51
|
Zhou Q, Shi X, Zhang K, Shi C, Huang L, Chang Z. The Function of Ile-X-Ile Motif in the Oligomerization and Chaperone-Like Activity of Small Heat Shock Protein AgsA at Room Temperature. Protein J 2016; 35:401-406. [PMID: 27812886 DOI: 10.1007/s10930-016-9681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small heat shock proteins assemble as large oligomers in vitro and exhibit ATP-independent chaperone activities. Ile-X-Ile motif is essential in both the function and oligomer formation. AgsA of Salmonella enterica serovar Typhimurium has been demonstrated to adopt large oligomeric structure and possess strong chaperone activity. Size exclusion chromatography, non-denaturing pore gradient PAGE, and negatively stain electron microscopic analysis of the various C-terminal truncated mutants were performed to investigate the role of Ile-X-Ile motif in the oligomer assembly of AgsA. By measuring the ability to prevent insulin from aggregating induced by TCEP, the chaperone-like activity of AgsA and the C-terminal truncated mutants at room temperature were determined. We found that the truncated mutants with Ile-X-Ile motif partially or fully deleted lost the ability to form large oligomers. Contrast to wild type AgsA which displayed weak chaperone-like activity, those mutants shown significantly enhanced activities at room temperature. In summary, biochemical experiment, activity assay and electron microscopic analysis suggested that Ile-X-Ile motif is essential in oligomer assembly of AgsA and might take the role of an inhibitor for its chaperone-like activity at room temperature.
Collapse
Affiliation(s)
- Qiuhu Zhou
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China
| | - Xiaodong Shi
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China
| | - Kaiming Zhang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China
| | - Chao Shi
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China
| | - Lixin Huang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China
| | - Zhenzhan Chang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue-Yuan Road, Beijing, 100191, People's Republic of China.
| |
Collapse
|
52
|
Perić M, Bou Dib P, Dennerlein S, Musa M, Rudan M, Lovrić A, Nikolić A, Šarić A, Sobočanec S, Mačak Ž, Raimundo N, Kriško A. Crosstalk between cellular compartments protects against proteotoxicity and extends lifespan. Sci Rep 2016; 6:28751. [PMID: 27346163 PMCID: PMC4921836 DOI: 10.1038/srep28751] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 06/08/2016] [Indexed: 11/09/2022] Open
Abstract
In cells living under optimal conditions, protein folding defects are usually prevented by the action of chaperones. Here, we investigate the cell-wide consequences of loss of chaperone function in cytosol, mitochondria or the endoplasmic reticulum (ER) in budding yeast. We find that the decline in chaperone activity in each compartment results in loss of respiration, demonstrating the dependence of mitochondrial activity on cell-wide proteostasis. Furthermore, each chaperone deficiency triggers a response, presumably via the communication among the folding environments of distinct cellular compartments, termed here the cross-organelle stress response (CORE). The proposed CORE pathway encompasses activation of protein conformational maintenance machineries, antioxidant enzymes, and metabolic changes simultaneously in the cytosol, mitochondria, and the ER. CORE induction extends replicative and chronological lifespan in budding yeast, highlighting its protective role against moderate proteotoxicity and its consequences such as the decline in respiration. Our findings accentuate that organelles do not function in isolation, but are integrated in a functional crosstalk, while also highlighting the importance of organelle communication in aging and age-related diseases.
Collapse
Affiliation(s)
- Matea Perić
- Mediterranean Institute for Life Sciences - MedILS, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Peter Bou Dib
- Universitätsmedizin Göttingen, Institut für Zellbiochemie, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Sven Dennerlein
- Universitätsmedizin Göttingen, Institut für Zellbiochemie, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Marina Musa
- Mediterranean Institute for Life Sciences - MedILS, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Marina Rudan
- Mediterranean Institute for Life Sciences - MedILS, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Anita Lovrić
- Mediterranean Institute for Life Sciences - MedILS, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Andrea Nikolić
- Mediterranean Institute for Life Sciences - MedILS, Meštrovićevo šetalište 45, 21000 Split, Croatia
| | - Ana Šarić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Sandra Sobočanec
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Željka Mačak
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Nuno Raimundo
- Universitätsmedizin Göttingen, Institut für Zellbiochemie, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Anita Kriško
- Mediterranean Institute for Life Sciences - MedILS, Meštrovićevo šetalište 45, 21000 Split, Croatia
| |
Collapse
|
53
|
Roman SG, Chebotareva NA, Kurganov BI. Anti-aggregation activity of small heat shock proteins under crowded conditions. Int J Biol Macromol 2016; 100:97-103. [PMID: 27234495 DOI: 10.1016/j.ijbiomac.2016.05.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/23/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
It is becoming evident that small heat shock proteins (sHsps) are important players of protein homeostasis system. Their ability to bind misfolded proteins may play a crucial role in preventing protein aggregation in cells. The remarkable structural plasticity of sHsps is considered to underlie the mechanism of their activity. However, all our knowledge of the anti-aggregation functioning of sHsps is based on data obtained in vitro in media greatly different from the cellular highly crowded milieu. The present review highlights available data on the effect of crowding on the anti-aggregation activity of sHsps. There is some evidence that crowding affects conformation and dynamics of sHsps oligomers as well as their anti-aggregation properties. Crowding stimulates association of sHsp-client protein complexes into large-sized aggregates thus diminishing the apparent anti-aggregation activity of sHsps. Nevertheless, it is also shown that complexes between suboligomers (dissociated forms) of sHsps and client proteins may be stabilized and exist for longer period of time under crowded conditions. Moreover, crowding may retard the initial stages of aggregation which correspond to the formation of sHsp-containing nuclei and their clusters. Thus, dissociation of sHsps into suboligomers appears to be an important feature for the anti-aggregation activity of sHsps in crowded media.
Collapse
Affiliation(s)
- Svetlana G Roman
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia.
| | - Natalia A Chebotareva
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| | - Boris I Kurganov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky pr. 33, Moscow 119071, Russia
| |
Collapse
|
54
|
Torrente MP, Chuang E, Noll MM, Jackrel ME, Go MS, Shorter J. Mechanistic Insights into Hsp104 Potentiation. J Biol Chem 2016; 291:5101-15. [PMID: 26747608 DOI: 10.1074/jbc.m115.707976] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/25/2022] Open
Abstract
Potentiated variants of Hsp104, a protein disaggregase from yeast, can dissolve protein aggregates connected to neurodegenerative diseases such as Parkinson disease and amyotrophic lateral sclerosis. However, the mechanisms underlying Hsp104 potentiation remain incompletely defined. Here, we establish that 2-3 subunits of the Hsp104 hexamer must bear an A503V potentiating mutation to elicit enhanced disaggregase activity in the absence of Hsp70. We also define the ATPase and substrate-binding modalities needed for potentiated Hsp104(A503V) activity in vitro and in vivo. Hsp104(A503V) disaggregase activity is strongly inhibited by the Y257A mutation that disrupts substrate binding to the nucleotide-binding domain 1 (NBD1) pore loop and is abolished by the Y662A mutation that disrupts substrate binding to the NBD2 pore loop. Intriguingly, Hsp104(A503V) disaggregase activity responds to mixtures of ATP and adenosine 5'-(γ-thio)-triphosphate (a slowly hydrolyzable ATP analogue) differently from Hsp104. Indeed, an altered pattern of ATP hydrolysis and altered allosteric signaling between NBD1 and NBD2 are likely critical for potentiation. Hsp104(A503V) variants bearing inactivating Walker A or Walker B mutations in both NBDs are inoperative. Unexpectedly, however, Hsp104(A503V) retains potentiated activity upon introduction of sensor-1 mutations that reduce ATP hydrolysis at NBD1 (T317A) or NBD2 (N728A). Hsp104(T317A/A503V) and Hsp104(A503V/N728A) rescue TDP-43 (TAR DNA-binding protein 43), FUS (fused in sarcoma), and α-synuclein toxicity in yeast. Thus, Hsp104(A503V) displays a more robust activity that is unperturbed by sensor-1 mutations that greatly reduce Hsp104 activity in vivo. Indeed, ATPase activity at NBD1 or NBD2 is sufficient for Hsp104 potentiation. Our findings will empower design of ameliorated therapeutic disaggregases for various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Edward Chuang
- From the Department of Biochemistry and Biophysics and the Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Megan M Noll
- From the Department of Biochemistry and Biophysics and
| | | | - Michelle S Go
- From the Department of Biochemistry and Biophysics and
| | - James Shorter
- From the Department of Biochemistry and Biophysics and the Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
55
|
Peters LZ, Karmon O, Miodownik S, Ben-Aroya S. Proteasome storage granules are transiently associated with the insoluble protein deposit (IPOD). J Cell Sci 2016; 129:1190-7. [DOI: 10.1242/jcs.179648] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 12/28/2022] Open
Abstract
Proteasome storage granules (PSGs) are created in yeast as part of an extensive, programmed reorganization of proteins into reversible assemblies, upon carbon source depletion. Here, we demonstrate that cells distinguish dysfunctional proteasomes from PSGs on the cytosolic insoluble protein deposit (IPOD). Furthermore, we provide evidence that this is a general mechanism for the reorganization of additional proteins into reversible assemblies. Our study expands the roles of the IPOD which may serve not only as the specific depository for amyloidogenic and misfolded proteins, but also as a potential hub, from which proteins are directed to distinct cellular compartments. These findings therefore provide a framework for understanding how cells discriminate between intact and abnormal proteins under stress conditions to ensure that only structurally ‘correct’ proteins are deployed.
