51
|
Lohse MJ, Nuber S, Hoffmann C. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 2012; 64:299-336. [PMID: 22407612 DOI: 10.1124/pr.110.004309] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments.
Collapse
Affiliation(s)
- Martin J Lohse
- Institute of Pharmacology and Toxicology, Versbacher Str. 9, 97078 Würzburg, Germany.
| | | | | |
Collapse
|
52
|
Butcher AJ, Kong KC, Prihandoko R, Tobin AB. Physiological role of G-protein coupled receptor phosphorylation. Handb Exp Pharmacol 2012:79-94. [PMID: 22222696 DOI: 10.1007/978-3-642-23274-9_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now well established that G-protein coupled receptors (GPCRs) are hyper-phosphorylated following agonist occupation usually at serine and threonine residues contained on the third intracellular loop and C-terminal tail. After some 2 decades of intensive research, the nature of protein kinases involved in this process together with the signalling consequences of receptor phosphorylation has been firmly established. The major challenge that the field currently faces is placing all this information within a physiological context and determining to what extent does phosphoregulation of GPCRs impact on whole animal responses. In this chapter, we address this issue by describing how GPCR phosphorylation might vary depending on the cell type in which the receptor is expressed and how this might be employed to drive selective regulation of physiological responses.
Collapse
Affiliation(s)
- Adrian J Butcher
- Department of Cell Physiology and Pharmacology, University of Leicester, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | | | | | | |
Collapse
|
53
|
Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci Signal 2011; 4:ra51. [PMID: 21868357 DOI: 10.1126/scisignal.2001707] [Citation(s) in RCA: 490] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phosphorylation of G protein-coupled receptors (GPCRs, which are also known as seven-transmembrane spanning receptors) by GPCR kinases (GRKs) plays essential roles in the regulation of receptor function by promoting interactions of the receptors with β-arrestins. These multifunctional adaptor proteins desensitize GPCRs, by reducing receptor coupling to G proteins and facilitating receptor internalization, and mediate GPCR signaling through β-arrestin-specific pathways. Detailed mapping of the phosphorylation sites on GPCRs targeted by individual GRKs and an understanding of how these sites regulate the specific functional consequences of β-arrestin engagement may aid in the discovery of therapeutic agents targeting individual β-arrestin functions. The β(2)-adrenergic receptor (β(2)AR) has many serine and threonine residues in the carboxyl-terminal tail and the intracellular loops, which are potential sites of phosphorylation. We monitored the phosphorylation of the β(2)AR at specific sites upon stimulation with an agonist that promotes signaling by both G protein-mediated and β-arrestin-mediated pathways or with a biased ligand that promotes signaling only through β-arrestin-mediated events in the presence of the full complement of GRKs or when either GRK2 or GRK6 was depleted. We correlated the specific and distinct patterns of receptor phosphorylation by individual GRKs with the functions of β-arrestins and propose that the distinct phosphorylation patterns established by different GRKs establish a "barcode" that imparts distinct conformations to the recruited β-arrestin, thus regulating its functional activities.
Collapse
Affiliation(s)
- Kelly N Nobles
- 1Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Costanzi S, Vilar S. In silico screening for agonists and blockers of the β(2) adrenergic receptor: implications of inactive and activated state structures. J Comput Chem 2011; 33:561-72. [PMID: 22170280 DOI: 10.1002/jcc.22893] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/28/2011] [Accepted: 10/30/2011] [Indexed: 11/07/2022]
Abstract
Ten crystal structures of the β(2) adrenergic receptor have been published, reflecting different signaling states. Here, through controlled-docking experiments, we examined the implications of using inactive or activated structures on the in silico screening for agonists and blockers of the receptor. Specifically, we targeted the crystal structures solved in complex with carazolol (2RH1), the neutral antagonist alprenalol, the irreversible agonist FAUC50 (3PDS), and the full agonist BI-167017 (3P0G). Our results indicate that activated structures favor agonists over blockers, whereas inactive structures favor blockers over agonists. This tendency is more marked for activated than for inactive structures. Additionally, agonists tend to receive more favorable docking scores when docked at activated rather than inactive structures, while blockers do the opposite. Hence, the difference between the docking scores attained with an activated and an inactive structure is an excellent means for the classification of ligands into agonists and blockers as we determined through receiver operating characteristic curves and linear discriminant analysis. With respect to virtual screening, all structures prioritized well agonists and blockers over nonbinders. However, inactive structures worked better for blockers and activated structures worked better for agonists, respectively. Notably, the combination of individual docking experiments through receptor ensemble docking resulted in an excellent performance in the retrieval of both agonists and blockers. Finally, we demonstrated that the induced-fit docking of agonists is a viable way of modifying an inactive crystal structure and bias it toward the in silico recognition of agonists rather than blockers.
