pulldown assays to detect guanine triphosphate-loaded Rac. Morphologically, keratinocytes formed lamellipodia only when they were stimulated with bFGF on the collagen-coated coverslips. Keratinocyte migration was significantly enhanced by bFGF. Guanine triphosphate-loaded Rac was detected only in the lysate of bFGF-stimulated keratinocytes on collagen-coated dishes. This in vitro study shows that bFGF exerts a stimulatory effect on keratinocyte migration in the presence of type I collagen as a scaffold, and, at least, Rac activation is involved.
Collapse
Affiliation(s)
- Yoko Sogabe
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | |
Collapse
|
80
|
Wiedemann A, Patel JC, Lim J, Tsun A, van Kooyk Y, Caron E. Two distinct cytoplasmic regions of the beta2 integrin chain regulate RhoA function during phagocytosis. ACTA ACUST UNITED AC 2006; 172:1069-79. [PMID: 16567504 PMCID: PMC2063764 DOI: 10.1083/jcb.200508075] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
αMβ2 integrins mediate phagocytosis of opsonized particles in a process controlled by RhoA, Rho kinase, myosin II, Arp2/3, and actin polymerization. αMβ2, Rho, Arp2/3, and F-actin accumulate underneath bound particles; however, the mechanism regulating Rho function during αMβ2-mediated phagocytosis is poorly understood. We report that the binding of C3bi-opsonized sheep red blood cells (RBCs) to αMβ2 increases Rho-GTP, but not Rac-GTP, levels. Deletion of the cytoplasmic domain of β2, but not of αM, abolished Rho recruitment and activation, as well as phagocytic uptake. Interestingly, a 16–amino acid (aa) region in the membrane-proximal half of the β2 cytoplasmic domain was necessary for activating Rho. Three COOH-terminal residues (aa 758–760) were essential for β2-induced accumulation of Rho at complement receptor 3 (CR3) phagosomes. Activation of Rho was necessary, but not sufficient, for its stable recruitment underneath bound particles or for uptake. However, recruitment of active Rho was sufficient for phagocytosis. Our data shed light on the mechanism of outside-in signaling, from ligated integrins to the activation of Rho GTPase signaling.
Collapse
Affiliation(s)
- Agnès Wiedemann
- Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, England, UK
| | | | | | | | | | | |
Collapse
|
81
|
Lakhe-Reddy S, Khan S, Konieczkowski M, Jarad G, Wu KL, Reichardt LF, Takai Y, Bruggeman LA, Wang B, Sedor JR, Schelling JR. Beta8 integrin binds Rho GDP dissociation inhibitor-1 and activates Rac1 to inhibit mesangial cell myofibroblast differentiation. J Biol Chem 2006; 281:19688-99. [PMID: 16690620 PMCID: PMC2711893 DOI: 10.1074/jbc.m601110200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alpha(v)beta8 integrin expression is restricted primarily to kidney, brain, and placenta. Targeted alpha(v) or beta8 deletion is embryonic lethal due to defective placenta and brain angiogenesis, precluding investigation of kidney alpha(v)beta8 function. We find that kidney beta8 is localized to glomerular mesangial cells, and expression is decreased in mouse models of glomerulosclerosis, suggesting that beta8 regulates normal mesangial cell differentiation. To interrogate beta8 signaling pathways, yeast two-hybrid and co-precipitation studies demonstrated beta8 interaction with Rho guanine nucleotide dissociation inhibitor-1 (GDI). Selective beta8 stimulation enhanced beta8-GDI interaction as well as Rac1 (but not RhoA) activation and lamellipodia formation. Mesangial cells from itgb8-/- mice backcrossed to a genetic background that permitted survival, or gdi-/- mice, which develop glomerulosclerosis, demonstrated RhoA (but not Rac1) activity and alpha-smooth muscle actin assembly, which characterizes mesangial cell myofibroblast transformation in renal disease. To determine whether Rac1 directly modulates RhoA-associated myofibroblast differentiation, mesangial cells were transduced with inhibitory Rac peptide fused to human immunodeficiency virus-Tat, resulting in enhanced alpha-smooth muscle actin organization. We conclude that the beta8 cytosolic tail in mesangial cells organizes a signaling complex that culminates in Rac1 activation to mediate wild-type differentiation, whereas decreased beta8 activation shifts mesangial cells toward a RhoA-dependent myofibroblast phenotype.