Collapse
Affiliation(s)
- Lee Zeev Peters
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | - Ofri Karmon
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | - Shir Miodownik
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
56
|
Rattanawong K, Kerdsomboon K, Auesukaree C. Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlor in Saccharomyces cerevisiae. Free Radic Biol Med 2015; 89:963-71. [PMID: 26518674 DOI: 10.1016/j.freeradbiomed.2015.10.421] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 02/02/2023]
Abstract
Alachlor is a widely used pre-emergent chloroacetanilide herbicide which has been shown to have many harmful ecological and environmental effects. However, the mechanism of alachlor-induced oxidative stress is poorly understood. We found that, in Saccharomyces cerevisiae, the intracellular levels of reactive oxygen species (ROS) including superoxide anions were increased only after long-term exposure to alachlor, suggesting that alachlor is not a pro-oxidant. It is likely that alachlor-induced oxidative stress may result from protein denaturation because alachlor rapidly induced an increased protein aggregation, leading to upregulation of SSA4 and HSP82 genes encoding heat shock proteins (Hsp) of Hsp70 and Hsp90 family, respectively. Although only SOD1 encoding Cu/Zn-superoxide dismutase (SOD), but not SOD2 encoding Mn-SOD, is essential for alachlor tolerance, both SODs play a crucial role in reducing alachlor-induced ROS. We found that, after alachlor exposure, glutathione production was inhibited while its utilization was increased, suggesting the role of glutathione in protecting cells against alachlor, which becomes more important when lacking Cu/Zn-SOD. Based on our results, it seems that alachlor primarily causes damages to cellular macromolecules such as proteins, leading to an induction of endogenous oxidative stress, of which intracellular antioxidant defense systems are required for elimination.
Collapse
Affiliation(s)
- Kasidit Rattanawong
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand
| | - Kittikhun Kerdsomboon
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand
| | - Choowong Auesukaree
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Thailand.
| |
Collapse
|
57
|
Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress. FEBS Lett 2015; 589:3654-64. [PMID: 26484595 DOI: 10.1016/j.febslet.2015.10.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/16/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022]
Abstract
Environmental stress causes the sequestration of proteins into insoluble deposits including cytoplasmic stress granules (SGs), containing mRNA and a variety of translation factors. Here we systematically identified proteins sequestered in Saccharomyces cerevisiae at 46 °C by a SG co-localization screen and proteomic analysis of insoluble protein fractions. We identified novel SG components including essential aminoacyl-tRNA synthetases. Moreover, we discovered nucleus-associated deposits containing ribosome biogenesis factors. Our study suggests downregulation of cytosolic protein synthesis and nuclear ribosome production at multiple levels through heat shock induced protein sequestrations.
Collapse
|
58
|
Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, Arnsburg K, Gao X, Scior A, Aebersold R, Guilbride DL, Wade RC, Morimoto RI, Mayer MP, Bukau B. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 2015; 524:247-51. [PMID: 26245380 PMCID: PMC4830470 DOI: 10.1038/nature14884] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 07/08/2015] [Indexed: 01/24/2023]
Abstract
Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.
Collapse
Affiliation(s)
- Nadinath B Nillegoda
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Janine Kirstein
- Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Anna Szlachcic
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Mykhaylo Berynskyy
- Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Antonia Stank
- 1] Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany [2] Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Florian Stengel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Kristin Arnsburg
- Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Xuechao Gao
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Annika Scior
- Leibniz-Institute for Molecular Pharmacology (FMP), 13125 Berlin, Germany
| | - Ruedi Aebersold
- 1] Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland [2] Faculty of Science, University of Zurich, 8057 Zurich, Switzerland
| | - D Lys Guilbride
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Rebecca C Wade
- 1] Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany [2] Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany [3] Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Matthias P Mayer
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| |
Collapse
|
59
|
Singh A, Ahluwalia P, Rafiq A, Sharma S. Biomarkers: Non-destructive Method for Predicting Meat Tenderization. Crit Rev Food Sci Nutr 2015. [PMID: 26147251 DOI: 10.1080/10408398.2015.1015716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Meat tenderness is the primary and most important quality attribute for the consumers worldwide. Tenderness is the process of breakdown of collagen tissue in meat to make it palatable. The earlier methods of tenderness evaluation like taste panels and shear force methods are destructive, time consuming and ill suited as they requires removing a piece of steak from the carcass for performing the test. Therefore, a non-destructive method for predicting the tenderness would be more desirable. The development of a meat quality grading and guarantee system through muscle profiling research can help to meet this demand. Biomarkers have the ability to identify if an exposure has occurred. Biomarkers of the meat quality are of prime importance for meat industry, which has ability to satisfy consumers' expectations. The biomarkers so far identified have been then sorted and grouped according to their common biological functions. All of them refer to a series of biological pathways including glycolytic and oxidative energy production, cell detoxification, protease inhibition and production of Heat Shock Proteins. On this basis, a detailed analysis of these metabolic pathways helps in identifying tenderization of meat having some domains of interest. It was, therefore, stressed forward that biomarkers can be used to determine meat tenderness. This review article summarizes the uses of several biomarkers for predicting the meat tenderness.
Collapse
Affiliation(s)
- Arashdeep Singh
- a Department of Food Science and Technology , Punjab Agricultural University , Ludhiana , 141004
| | | | | | | |
Collapse
|
60
|
Haslbeck M, Peschek J, Buchner J, Weinkauf S. Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta Gen Subj 2015; 1860:149-66. [PMID: 26116912 DOI: 10.1016/j.bbagen.2015.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/10/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The two α-crystallins (αA- and αB-crystallin) are major components of our eye lenses. Their key function there is to preserve lens transparency which is a challenging task as the protein turnover in the lens is low necessitating the stability and longevity of the constituent proteins. α-Crystallins are members of the small heat shock protein family. αB-crystallin is also expressed in other cell types. SCOPE OF THE REVIEW The review summarizes the current concepts on the polydisperse structure of the α-crystallin oligomer and its chaperone function with a focus on the inherent complexity and highlighting gaps between in vitro and in vivo studies. MAJOR CONCLUSIONS Both α-crystallins protect proteins from irreversible aggregation in a promiscuous manner. In maintaining eye lens transparency, they reduce the formation of light scattering particles and balance the interactions between lens crystallins. Important for these functions is their structural dynamics and heterogeneity as well as the regulation of these processes which we are beginning to understand. However, currently, it still remains elusive to which extent the in vitro observed properties of α-crystallins reflect the highly crowded situation in the lens. GENERAL SIGNIFICANCE Since α-crystallins play an important role in preventing cataract in the eye lens and in the development of diverse diseases, understanding their mechanism and substrate spectra is of importance. To bridge the gap between the concepts established in vitro and the in vivo function of α-crystallins, the joining of forces between different scientific disciplines and the combination of diverse techniques in hybrid approaches are necessary. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Martin Haslbeck
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Jirka Peschek
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| | - Sevil Weinkauf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany.
| |
Collapse
|
61
|
Fleckenstein T, Kastenmüller A, Stein ML, Peters C, Daake M, Krause M, Weinfurtner D, Haslbeck M, Weinkauf S, Groll M, Buchner J. The Chaperone Activity of the Developmental Small Heat Shock Protein Sip1 Is Regulated by pH-Dependent Conformational Changes. Mol Cell 2015; 58:1067-78. [PMID: 26009280 DOI: 10.1016/j.molcel.2015.04.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/24/2015] [Accepted: 04/14/2015] [Indexed: 01/25/2023]
Abstract
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the aggregation of unfolding proteins during proteotoxic stress. In Caenorhabditis elegans, Sip1 is the only sHsp exclusively expressed in oocytes and embryos. Here, we demonstrate that Sip1 is essential for heat shock survival of reproducing adults and embryos. X-ray crystallography and electron microscopy revealed that Sip1 exists in a range of well-defined globular assemblies consisting of two half-spheres, each made of dimeric "spokes." Strikingly, the oligomeric distribution of Sip1 as well as its chaperone activity depend on pH, with a trend toward smaller species and higher activity at acidic conditions such as present in nematode eggs. The analysis of the interactome shows that Sip1 has a specific substrate spectrum including proteins that are essential for embryo development.