Collapse
Affiliation(s)
- Stefano Costanzi
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
55
|
Ardura JA, Wang B, Watkins SC, Vilardaga JP, Friedman PA. Dynamic Na+-H+ exchanger regulatory factor-1 association and dissociation regulate parathyroid hormone receptor trafficking at membrane microdomains. J Biol Chem 2011; 286:35020-9. [PMID: 21832055 PMCID: PMC3186428 DOI: 10.1074/jbc.m111.264978] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/05/2011] [Indexed: 12/21/2022] Open
Abstract
Na/H exchanger regulatory factor-1 (NHERF1) is a cytoplasmic PDZ (postsynaptic density 95/disc large/zona occludens) protein that assembles macromolecular complexes and determines the localization, trafficking, and signaling of select G protein-coupled receptors and other membrane-delimited proteins. The parathyroid hormone receptor (PTHR), which regulates mineral ion homeostasis and bone turnover, is a G protein-coupled receptor harboring a PDZ-binding motif that enables association with NHERF1 and tethering to the actin cytoskeleton. NHERF1 interactions with the PTHR modify its trafficking and signaling. Here, we characterized by live cell imaging the mechanism whereby NHERF1 coordinates the interactions of multiple proteins, as well as the fate of NHERF1 itself upon receptor activation. Upon PTHR stimulation, NHERF1 rapidly dissociates from the receptor and induces receptor aggregation in long lasting clusters that are enriched with the actin-binding protein ezrin and with clathrin. After NHERF1 dissociates from the PTHR, ezrin then directly interacts with the PTHR to stabilize the PTHR at the cell membrane. Recruitment of β-arrestins to the PTHR is delayed until NHERF1 dissociates from the receptor, which is then trafficked to clathrin for internalization. The ability of NHERF to interact dynamically with the PTHR and cognate adapter proteins regulates receptor trafficking and signaling in a spatially and temporally coordinated manner.
Collapse
Affiliation(s)
- Juan A. Ardura
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| | - Bin Wang
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| | - Simon C. Watkins
- the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Jean-Pierre Vilardaga
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| | - Peter A. Friedman
- From the Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology and
| |
Collapse
|
56
|
Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling. Biochem J 2011; 438:191-202. [PMID: 21561432 DOI: 10.1042/bj20110374] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The functional selectivity of adrenergic ligands for activation of β1- and β2-AR (adrenoceptor) subtypes has been extensively studied in cAMP signalling. Much less is known about ligand selectivity for arrestin-mediated signalling pathways. In the present study we used resonance energy transfer methods to compare the ability of β1- and β2-ARs to form a complex with the G-protein β-subunit or β-arrestin-2 in response to a variety of agonists with various degrees of efficacy. The profiles of β1-/β2-AR selectivity of the ligands for the two receptor-transducer interactions were sharply different. For G-protein coupling, the majority of ligands were more effective in activating the β2-AR, whereas for arrestin coupling the relationship was reversed. These data indicate that the β1-AR interacts more efficiently than β2-AR with arrestin, but less efficiently than β2-AR with G-protein. A group of ligands exhibited β1-AR-selective efficacy in driving the coupling to arrestin. Dobutamine, a member of this group, had 70% of the adrenaline (epinephrine) effect on arrestin via β1-AR, but acted as a competitive antagonist of adrenaline via β2-AR. Thus the structure of such ligands appears to induce an arrestin-interacting form of the receptor only when bound to the β1-AR subtype.
