51
|
Jain P, Bhatla SC. Molecular mechanisms accompanying nitric oxide signalling through tyrosine nitration and S-nitrosylation of proteins in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:70-82. [PMID: 32291022 DOI: 10.1071/fp16279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 02/01/2017] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) signalling in plants is responsible for modulation of a variety of plant developmental processes. Depending on the tissue system, the signalling of NO-modulated biochemical responses majorly involves the processes of tyrosine nitration or S-nitrosylation of specific proteins/enzymes. It has further been observed that there is a significant impact of various biotic/abiotic stress conditions on the extent of tyrosine nitration and S-nitrosylation of various metabolic enzymes, which may act as a positive or negative modulator of the specific routes associated with adaptive mechanisms employed by plants under the said stress conditions. In addition to recent findings on the modulation of enzymes of primary metabolism by NO through these two biochemical mechanisms, a major mechanism for regulating the levels of reactive oxygen species (ROS) under stress conditions has also been found to be through tyrosine nitration or S-nitrosylation of ROS-scavenging enzymes. Recent investigations have further highlighted the differential manner in which the ROS-scavenging enzymes may be S-nitrosylated and tyrosine nitrated, with reference to their tissue distribution. Keeping in mind the very recent findings on these aspects, the present review has been prepared to provide an analytical view on the significance of protein tyrosine nitration and S-nitrosylation in plant development.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
52
|
Corpas FJ, Del Río LA, Palma JM. A Role for RNS in the Communication of Plant Peroxisomes with Other Cell Organelles? Subcell Biochem 2018; 89:473-493. [PMID: 30378037 DOI: 10.1007/978-981-13-2233-4_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant peroxisomes are organelles with a very active participation in the cellular regulation of the metabolism of reactive oxygen species (ROS). However, during the last two decades peroxisomes have been shown to be also a relevant source of nitric oxide (NO) and other related molecules designated as reactive nitrogen species (RNS). ROS and RNS have been mainly associated to nitro-oxidative processes; however, some members of these two families of molecules such as H2O2, NO or S-nitrosoglutathione (GSNO) are also involved in the mechanism of signaling processes mainly through post-translational modifications. Peroxisomes interact metabolically with other cell compartments such as chloroplasts, mitochondria or oil bodies in different pathways including photorespiration, glyoxylate cycle or β-oxidation, but peroxisomes are also involved in the biosynthesis of phytohormones including auxins and jasmonic acid (JA). This review will provide a comprehensive overview of peroxisomal RNS metabolism with special emphasis in the identified protein targets of RNS inside and outside these organelles. Moreover, the potential interconnectivity between peroxisomes and other plant organelles, such as mitochondria or chloroplasts, which could have a regulatory function will be explored, with special emphasis on photorespiration.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain.
| | - Luis A Del Río
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
53
|
Palma JM, Ruiz C, Corpas FJ. A Simple and Useful Method to Apply Exogenous NO Gas to Plant Systems: Bell Pepper Fruits as a Model. Methods Mol Biol 2018; 1747:3-11. [PMID: 29600446 DOI: 10.1007/978-1-4939-7695-9_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) is involved many physiological plant processes, including germination, growth and development of roots, flower setting and development, senescence, and fruit ripening. In the latter physiological process, NO has been reported to play an opposite role to ethylene. Thus, treatment of fruits with NO may lead to delay ripening independently of whether they are climacteric or nonclimacteric. In many cases different methods have been reported to apply NO to plant systems involving sodium nitroprusside, NONOates, DETANO, or GSNO to investigate physiological and molecular consequences. In this chapter a method to treat plant materials with NO is provided using bell pepper fruits as a model. This method is cheap, free of side effects, and easy to apply since it only requires common chemicals and tools available in any biology laboratory.
Collapse
Affiliation(s)
- José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain.
| | - Carmelo Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
54
|
Becana M, Wienkoop S, Matamoros MA. Sulfur Transport and Metabolism in Legume Root Nodules. FRONTIERS IN PLANT SCIENCE 2018. [PMID: 30364181 DOI: 10.3389/fpls.2018:01434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sulfur is an essential nutrient in plants as a constituent element of some amino acids, metal cofactors, coenzymes, and secondary metabolites. Not surprisingly, sulfur deficiency decreases plant growth, photosynthesis, and seed yield in both legumes and non-legumes. In nodulated legumes, sulfur supply is positively linked to symbiotic nitrogen fixation (SNF) and sulfur starvation causes three additional major effects: decrease of nodulation, inhibition of SNF, and slowing down of nodule metabolism. These effects are due, at least in part, to the impairment of nitrogenase biosynthesis and activity, the accumulation of nitrogen-rich amino acids, and the decline in leghemoglobin, ferredoxin, ATP, and glucose in nodules. During the last decade, some major advances have been made about the uptake and metabolism of sulfur in nodules. These include the identification of the sulfate transporter SST1 in the symbiosomal membrane, the finding that glutathione produced in the bacteroids and host cells is essential for nodule activity, and the demonstration that sulfur assimilation in the whole plant is reprogrammed during symbiosis. However, many crucial questions still remain and some examples follow. In the first place, it is of paramount importance to elucidate the mechanism by which sulfur deficiency limits SNF. It is unknown why homoglutahione replaces glutathione as a major water-soluble antioxidant, redox buffer, and sulfur reservoir, among other relevant functions, only in certain legumes and also in different tissues of the same legume species. Much more work is required to identify oxidative post-translational modifications entailing cysteine and methionine residues and to determine how these modifications affect protein function and metabolism in nodules. Likewise, most interactions of antioxidant metabolites and enzymes bearing redox-active sulfur with transcription factors need to be defined. Solving these questions will pave the way to decipher sulfur-dependent mechanisms that regulate SNF, thereby gaining a deep insight into how nodulated legumes adapt to the fluctuating availability of nutrients in the soil.
Collapse
Affiliation(s)
- Manuel Becana
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Stefanie Wienkoop
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Manuel A Matamoros
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| |
Collapse
|
55
|
Jain P, von Toerne C, Lindermayr C, Bhatla SC. S-nitrosylation/denitrosylation as a regulatory mechanism of salt stress sensing in sunflower seedlings. PHYSIOLOGIA PLANTARUM 2018; 162:49-72. [PMID: 28902403 DOI: 10.1111/ppl.12641] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) and various reactive nitrogen species produced in cells in normal growth conditions, and their enhanced production under stress conditions are responsible for a variety of biochemical aberrations. The present findings demonstrate that sunflower seedling roots exhibit high sensitivity to salt stress in terms of nitrite accumulation. A significant reduction in S-nitrosoglutathione reductase (GSNOR) activity is evident in response to salt stress. Restoration of GSNOR activity with dithioerythritol shows that the enzyme is reversibly inhibited under conditions of 120 mM NaCl. Salt stress-mediated S-nitrosylation of cytosolic proteins was analyzed in roots and cotyledons using biotin-switch assay. LC-MS/MS analysis revealed opposite patterns of S-nitrosylation in seedling cotyledons and roots. Salt stress enhances S-nitrosylation of proteins in cotyledons, whereas roots exhibit denitrosylation of proteins. Highest number of proteins having undergone S-nitrosylation belonged to the category of carbohydrate metabolism followed by other metabolic proteins. Of the total 61 proteins observed to be regulated by S-nitrosylation, 17 are unique to cotyledons, 4 are unique to roots whereas 40 are common to both. Eighteen S-nitrosylated proteins are being reported for the first time in plant systems, including pectinesterase, phospholipase d-alpha and calmodulin. Further physiological analysis of glyceraldehyde-3-phosphate dehydrogenase and monodehydroascorbate reductase showed that salt stress leads to a reversible inhibition of both these enzymes in cotyledons. However, seedling roots exhibit enhanced enzyme activity under salinity stress. These observations implicate the role of S-nitrosylation and denitrosylation in NO signaling thereby regulating various enzyme activities under salinity stress in sunflower seedlings.
Collapse
Affiliation(s)
- Prachi Jain
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum Muenchen, D-80939, München, Germany
| | - Christian Lindermayr
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Satish C Bhatla
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Delhi, Delhi 110007, India
| |
Collapse
|
56
|
Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S. Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 2017; 73:22-38. [PMID: 29275195 DOI: 10.1016/j.niox.2017.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/18/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
Nitric oxide (NO) is a major signaling biomolecule associated with signal transduction in plants. The beneficial role of NO in plants, exposed to several abiotic stresses shifted our understanding as it being not only free radical, released from the toxic byproducts of oxidative metabolism but also helps in plant sustenance. An explosion of research in plant NO biology during the last two decades has revealed that NO is a key signal associated with plant growth, germination, photosynthesis, leaf senescence, pollen growth and reorientation. NO is beneficial as well as harmful to plants in a dose-dependent manner. Exogenous application of NO at lower concentrations promotes seed germination, hypocotyl elongation, pollen development, flowering and delays senescence but at higher concentrations it causes nitrosative damage to plants. However, this review concentrates on the beneficial impact of NO in lower concentrations in the plants and also highlights the NO crosstalk of NO with other plant hormones, such as auxins, gibberellins, abscisic acid, cytokinins, ethylene, salicylic acid and jasmonic acid, under diverse stresses. While concentrating on the multidimensional role of NO, an attempt has been made to cover the role of NO-mediated genes associated with plant developmental processes, metal uptake, and plant defense responses as well as stress-related genes. More recently, several NO-mediated post translational modifications, such as S-nitrosylation, N-end rule pathway operates under hypoxia and tyrosine nitration also occurs to modulate plant physiology.