Collapse
Affiliation(s)
- Tilly Fleckenstein
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Andreas Kastenmüller
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Martin Lorenz Stein
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Carsten Peters
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Marina Daake
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Maike Krause
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Daniel Weinfurtner
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Martin Haslbeck
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Sevil Weinkauf
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | - Michael Groll
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| | - Johannes Buchner
- Center for Integrated Protein Science, Fakultät für Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
62
|
Moldavski O, Amen T, Levin-Zaidman S, Eisenstein M, Rogachev I, Brandis A, Kaganovich D, Schuldiner M. Lipid Droplets Are Essential for Efficient Clearance of Cytosolic Inclusion Bodies. Dev Cell 2015; 33:603-10. [PMID: 26004510 DOI: 10.1016/j.devcel.2015.04.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/17/2015] [Accepted: 04/21/2015] [Indexed: 11/24/2022]
Abstract
Exposing cells to folding stress causes a subset of their proteins to misfold and accumulate in inclusion bodies (IBs). IB formation and clearance are both active processes, but little is known about their mechanism. To shed light on this issue, we performed a screen with over 4,000 fluorescently tagged yeast proteins for co-localization with a model misfolded protein that marks IBs during folding stress. We identified 13 proteins that co-localize to IBs. Remarkably, one of these IB proteins, the uncharacterized and conserved protein Iml2, exhibited strong physical interactions with lipid droplet (LD) proteins. Indeed, we here show that IBs and LDs are spatially and functionally linked. We further demonstrate a mechanism for IB clearance via a sterol-based metabolite emanating from LDs. Our findings therefore uncover a function for Iml2 and LDs in regulating a critical stage of cellular proteostasis.
Collapse
Affiliation(s)
- Ofer Moldavski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Triana Amen
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Smadar Levin-Zaidman
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miriam Eisenstein
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilana Rogachev
- Department for Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Brandis
- Department for Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
63
|
Duncan EJ, Cheetham ME, Chapple JP, van der Spuy J. The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Subcell Biochem 2015; 78:243-73. [PMID: 25487025 DOI: 10.1007/978-3-319-11731-7_12] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein folding, quality control and function. In particular, the HSP70 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and its co-chaperones have been recognised as potent modulators of inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. In has become evident that the HSP70 chaperone machine functions not only in folding, but also in proteasome mediated degradation of neurodegenerative disease proteins. Thus, there has been a great deal of interest in the potential manipulation of molecular chaperones as a therapeutic approach for many neurodegenerations. Furthermore, mutations in several HSP70 co-chaperones and putative co-chaperones have been identified as causing inherited neurodegenerative and cardiac disorders, directly linking the HSP70 chaperone system to human disease.
Collapse
Affiliation(s)
- Emma J Duncan
- Molecular Endocrinology Centre, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charter House Square, EC1M 6BQ, London, UK,
| | | | | | | |
Collapse
|
64
|
The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet 2015; 11:e1005178. [PMID: 25919710 PMCID: PMC4412499 DOI: 10.1371/journal.pgen.1005178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 03/26/2015] [Indexed: 01/22/2023] Open
Abstract
Cellular toxicity introduced by protein misfolding threatens cell fitness and viability. Failure to eliminate these polypeptides is associated with various aggregation diseases. In eukaryotes, the ubiquitin proteasome system (UPS) plays a vital role in protein quality control (PQC), by selectively targeting misfolded proteins for degradation. While the assembly of the proteasome can be naturally impaired by many factors, the regulatory pathways that mediate the sorting and elimination of misassembled proteasomal subunits are poorly understood. Here, we reveal how the dysfunctional proteasome is controlled by the PQC machinery. We found that among the multilayered quality control mechanisms, UPS mediated degradation of its own misassembled subunits is the favored pathway. We also demonstrated that the Hsp42 chaperone mediates an alternative pathway, the accumulation of these subunits in cytoprotective compartments. Thus, we show that proteasome homeostasis is controlled through probing the level of proteasome assembly, and the interplay between UPS mediated degradation or their sorting into distinct cellular compartments. The accumulation of misfolded proteins threatens cell fitness and viability and their aggregation is commonly associated with numerous neurodegenerative disorders. Cells therefore rely on a number of protein quality control (PQC) pathways to prevent protein aggregation. In eukaryotes, the ubiquitin proteasome system (UPS), a supramolecular machinery that mediates the proteolysis of damaged or misfolded proteins, plays a vital role in PQC by selectively targeting proteins for degradation. Although the critical role-played by the UPS in PQC, and the severe consequences of impairing this pathway are well established, little was known about the mechanisms that control dysfunctional proteasome subunits. Here, we reveal that the interplay between UPS mediated degradation of its own misassembled subunits, and sorting them into cytoprotective compartments, a process that is mediated by the Hsp42 chaperone, determines how proteasome homeostasis is controlled in yeast cells. We believe that the mechanism of proteasome regulation by the PCQ in yeast may serve as a paradigm for understanding how homeostasis of this essential complex is controlled in major chronic neurodegenerative disorders in higher eukaryotes.
Collapse
|
65
|
Mymrikov EV, Haslbeck M. Medical implications of understanding the functions of human small heat shock proteins. Expert Rev Proteomics 2015; 12:295-308. [PMID: 25915440 DOI: 10.1586/14789450.2015.1039993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that are implicated in a variety of diseases. Upon stress, they stabilize unfolding proteins and prevent them from aggregating. However, under physiological conditions without severe stress, some sHsps interact with other proteins. In a perspective view, their ability to bind specific client proteins might allow them to fine-tune the availability of the client for other, client-dependent cellular processes. Additionally, some sHsps seem to interact with specific co-chaperones. These co-chaperones are usually part of large protein machineries that are functionally modulated upon sHsps interaction. Finally, secreted human sHsps seem to interact with receptor proteins, potentially as signal molecules transmitting the stress status from one cell to another. This review focuses on the mechanistic description of these different binding modes for human sHsps and how this might help to understand and modulate the function of sHsps in the context of disease.
Collapse
Affiliation(s)
- Evgeny V Mymrikov
- Department Chemie, Technische Universität München, D-85747 Garching, Germany
| | | |
Collapse
|
66
|
Needham PG, Patel HJ, Chiosis G, Thibodeau PH, Brodsky JL. Mutations in the Yeast Hsp70, Ssa1, at P417 Alter ATP Cycling, Interdomain Coupling, and Specific Chaperone Functions. J Mol Biol 2015; 427:2948-65. [PMID: 25913688 DOI: 10.1016/j.jmb.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/08/2015] [Accepted: 04/17/2015] [Indexed: 01/05/2023]
Abstract
The major cytoplasmic Hsp70 chaperones in the yeast Saccharomyces cerevisiae are the Ssa proteins, and much of our understanding of Hsp70 biology has emerged from studying ssa mutant strains. For example, Ssa1 catalyzes multiple cellular functions, including protein transport and degradation, and to this end, the ssa1-45 mutant has proved invaluable. However, the biochemical defects associated with the corresponding Ssa1-45 protein (P417L) are unknown. Consequently, we characterized Ssa1 P417L, as well as a P417S variant, which corresponds to a mutation in the gene encoding the yeast mitochondrial Hsp70. We discovered that the P417L and P417S proteins exhibit accelerated ATPase activity that was similar to the Hsp40-stimulated rate of ATP hydrolysis of wild-type Ssa1. We also found that the mutant proteins were compromised for peptide binding. These data are consistent with defects in peptide-stimulated ATPase activity and with results from limited proteolysis experiments, which indicated that the mutants' substrate binding domains were highly vulnerable to digestion. Defects in the reactivation of heat-denatured luciferase were also evident. Correspondingly, yeast expressing P417L or P417S as the only copy of Ssa were temperature sensitive and exhibited defects in Ssa1-dependent protein translocation and misfolded protein degradation. Together, our studies suggest that the structure of the substrate binding domain is altered and that coupling between this domain and the nucleotide binding domain is disabled when the conserved P417 residue is mutated. Our data also provide new insights into the nature of the many cellular defects associated with the ssa1-45 allele.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Gabriela Chiosis
- Program in Molecular Pharmacology and Chemistry; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Patrick H Thibodeau
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
67
|
Erives AJ, Fassler JS. Metabolic and chaperone gene loss marks the origin of animals: evidence for Hsp104 and Hsp78 chaperones sharing mitochondrial enzymes as clients. PLoS One 2015; 10:e0117192. [PMID: 25710177 PMCID: PMC4339202 DOI: 10.1371/journal.pone.0117192] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/17/2014] [Indexed: 12/31/2022] Open
Abstract
The evolution of animals involved acquisition of an emergent gene repertoire for gastrulation. Whether loss of genes also co-evolved with this developmental reprogramming has not yet been addressed. Here, we identify twenty-four genetic functions that are retained in fungi and choanoflagellates but undetectable in animals. These lost genes encode: (i) sixteen distinct biosynthetic functions; (ii) the two ancestral eukaryotic ClpB disaggregases, Hsp78 and Hsp104, which function in the mitochondria and cytosol, respectively; and (iii) six other assorted functions. We present computational and experimental data that are consistent with a joint function for the differentially localized ClpB disaggregases, and with the possibility of a shared client/chaperone relationship between the mitochondrial Fe/S homoaconitase encoded by the lost LYS4 gene and the two ClpBs. Our analyses lead to the hypothesis that the evolution of gastrulation-based multicellularity in animals led to efficient extraction of nutrients from dietary sources, loss of natural selection for maintenance of energetically expensive biosynthetic pathways, and subsequent loss of their attendant ClpB chaperones.