Collapse
Affiliation(s)
- Sujata Lakhe-Reddy
- Department of Medicine, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - Shenaz Khan
- Department of Medicine, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - Martha Konieczkowski
- Department of Medicine, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - George Jarad
- Department of Medicine, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - Karen L. Wu
- Department of Medicine, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - Louis F. Reichardt
- Departments of Physiology and Biochemistry/Biophysics, University of California, San Francisco and Howard Hughes Medical Institute, San Francisco, California 94143
| | - Yoshimi Takai
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Osaka 565−0871, Japan
| | - Leslie A. Bruggeman
- Department of Medicine, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - Bingcheng Wang
- Department of Medicine, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
- Department of Pharmacology, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - John R. Sedor
- Department of Medicine, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
- Departments of Physiology and Biophysics, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
| | - Jeffrey R. Schelling
- Department of Medicine, Case Western Reserve University School of Medicine, Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, Ohio 44109
- To whom correspondence should be addressed: MetroHealth Medical Center, 2500 MetroHealth Dr., R415, Cleveland, OH. 44109−1998. Tel.: 216−778−4993; E-mail:
| |
Collapse
|
82
|
Bourguignon LYW, Gilad E, Brightman A, Diedrich F, Singleton P. Hyaluronan-CD44 interaction with leukemia-associated RhoGEF and epidermal growth factor receptor promotes Rho/Ras co-activation, phospholipase C epsilon-Ca2+ signaling, and cytoskeleton modification in head and neck squamous cell carcinoma cells. J Biol Chem 2006; 281:14026-40. [PMID: 16565089 DOI: 10.1074/jbc.m507734200] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this study we have examined the interaction of CD44 (a major hyaluronan (HA) receptor) with a RhoA-specific guanine nucleotide exchange factor (leukemia-associated RhoGEF (LARG)) in human head and neck squamous carcinoma cells (HNSCC-HSC-3 cell line). Immunoprecipitation and immunoblot analyses indicate that CD44 and the LARG protein are expressed in HSC-3 cells and that these two proteins are physically associated as a complex. HA-CD44 binding induces LARG-specific RhoA signaling and phospholipase C epsilon (PLC epsilon) activity. In particular, the activation of RhoA-PLC epsilon by HA stimulates inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, and the up-regulation of Ca2+/calmodulin-dependent kinase II (CaMKII), leading to phosphorylation of the cytoskeletal protein, filamin. The phosphorylation of filamin reduces its interaction with filamentous actin, promoting tumor cell migration. The CD44-LARG complex also interacts with the EGF receptor (EGFR). Most importantly, the binding of HA to the CD44-LARG-EGFR complex activates the EGFR receptor kinase, which in turn promotes Ras-mediated stimulation of a downstream kinase cascade including the Raf-1 and ERK pathways leading to HNSCC cell growth. Using a recombinant fragment of LARG (the LARG-PDZ domain) and a binding assay, we have determined that the LARG-PDZ domain serves as a direct linker between CD44 and EGFR. Transfection of the HSC-3 cells with LARG-PDZcDNA significantly reduces LARG association with CD44 and EGFR. Overexpression of the LARG-PDZ domain also functions as a dominant-negative mutant (similar to the PLC/Ca2+-calmodulin-dependent kinase II (CaMKII) and EGFR/MAPK inhibitor effects) to block HA/CD44-mediated signaling events (e.g. EGFR kinase activation, Ras/RhoA co-activation, Raf-ERK signaling, PLC epsilon-mediated inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, CaMKII activity, filamin phosphorylation, and filamin-actin binding) and to abrogate tumor cell growth/migration. Taken together, our findings suggest that CD44 interaction with LARG and EGFR plays a pivotal role in Rho/Ras co-activation, PLC epsilon-Ca2+ signaling, and Raf/ERK up-regulation required for CaMKII-mediated cytoskeleton function and in head and neck squamous cell carcinoma progression.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, University of California at San Francisco and Endocrine Unit (111N), Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| | | | | | | | | |
Collapse
|
83
|
Zhang ZG, Lambert CA, Servotte S, Chometon G, Eckes B, Krieg T, Lapière CM, Nusgens BV, Aumailley M. Effects of constitutively active GTPases on fibroblast behavior. Cell Mol Life Sci 2006; 63:82-91. [PMID: 16378244 PMCID: PMC2792356 DOI: 10.1007/s00018-005-5416-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The GTP-binding proteins RhoA, Cdc42 and Rac1 regulate the organization and turnover of the cytoskeleton and cell-matrix adhesions, structures bridging cells to their support, and translating forces, external or generated within the cell. To investigate the specific requirements of Rho GTPases for biomechanical activities of clonal cell populations, we compared side-by-side stable lines of human fibroblasts expressing constitutively active (CA) RhoA, Cdc42 or Rac1. There was no marked effect of any CA GTPase on cell adhesion to different extracellular matrix proteins. Cell spreading was CA Rho GTPase specific and independent of the extracellular matrix proteins allowing adhesion. Mechanical properties were dramatically restricted by CA RhoA on bi- and in tri-dimensional surroundings, were boosted by CA Rac1 on bi-dimensional surroundings only, and were not or marginally affected by CA Cdc42. In conclusion, the action of Rho GTPases appears to depend on the task cells are performing.