Collapse
Affiliation(s)
- Fareen Sami
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Faizan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Ahmad Faraz
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Husna Siddiqui
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Yusuf
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shamsul Hayat
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
57
|
García-Giménez JL, Romá-Mateo C, Pérez-Machado G, Peiró-Chova L, Pallardó FV. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Radic Biol Med 2017; 112:36-48. [PMID: 28705657 DOI: 10.1016/j.freeradbiomed.2017.07.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022]
Abstract
Epigenetics is a rapidly growing field that studies gene expression modifications not involving changes in the DNA sequence. Histone H3, one of the basic proteins in the nucleosomes that make up chromatin, is S-glutathionylated in mammalian cells and tissues, making Gamma-L-glutamyl-L-cysteinylglycine, glutathione (GSH), a physiological antioxidant and second messenger in cells, a new post-translational modifier of the histone code that alters the structure of the nucleosome. However, the role of GSH in the epigenetic mechanisms likely goes beyond a mere structural function. Evidence supports the hypothesis that there is a link between GSH metabolism and the control of epigenetic mechanisms at different levels (i.e., substrate availability, enzymatic activity for DNA methylation, changes in the expression of microRNAs, and participation in the histone code). However, little is known about the molecular pathways by which GSH can control epigenetic events. Studying mutations in enzymes involved in GSH metabolism and the alterations of the levels of cofactors affecting epigenetic mechanisms appears challenging. However, the number of diseases induced by aberrant epigenetic regulation is growing, so elucidating the intricate network between GSH metabolism, oxidative stress and epigenetics could shed light on how their deregulation contributes to the development of neurodegeneration, cancer, metabolic pathologies and many other types of diseases.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| | - Carlos Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain; Faculty of Biomedicine and Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Gisselle Pérez-Machado
- Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain
| | | | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER) Institute of Health Carlos III, Valencia, Spain; Mixed Unit INCLIVA-CIPF Research Institutes, Valencia, Spain; Dept. Physiology, School of Medicine and Dentistry, Universitat de València (UV), Valencia, Spain; Epigenetics Research Platform (CIBERER/UV), Valencia, Spain.
| |
Collapse
|
58
|
Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK. Nitric Oxide (NO) in Plant Heat Stress Tolerance: Current Knowledge and Perspectives. FRONTIERS IN PLANT SCIENCE 2017; 8:1582. [PMID: 28955368 PMCID: PMC5601411 DOI: 10.3389/fpls.2017.01582] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 05/21/2023]
Abstract
High temperature is one of the biggest abiotic stress challenges for agriculture. While, Nitric oxide (NO) is gaining increasing attention from plant science community due to its involvement in resistance to various plant stress conditions, its implications on heat stress tolerance is still unclear. Several lines of evidence indicate NO as a key signaling molecule in mediating various plant responses such as photosynthesis, oxidative defense, osmolyte accumulation, gene expression, and protein modifications under heat stress. Furthermore, the interactions of NO with other signaling molecules and phytohormones to attain heat tolerance have also been building up in recent years. Nevertheless, deep insights into the functional intermediaries or signal transduction components associated with NO-mediated heat stress signaling are imperative to uncover their involvement in plant hormone induced feed-back regulations, ROS/NO balance, and stress induced gene transcription. Although, progress is underway, much work remains to define the functional relevance of this molecule in plant heat tolerance. This review provides an overview on current status and discuss knowledge gaps in exploiting NO, thereby enhancing our understanding of the role of NO in plant heat tolerance.
Collapse
Affiliation(s)
- Santisree Parankusam
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | | | | | | |
Collapse
|
59
|
Wang J, Wang Y, Lv Q, Wang L, Du J, Bao F, He YK. Nitric oxide modifies root growth by S-nitrosylation of plastidial glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 2017; 488:88-94. [DOI: 10.1016/j.bbrc.2017.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 01/11/2023]
|
60
|
Novikova GV, Mur LAJ, Nosov AV, Fomenkov AA, Mironov KS, Mamaeva AS, Shilov ES, Rakitin VY, Hall MA. Nitric Oxide Has a Concentration-Dependent Effect on the Cell Cycle Acting via EIN2 in Arabidopsis thaliana Cultured Cells. Front Physiol 2017; 8:142. [PMID: 28344560 PMCID: PMC5344996 DOI: 10.3389/fphys.2017.00142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
Ethylene is known to influence the cell cycle (CC) via poorly characterized roles whilst nitric oxide (NO) has well-established roles in the animal CC but analogous role(s) have not been reported for plants. As NO and ethylene signaling events often interact we examined their role in CC in cultured cells derived from Arabidopsis thaliana wild-type (Col-0) plants and from ethylene-insensitive mutant ein2-1 plants. Both NO and ethylene were produced mainly during the first 5 days of the sub-cultivation period corresponding to the period of active cell division. However, in ein2-1 cells, ethylene generation was significantly reduced while NO levels were increased. With application of a range of concentrations of the NO donor, sodium nitroprusside (SNP) (between 20 and 500 μM) ethylene production was significantly diminished in Col-0 but unchanged in ein2-1 cells. Flow cytometry assays showed that in Col-0 cells treatments with 5 and 10 μM SNP concentrations led to an increase in S-phase cell number indicating the stimulation of G1/S transition. However, at ≥20 μM SNP CC progression was restrained at G1/S transition. In the mutant ein2-1 strain, the index of S-phase cells was not altered at 5-10 μM SNP but decreased dramatically at higher SNP concentrations. Concomitantly, 5 μM SNP induced transcription of genes encoding CDKA;1 and CYCD3;1 in Col-0 cells whereas transcription of CDKs and CYCs were not significantly altered in ein2-1 cells at any SNP concentrations examined. Hence, it is appears that EIN2 is required for full responses at each SNP concentration. In ein2-1 cells, greater amounts of NO, reactive oxygen species, and the tyrosine-nitrating peroxynitrite radical were detected, possibly indicating NO-dependent post-translational protein modifications which could stop CC. Thus, we suggest that in Arabidopsis cultured cells NO affects CC progression as a concentration-dependent modulator with a dependency on EIN2 for both ethylene production and a NO/ethylene regulatory function.
Collapse
Affiliation(s)
- Galina V. Novikova
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Luis A. J. Mur
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Alexander V. Nosov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Artem A. Fomenkov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Kirill S. Mironov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Anna S. Mamaeva
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Evgeny S. Shilov
- Department of Immunology, M.V. Lomonosov Moscow State UniversityMoscow, Russia
| | - Victor Y. Rakitin
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Michael A. Hall
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
61
|
Woźniak A, Formela M, Bilman P, Grześkiewicz K, Bednarski W, Marczak Ł, Narożna D, Dancewicz K, Mai VC, Borowiak-Sobkowiak B, Floryszak-Wieczorek J, Gabryś B, Morkunas I. The Dynamics of the Defense Strategy of Pea Induced by Exogenous Nitric Oxide in Response to Aphid Infestation. Int J Mol Sci 2017; 18:E329. [PMID: 28165429 PMCID: PMC5343865 DOI: 10.3390/ijms18020329] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to investigate the effect of exogenous nitric oxide (NO), i.e., S-nitrosoglutathione (GSNO) and sodium nitroprusside (SNP), on the metabolic status of Pisum sativum L. cv. Cysterski leaves infested by Acyrthosiphon pisum Harris, population demographic parameters and A. pisum feeding activity. A reduction in the level of semiquinone radicals in pea seedling leaves pretreated with exogenous NO occurred 24 h after A. pisum infestation, which was earlier than in non-pretreated leaves. A decrease in the level of O₂•- was observed in leaves pretreated with GSNO and infested by aphids at 48 and 72 h post-infestation (hpi). Directly after the pretreatment with GSNO, an increase in the level of metal ions was recorded. NO considerably induced the relative mRNA levels for phenylalanine ammonia-lyase in 24-h leaves pretreated with NO donors, both non-infested and infested. NO stimulated the accumulation of pisatin in leaves until 24 h. The Electrical Penetration Graph revealed a reduction in the feeding activity of the pea aphid on leaves pretreated with NO. The present study showed that foliar application of NO donors induced sequentially defense reactions of pea against A. pisum and had a deterrent effect on aphid feeding and limited the population growth rate.
Collapse
Affiliation(s)
- Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Magda Formela
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Piotr Bilman
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Katarzyna Grześkiewicz
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland.
| | - Łukasz Marczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland.
| | - Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Van Chung Mai
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| | - Beata Borowiak-Sobkowiak
- Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland.
| | | | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516 Zielona Góra, Poland.