Collapse
Affiliation(s)
- Albert J. Erives
- Department of Biology, University of Iowa, Iowa City, IA, 52242–1324, United States of America
- * E-mail: (AJE); (JSF)
| | - Jan S. Fassler
- Department of Biology, University of Iowa, Iowa City, IA, 52242–1324, United States of America
- * E-mail: (AJE); (JSF)
| |
Collapse
|
68
|
Miller SBM, Mogk A, Bukau B. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. J Mol Biol 2015; 427:1564-74. [PMID: 25681695 DOI: 10.1016/j.jmb.2015.02.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
An evolutionary conserved response of cells to proteotoxic stress is the organized sequestration of misfolded proteins into subcellular deposition sites. In Saccharomyces cerevisiae, three major sequestration sites for misfolded proteins exist, IPOD (insoluble protein deposit), INQ (intranuclear quality control compartment) [former JUNQ (juxtanuclear quality control compartment)] and CytoQ. IPOD is perivacuolar and predominantly sequesters amyloidogenic proteins. INQ and CytoQs are stress-induced deposits for misfolded proteins residing in the nucleus and the cytosol, respectively, and requiring cell-compartment-specific aggregases, nuclear Btn2 and cytosolic Hsp42 for formation. The organized aggregation of misfolded proteins is proposed to serve several purposes collectively increasing cellular fitness and survival under proteotoxic stress. These include (i) shielding of cellular processes from interference by toxic protein conformers, (ii) reducing the substrate burden for protein quality control systems upon immediate stress, (iii) orchestrating chaperone and protease functions for efficient repair or degradation of damaged proteins [this involves initial extraction of aggregated molecules via the Hsp70/Hsp104 bi-chaperone system followed by either refolding or proteasomal degradation or removal of entire aggregates by selective autophagy (aggrephagy) involving the adaptor protein Cue5] and (iv) enabling asymmetric retention of protein aggregates during cell division, thereby allowing for damage clearance in daughter cells. Regulated protein aggregation thus serves cytoprotective functions vital for the maintenance of cell integrity and survival even under adverse stress conditions and during aging.
Collapse
Affiliation(s)
- Stephanie B M Miller
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | - Axel Mogk
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| | - Bernd Bukau
- Zentrum für Molekulare Biologie der Universität Heidelberg and Deutsches Krebsforschungszentrum, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| |
Collapse
|
69
|
Haslbeck M, Vierling E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 2015; 427:1537-48. [PMID: 25681016 DOI: 10.1016/j.jmb.2015.02.002] [Citation(s) in RCA: 380] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Small heat shock proteins (sHsps) are virtually ubiquitous molecular chaperones that can prevent the irreversible aggregation of denaturing proteins. sHsps complex with a variety of non-native proteins in an ATP-independent manner and, in the context of the stress response, form a first line of defense against protein aggregation in order to maintain protein homeostasis. In vertebrates, they act to maintain the clarity of the eye lens, and in humans, sHsp mutations are linked to myopathies and neuropathies. Although found in all domains of life, sHsps are quite diverse and have evolved independently in metazoans, plants and fungi. sHsp monomers range in size from approximately 12 to 42kDa and are defined by a conserved β-sandwich α-crystallin domain, flanked by variable N- and C-terminal sequences. Most sHsps form large oligomeric ensembles with a broad distribution of different, sphere- or barrel-like oligomers, with the size and structure of the oligomers dictated by features of the N- and C-termini. The activity of sHsps is regulated by mechanisms that change the equilibrium distribution in tertiary features and/or quaternary structure of the sHsp ensembles. Cooperation and/or co-assembly between different sHsps in the same cellular compartment add an underexplored level of complexity to sHsp structure and function.
Collapse
Affiliation(s)
- Martin Haslbeck
- Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85 748 Garching, Germany.
| | - Elizabeth Vierling
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Life Science Laboratories, N329 240 Thatcher Road, Amherst, MA 01003-9364, USA.
| |
Collapse
|
70
|
Amen T, Kaganovich D. Dynamic droplets: the role of cytoplasmic inclusions in stress, function, and disease. Cell Mol Life Sci 2015; 72:401-415. [PMID: 25283146 PMCID: PMC11113435 DOI: 10.1007/s00018-014-1740-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/16/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases and other proteinopathies constitute a class of several dozen illnesses etiologically linked to pathological protein misfolding and aggregation. Because of this strong association with disease pathology, cell death, and aging, accumulation of proteins in aggregates or aggregation-associated structures (inclusions) has come to be regarded by many as a deleterious process, to be avoided if possible. Recent work has led us to see inclusion structures and disordered aggregate-like protein mixtures (which we call dynamic droplets) in a new light: not necessarily as a result of a pathological breakdown of cellular order, but as an elaborate cellular architecture regulating function and stress response. In this review, we discuss what is currently known about the role of inclusion structures in cellular homeostasis, stress response, toxicity, and disease. We will focus on possible mechanisms of aggregate toxicity, in contrast to the homeostatic function of several inclusion structures.
Collapse
Affiliation(s)
- Triana Amen
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
- Alexander Grass Center for Bioengineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Kaganovich
- Department of Cell and Developmental Biology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
71
|
Okuda M, Niwa T, Taguchi H. Single-molecule analyses of the dynamics of heat shock protein 104 (Hsp104) and protein aggregates. J Biol Chem 2015; 290:7833-40. [PMID: 25635051 DOI: 10.1074/jbc.m114.620427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hsp104 solubilizes protein aggregates in cooperation with Hsp70/40. Although the framework of the disaggregase function has been elucidated, the actual process of aggregate solubilization by Hsp104-Hsp70/40 remains poorly understood. Here we developed several methods to investigate the functions of Hsp104 and Hsp70/40 from Saccharomyces cerevisiae, at single-molecule levels. The single-molecule methods, which provide the size distribution of the aggregates, revealed that Hsp70/40 prevented the formation of large aggregates from small aggregates and that the solubilization of the small aggregates required both Hsp104 and Hsp70/40. We directly visualized the individual association-dissociation dynamics of Hsp104 on immobilized aggregates and found that the lifetimes of the Hsp104-aggregate complex are divided into two groups: short (∼4 s) and long (∼30 s). Hsp70/40 stimulated the association of Hsp104 with aggregates and increased the duration of this association. The single-molecule data provide novel insights into the functional mechanism of the Hsp104 disaggregation machine.
Collapse
Affiliation(s)
- Momoko Okuda
- From the Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tatsuya Niwa
- From the Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Hideki Taguchi
- From the Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
72
|
Abstract
Here, we describe a set of assays, using mitochondrial citrate synthase as a model substrate, which are suitable to test for chaperone function of proteins in vitro. Additionally, these assays distinguish between the ability of suppressing the aggregation of diverse substrate proteins by stable interaction (holdase function) and the ability to assist the refolding of substrate proteins (foldase function).