Collapse
|
57
|
Jorgensen R, Norklit Roed S, Heding A, Elling CE. Beta-Arrestin2 as a Competitor for GRK2 Interaction with the GLP-1 Receptor upon Receptor Activation. Pharmacology 2011; 88:174-81. [DOI: 10.1159/000330742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 01/28/2023]
|
58
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2011; 133:40-69. [PMID: 21903131 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
59
|
Ghosh M, Schonbrunn A. Differential temporal and spatial regulation of somatostatin receptor phosphorylation and dephosphorylation. J Biol Chem 2011; 286:13561-73. [PMID: 21343287 DOI: 10.1074/jbc.m110.215723] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The G(i)-coupled somatostatin 2A receptor (sst2A) mediates many of the neuromodulatory and neuroendocrine actions of somatostatin (SS) and is targeted by the SS analogs used to treat neuroendocrine tumors. As for other G protein-coupled receptors, agonists stimulate sst2A receptor phosphorylation on multiple residues, and phosphorylation at different sites has distinct effects on receptor internalization and uncoupling. To elucidate the spatial and temporal regulation of sst2A receptor phosphorylation, we examined agonist-stimulated phosphorylation of multiple receptor GPCR kinase sites using phospho-site-specific antibodies. SS increased receptor phosphorylation sequentially, first on Ser-341/343 and then on Thr-353/354, followed by receptor internalization. Reversal of receptor phosphorylation was determined by the duration of prior agonist exposure. In acutely stimulated cells, in which most receptors remained on the cell surface, dephosphorylation occurred only on Thr-353/354. In contrast, both Ser-341/343 and Thr-353/354 were rapidly dephosphorylated when cells were stimulated long enough to allow receptor internalization before agonist removal. Consistent with these observations, dephosphorylation of Thr-353/354 was not affected by either hypertonic sucrose or dynasore, which prevent receptor internalization, whereas dephosphorylation of Ser-341/343 was completely blocked. An okadaic acid- and fostriecin-sensitive phosphatase catalyzed the dephosphorylation of Thr-353/354 both intracellularly and at the cell surface. In contrast, dephosphorylation of Ser-341/343 was insensitive to these inhibitors. Our results show that the phosphorylation and dephosphorylation of neighboring GPCR kinase sites in the sst2A receptor are subject to differential spatial and temporal regulation. Thus, the pattern of receptor phosphorylation is determined by the duration of agonist stimulation and compartment-specific enzymatic activity.
Collapse
Affiliation(s)
- Madhumita Ghosh
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas 77225, USA
| | | |
Collapse
|
60
|
Raveh A, Cooper A, Guy-David L, Reuveny E. Nonenzymatic rapid control of GIRK channel function by a G protein-coupled receptor kinase. Cell 2010; 143:750-60. [PMID: 21111235 DOI: 10.1016/j.cell.2010.10.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 08/03/2010] [Accepted: 10/11/2010] [Indexed: 11/18/2022]
Abstract
G protein-coupled receptors (GPCRs) respond to agonists to activate downstream enzymatic pathways or to gate ion channel function. Turning off GPCR signaling is known to involve phosphorylation of the GPCR by GPCR kinases (GRKs) to initiate their internalization. The process, however, is relatively slow and cannot account for the faster desensitization responses required to regulate channel gating. Here, we show that GRKs enable rapid desensitization of the G protein-coupled potassium channel (GIRK/Kir3.x) through a mechanism independent of their kinase activity. On GPCR activation, GRKs translocate to the membrane and quench channel activation by competitively binding and titrating G protein βγ subunits away from the channel. Of interest, the ability of GRKs to effect this rapid desensitization depends on the receptor type. The findings thus reveal a stimulus-specific, phosphorylation-independent mechanism for rapidly downregulating GPCR activity at the effector level.