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland.
| |
Collapse
|
62
|
Ni M, Zhang L, Shi YF, Wang C, Lu Y, Pan J, Liu JZ. Excessive Cellular S-nitrosothiol Impairs Endocytosis of Auxin Efflux Transporter PIN2. FRONTIERS IN PLANT SCIENCE 2017; 8:1988. [PMID: 29218054 PMCID: PMC5704370 DOI: 10.3389/fpls.2017.01988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/03/2017] [Indexed: 05/20/2023]
Abstract
S-nitrosoglutathione reductase (GSNOR1) is the key enzyme that regulates cellular levels of S-nitrosylation across kingdoms. We have previously reported that loss of GSNOR1 resulted in impaired auxin signaling and compromised auxin transport in Arabidopsis, leading to the auxin-related morphological phenotypes. However, the molecular mechanism underpinning the compromised auxin transport in gsnor1-3 mutant is still unknown. Endocytosis of plasma-membrane (PM)-localized efflux PIN proteins play critical roles in auxin transport. Therefore, we investigate whether loss of GSNOR1 function has any effects on the endocytosis of PIN-FORMED (PIN) proteins. It was found that the endocytosis of either the endogenous PIN2 or the transgenically expressed PIN2-GFP was compromised in the root cells of gsnor1-3 seedlings relative to Col-0. The internalization of PM-associated PIN2 or PIN2-GFP into Brefeldin A (BFA) bodies was significantly reduced in gsnor1-3 upon BFA treatment in a manner independent of de novo protein synthesis. In addition, the exogenously applied GSNO not only compromised the endocytosis of PIN2-GFP but also inhibited the root elongation in a concentration-dependent manner. Taken together, our results indicate that, besides the reduced PIN2 level, one or more compromised components in the endocytosis pathway could account for the reduced endocytosis of PIN2 in gsnor1-3.
Collapse
Affiliation(s)
- Min Ni
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Lei Zhang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yiran Lu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- *Correspondence: Jian-Zhong Liu
| |
Collapse
|
63
|
Nitric oxide-polyamines cross-talk during dormancy release and germination of apple embryos. Nitric Oxide 2016; 68:38-50. [PMID: 27890695 DOI: 10.1016/j.niox.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) and polyamines (PAs) belong to plant growth and development regulators. These compounds play a key role in numerous physiological processes e.g. seed germination. Based on the suggestion of overlapping of NO and PAs biosynthetic pathways, we demonstrated a cross-talk of NO and PAs in regulation of embryonic dormancy release. The aim of the work was to investigate an impact of PAs (Put, Spd and Spm) or NO short-term fumigation on nitrite, urea, Arg and ornithine (Orn) content, NO synthase-like (NOS-like) and arginase activity in axes of apple (Malus domestica Borkh.) embryos during dormancy alleviation and at the stage of termination of germination sensu stricto. NO, Put/Spd induced dormancy breakage and germination of apple embryos corresponded to stimulation of urea cycle and high free Arg pool in seedlings roots. After two days of the culture Put and Spd stimulated Arg dependent NO formation, inhibition of which was observed after Spm application. Put or Spd application as well as NO short-term pretreatment of apple embryos influenced level of ubiquitin-conjugated proteins. Higher abundance of such modified proteins correlated well to the declined content of nitrated proteins, suggesting their important role in regulation of embryo germination. NO led to stimulation of embryos germination by increasing level of free PAs (mostly Put). While transcriptomic approach showed down regulation of Spm synthesis and up-regulation of Spm degradation by NO, confirming negative role of Spm over-accumulation in embryo dormancy removal. Our data clearly indicate positive relationship of NO-Put/Spd acting as dormancy removing factors.
Collapse
|
64
|
Tichá T, Luhová L, Petřivalský M. Functions and Metabolism of S-Nitrosothiols and S-Nitrosylation of Proteins in Plants: The Role of GSNOR. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-40713-5_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
65
|
Pretzel J, Gehr M, Eisenkolb M, Wang L, Fritz-Wolf K, Rahlfs S, Becker K, Jortzik E. Characterization and redox regulation of Plasmodium falciparum methionine adenosyltransferase. J Biochem 2016; 160:355-367. [PMID: 27466371 DOI: 10.1093/jb/mvw045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/14/2016] [Indexed: 11/12/2022] Open
Abstract
As a methyl group donor for biochemical reactions, S-adenosylmethionine plays a central metabolic role in most organisms. Depletion of S-adenosylmethionine has downstream effects on polyamine metabolism and methylation reactions, and is an effective way to combat pathogenic microorganisms such as malaria parasites. Inhibition of both the methylation cycle and polyamine synthesis strongly affects Plasmodium falciparum growth. Despite its central position in the methylation cycle, not much is currently known about P. falciparum methionine adenosyltransferase (PfalMAT). Notably, however, PfalMAT has been discussed as a target of different redox regulatory modifications. Modulating the redox state of critical cysteine residues is a way to regulate enzyme activity in different pathways in response to changes in the cellular redox state. In the present study, we optimized an assay for detailed characterization of enzymatic activity and redox regulation of PfalMAT. While the presence of reduced thioredoxin increases the activity of the enzyme, it was found to be inhibited upon S-glutathionylation and S-nitrosylation. A homology model and site-directed mutagenesis studies revealed a contribution of the residues Cys52, Cys113 and Cys187 to redox regulation of PfalMAT by influencing its structure and activity. This phenomenon connects cellular S-adenosylmethionine synthesis to the redox state of PfalMAT and therefore to the cellular redox homeostasis.
Collapse
Affiliation(s)
- Jette Pretzel
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Marina Gehr
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Maike Eisenkolb
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Lihui Wang
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Karin Fritz-Wolf
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| | - Esther Jortzik
- Biochemistry and Molecular Biology, Justus Liebig University Giessen, Germany
| |
Collapse
|
66
|
Lv DW, Zhu GR, Zhu D, Bian YW, Liang XN, Cheng ZW, Deng X, Yan YM. Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. J Proteomics 2016; 143:93-105. [PMID: 27095598 DOI: 10.1016/j.jprot.2016.04.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED Salinity is a major abiotic stress factor affecting crops production and productivity. Triticum monococcum is closely related to Triticum urartu (A(U)A(U)), which is used as a model plant of wheat A genome study. Here, salt stress induced dynamic proteome and phosphoproteome profiling was focused. The T. monococcum seedlings were initially treated with different concentrations of NaCl ranging from 80 to 320mM for 48h followed by a recovery process for 48h prior to proteomic and phosphoproteomic analysis. As a result, a total of 81 spots corresponding to salt stress and recovery were identified by MALDI-TOF/TOF-MS from 2-DE gels. These proteins were mainly involved in regulatory, stress defense, protein folding/assembly/degradation, photosynthesis, carbohydrate metabolism, energy production and transportation, protein metabolism, and cell structure. Pro-Q Diamond staining was used to detect the phosphoproteins. Finally, 20 spots with different phosphorylation levels during salt treatment or recovery compared with controls were identified. A set of potential salt stress response and defense biomarkers was identified, such as cp31BHv, betaine-aldehyde dehydrogenase, leucine aminopeptidase 2, Cu/Zn superoxide dismutase, and 2-Cys peroxiredoxin BAS1, which could lead to a better understanding of the molecular basis of salt response and defense in food crops. BIOLOGICAL SIGNIFICANCE Soil salinity reduces the yield of the major crops, which is one of the severest problems in irrigated agriculture worldwide. However, how crops response and defense during different levels of salt treatment and recovery processes is still unclear, especially at the post-translational modification level. T. monococcum is a useful model for common wheat. Thus, proteomic and phosphoproteomic analyses of T. monococcum leaves were performed in our study, which provided novel insights into the underlying salt response and defense mechanisms in wheat and other crops.