Collapse
Affiliation(s)
- Martin Haslbeck
- Munich Center for Integrated Protein Science (CIPSM) and Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany,
| | | |
Collapse
|
73
|
|
74
|
|
75
|
Bakthisaran R, Tangirala R, Rao CM. Small heat shock proteins: Role in cellular functions and pathology. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:291-319. [PMID: 25556000 DOI: 10.1016/j.bbapap.2014.12.019] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/16/2014] [Accepted: 12/18/2014] [Indexed: 01/18/2023]
Abstract
Small heat shock proteins (sHsps) are conserved across species and are important in stress tolerance. Many sHsps exhibit chaperone-like activity in preventing aggregation of target proteins, keeping them in a folding-competent state and refolding them by themselves or in concert with other ATP-dependent chaperones. Mutations in human sHsps result in myopathies, neuropathies and cataract. Their expression is modulated in diseases such as Alzheimer's, Parkinson's and cancer. Their ability to bind Cu2+, and suppress generation of reactive oxygen species (ROS) may have implications in Cu2+-homeostasis and neurodegenerative diseases. Circulating αB-crystallin and Hsp27 in the plasma may exhibit immunomodulatory and anti-inflammatory functions. αB-crystallin and Hsp20 exhitbit anti-platelet aggregation: these beneficial effects indicate their use as potential therapeutic agents. sHsps have roles in differentiation, proteasomal degradation, autophagy and development. sHsps exhibit a robust anti-apoptotic property, involving several stages of mitochondrial-mediated, extrinsic apoptotic as well as pro-survival pathways. Dynamic N- and C-termini and oligomeric assemblies of αB-crystallin and Hsp27 are important factors for their functions. We propose a "dynamic partitioning hypothesis" for the promiscuous interactions and pleotropic functions exhibited by sHsps. Stress tolerance and anti-apoptotic properties of sHsps have both beneficial and deleterious consequences in human health and diseases. Conditional and targeted modulation of their expression and/or activity could be used as strategies in treating several human disorders. The review attempts to provide a critical overview of sHsps and their divergent roles in cellular processes particularly in the context of human health and disease.
Collapse
Affiliation(s)
- Raman Bakthisaran
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ramakrishna Tangirala
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Ch Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India.
| |
Collapse
|
76
|
Zhang X, Shi J, Tian J, Robinson AC, Davidson YS, Mann DM. Expression of one important chaperone protein, heat shock protein 27, in neurodegenerative diseases. ALZHEIMERS RESEARCH & THERAPY 2014; 6:78. [PMID: 25621016 PMCID: PMC4304251 DOI: 10.1186/s13195-014-0078-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 10/20/2014] [Indexed: 12/02/2022]
Abstract
Introduction Many neurodegenerative diseases are characterised by accumulations of misfolded proteins that can colocalise with chaperone proteins (for example, heat shock protein 27 (HSP27)), which might act as modulators of protein aggregation. Methods The role of HSP27 in the pathogenesis of neurodegenerative disorders such as frontotemporal lobar degeneration (FTLD), Alzheimer’s disease (AD) and motor neuron disease (MND) was investigated. We used immunohistochemical and Western blot analysis to determine the distribution and amount of this protein in the frontal and temporal cortices of diseased and control subjects. Results HSP27 immunostaining presented as accumulations of granules within neuronal and glial cell perikarya. Patients with AD and FTLD were affected more often, and showed greater immunostaining for HSP27, than patients with MND and controls. In FTLD, there was no association between HSP27 and histological type. The neuropathological changes of FTLD, AD and MND were not immunoreactive to HSP27. Western blot analysis revealed higher HSP27 expression in FTLD than in controls, but without qualitative differences in banding patterns. Conclusions The pattern of HSP27 immunostaining observed may reflect the extent of ongoing neurodegeneration in affected brain areas and is not specific to FTLD, AD or MND. It may represent an accumulation of misfolded, damaged or unwanted proteins, awaiting or undergoing degradation.
Collapse
Affiliation(s)
- Xuekai Zhang
- The Third Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang Street, Dongcheng District, Beijing, 100700 China ; Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD UK
| | - Jing Shi
- The Third Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang Street, Dongcheng District, Beijing, 100700 China
| | - Jinzhou Tian
- The Third Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5 Haiyuncang Street, Dongcheng District, Beijing, 100700 China ; Beijing University of Chinese Medicine Neurology Centre, Dongzhimen Hospital, Beijing University of Chinese Medicine, 5 Haiyuncang Street, Beijing, 100700 People's Republic of China China
| | - Andrew C Robinson
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD UK
| | - Yvonne S Davidson
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD UK
| | - David M Mann
- Clinical and Cognitive Sciences Research Group, Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Salford Royal Hospital, Salford, M6 8HD UK ; Clinical and Cognitive Neuroscience Research Group, University of Manchester, Salford Royal Foundation NHS Trust, Salford, M6 8HD UK
| |
Collapse
|
77
|
Interplay between E. coli DnaK, ClpB and GrpE during protein disaggregation. J Mol Biol 2014; 427:312-27. [PMID: 25451597 DOI: 10.1016/j.jmb.2014.10.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/21/2014] [Accepted: 10/22/2014] [Indexed: 01/29/2023]
Abstract
The DnaK/Hsp70 chaperone system and ClpB/Hsp104 collaboratively disaggregate protein aggregates and reactivate inactive proteins. The teamwork is specific: Escherichia coli DnaK interacts with E. coli ClpB and yeast Hsp70, Ssa1, interacts with yeast Hsp104. This interaction is between the middle domains of hexameric ClpB/Hsp104 and the DnaK/Hsp70 nucleotide-binding domain (NBD). To identify the site on E. coli DnaK that interacts with ClpB, we substituted amino acid residues throughout the DnaK NBD. We found that several variants with substitutions in subdomains IB and IIB of the DnaK NBD were defective in ClpB interaction in vivo in a bacterial two-hybrid assay and in vitro in a fluorescence anisotropy assay. The DnaK subdomain IIB mutants were also defective in the ability to disaggregate protein aggregates with ClpB, DnaJ and GrpE, although they retained some ability to reactivate proteins with DnaJ and GrpE in the absence of ClpB. We observed that GrpE, which also interacts with subdomains IB and IIB, inhibited the interaction between ClpB and DnaK in vitro, suggesting competition between ClpB and GrpE for binding DnaK. Computational modeling of the DnaK-ClpB hexamer complex indicated that one DnaK monomer contacts two adjacent ClpB protomers simultaneously. The model and the experiments support a common and mutually exclusive GrpE and ClpB interaction region on DnaK. Additionally, homologous substitutions in subdomains IB and IIB of Ssa1 caused defects in collaboration between Ssa1 and Hsp104. Altogether, these results provide insight into the molecular mechanism of collaboration between the DnaK/Hsp70 system and ClpB/Hsp104 for protein disaggregation.
Collapse
|
78
|
Torrente MP, Castellano LM, Shorter J. Suramin inhibits Hsp104 ATPase and disaggregase activity. PLoS One 2014; 9:e110115. [PMID: 25299406 PMCID: PMC4192545 DOI: 10.1371/journal.pone.0110115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/17/2014] [Indexed: 12/16/2022] Open
Abstract
Hsp104 is a hexameric AAA+ protein that utilizes energy from ATP hydrolysis to dissolve disordered protein aggregates as well as amyloid fibers. Interestingly, Hsp104 orthologues are found in all kingdoms of life except animals. Thus, Hsp104 could represent an interesting drug target. Specific inhibition of Hsp104 activity might antagonize non-metazoan parasites that depend on a potent heat shock response, while producing little or no side effects to the host. However, no small molecule inhibitors of Hsp104 are known except guanidinium chloride. Here, we screen over 16,000 small molecules and identify 16 novel inhibitors of Hsp104 ATPase activity. Excluding compounds that inhibited Hsp104 activity by non-specific colloidal effects, we defined Suramin as an inhibitor of Hsp104 ATPase activity. Suramin is a polysulphonated naphthylurea and is used as an antiprotozoal drug for African Trypanosomiasis. Suramin also interfered with Hsp104 disaggregase, unfoldase, and translocase activities, and the inhibitory effect of Suramin was not rescued by Hsp70 and Hsp40. Suramin does not disrupt Hsp104 hexamers and does not effectively inhibit ClpB, the E. coli homolog of Hsp104, establishing yet another key difference between Hsp104 and ClpB behavior. Intriguingly, a potentiated Hsp104 variant, Hsp104A503V, is more sensitive to Suramin than wild-type Hsp104. By contrast, Hsp104 variants bearing inactivating sensor-1 mutations in nucleotide-binding domain (NBD) 1 or 2 are more resistant to Suramin. Thus, Suramin depends upon ATPase events at both NBDs to exert its maximal effect. Suramin could develop into an important mechanistic probe to study Hsp104 structure and function.
Collapse
Affiliation(s)
- Mariana P. Torrente
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laura M. Castellano
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
79
|
Identification of long-lived proteins retained in cells undergoing repeated asymmetric divisions. Proc Natl Acad Sci U S A 2014; 111:14019-26. [PMID: 25228775 DOI: 10.1073/pnas.1416079111] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-lived proteins have been implicated in age-associated decline in metazoa, but they have only been identified in extracellular matrices or postmitotic cells. However, the aging process also occurs in dividing cells undergoing repeated asymmetric divisions. It was not clear whether long-lived proteins exist in asymmetrically dividing cells or whether they are involved in aging. Here we identify long-lived proteins in dividing cells during aging using the budding yeast, Saccharomyces cerevisiae. Yeast mother cells undergo a limited number of asymmetric divisions that define replicative lifespan. We used stable-isotope pulse-chase and total proteome mass-spectrometry to identify proteins that were both long-lived and retained in aging mother cells after ∼ 18 cells divisions. We identified ∼ 135 proteins that we designate as long-lived asymmetrically retained proteins (LARPS). Surprisingly, the majority of LARPs appeared to be stable fragments of their original full-length protein. However, 15% of LARPs were full-length proteins and we confirmed several candidates to be long-lived and retained in mother cells by time-lapse microscopy. Some LARPs localized to the plasma membrane and remained robustly in the mother cell upon cell division. Other full-length LARPs were assembled into large cytoplasmic structures that had a strong bias to remain in mother cells. We identified age-associated changes to LARPs that include an increase in their levels during aging because of their continued synthesis, which is not balanced by turnover. Additionally, several LARPs were posttranslationally modified during aging. We suggest that LARPs contribute to age-associated phenotypes and likely exist in other organisms.