Collapse
Affiliation(s)
- Adi Raveh
- Department Biological Chemistry Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
61
|
Butcher AJ, Prihandoko R, Kong KC, McWilliams P, Edwards JM, Bottrill A, Mistry S, Tobin AB. Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code. J Biol Chem 2010; 286:11506-18. [PMID: 21177246 PMCID: PMC3064205 DOI: 10.1074/jbc.m110.154526] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
G-protein-coupled receptors are hyper-phosphorylated in a process that controls receptor coupling to downstream signaling pathways. The pattern of receptor phosphorylation has been proposed to generate a “bar code” that can be varied in a tissue-specific manner to direct physiologically relevant receptor signaling. If such a mechanism existed, receptors would be expected to be phosphorylated in a cell/tissue-specific manner. Using tryptic phosphopeptide maps, mass spectrometry, and phospho-specific antibodies, it was determined here that the prototypical Gq/11-coupled M3-muscarinic receptor was indeed differentially phosphorylated in various cell and tissue types supporting a role for differential receptor phosphorylation in directing tissue-specific signaling. Furthermore, the phosphorylation profile of the M3-muscarinic receptor was also dependent on the stimulus. Full and partial agonists to the M3-muscarinic receptor were observed to direct phosphorylation preferentially to specific sites. This hitherto unappreciated property of ligands raises the possibility that one mechanism underlying ligand bias/functional selectivity, a process where ligands direct receptors to preferred signaling pathways, may be centered on the capacity of ligands to promote receptor phosphorylation at specific sites.
Collapse
Affiliation(s)
- Adrian J Butcher
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Lysophosphatidylcholines activate G2A inducing G(αi)₋₁-/G(αq/)₁₁- Ca²(+) flux, G(βγ)-Hck activation and clathrin/β-arrestin-1/GRK6 recruitment in PMNs. Biochem J 2010; 432:35-45. [PMID: 20799926 DOI: 10.1042/bj20091087] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lyso-PCs (lysophosphatidylcholines) are a mixture of lipids that accumulate during storage of cellular blood components, have been implicated in TRALI (transfusion-related acute lung injury) and directly affect the physiology of neutrophils [PMNs (polymorphonuclear leucocytes)]. Because the G2A receptor, expressed on PMNs, has been reported to recognize lyso-PCs, we hypothesize that lyso-PC activation of G2A causes the increases in cytosolic Ca²(+) via release of G(α) and G(βγ) subunits, kinase activation, and the recruitment of clathrin, β-arrestin-1 and GRK6 (G-protein receptor kinase 6) to G2A for signal transduction. PMNs were isolated by standard techniques, primed with lyso-PCs for 5-180 s, and lysed for Western blot analysis, immunoprecipitation or subcellular fractionation, or fixed and smeared on to slides for digital microscopy. The results demonstrated that lyso-PCs cause rapid activation of the G2A receptor through S-phosphorylation and internalization resulting in G(αi)₋₁ and G(αq/)₁₁ release leading to increases in cytosolic Ca²(+), which was inhibited by an antibody to G2A or intracellular neutralization of these subunits. Lyso-PCs also caused the release of the G(βγ) subunit which demonstrated a physical interaction (FRET+) with activated Hck (haemopoietic cell kinase; Tyr⁴¹¹). Moreover, G2A recruited clathrin, β-arrestin-1 and GRK6: clathrin is important for signal transduction, GRK6 for receptor de-sensitization, and β-arrestin-1 both propagates and terminates signals. We conclude that lyso-PC activation of G2A caused release of G(αi)₋₁, G(αq/)₁₁ and G(βγ), resulting in cytosolic Ca²(+) flux, Hck activation, and recruitment of clathrin, β-arrestin-1 and GRK6.
Collapse
|
63
|
Β-arrestin: a signaling molecule and potential therapeutic target for heart failure. J Mol Cell Cardiol 2010; 51:534-41. [PMID: 21074538 DOI: 10.1016/j.yjmcc.2010.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 01/06/2023]
Abstract