Collapse
Affiliation(s)
- Dong-Wen Lv
- College of Life Science, Capital Normal University, 100048 Beijing, China; VCU Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Dentistry, Department of Oral and Craniofacial Molecular Biology, 23298 Richmond, VA, USA
| | - Geng-Rui Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Dong Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yan-Wei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiao-Na Liang
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Zhi-Wei Cheng
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yue-Ming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| |
Collapse
|
67
|
Zaffagnini M, De Mia M, Morisse S, Di Giacinto N, Marchand CH, Maes A, Lemaire SD, Trost P. Protein S-nitrosylation in photosynthetic organisms: A comprehensive overview with future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:952-66. [PMID: 26861774 DOI: 10.1016/j.bbapap.2016.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The free radical nitric oxide (NO) and derivative reactive nitrogen species (RNS) play essential roles in cellular redox regulation mainly through protein S-nitrosylation, a redox post-translational modification in which specific cysteines are converted to nitrosothiols. SCOPE OF VIEW This review aims to discuss the current state of knowledge, as well as future perspectives, regarding protein S-nitrosylation in photosynthetic organisms. MAJOR CONCLUSIONS NO, synthesized by plants from different sources (nitrite, arginine), provides directly or indirectly the nitroso moiety of nitrosothiols. Biosynthesis, reactivity and scavenging systems of NO/RNS, determine the NO-based signaling including the rate of protein nitrosylation. Denitrosylation reactions compete with nitrosylation in setting the levels of nitrosylated proteins in vivo. GENERAL SIGNIFICANCE Based on a combination of proteomic, biochemical and genetic approaches, protein nitrosylation is emerging as a pervasive player in cell signaling networks. Specificity of protein nitrosylation and integration among different post-translational modifications are among the major challenges for future experimental studies in the redox biology field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- M Zaffagnini
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - M De Mia
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S Morisse
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - N Di Giacinto
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - C H Marchand
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - A Maes
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - S D Lemaire
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire and des Eucaryotes, Institut de Biologie Physico-Chimique, 75005 Paris, France.
| | - P Trost
- Laboratory of Plant Redox Biology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
68
|
Li X, Pan Y, Chang B, Wang Y, Tang Z. NO Promotes Seed Germination and Seedling Growth Under High Salt May Depend on EIN3 Protein in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 6:1203. [PMID: 26779234 PMCID: PMC4703817 DOI: 10.3389/fpls.2015.01203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 05/23/2023]
Abstract
The gas molecule nitric oxide (NO) can cooperate with ethylene to tightly modulate plant growth and stress responses. One of the mechanism of their crosstalk is that NO is able to activate ethylene biosynthesis, possibly through post-translational modification of key enzymes such as ACC synthase and oxidase by S-nitrosylation. In this paper, we focus on the crosstalk of NO with ethylene signaling transduction transcription factor EIN3 (Ethylene Insensitive 3) and downstream gene expression in alleviating germination inhibition and growth damage induced by high salt. The Arabidopsis lines affected in ethylene signaling (ein3eil1) and NO biosynthesis (nia1nia2) were employed to compare with the wild-type Col-0 and overexpressing line EIN3ox. Firstly, the obviously inhibited germination, greater ratio of bleached leaves and enhanced electrolyte leakage were found in ein3eil1 and nia1nia2 lines than in Col-0 plants upon high salinity. However, the line EIN3ox obtained a notably elevated ability to germinate and improved seedling resistance. The experiment with SNP alone or plus high salt mostly enhanced the expression of EIN3 transcripts, compared with ACO4 and ACS2. The western blot and transcript analysis found that high-salt-induced EIN3 stabilization and EIN3 transcripts were largely attenuated in the NO biogenesis mutant nia1nia2 plants than in Col-0 ones. This observation was confirmed by simulation experiments with NO scavenger cPTIO to block NO emission. Taken together, our study provides insights that NO promotes seed germination and seedlings growth under salinity may depend on EIN3 protein.
Collapse
Affiliation(s)
- Xilong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Yajie Pan
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Bowen Chang
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| | - Yucheng Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| | - Zhonghua Tang
- The Key Laboratory of Plant Ecology, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
69
|
|
70
|
Liu SL, Yang RJ, Pan YZ, Wang MH, Zhao Y, Wu MX, Hu J, Zhang LL, Ma MD. Exogenous NO depletes Cd-induced toxicity by eliminating oxidative damage, re-establishing ATPase activity, and maintaining stress-related hormone equilibrium in white clover plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:16843-16856. [PMID: 26104900 DOI: 10.1007/s11356-015-4888-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Various nitric oxide (NO) regulators [including the NO donor sodium nitroprusside (SNP), the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), the NO-synthase inhibitor N (G)-nitro-L-Arg-methyl ester (L-NAME), and the SNP analogues sodium nitrite/nitrate and sodium ferrocyanide] were investigated to elucidate the role of NO in white clover (Trifolium repens L.) plants after long-term (5 days) exposure to cadmium (Cd). A dose of 100 μM Cd stress significantly restrained plant growth and decreased the concentrations of chlorophyll and NO in vivo, whereas it disrupted the balance of stress-related hormones and enhanced the accumulation of Cd, thereby inducing reactive oxygen species (ROS) burst. However, the inhibition of plant growth was relieved by 50 μM SNP through its stimulation of ROS-scavenging compounds (ascorbic acid, ascorbate peroxidase, catalase, glutathione reductase, non-protein thiol, superoxide dismutase, and total glutathione), regulation of H(+)-ATPase activity of proton pumps, and increasing jasmonic acid and proline but decreasing ethylene in plant tissues. Even so, the alleviating effect of SNP on plant growth was counteracted by cPTIO and L-NAME and was not observed with SNP analogues, suggesting that the protective roles of SNP are related to the induction of NO. These results suggest that NO may improve the Cd tolerance of white clover plants by eliminating oxidative damage, re-establishing ATPase activity, and maintaining hormone equilibrium. Improving our understanding of the role of NO in white clover plants is key to expanding the plantations to various regions and the recovery of pasture species in the future.
Collapse
Affiliation(s)
- S L Liu
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - R J Yang
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Y Z Pan
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - M H Wang
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
- Faculty of Agriculture and Life Sciences, Chungnam National University, Daiden, Daejeon, 305-754, South Korea
| | - Y Zhao
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - M X Wu
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - J Hu
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - L L Zhang
- Institute of Kunming Botany, Chinese Academy of Science (CAS), Kunming, Yunnan, 650201, People's Republic of China
| | - M D Ma
- Faculty of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
71
|
Chaki M, Álvarez de Morales P, Ruiz C, Begara-Morales JC, Barroso JB, Corpas FJ, Palma JM. Ripening of pepper (Capsicum annuum) fruit is characterized by an enhancement of protein tyrosine nitration. ANNALS OF BOTANY 2015; 116:637-47. [PMID: 25814060 PMCID: PMC4577987 DOI: 10.1093/aob/mcv016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/12/2014] [Accepted: 01/05/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper. METHODS The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis. KEY RESULTS Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit. CONCLUSIONS The RNS profile reported here indicates that ripening of pepper fruit is characterized by an enhancement of S-nitrosothiols and protein tyrosine nitration. The nitrated proteins identified have important functions in photosynthesis, generation of NADPH, proteolysis, amino acid biosynthesis and oxidative metabolism. The decrease of catalase in red fruit implies a lower capacity to scavenge H2O2, which would promote lipid peroxidation, as has already been reported in ripe pepper fruit.
Collapse
Affiliation(s)
- Mounira Chaki
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| | - Paz Álvarez de Morales
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| | - Carmelo Ruiz
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| | - Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide. Department of Biochemistry and Molecular Biology, University of Jaén, 23071 Jaén, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide. Department of Biochemistry and Molecular Biology, University of Jaén, 23071 Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18008 Granada, Spain and
| |
Collapse
|
72
|
Shi YF, Wang DL, Wang C, Culler AH, Kreiser MA, Suresh J, Cohen JD, Pan J, Baker B, Liu JZ. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. MOLECULAR PLANT 2015; 8:1350-65. [PMID: 25917173 DOI: 10.1016/j.molp.2015.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/30/2015] [Accepted: 04/16/2015] [Indexed: 05/21/2023]
Abstract
Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant.
Collapse
Affiliation(s)
- Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Da-Li Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Angela Hendrickson Culler
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Molly A Kreiser
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jayanti Suresh
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jerry D Cohen
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
73
|
Begara-Morales JC, Sánchez-Calvo B, Chaki M, Mata-Pérez C, Valderrama R, Padilla MN, López-Jaramillo J, Luque F, Corpas FJ, Barroso JB. Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5983-96. [PMID: 26116026 PMCID: PMC4566986 DOI: 10.1093/jxb/erv306] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The ascorbate-glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO(-)) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO(-) and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO(-). The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO(-). These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO(-) or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate-glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement of NO and reactive oxygen species metabolism in antioxidant defence against nitro-oxidative stress situations in plants.