Collapse
|
80
|
Shi X, Yan L, Zhang H, Sun K, Chang Z, Fu X. Differential degradation for small heat shock proteins IbpA and IbpB is synchronized in Escherichia coli: Implications for their functional cooperation in substrate refolding. Biochem Biophys Res Commun 2014; 452:402-7. [DOI: 10.1016/j.bbrc.2014.08.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 11/30/2022]
|
81
|
Bailey BA, Melnick RL, Strem MD, Crozier J, Shao J, Sicher R, Phillips-Mora W, Ali SS, Zhang D, Meinhardt L. Differential gene expression by Moniliophthora roreri while overcoming cacao tolerance in the field. MOLECULAR PLANT PATHOLOGY 2014; 15:711-29. [PMID: 24612180 PMCID: PMC6638715 DOI: 10.1111/mpp.12134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Frosty pod rot (FPR) of Theobroma cacao (cacao) is caused by the hemibiotrophic fungus Moniliophthora roreri. Cacao clones tolerant to FPR are being planted throughout Central America. To determine whether M. roreri shows a differential molecular response during successful infections of tolerant clones, we collected field-infected pods at all stages of symptomatology for two highly susceptible clones (Pound-7 and CATIE-1000) and three tolerant clones (UF-273, CATIE-R7 and CATIE-R4). Metabolite analysis was carried out on clones Pound-7, CATIE-1000, CATIE-R7 and CATIE-R4. As FPR progressed, the concentrations of sugars in pods dropped, whereas the levels of trehalose and mannitol increased. Associations between symptoms and fungal loads and some organic and amino acid concentrations varied depending on the clone. RNA-Seq analysis identified 873 M. roreri genes that were differentially expressed between clones, with the primary difference being whether the clone was susceptible or tolerant. Genes encoding transcription factors, heat shock proteins, transporters, enzymes modifying membranes or cell walls and metabolic enzymes, such as malate synthase and alternative oxidase, were differentially expressed. The differential expression between clones of 43 M. roreri genes was validated by real-time quantitative reverse transcription polymerase chain reaction. The expression profiles of some genes were similar in susceptible and tolerant clones (other than CATIE-R4) and varied with the biotrophic/necrotropic shift. Moniliophthora roreri genes associated with stress metabolism and responses to heat shock and anoxia were induced early in tolerant clones, their expression profiles resembling that of the necrotrophic phase. Moniliophthora roreri stress response genes, induced during the infection of tolerant clones, may benefit the fungus in overcoming cacao defense mechanisms.
Collapse
Affiliation(s)
- Bryan A Bailey
- Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville Agricultural Research Center-West, Beltsville, MD, 20705, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Protein folding, misfolding and quality control: the role of molecular chaperones. Essays Biochem 2014; 56:53-68. [DOI: 10.1042/bse0560053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cells have to cope with stressful conditions and adapt to changing environments. Heat stress, heavy metal ions or UV stress induce damage to cellular proteins and disturb the balanced status of the proteome. The adjusted balance between folded and folding proteins, called protein homoeostasis, is required for every aspect of cellular functionality. Protective proteins called chaperones are expressed under extreme conditions in order to prevent aggregation of cellular proteins and safeguard protein quality. These chaperones co-operate during de novo folding, refolding and disaggregation of damaged proteins and in many cases refold them to their functional state. Even under physiological conditions these machines support protein homoeostasis and maintain the balance between de novo folding and degradation. Mutations generating unstable proteins, which are observed in numerous human diseases such as Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis and cystic fibrosis, also challenge the protein quality control system. A better knowledge of how the protein homoeostasis system is regulated will lead to an improved understanding of these diseases and provide potential targets for therapy.
Collapse
|
83
|
Ritz AM, Trautwein M, Grassinger F, Spang A. The prion-like domain in the exomer-dependent cargo Pin2 serves as a trans-Golgi retention motif. Cell Rep 2014; 7:249-60. [PMID: 24656818 DOI: 10.1016/j.celrep.2014.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 01/30/2014] [Accepted: 02/16/2014] [Indexed: 11/26/2022] Open
Abstract
Prion and prion-like domains (PLDs) are found in many proteins throughout the animal kingdom. We found that the PLD in the S. cerevisiae exomer-dependent cargo protein Pin2 is involved in the regulation of protein transport and localization. The domain serves as a Pin2 retention signal in the trans-Golgi network (TGN). Pin2 is localized in a polarized fashion at the plasma membrane of the bud early in the cell cycle and the bud neck at cytokinesis. This polarized localization is dependent on both exo- and endocytosis. Upon environmental stress, Pin2 is rapidly endocytosed, and the PLD aggregates and causes sequestration of Pin2. The aggregation of Pin2 is reversible upon stress removal and Pin2 is rapidly re-exported to the plasma membrane. Altogether, these data uncover a role for PLDs as protein localization elements.
Collapse
Affiliation(s)
- Alicja M Ritz
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Mark Trautwein
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Franziska Grassinger
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Anne Spang
- Growth & Development, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland.
| |
Collapse
|
84
|
Orhan C, Tuzcu M, Gencoglu H, Sahin N, Hayirli A, Sahin K. Epigallocatechin-3-gallate exerts protective effects against heat stress through modulating stress-responsive transcription factors in poultry. Br Poult Sci 2014; 54:447-53. [PMID: 23906218 DOI: 10.1080/00071668.2013.806787] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
1. The aim of the study was to describe the effect of Epigallocatechin-3-gallate (EGCG), a polyphenol derived from green tea, on activator protein-1 (AP-1) components (phospho-c-Jun and c-Fos), cyclooxygenase-2 (COX-2) and heat shock proteins (HSPs) in the liver of heat-stressed quails. 2. A total of 180 5-week-old female Japanese quails were reared either at 22°C for 24 h/d (thermoneutral, TN) or 34°C for 8 h/d (heat stress, HS) for 12 weeks. Birds in both environments were randomly given 1 of 3 diets: basal diet and basal diet with 200 or 400 mg of EGCG added per kilogram of diet. 3. The hepatic c-Jun, c-Fos, COX-2 and HSPs gene expression for quails reared under the HS environment was greater than those reared under the TN environment. Supplemental EGCG decreased hepatic expression of these proteins at a greater extent under HS than TN. 4. In conclusion, suppression of AP-1 COX-2 and HSPs may partly account for the inhibitory effect of EGCG in heat-stressed quail.
Collapse
Affiliation(s)
- C Orhan
- Department of Animal Nutrition , Faculty of Veterinary Medicine, Firat University, 23119 Elazig, Turkey
| | | | | | | | | | | |
Collapse
|
85
|
Shrestha A, Lee REC, Megeney LA. Monitoring the proteostasis function of the Saccharomyces cerevisiae metacaspase Yca1. Methods Mol Biol 2014; 1133:223-35. [PMID: 24567105 DOI: 10.1007/978-1-4939-0357-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The functional versatility of metacaspase proteases has been established by reports of their involvement in non-apoptotic cellular processes, in addition to their canonical role in apoptosis/programmed cell death. While the budding yeast metacaspase Yca1 has been well characterized for its role in cell death regulation, more recent examinations suggest that the protease may be involved in key processes that increase survival and fitness. More specifically, examinations suggest that Yca1 is central to maintaining cellular proteostasis as it interacts with major components involved in protein biosynthesis and functions to limit aggregate deposition. Here, we describe the methods utilized to analyze the role Yca1 in proteostasis.