Currently, some of the most effective treatments for heart failure target GPCRs such as the beta-adrenergic receptors (β1AR and β2AR) and angiotensin II type IA receptors (AT1aR). Ligands for these receptors not only function by blocking the deleterious G-protein mediated pathway leading to heart failure, but also signal via G-protein independent pathways that involve receptor phosphorylation by G-protein receptor kinases (GRKs) leading to recruitment of the multifunctional protein, β-arrestin. Originally thought to play a role in GPCR desensitization and internalization, β-arrestin has recently been shown to mediate signaling independent of classical second messengers in a way that is often protective to the heart. The multi-functionality of β-arrestin makes it an intriguing molecule in the development of the next generation of drugs for cardiac diseases with the potential to simultaneously inhibit deleterious G-protein dependent pathways while activating beneficial β-arrestin mediated signaling. In this review, we explore various facets of β-arrestin signaling and offer a perspective on its potential role as a key signaling molecule in the treatment of heart failure. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
|
64
|
|
65
|
Zhao W, Tong T, Wang L, Li PP, Chang Y, Zhang LL, Wei W. Chicken type II collagen induced immune tolerance of mesenteric lymph node lymphocytes by enhancing beta2-adrenergic receptor desensitization in rats with collagen-induced arthritis. Int Immunopharmacol 2010; 11:12-8. [PMID: 20955833 DOI: 10.1016/j.intimp.2010.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/07/2010] [Accepted: 09/24/2010] [Indexed: 11/20/2022]
Abstract
Chicken type II collagen (CCII) is a protein extracted from the cartilage of chicken breast and exhibits intriguing possibilities for the treatment of autoimmune diseases by inducing oral tolerance. In this study, we investigated the effects of CCII on inflammatory and immune responses to the mesenteric lymph node lymphocytes (MLNLs) and the mechanisms by which CCII regulates beta2-adrenergic receptor (beta2-AR) signal transduction in collagen-induced arthritis (CIA) rats. The onset of secondary arthritis in rats appeared around day 14 after injection of CCII emulsion. Remarkable secondary inflammatory response and lymphocytes proliferation were observed in CIA rats. The administration of CCII (10, 20, 40μgkg(-1)day(-1), days 15-22) could significantly reduce synovial hyperplasia, lymphatic follicle hyperplasia, inflammatory cells infiltration of MLNLs in CIA rats. CCII (10, 20, 40μgkg(-1)day(-1), days 15-22) restored the previously decreased level of cAMP of MLNLs of CIA rats. Meanwhile, CCII increased total protein expressions of beta2-AR, GRK2 and decreased that of beta-arrestin1, 2 of MLNLs in CIA rats but had an slight effect on GRK3. CCII further increased plasmatic protein expressions of GRK2, G(α)s and decreased that of beta-arrestin1, 2, beta2-AR, and increased membrane protein expressions of beta2-AR, GRK2, G(α)s and decreased that of beta-arrestin1, 2 of MLNLs in CIA rats. These results demonstrate that the mechanisms of CCII on beta2-AR desensitization and beta2-AR-AC-cAMP transmembrane signal transduction of MLNLs play crucial roles in pathogenesis of this disease.
Collapse
Affiliation(s)
- Wei Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, China.
| | | | | | | | | | | | | |
Collapse
|
66
|
Patel CB, Noor N, Rockman HA. Functional selectivity in adrenergic and angiotensin signaling systems. Mol Pharmacol 2010; 78:983-92. [PMID: 20855464 DOI: 10.1124/mol.110.067066] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
β-Adrenergic and angiotensin II type 1A receptors are therapeutic targets for the treatment of a number of common human diseases. Pharmacological agents designed as antagonists for these receptors have positively affected the morbidity and mortality of patients with hypertension, heart failure, and renal disease. Antagonism of these receptors, however, may only partially explain the therapeutic benefits of β-blockers and angiotensin receptor blockers given the emerging concept of functional selectivity or biased agonism. This new pharmacological paradigm suggests that multiple signaling pathways can be differentially modified by a single ligand-receptor interaction. This review examines the functional selectivity of β-adrenergic and angiotensin II type 1A receptors with respect to their ability to signal via both G protein-dependent and G protein-independent mechanisms, with a focus on the multifunctional protein β-arrestin. Also highlighted are the concept of "biased signaling" through β-arrestin mediated pathways, the affect of ligand/receptor modification on such biased agonism, and the implications of functional selectivity for the development of the next generation of β-blockers and angiotensin receptor blockers.