Collapse
Affiliation(s)
- Juan C Begara-Morales
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Mounira Chaki
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Capilla Mata-Pérez
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Raquel Valderrama
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - María N Padilla
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | | | - Francisco Luque
- Center for Advanced Studies in Olives and Olive Oil, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Biochemistry and Molecular Biology Division, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain Center for Advanced Studies in Olives and Olive Oil, University of Jaén, Campus 'Las Lagunillas', E-23071 Jaén, Spain
| |
Collapse
|
74
|
Liu S, Yang R, Pan Y, Ma M, Pan J, Zhao Y, Cheng Q, Wu M, Wang M, Zhang L. Nitric oxide contributes to minerals absorption, proton pumps and hormone equilibrium under cadmium excess in Trifolium repens L. plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 119:35-46. [PMID: 25966334 DOI: 10.1016/j.ecoenv.2015.04.053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Nitric oxide (NO) is a stress-signaling molecule in plants that mediates a wide range of physiological processes and responses to metal toxicity. In this work, various NO modulators (NO donor: SNP; NO scavenger: cPTIO; NO synthase inhibitor: l-NAME; and SNP analogs: sodium nitrite/nitrate and sodium ferrocyanide) were investigated to determine the role of NO in Trifolium repens L. plants exposed to Cd. Cd (100μM) markedly reduced biomass, NO production and chlorophyll (Chl a, Chl b and total Chl) concentration but stimulated reactive oxygen species (ROS) and Cd accumulation in plants. SNP (50μM) substantially attenuated growth inhibition, reduced hydrogen peroxide (H2O2) and malonyldialdehyde (MDA) levels, stimulated ROS-scavenging enzymes/agents, and mitigated the H(+)-ATPase inhibition in proton pumps. Interestingly, SNP considerably up-regulated the levels of jasmonic acid (JA) and proline in plant tissues but down-regulated the levels of ethylene (ET) in both shoots and roots and the level of salicylic acid (SA) in roots only, which might be related to the elevated NO synthesis. Additionally, SNP (25-200μM) regulated mineral absorption and, particularly at 50μM, significantly enhanced the uptake of shoot magnesium (Mg) and copper (Cu) and of root calcium (Ca), Mg and iron (Fe). Nevertheless, the effects of SNP on plant growth were reversed by cPTIO and l-NAME, suggesting that the protective effect of SNP might be associated with NO synthesis in vivo. Moreover, SNP analogs did not display roles similar to that of SNP. These results indicated that NO depleted Cd toxicity by eliminating oxidative damage, enhancing minerals absorption, regulating proton pumps, and maintaining hormone equilibrium.
Collapse
Affiliation(s)
- Shiliang Liu
- College of Landscape Architecture and Ornamental Horticulture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Rongjie Yang
- College of Landscape Architecture and Ornamental Horticulture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuanzhi Pan
- College of Landscape Architecture and Ornamental Horticulture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingdong Ma
- College of Landscape Architecture and Ornamental Horticulture, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Jiang Pan
- College of Landscape Architecture and Ornamental Horticulture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Zhao
- College of Landscape Architecture and Ornamental Horticulture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qingsu Cheng
- Life Sciences Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA
| | - Mengxi Wu
- College of Landscape Architecture and Ornamental Horticulture, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Maohua Wang
- College of Landscape Architecture and Ornamental Horticulture, Sichuan Agricultural University, Chengdu 611130, PR China; College of Agriculture and Life Sciences, Chungnam National University, Daejeon 305-754, South Korea
| | - Lin Zhang
- Kunming Botany Institute, Chinese Academy of Science (CAS), Kunming 650201, PR China
| |
Collapse
|
75
|
Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O. Nitric oxide (NO) and phytohormones crosstalk during early plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2857-68. [PMID: 25954048 DOI: 10.1093/jxb/erv213] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
During the past two decades, nitric oxide (NO) has evolved from a mere gaseous free radical to become a new messenger in plant biology with an important role in a plethora of physiological processes. This molecule is involved in the regulation of plant growth and development, pathogen defence and abiotic stress responses, and in most cases this is achieved through its interaction with phytohormones. Understanding the role of plant growth regulators is essential to elucidate how plants activate the appropriate set of responses to a particular developmental stage or a particular stress. The first task to achieve this goal is the identification of molecular targets, especially those involved in the regulation of the crosstalk. The nature of NO targets in these growth and development processes and stress responses remains poorly described. Currently, the molecular mechanisms underlying the effects of NO in these processes and their interaction with other plant hormones are beginning to unravel. In this review, we made a compilation of the described interactions between NO and phytohormones during early plant developmental processes (i.e. seed dormancy and germination, hypocotyl elongation and root development).
Collapse
Affiliation(s)
- Luis Sanz
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Mateos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Tamara Lechón
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Fernández-Marcos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
76
|
Akter S, Huang J, Waszczak C, Jacques S, Gevaert K, Van Breusegem F, Messens J. Cysteines under ROS attack in plants: a proteomics view. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2935-44. [PMID: 25750420 DOI: 10.1093/jxb/erv044] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plants generate reactive oxygen species (ROS) as part of their metabolism and in response to various external stress factors, potentially causing significant damage to biomolecules and cell structures. During the course of evolution, plants have adapted to ROS toxicity, and use ROS as signalling messengers that activate defence responses. Cysteine (Cys) residues in proteins are one of the most sensitive targets for ROS-mediated post-translational modifications, and they have become key residues for ROS signalling studies. The reactivity of Cys residues towards ROS, and their ability to react to different oxidation states, allow them to appear at the crossroads of highly dynamic oxidative events. As such, a redox-active cysteine can be present as S-glutathionylated (-SSG), disulfide bonded (S-S), sulfenylated (-SOH), sulfinylated (-SO2H), and sulfonylated (-SO3H). The sulfenic acid (-SOH) form has been considered as part of ROS-sensing pathways, as it leads to further modifications which affect protein structure and function. Redox proteomic studies are required to understand how and why cysteines undergo oxidative post-translational modifications and to identify the ROS-sensor proteins. Here, we update current knowledge of cysteine reactivity with ROS. Further, we give an overview of proteomic techniques that have been applied to identify different redox-modified cysteines in plants. There is a particular focus on the identification of sulfenylated proteins, which have the potential to be involved in plant signal transduction.
Collapse
Affiliation(s)
- Salma Akter
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Jingjing Huang
- Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Cezary Waszczak
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Silke Jacques
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Gent, Belgium Department of Biochemistry, Ghent University, 9000 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Joris Messens
- Structural Biology Research Centre, VIB, 1050 Brussels, Belgium Brussels Centre for Redox Biology, 1050 Brussels, Belgium Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
77
|
Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J. Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. PLANT PHYSIOLOGY 2015; 167:1731-46. [PMID: 25699590 PMCID: PMC4378176 DOI: 10.1104/pp.15.00026] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/02/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) regulates multiple developmental events and stress responses in plants. A major biologically active species of NO is S-nitrosoglutathione (GSNO), which is irreversibly degraded by GSNO reductase (GSNOR). The major physiological effect of NO is protein S-nitrosylation, a redox-based posttranslational modification mechanism by covalently linking an NO molecule to a cysteine thiol. However, little is known about the mechanisms of S-nitrosylation-regulated signaling, partly due to limited S-nitrosylated proteins being identified. In this study, we identified 1,195 endogenously S-nitrosylated peptides in 926 proteins from the Arabidopsis (Arabidopsis thaliana) by a site-specific nitrosoproteomic approach, which, to date, is the largest data set of S-nitrosylated proteins among all organisms. Consensus sequence analysis of these peptides identified several motifs that contain acidic, but not basic, amino acid residues flanking the S-nitrosylated cysteine residues. These S-nitrosylated proteins are involved in a wide range of biological processes and are significantly enriched in chlorophyll metabolism, photosynthesis, carbohydrate metabolism, and stress responses. Consistently, the gsnor1-3 mutant shows the decreased chlorophyll content and altered photosynthetic properties, suggesting that S-nitrosylation is an important regulatory mechanism in these processes. These results have provided valuable resources and new clues to the studies on S-nitrosylation-regulated signaling in plants.
Collapse
Affiliation(s)
- Jiliang Hu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Lichao Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Xuwu Sun
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Congming Lu
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Lixin Zhang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center (J.H., L.C., J.Z.), and State Key Laboratory of Molecular Developmental Biology (X.H., Y.W.), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China;Graduate University of Chinese Academy of Sciences, Beijing 100049, China (J.H., L.C.); andInstitute of Botany, Chinese Academy of Sciences, Beijing 100093, China (X.S., C.L., L.Z.)