Collapse
Affiliation(s)
- Amit Shrestha
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
86
|
Torrente MP, Shorter J. The metazoan protein disaggregase and amyloid depolymerase system: Hsp110, Hsp70, Hsp40, and small heat shock proteins. Prion 2014; 7:457-63. [PMID: 24401655 PMCID: PMC4201613 DOI: 10.4161/pri.27531] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A baffling aspect of metazoan proteostasis is the lack of an Hsp104 ortholog that rapidly disaggregates and reactivates misfolded polypeptides trapped in stress induced disordered aggregates, preamyloid oligomers, or amyloid fibrils. By contrast, in bacteria, protozoa, chromista, fungi, and plants, Hsp104 orthologs are highly conserved and confer huge selective advantages in stress tolerance. Moreover, in fungi, the amyloid remodeling activity of Hsp104 has enabled deployment of prions for various beneficial modalities. Thus, a longstanding conundrum has remained unanswered: how do metazoan cells renature aggregated proteins or resolve amyloid fibrils without Hsp104? Here, we highlight recent advances that unveil the metazoan protein-disaggregase machinery, comprising Hsp110, Hsp70, and Hsp40, which synergize to dissolve disordered aggregates, but are unable to rapidly solubilize stable amyloid fibrils. However, Hsp110, Hsp70, and Hsp40 exploit the slow monomer exchange dynamics of amyloid, and can slowly depolymerize amyloid fibrils from their ends in a manner that is stimulated by small heat shock proteins. Upregulation of this system could have key therapeutic applications in various protein-misfolding disorders. Intriguingly, yeast Hsp104 can interface with metazoan Hsp110, Hsp70, and Hsp40 to rapidly eliminate disease associated amyloid. Thus, metazoan proteostasis is receptive to augmentation with exogenous disaggregases, which opens a number of therapeutic opportunities.
Collapse
Affiliation(s)
- Mariana P Torrente
- Department of Biochemistry and Biophysics; 805b Stellar-Chance Laboratories; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| | - James Shorter
- Department of Biochemistry and Biophysics; 805b Stellar-Chance Laboratories; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
87
|
Protein quality control and elimination of protein waste: The role of the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:182-96. [DOI: 10.1016/j.bbamcr.2013.06.031] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 01/26/2023]
|
88
|
Ouali A, Gagaoua M, Boudida Y, Becila S, Boudjellal A, Herrera-Mendez CH, Sentandreu MA. Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Sci 2013; 95:854-70. [DOI: 10.1016/j.meatsci.2013.05.010] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/03/2013] [Accepted: 05/10/2013] [Indexed: 01/06/2023]
|
89
|
Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol 2013; 23:2452-62. [PMID: 24291094 DOI: 10.1016/j.cub.2013.09.058] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/05/2013] [Accepted: 09/27/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Exposure of cells to severe heat stress causes not only misfolding and aggregation of proteins but also inhibition of translation and storage of mRNA in cytosolic heat stress granules (heat-SGs), limiting newly synthesized protein influx into overloaded proteome repair systems. How these two heat stress responses connect is unclear. RESULTS Here, we show that both S. cerevisiae and D. melanogaster heat-SGs contain mRNA, translation machinery components (excluding ribosomes), and molecular chaperones and that heat-SGs coassemble with aggregates of misfolded, heat-labile proteins. Components in these mixed assemblies exhibit distinct molecular motilities reflecting differential trapping. We demonstrate that heat-SG disassembly and restoration of translation activity during heat stress recovery is intimately linked to disaggregation of damaged proteins present in the mixed assemblies and requires Hsp104 and Hsp70 activity. CONCLUSIONS Chaperone-driven protein disaggregation directly coordinates timing of translation reinitiation with protein folding capacity during cellular protein quality surveillance, enabling efficient protein homeostasis.
Collapse
|
90
|
MacDiarmid CW, Taggart J, Kerdsomboon K, Kubisiak M, Panascharoen S, Schelble K, Eide DJ. Peroxiredoxin chaperone activity is critical for protein homeostasis in zinc-deficient yeast. J Biol Chem 2013; 288:31313-27. [PMID: 24022485 DOI: 10.1074/jbc.m113.512384] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Zinc is required for the folding and function of many proteins. In Saccharomyces cerevisiae, homeostatic and adaptive responses to zinc deficiency are regulated by the Zap1 transcription factor. One Zap1 target gene encodes the Tsa1 peroxiredoxin, a protein with both peroxidase and protein chaperone activities. Consistent with its regulation, Tsa1 is critical for growth under low zinc conditions. We previously showed that Tsa1's peroxidase function decreases the oxidative stress that occurs in zinc deficiency. In this report, we show that Tsa1 chaperone, and not peroxidase, activity is the more critical function in zinc-deficient cells. Mutations restoring growth to zinc-deficient tsa1 cells inactivated TRR1, encoding thioredoxin reductase. Because Trr1 is required for oxidative stress tolerance, this result implicated the Tsa1 chaperone function in tolerance to zinc deficiency. Consistent with this hypothesis, the tsa1Δ zinc requirement was complemented by a Tsa1 mutant allele that retained only chaperone function. Additionally, growth of tsa1Δ was also restored by overexpression of holdase chaperones Hsp26 and Hsp42, which lack peroxidase activity, and the Tsa1 paralog Tsa2 contributed to suppression by trr1Δ, even though trr1Δ inactivates Tsa2 peroxidase activity. The essentiality of the Tsa1 chaperone suggested that zinc-deficient cells experience a crisis of disrupted protein folding. Consistent with this model, assays of protein homeostasis suggested that zinc-limited tsa1Δ mutants accumulated unfolded proteins and induced a corresponding stress response. These observations demonstrate a clear physiological role for a peroxiredoxin chaperone and reveal a novel and unexpected role for protein homeostasis in tolerating metal deficiency.
Collapse
Affiliation(s)
- Colin W MacDiarmid
- From the Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706 and
| | | | | | | | | | | | | |
Collapse
|
91
|
King AM, Toxopeus J, MacRae TH. Functional differentiation of small heat shock proteins in diapause-destined Artemia embryos. FEBS J 2013; 280:4761-72. [PMID: 23879561 DOI: 10.1111/febs.12442] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/03/2013] [Accepted: 07/22/2013] [Indexed: 01/01/2023]
Abstract
Encysted embryos of Artemia franciscana cease development and enter diapause, a state of metabolic suppression and enhanced stress tolerance. The development of diapause-destined Artemia embryos is characterized by the coordinated synthesis of the small heat shock proteins (sHsps) p26, ArHsp21 and ArHsp22, with the latter being stress inducible in adults. The amounts of sHsp mRNA and protein varied in Artemia cysts, suggesting transcriptional and translational regulation. By contrast to p26, knockdown of ArHsp21 by RNA interference had no effect on embryo development. ArHsp21 provided limited protection against stressors such as desiccation and freezing but not heat. ArHsp21 may have a non-essential or unidentified role in cysts. Injection of Artemia adults with amounts of ArHsp22 double-stranded RNA less than those used for other sHsps killed females and males, curtailing the analysis of ArHsp22 function in developing embryos and cysts. The results indicate that diapause-destined Artemia embryos synthesize varying amounts of sHsps as a result of differential gene expression and mRNA translation and also suggest that these sHsps have distinctive functions.
Collapse
Affiliation(s)
- Allison M King
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
92
|
Ahner A, Gong X, Frizzell RA. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitylation and SUMOylation pathways. FEBS J 2013; 280:4430-8. [PMID: 23809253 DOI: 10.1111/febs.12415] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 12/26/2022]
Abstract
Defining the significant checkpoints in cystic fibrosis transmembrane conductance regulator (CFTR) biogenesis should identify targets for therapeutic intervention with CFTR folding mutants such as F508del. Although the role of ubiquitylation and the ubiquitin proteasome system is well established in the degradation of this common CFTR mutant, the part played by SUMOylation is a novel aspect of CFTR biogenesis/quality control. We identified this post-translational modification of CFTR as resulting from its interaction with small heat shock proteins (Hsps), which were found to selectively facilitate the degradation of F508del through a physical interaction with the SUMO (small ubiquitin-like modifier) E2 enzyme, Ubc9. Hsp27 promoted the SUMOylation of mutant CFTR by the SUMO-2 paralogue, which can form poly-chains. Poly-SUMO chains are then recognized by the SUMO-targeted ubiquitin ligase, RNF4, which elicited F508del degradation in a Hsp27-dependent manner. This work identifies a sequential connection between the SUMO and ubiquitin modifications of the CFTR mutant: Hsp27-mediated SUMO-2 modification, followed by ubiquitylation via RNF4 and degradation of the mutant via the proteasome. Other examples of the intricate cross-talk between the SUMO and ubiquitin pathways are discussed with reference to other substrates; many of these are competitive and lead to different outcomes. It is reasonable to anticipate that further research on SUMO-ubiquitin pathway interactions will identify additional layers of complexity in the process of CFTR biogenesis and quality control.