Collapse
Affiliation(s)
- Z.-G. Zhang
- Institute for Biochemistry II, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
- Center for Molecular Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - C. A. Lambert
- Laboratory of Connective Tissues Biology, Center of Biomedical Integrative Genoproteomics, University of Liège, 4000 Liège, Belgium
| | - S. Servotte
- Laboratory of Connective Tissues Biology, Center of Biomedical Integrative Genoproteomics, University of Liège, 4000 Liège, Belgium
| | - G. Chometon
- Institute for Biochemistry II, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
| | - B. Eckes
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| | - T. Krieg
- Center for Molecular Medicine, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Dermatology, Medical Faculty, University of Cologne, Cologne, Germany
| | - C. M. Lapière
- Laboratory of Connective Tissues Biology, Center of Biomedical Integrative Genoproteomics, University of Liège, 4000 Liège, Belgium
| | - B. V. Nusgens
- Laboratory of Connective Tissues Biology, Center of Biomedical Integrative Genoproteomics, University of Liège, 4000 Liège, Belgium
| | - M. Aumailley
- Institute for Biochemistry II, Joseph-Stelzmann-Straße 52, 50931 Cologne, Germany
- Center for Molecular Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
84
|
Demou ZN, Awad M, McKee T, Perentes JY, Wang X, Munn LL, Jain RK, Boucher Y. Lack of Telopeptides in Fibrillar Collagen I Promotes the Invasion of a Metastatic Breast Tumor Cell Line. Cancer Res 2005; 65:5674-82. [PMID: 15994941 DOI: 10.1158/0008-5472.can-04-1682] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defective fibrillar collagen polymerization in primary tumors has been correlated with increased metastasis. However, it is unclear how collagen organization influences tumor invasion. In this study, we show that collagen I polymerized without telopeptides (the flanking regions of collagen molecules) can differentially affect the three-dimensional migration of mammary carcinoma cells. MDA-MB-231 cells capable of proteolytic degradation and mesenchymal motion, invaded telopeptide-intact and telopeptide-free collagen gels to the same extent. In contrast, MDA-MB-435S cells, with typical features of amoeboid cells (poor collagenolytic activity, rounded cell morphology), were 5-fold more invasive in telopeptide-free than telopeptide-intact collagen. A fraction of the MDA-MB-435S cells that invaded telopeptide-intact or telopeptide-free collagen had a rounded morphology; however, in telopeptide-free collagen, a significant fraction of the cells switched from a rounded to elongated morphology (protrusion formation). The dynamic changes in cellular shape facilitated MDA-MB-435S locomotion through the narrow interfiber gaps, which were smaller than cell diameters. Based on the spherical morphology of MDA-MB-435S cells, we tested if the changes in cell shape and invasion were related to RhoA-ROCK activity; GTP-bound RhoA was measured in pull-down assays. RhoA activity was 1.8-fold higher for MDA-MB-435S cells seeded on telopeptide-free than telopeptide-intact collagen. Y27632 inhibition of ROCK, a Rho effector, significantly reduced the changes in cellular morphodynamics and the invasion of MDA-MB-435S cells but did not alter the invasion of MDA-MB-231 cells. Thus, the higher RhoA activity of MDA-MB-435S cells in telopeptide-free collagen enhances the changes in cellular morphodynamics associated with motility and invasion.
Collapse
Affiliation(s)
- Zoe N Demou
- Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|