| |
Collapse
|
78
|
Corpas FJ, Barroso JB. Nitric oxide from a "green" perspective. Nitric Oxide 2015; 45:15-9. [PMID: 25638488 DOI: 10.1016/j.niox.2015.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/29/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
The molecule nitric oxide (NO) which is involved in practically all biochemical and physiological plant processes has become a subject for plant research. However, there remain many unanswered questions concerning how, where and when this molecule is enzymatically generated in higher plants. This mini-review aims to provide an overview of NO in plants for those readers unfamiliar with this field of research. The review will therefore discuss the importance of NO in higher plants at the physiological and biochemical levels, its involvement in designated nitro-oxidative stresses in response to adverse abiotic and biotic environmental conditions, NO emission/uptake from plants, beneficial plant-microbial interactions, and its potential application in the biotechnological fields of agriculture and food nutrition.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, Granada E-18080, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", Jaén E-23071, Spain
| |
Collapse
|
79
|
Corpas FJ, Begara-Morales JC, Sánchez-Calvo B, Chaki M, Barroso JB. Nitration and S-Nitrosylation: Two Post-translational Modifications (PTMs) Mediated by Reactive Nitrogen Species (RNS) and Their Role in Signalling Processes of Plant Cells. SIGNALING AND COMMUNICATION IN PLANTS 2015. [DOI: 10.1007/978-3-319-10079-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
80
|
Chaki M, Kovacs I, Spannagl M, Lindermayr C. Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana. PLoS One 2014; 9:e110232. [PMID: 25333472 PMCID: PMC4204854 DOI: 10.1371/journal.pone.0110232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/17/2014] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that regulates many physiological processes in plants. One of the most important regulatory mechanisms of NO is S-nitrosylation-the covalent attachment of NO to cysteine residues. Although the involvement of cysteine S-nitrosylation in the regulation of protein functions is well established, its substrate specificity remains unknown. Identification of candidates for S-nitrosylation and their target cysteine residues is fundamental for studying the molecular mechanisms and regulatory roles of S-nitrosylation in plants. Several experimental methods that are based on the biotin switch have been developed to identify target proteins for S-nitrosylation. However, these methods have their limits. Thus, computational methods are attracting considerable attention for the identification of modification sites in proteins. Using GPS-SNO version 1.0, a recently developed S-nitrosylation site-prediction program, a set of 16,610 candidate proteins for S-nitrosylation containing 31,900 S-nitrosylation sites was isolated from the entire Arabidopsis proteome using the medium threshold. In the compartments "chloroplast," "CUL4-RING ubiquitin ligase complex," and "membrane" more than 70% of the proteins were identified as candidates for S-nitrosylation. The high number of identified candidates in the proteome reflects the importance of redox signaling in these compartments. An analysis of the functional distribution of the predicted candidates showed that proteins involved in signaling processes exhibited the highest prediction rate. In a set of 46 proteins, where 53 putative S-nitrosylation sites were already experimentally determined, the GPS-SNO program predicted 60 S-nitrosylation sites, but only 11 overlap with the results of the experimental approach. In general, a computer-assisted method for the prediction of targets for S-nitrosylation is a very good tool; however, further development, such as including the three dimensional structure of proteins in such analyses, would improve the identification of S-nitrosylation sites.
Collapse
Affiliation(s)
- Mounira Chaki
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Izabella Kovacs
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
81
|
Pratelli R, Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5535-56. [PMID: 25114014 DOI: 10.1093/jxb/eru320] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.
Collapse
Affiliation(s)
- Réjane Pratelli
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guillaume Pilot
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
82
|
Morisse S, Zaffagnini M, Gao XH, Lemaire SD, Marchand CH. Insight into protein S-nitrosylation in Chlamydomonas reinhardtii. Antioxid Redox Signal 2014; 21:1271-84. [PMID: 24328795 PMCID: PMC4158989 DOI: 10.1089/ars.2013.5632] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Protein S-nitrosylation, a post-translational modification (PTM) consisting of the covalent binding of nitric oxide (NO) to a cysteine thiol moiety, plays a major role in cell signaling and is recognized to be involved in numerous physiological processes and diseases in mammals. The importance of nitrosylation in photosynthetic eukaryotes has been less studied. The aim of this study was to expand our knowledge on protein nitrosylation by performing a large-scale proteomic analysis of proteins undergoing nitrosylation in vivo in Chlamydomonas reinhardtii cells under nitrosative stress. RESULTS Using two complementary proteomic approaches, 492 nitrosylated proteins were identified. They participate in a wide range of biological processes and pathways, including photosynthesis, carbohydrate metabolism, amino acid metabolism, translation, protein folding or degradation, cell motility, and stress. Several proteins were confirmed in vitro by western blot, site-directed mutagenesis and activity measurements. Moreover, 392 sites of nitrosylation were also identified. These results strongly suggest that S-nitrosylation could constitute a major mechanism of regulation in C. reinhardtii under nitrosative stress conditions. INNOVATION This study constitutes the largest proteomic analysis of protein nitrosylation reported to date. CONCLUSION The identification of 381 previously unrecognized targets of nitrosylation further extends our knowledge on the importance of this PTM in photosynthetic eukaryotes. The data have been deposited to the ProteomeXchange repository with identifier PXD000569.
Collapse
Affiliation(s)
- Samuel Morisse
- 1 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, FRE3354 Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Université Pierre et Marie Curie , Paris, France
| | | | | | | | | |
Collapse
|
83
|
Vanzo E, Ghirardo A, Merl-Pham J, Lindermayr C, Heller W, Hauck SM, Durner J, Schnitzler JP. S-nitroso-proteome in poplar leaves in response to acute ozone stress. PLoS One 2014; 9:e106886. [PMID: 25192423 PMCID: PMC4156402 DOI: 10.1371/journal.pone.0106886] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/01/2014] [Indexed: 11/26/2022] Open
Abstract
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.
Collapse
Affiliation(s)
- Elisa Vanzo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christian Lindermayr
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Werner Heller
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg Durner
- Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute for Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
84
|
Sub-proteome S-nitrosylation analysis in Brassica juncea hints at the regulation of Brassicaceae specific as well as other vital metabolic pathway(s) by nitric oxide and suggests post-translational modifications cross-talk. Nitric Oxide 2014; 43:97-111. [PMID: 25175897 DOI: 10.1016/j.niox.2014.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 11/22/2022]
Abstract
Abiotic stress affects the normal physiology of the plants and results in crop loss. Brassica juncea is an oil yielding crop affected by abiotic stress. In future, over 30% yield loss by abiotic stress is predicted in India. Understanding the mechanism of plant response to stress would help in developing stress tolerant crops. Nitric oxide (NO) is now viewed as a remarkably important signaling molecule, involved in regulating stress responses. S-Nitrosylation is a NO based post-translational modification (PTM), linked with the regulation of many physiologically relevant targets. In the last decade, over 700 functionally varied S-nitrosylated proteins were identified, which suggested broad-spectrum regulation. To understand the physiological significance of S-nitrosylation, it was analyzed in cold stress. Functional categorization and validation of some of the B. juncea S-nitrosylated targets, suggested that NO produced during stress regulates cellular detoxification by modulating enzymes of ascorbate glutathione cycle, superoxide dismutase, glutathione S-transferase and glyoxalase I by S-nitrosylation in crude, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) depleted and apoplastic fractions. Interestingly, S-nitrosylation of enzymes associated with glucosinolate hydrolysis pathway, suggests a novel regulation of this Brassicaceae specific pathway by NO. Moreover, identification of enzymes of Glycolysis and Calvin cycle in crude and RuBisCO depleted fractions showed the regulation of metabolic as well as photosynthetic pathways by S-nitrosylation. S-Nitrosylation of cell wall modifying and proteolytic enzymes in the apoplast suggested differential and spatial regulation by S-nitrosylation. To have an overview of physiological role(s) of NO, collective information on NO based signaling (mainly by S-nitrosylation) is presented in this review.
Collapse
|
85
|
Puyaubert J, Fares A, Rézé N, Peltier JB, Baudouin E. Identification of endogenously S-nitrosylated proteins in Arabidopsis plantlets: effect of cold stress on cysteine nitrosylation level. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:150-6. [PMID: 24388526 DOI: 10.1016/j.plantsci.2013.10.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 05/18/2023]
Abstract
S-nitrosylation is a nitric oxide (NO)-based post-translational modification regulating protein function and signalling. We used a combination between the biotin switch method and labelling with isotope-coded affinity tag to identify endogenously S-nitrosylated peptides in Arabidopsis thaliana proteins extracted from plantlets. The relative level of S-nitrosylation in the identified peptides was compared between unstressed and cold-stress seedlings. We thereby detected 62 endogenously nitrosylated peptides out of which 20 are over-nitrosylated following cold exposure. Taken together these data provide a new repertoire of endogenously S-nitrosylated proteins in Arabidopsis with cysteine S-nitrosylation site. Furthermore they highlight the quantitative modification of the S-nitrosylation status of specific cysteine following cold stress.
Collapse
Affiliation(s)
- Juliette Puyaubert
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France; CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France.
| | - Abasse Fares
- INRA, UR1199, Laboratoire de Protéomique Fonctionnelle, 34060 Montpellier Cedex, France
| | - Nathalie Rézé
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France; CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France
| | - Jean-Benoît Peltier
- INRA, UR1199, Laboratoire de Protéomique Fonctionnelle, 34060 Montpellier Cedex, France
| | - Emmanuel Baudouin
- UPMC Univ Paris 06, UR 5, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France; CNRS, EAC 7180, Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, F-75005 Paris, France
| |
Collapse
|
86
|
Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:527-38. [PMID: 24288182 PMCID: PMC3904709 DOI: 10.1093/jxb/ert396] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Post-translational modifications (PTMs) mediated by nitric oxide (NO)-derived molecules have become a new area of research, as they can modulate the function of target proteins. Proteomic data have shown that ascorbate peroxidase (APX) is one of the potential targets of PTMs mediated by NO-derived molecules. Using recombinant pea cytosolic APX, the impact of peroxynitrite (ONOO-) and S-nitrosoglutathione (GSNO), which are known to mediate protein nitration and S-nitrosylation processes, respectively, was analysed. While peroxynitrite inhibits APX activity, GSNO enhances its enzymatic activity. Mass spectrometric analysis of the nitrated APX enabled the determination that Tyr5 and Tyr235 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Residue Cys32 was identified by the biotin switch method as S-nitrosylated. The location of these residues on the structure of pea APX reveals that Tyr235 is found at the bottom of the pocket where the haem group is enclosed, whereas Cys32 is at the ascorbate binding site. Pea plants grown under saline (150 mM NaCl) stress showed an enhancement of both APX activity and S-nitrosylated APX, as well as an increase of H2O2, NO, and S-nitrosothiol (SNO) content that can justify the induction of the APX activity. The results provide new insight into the molecular mechanism of the regulation of APX which can be both inactivated by irreversible nitration and activated by reversible S-nitrosylation.