Collapse
Affiliation(s)
- Annette Ahner
- Department of Cell Biology, University of Pittsburgh School of Medicine, PA 15224, USA
| | | | | |
Collapse
|
93
|
Cyclophilin-mediated reactivation pathway of inactive adenosine kinase aggregates. Arch Biochem Biophys 2013; 537:82-90. [PMID: 23831509 DOI: 10.1016/j.abb.2013.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/10/2013] [Accepted: 06/21/2013] [Indexed: 11/20/2022]
Abstract
Monomeric adenosine kinase (AdK), a pivotal salvage enzyme of the purine auxotrophic parasite, Leishmania donovani, tends to aggregate naturally or selectively in presence of ADP, leading to inactivation. A cyclophilin (LdCyP) from the parasite reactivated the enzyme by disaggregating it. We studied the aggregation pathway of AdK with or without ADP. Transmission electron microscopy revealed that ADP-induced aggregates, as opposed to annular or torus-shaped natural aggregates, were mostly amorphous with protofibril-like structures. Interestingly, only the natural aggregates bound thioflavin T with a KD of 3.33 μM, indicating cross β-sheet structure. Dynamic light scattering experiments indicated that monomers formed aggregates either upon prolonged storage or ADP exposure. ADP-aggregates were disaggregated by LdCyP with concomitant reactivation of the enzyme. The activity revived with decrease in the aggregate size. Displacement of ADP from the ADP-aggregated enzyme by LdCyP resulted in reactivation. CD-spectral studies suggested that, like the natural aggregates, ADP induced formation of β-sheet structure in the ADP-aggregates. However, unlike the natural aggregate, it could be reconverted to α-helical conformation upon addition of LdCyP. Based on the results, a regulatory mechanism through interplay of ADP and/or LdCyP interaction with the enzyme is envisaged and a pathway of AdK reactivation by LdCyP-chaperone is proposed.
Collapse
|
94
|
Kim IS, Kim YS, Kim H, Jin I, Yoon HS. Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation. Mol Cells 2013; 35:210-8. [PMID: 23512334 PMCID: PMC3887908 DOI: 10.1007/s10059-013-2258-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 02/03/2023] Open
Abstract
Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 702-701,
Korea
| | - Young-Saeng Kim
- Department of Biology, Kyungpook National University, Daegu 702-701,
Korea
| | - Hyun Kim
- Department of Microbiology, Kyungpook National University, Daegu 702-701,
Korea
| | - Ingnyol Jin
- Department of Microbiology, Kyungpook National University, Daegu 702-701,
Korea
| | - Ho-Sung Yoon
- Advanced Bio-resource Research Center, Kyungpook National University, Daegu 702-701,
Korea
- Department of Biology, Kyungpook National University, Daegu 702-701,
Korea
| |
Collapse
|
95
|
Basha E, Jones C, Blackwell AE, Cheng G, Waters ER, Samsel KA, Siddique M, Pett V, Wysocki V, Vierling E. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones. J Mol Biol 2013; 425:1683-96. [PMID: 23416558 DOI: 10.1016/j.jmb.2013.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 12/11/2022]
Abstract
Small heat shock proteins (sHSPs) are virtually ubiquitous stress proteins that are also found in many normal tissues and accumulate in diseases of protein folding. They generally act as ATP-independent chaperones to bind and stabilize denaturing proteins that can be later reactivated by ATP-dependent Hsp70/DnaK, but the mechanism of substrate capture by sHSPs remains poorly understood. A majority of sHSPs form large oligomers, a property that has been linked to their effective chaperone action. We describe AtHsp18.5 from Arabidopsis thaliana, demonstrating that it is dimeric and exhibits robust chaperone activity, which adds support to the model that suboligomeric sHSP forms are a substrate binding species. Notably, like oligomeric sHSPs, when bound to substrate, AtHsp18.5 assembles into large complexes, indicating that reformation of sHSP oligomeric contacts is not required for assembly of sHSP-substrate complexes. Monomers of AtHsp18.5 freely exchange between dimers but fail to coassemble in vitro with dodecameric plant cytosolic sHSPs, suggesting that AtHsp18.5 does not interact by coassembly with these other sHSPs in vivo. Data from controlled proteolysis and hydrogen-deuterium exchange coupled with mass spectrometry show that the N- and C-termini of AtHsp18.5 are highly accessible and lack stable secondary structure, most likely a requirement for substrate interaction. Chaperone activity of a series of AtHsp18.5 truncation mutants confirms that the N-terminal arm is required for substrate protection and that different substrates interact differently with the N-terminal arm. In total, these data imply that the core α-crystallin domain of the sHSPs is a platform for flexible arms that capture substrates to maintain their solubility.
Collapse
Affiliation(s)
- Eman Basha
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
DeSantis ME, Leung EH, Sweeny EA, Jackrel ME, Cushman-Nick M, Neuhaus-Follini A, Vashist S, Sochor MA, Knight MN, Shorter J. Operational plasticity enables hsp104 to disaggregate diverse amyloid and nonamyloid clients. Cell 2013; 151:778-793. [PMID: 23141537 DOI: 10.1016/j.cell.2012.09.038] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 06/25/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
It is not understood how Hsp104, a hexameric AAA+ ATPase from yeast, disaggregates diverse structures, including stress-induced aggregates, prions, and α-synuclein conformers connected to Parkinson disease. Here, we establish that Hsp104 hexamers adapt different mechanisms of intersubunit collaboration to disaggregate stress-induced aggregates versus amyloid. To resolve disordered aggregates, Hsp104 subunits collaborate noncooperatively via probabilistic substrate binding and ATP hydrolysis. To disaggregate amyloid, several subunits cooperatively engage substrate and hydrolyze ATP. Importantly, Hsp104 variants with impaired intersubunit communication dissolve disordered aggregates, but not amyloid. Unexpectedly, prokaryotic ClpB subunits collaborate differently than Hsp104 and couple probabilistic substrate binding to cooperative ATP hydrolysis, which enhances disordered aggregate dissolution but sensitizes ClpB to inhibition and diminishes amyloid disaggregation. Finally, we establish that Hsp104 hexamers deploy more subunits to disaggregate Sup35 prion strains with more stable "cross-β" cores. Thus, operational plasticity enables Hsp104 to robustly dissolve amyloid and nonamyloid clients, which impose distinct mechanical demands.
Collapse
Affiliation(s)
- Morgan E DeSantis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eunice H Leung
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mimi Cushman-Nick
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandra Neuhaus-Follini
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shilpa Vashist
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew A Sochor
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Noelle Knight
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
97
|
Abstract
Small heat shock proteins (sHsps) are molecular chaperones that prevent the aggregation of nonnative proteins. The sHsps investigated to date mostly form large, oligomeric complexes. The typical bacterial scenario seemed to be a two-component sHsps system of two homologous sHsps, such as the Escherichia coli sHsps IbpA and IbpB. With a view to expand our knowledge on bacterial sHsps, we analyzed the sHsp system of the bacterium Deinococcus radiodurans, which is resistant against various stress conditions. D. radiodurans encodes two sHsps, termed Hsp17.7 and Hsp20.2. Surprisingly, Hsp17.7 forms only chaperone active dimers, although its crystal structure reveals the typical α-crystallin fold. In contrast, Hsp20.2 is predominantly a 36mer that dissociates into smaller oligomeric assemblies that bind substrate proteins stably. Whereas Hsp20.2 cooperates with the ATP-dependent bacterial chaperones in their refolding, Hsp17.7 keeps substrates in a refolding-competent state by transient interactions. In summary, we show that these two sHsps are strikingly different in their quaternary structures and chaperone properties, defining a second type of bacterial two-component sHsp system.
Collapse
|
98
|
Kocabıyık S, Aygar S. Improvement of protein stability and enzyme recovery under stress conditions by using a small HSP (tpv-HSP 14.3) from Thermoplasma volcanium. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
99
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
100
|
Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J 2012; 31:4221-35. [PMID: 22990239 DOI: 10.1038/emboj.2012.264] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/28/2012] [Indexed: 12/29/2022] Open
Abstract
Accumulation of aggregation-prone misfolded proteins disrupts normal cellular function and promotes ageing and disease. Bacteria, fungi and plants counteract this by solubilizing and refolding aggregated proteins via a powerful cytosolic ATP-dependent bichaperone system, comprising the AAA+ disaggregase Hsp100 and the Hsp70-Hsp40 system. Metazoa, however, lack Hsp100 disaggregases. We show that instead the Hsp110 member of the Hsp70 superfamily remodels the human Hsp70-Hsp40 system to efficiently disaggregate and refold aggregates of heat and chemically denatured proteins in vitro and in cell extracts. This Hsp110 effect relies on nucleotide exchange, not on ATPase activity, implying ATP-driven chaperoning is not required. Knock-down of nematode Caenorhabditis elegans Hsp110, but not an unrelated nucleotide exchange factor, compromises dissolution of heat-induced protein aggregates and severely shortens lifespan after heat shock. We conclude that in metazoa, Hsp70-Hsp40 powered by Hsp110 nucleotide exchange represents the crucial disaggregation machinery that reestablishes protein homeostasis to counteract protein unfolding stress.
Collapse
Affiliation(s)
- Heike Rampelt
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|