Collapse
Affiliation(s)
- Juan C. Begara-Morales
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Beatriz Sánchez-Calvo
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Mounira Chaki
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Raquel Valderrama
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Capilla Mata-Pérez
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | | | - María N. Padilla
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Alfonso Carreras
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| | - Francisco J. Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), Consejo Superior de Investigaciones Científicas, E-18080 Granada, Spain
| | - Juan B. Barroso
- Área de Bioquímica y Biología Molecular, Departamento de Biología Experimental, Facultad de Ciencias Experimentales, Ed. B3. Campus Universitario “Las Lagunillas” s/n, Universidad de Jaén, E-23071 Jaén, Spain
| |
Collapse
|
87
|
Oxidative Stress Components Explored in Anoxic and Hypoxic Global Gene Expression Data. LOW-OXYGEN STRESS IN PLANTS 2014. [DOI: 10.1007/978-3-7091-1254-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
88
|
Corpas FJ, Leterrier M, Begara-Morales JC, Valderrama R, Chaki M, López-Jaramillo J, Luque F, Palma JM, Padilla MN, Sánchez-Calvo B, Mata-Pérez C, Barroso JB. Inhibition of peroxisomal hydroxypyruvate reductase (HPR1) by tyrosine nitration. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:4981-9. [PMID: 23860243 DOI: 10.1016/j.bbagen.2013.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Protein tyrosine nitration is a post-translational modification (PTM) mediated by nitric oxide-derived molecules. Peroxisomes are oxidative organelles in which the presence of nitric oxide (NO) has been reported. METHODS We studied peroxisomal nitroproteome of pea leaves by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and proteomic approaches. RESULTS Proteomic analysis of peroxisomes from pea leaves detected a total of four nitro-tyrosine immunopositive proteins by using an antibody against nitrotyrosine. One of these proteins was found to be the NADH-dependent hydroxypyruvate reductase (HPR). The in vitro nitration of peroxisomal samples caused a 65% inhibition of HPR activity. Analysis of recombinant peroxisomal NADH-dependent HPR1 activity from Arabidopsis in the presence of H2O2, NO, GSH and peroxynitrite showed that the ONOO(-) molecule caused the highest inhibition of activity (51% at 5mM SIN-1), with 5mM H2O2 having no inhibitory effect. Mass spectrometric analysis of the nitrated recombinant HPR1 enabled us to determine that, among the eleven tyrosine present in this enzyme, only Tyr-97, Tyr-108 and Tyr-198 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Site-directed mutagenesis confirmed Tyr198 as the primary site of nitration responsible for the inhibition on the enzymatic activity by peroxynitrite. CONCLUSION These findings suggest that peroxisomal HPR is a target of peroxynitrite which provokes a loss of function. GENERAL SIGNIFICANCE This is the first report demonstrating the peroxisomal NADH-dependent HPR activity involved in the photorespiration pathway is regulated by tyrosine nitration, indicating that peroxisomal NO metabolism may contribute to the regulation of physiological processes under no-stress conditions.
Collapse
Affiliation(s)
- Francisco J Corpas
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín (EEZ), CSIC, Apartado 419, E-18080 Granada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Freschi L. Nitric oxide and phytohormone interactions: current status and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:398. [PMID: 24130567 PMCID: PMC3793198 DOI: 10.3389/fpls.2013.00398] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degree, the endogenous levels of NO. In addition, studies conducted during the induction of diverse plant responses have demonstrated that NO may also affect biosynthesis, catabolism/conjugation, transport, perception, and/or transduction of different phytohormones, such as auxins, gibberellins, cytokinins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids. Although still not completely elucidated, the mechanisms underlying the interaction between NO and plant hormones have recently been investigated in a number of species and plant responses. This review specifically focuses on the current knowledge of the mechanisms implicated in NO-phytohormone interactions during the regulation of developmental and metabolic plant events. The modifications triggered by NO on the transcription of genes encoding biosynthetic/degradative enzymes as well as proteins involved in the transport and signal transduction of distinct plant hormones will be contextualized during the control of developmental, metabolic, and defense responses in plants. Moreover, the direct post-translational modification of phytohormone biosynthetic enzymes and receptors through S-nitrosylation will also be discussed as a key mechanism for regulating plant physiological responses. Finally, some future perspectives toward a more complete understanding of NO-phytohormone interactions will also be presented and discussed.
Collapse
Affiliation(s)
- Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao PauloSao Paulo, Brazil
| |
Collapse
|
90
|
Vitor SC, Duarte GT, Saviani EE, Vincentz MGA, Oliveira HC, Salgado I. Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae. PLANTA 2013; 238:475-86. [PMID: 23748675 DOI: 10.1007/s00425-013-1906-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/28/2013] [Indexed: 05/23/2023]
Abstract
Nitrate reductase (NR) has emerged as a potential NO source in plants. Indeed, the Arabidopsis thaliana NR double-deficient mutant (nia1 nia2) produces low NO and develops abnormal susceptibility to bacterial infection. We have employed quantitative real-time polymerase chain reactions to analyze the effects of NO gas on the expression of defense-related genes in wild-type and nia1 nia2 A. thaliana plants that were inoculated with an avirulent strain of Pseudomonas syringae pv. tomato. The pathogenesis-related gene 1 (PR1) was up-regulated by bacterial infection, and its expression was higher in the wild type than in nia1 nia2. Fumigation with NO attenuated the expression of PR1 and other salicylic acid-related genes in plants that had been inoculated with P. syringae. Nevertheless, NO inhibited the most intense bacterial growth and disease symptoms in nia1 nia2 leaves. The NO fumigation also directly modulated lignin biosynthesis-related gene expression (CAD1) and parts of the auxin (TIR1, ILL1, GH3) and ethylene (ACCS7) pathways, among other defense-related genes, and their modulation was more intense in the NR-deficient mutant. Pathogen inoculation induced delayed but intense H2O2 production in mutant leaves in comparison with the wild type. Hydrogen peroxide potentiated the microbicidal effects of NO against bacterial cultures. These results suggest that NO has a direct microbicidal effect in combination with H2O2 to allow for the attenuation of the SA-mediated defense response, thereby reducing the energy expenditure associated with defense-related gene transcription. Overall, these results highlight the importance of NR-dependent NO production in the establishment of disease resistance.
Collapse
Affiliation(s)
- Simone C Vitor
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CP 6109, Campinas, SP, 13083-970, Brazil
| | | | | | | | | | | |
Collapse
|
91
|
Simontacchi M, García-Mata C, Bartoli CG, Santa-María GE, Lamattina L. Nitric oxide as a key component in hormone-regulated processes. PLANT CELL REPORTS 2013; 32:853-66. [PMID: 23584547 DOI: 10.1007/s00299-013-1434-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a small gaseous molecule, with a free radical nature that allows it to participate in a wide spectrum of biologically important reactions. NO is an endogenous product in plants, where different biosynthetic pathways have been proposed. First known in animals as a signaling molecule in cardiovascular and nervous systems, it has turned up to be an essential component for a wide variety of hormone-regulated processes in plants. Adaptation of plants to a changing environment involves a panoply of processes, which include the control of CO2 fixation and water loss through stomatal closure, rearrangements of root architecture as well as growth restriction. The regulation of these processes requires the concerted action of several phytohormones, as well as the participation of the ubiquitous molecule NO. This review analyzes the role of NO in relation to the signaling pathways involved in stomatal movement, plant growth and senescence, in the frame of its interaction with abscisic acid, auxins, gibberellins, and ethylene.
Collapse
Affiliation(s)
- Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE) CC327, Universidad Nacional de La Plata-CONICET, Diagonal 113 y calle 61 N°495, CP 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
92
|
Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 2013; 451:145-54. [PMID: 23535167 DOI: 10.1042/bj20121744] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Both Met (methionine) and SAM (S-adenosylmethionine), the activated form of Met, participate in a number of essential metabolic pathways in plants. The subcellular compartmentalization of Met fluxes will be discussed in the present review with respect to regulation and communication with the sulfur assimilation pathway, the network of the aspartate-derived amino acids and the demand for production of SAM. SAM enters the ethylene, nicotianamine and polyamine biosynthetic pathways and provides the methyl group for the majority of methylation reactions required for plant growth and development. The multiple essential roles of SAM require regulation of its synthesis, recycling and distribution to sustain these different pathways. A particular focus of the present review will be on the function of recently identified genes of the Met salvage cycle or Yang cycle and the importance of the Met salvage cycle in the metabolism of MTA (5'-methylthioadenosine). MTA has the potential for product inhibition of ethylene, nicotianamine and polyamine biosynthesis which provides an additional link between these pathways. Interestingly, regulation of Met cycle genes was found to differ between plant species as shown for Arabidopsis thaliana and Oryza sativa.
Collapse
|
93
|
Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol Adv 2013; 31:1292-307. [PMID: 23680191 DOI: 10.1016/j.biotechadv.2013.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/18/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022]
Abstract
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.
Collapse
|
94
|
Koen E, Lamotte O, Besson-Bard A, Bourque S, Nicolas-Francès V, Jeandroz S, Wendehenne D. [Nitric oxide is a major player in plant immune system]. Med Sci (Paris) 2013; 29:309-16. [PMID: 23544386 DOI: 10.1051/medsci/2013293018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In animals, nitric oxide (NO) functions as a ubiquitous signaling molecule involved in diverse physiological processes such as immunity. Recent studies provided evidence that plants challenged by pathogenic microorganisms also produce NO. The emerging picture is that NO functions as a signal in plant immunity and executes part of its effects through posttranslational protein modifications. Notably, the characterization of S-nitrosylated proteins provided insights into the molecular mechanisms by which NO exerts its activities. Based on these findings, it appears that NO is involved in both the activation and the negative control of the signaling pathways related to plant immunity.
Collapse
Affiliation(s)
- Emmanuel Koen
- UMR 1347 Agroécologie AgroSup Dijon/Inra/université de Bourgogne, pôle mécanisme et gestion des interactions plantes-microorganismes, ERL CNRS 6300, 7, rue Sully, 21000 Dijon, France - AgroParisTech, ENGREF, 19, avenue du Maine, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
95
|
Feng J, Wang C, Chen Q, Chen H, Ren B, Li X, Zuo J. S-nitrosylation of phosphotransfer proteins represses cytokinin signaling. Nat Commun 2013; 4:1529. [DOI: 10.1038/ncomms2541] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 01/24/2013] [Indexed: 02/06/2023] Open
|
96
|
Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N. Importance of nitric oxide in cadmium stress tolerance in crop plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:254-261. [PMID: 23313792 DOI: 10.1016/j.plaphy.2012.12.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/06/2012] [Indexed: 06/01/2023]
Abstract
Cadmium (Cd(2+)) is a widespread heavy metal pollutant in the environment with a long biological half-life, originating mainly from industrial processes and phosphate fertilizers. It is easily taken up by plants, resulting in toxicity symptoms, such as chlorosis, wilting, growth reduction, and cell death. This cellular toxicity might result from interactions with vital metabolic pathways, carboxyl or thiol groups of proteins and reactive oxygen species (ROS) burst in plants. Plant exposure even to low concentrations of Cd may lead to cell death but the mechanism of its toxicity is still debatable. Therefore, exploring various ways to improve crop productivity and/or alleviate Cd stress effects is one of the major areas of concern. Nitric oxide (NO) is a hydrophobic gaseous molecule involved in various physiological processes such as germination, root growth, stomatal closure, control of the flowering timing etc. NO also functions as cell signaling molecule in plants and play important roles in the regulation of plant responses to both abiotic and biotic stress conditions. At the molecular level, NO signaling includes protein modification by binding to critical cysteine residues, heme or iron-sulfur centers and tyrosine residue nitration via peroxynitrite formation (ONOO(-)), mobilization of secondary messengers (Ca(2+), cyclic GMP and cyclic ADP-Rib) and modulation of protein kinase activities. Significant research had been done to understand the NO biosynthesis and signaling in plants under stress, but several questions still need to be answered. The present review is focused specifically on the importance of NO as Cd stress modulator in crop plants.
Collapse
Affiliation(s)
- Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Faculty of Life Sciences, MD University, Rohtak 124 001, India.
| | | | | | | | | |
Collapse
|
97
|
Bykova NV, Rampitsch C. Modulating protein function through reversible oxidation: Redox-mediated processes in plants revealed through proteomics. Proteomics 2013. [PMID: 23197359 DOI: 10.1002/pmic.201200270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It has been clearly demonstrated that plants redox control can be exerted over virtually every cellular metabolic pathway affecting metabolic homeostasis and energy balance. Therefore, a tight link exists between cellular/compartmental steady-state redox level and cellular metabolism. Proteomics offers a powerful new way to characterize the response and regulation of protein oxidation in different cell types and in relation to cellular metabolism. Compelling evidence revealed in proteomics studies suggests the integration of the redox network with other cellular signaling pathways such as Ca(2+) and/or protein phosphorylation, jasmonic, salicylic, abscisic acids, ethylene, and other phytohormones. Here we review progress in using the various proteomics techniques and approaches to answer biological questions arising from redox signaling and from changes in redox status of the cell. The focus is on reversible redox protein modifications and on three main processes, namely oxidative and nitrosative stress, defense against pathogens, cellular redox response and regulation, drawing on examples from plant redox proteomics studies.
Collapse
Affiliation(s)
- Natalia V Bykova
- Cereal Research Centre, Agriculture and AgriFood Canada, 195 Dafoe Road, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
98
|
Parí R, Iglesias MJ, Terrile MC, Casalongué CA. Functions of S-nitrosylation in plant hormone networks. FRONTIERS IN PLANT SCIENCE 2013; 4:294. [PMID: 23914202 PMCID: PMC3729995 DOI: 10.3389/fpls.2013.00294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/15/2013] [Indexed: 05/08/2023]
Abstract
In plants, a wide frame of physiological processes are regulated in liaison by both, nitric oxide (NO) and hormones. Such overlapping roles raise the question of how the cross-talk between NO and hormones trigger common physiological responses. In general, NO has been largely accepted as a signaling molecule that works in different processes. Among the most relevant ways NO and the NO-derived reactive species can accomplish their biological functions it is worthy to mention post-translational protein modifications. In the last years, S-nitrosylation has been the most studied NO-dependent regulatory mechanism. Briefly, S-nitrosylation is a redox-based mechanism for cysteine residue modification and is being recognized as a ubiquitous regulatory reaction comparable to phosphorylation. Therefore, it is emerging as a crucial mechanism for the transduction of NO bioactivity in plants and animals. In this mini-review, we provide an overview on S-nitrosylation of target proteins related to hormone networks in plants.
Collapse
Affiliation(s)
| | | | | | - Claudia A. Casalongué
- *Correspondence: Claudia A. Casalongué, Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Unidade Ejecutora-Consejo Nacional de Investigaciones Cientïficas y Técnicas - Universidad Nacional de Mar del Plata, Funes 3250, CC 1245, 7600 Mar del Plata, Argentina e-mail:
| |
Collapse
|
99
|
Wang Y, Loake GJ, Chu C. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death. FRONTIERS IN PLANT SCIENCE 2013; 4:314. [PMID: 23967004 PMCID: PMC3744911 DOI: 10.3389/fpls.2013.00314] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/26/2013] [Indexed: 05/03/2023]
Abstract
In plants, programed cell death (PCD) is an important mechanism to regulate multiple aspects of growth and development, as well as to remove damaged or infected cells during responses to environmental stresses and pathogen attacks. Under biotic and abiotic stresses, plant cells exhibit a rapid synthesis of nitric oxide (NO) and a parallel accumulation of reactive oxygen species (ROS). Frequently, these responses trigger a PCD process leading to an intrinsic execution of plant cells. The accumulating evidence suggests that both NO and ROS play key roles in PCD. These redox active small molecules can trigger cell death either independently or synergistically. Here we summarize the recent progress on the cross-talk of NO and ROS signals in the hypersensitive response, leaf senescence, and other kinds of plant PCD caused by diverse cues.
Collapse
Affiliation(s)
- Yiqin Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, People’s Republic of China
| | - Gary J. Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of EdinburghEdinburgh, UK
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, People’s Republic of China
- *Correspondence: Chengcai Chu, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang, Beijing 100101, People’s Republic of China e-mail:
| |
Collapse
|
100
|
Mur LAJ, Prats E, Pierre S, Hall MA, Hebelstrup KH. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways. FRONTIERS IN PLANT SCIENCE 2013; 4:215. [PMID: 23818890 PMCID: PMC3694216 DOI: 10.3389/fpls.2013.00215] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/05/2013] [Indexed: 05/03/2023]
Abstract
Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.
Collapse
Affiliation(s)
- Luis A. J. Mur
- Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
- *Correspondence: Luis A. J. Mur, Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK e-mail:
| | - Elena Prats
- Institute for Sustainable Agriculture, Spanish National Research CouncilCórdoba, Spain
| | - Sandra Pierre
- Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
| | - Michael A. Hall
- Molecular Plant Pathology Group, Institute of Environmental and Rural Science, Aberystwyth UniversityAberystwyth, UK
| | - Kim H. Hebelstrup
- Section of Crop Genetics and Biotechnology, Department of Molecular Biology and Genetics Aarhus UniversitySlagelse, Denmark
| |
Collapse
|