Collapse
|
67
|
Verma V, Hasbi A, O'Dowd BF, George SR. Dopamine D1-D2 receptor Heteromer-mediated calcium release is desensitized by D1 receptor occupancy with or without signal activation: dual functional regulation by G protein-coupled receptor kinase 2. J Biol Chem 2010; 285:35092-103. [PMID: 20807772 DOI: 10.1074/jbc.m109.088625] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified that activation of the G(q)-linked dopamine D1-D2 receptor hetero-oligomer generates a PLC-dependent intracellular calcium signal. Confocal FRET between endogenous dopamine D1 and D2 receptors in striatal neurons confirmed a physical interaction between them. Pretreatment with SKF 83959, which selectively activates the D1-D2 receptor heteromer, or SKF 83822, which only activates the D1 receptor homo-oligomer, led to rapid desensitization of the D1-D2 receptor heteromer-mediated calcium signal in both heterologous cells and striatal neurons. This desensitization response was mediated through selective occupancy of the D1 receptor binding pocket. Although SKF 83822 was unable to activate the D1-D2 receptor heteromer, it still permitted desensitization of the calcium signal. This suggested that occupancy of the D1 receptor binding pocket by SKF 83822 resulted in conformational changes sufficient for desensitization without heteromer activation. Bioluminescence resonance energy transfer and co-immunoprecipitation studies indicated an agonist-induced physical association between the D1-D2 receptor heteromeric complex and GRK2. Increased expression of GRK2 led to a decrease in the calcium signal with or without prior exposure to either SKF 83959 or SKF 83822. GRK2 knockdown by siRNA led to an increase in the signal after pretreatment with either agonist. Expression of the catalytically inactive and RGS (regulator of G protein signaling)-mutated GRK2 constructs each led to a partial recovery of the GRK2-attenuated calcium signal. These results indicated that desensitization of the dopamine D1-D2 receptor heteromer-mediated signal can occur by agonist occupancy even without activation and is dually regulated by both the catalytic and RGS domains of GRK2.
Collapse
Affiliation(s)
- Vaneeta Verma
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
68
|
Vomaske J, Nelson JA, Streblow DN. Human Cytomegalovirus US28: a functionally selective chemokine binding receptor. Infect Disord Drug Targets 2010; 9:548-56. [PMID: 19594424 DOI: 10.2174/187152609789105696] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/06/2009] [Indexed: 11/22/2022]
Abstract
Chemokines are small cytokines that are part of a large family of molecules that bind to G-protein coupled receptors, which, as a family, are the most widely targeted group of molecules in the treatment of disease. Chemokines are critical for recruiting and activating the cells of the immune system during inflammation especially during viral infections. However, a number of viruses including the large herpes virus human cytomegalovirus (HCMV) encode mechanisms to impede the effects of chemokines or has gained the ability to use these molecules to its own advantage. The Human Cytomegalovirus (HCMV)-encoded chemokine receptor US28 is the best characterized of the four unique chemokine receptor-like molecules found in the HCMV genome. US28 has been studied as an important virulence factor for HCMV-mediated vascular disease and, more recently, in models of HCMV-associated malignancy. US28 is a rare multi-chemokine family binding receptor with the ability to bind ligands from two distinct chemokine classes. Ligand binding to US28 activates cell-type and ligand-specific signaling pathways leading to cellular migration, which is an important example of receptor functional selectivity. Additionally, US28 has been demonstrated to constitutively activate phospholipase C (PLC) and NF-kB signaling pathways. Understanding the structure/function relationships between US28, its ligands and intracellular signaling molecules will provide essential clues for effective pharmacological targeting of this multifunctional chemokine receptor.
Collapse
Affiliation(s)
- Jennifer Vomaske
- Department of Molecular Microbiology and Immunology and The Vaccine and Gene Therapy Institute, Oregon Health and Sciences University, Portland, OR 97201, USA
| | | | | |
Collapse
|
69
|
Vayttaden SJ, Friedman J, Tran TM, Rich TC, Dessauer CW, Clark RB. Quantitative modeling of GRK-mediated beta2AR regulation. PLoS Comput Biol 2010; 6:e1000647. [PMID: 20098494 PMCID: PMC2798957 DOI: 10.1371/journal.pcbi.1000647] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022] Open
Abstract
We developed a unified model of the GRK-mediated β2 adrenergic receptor (β2AR) regulation that simultaneously accounts for six different biochemical measurements of the system obtained over a wide range of agonist concentrations. Using a single deterministic model we accounted for (1) GRK phosphorylation in response to various full and partial agonists; (2) dephosphorylation of the GRK site on the β2AR; (3) β2AR internalization; (4) recycling of the β2AR post isoproterenol treatment; (5) β2AR desensitization; and (6) β2AR resensitization. Simulations of our model show that plasma membrane dephosphorylation and recycling of the phosphorylated receptor are necessary to adequately account for the measured dephosphorylation kinetics. We further used the model to predict the consequences of (1) modifying rates such as GRK phosphorylation of the receptor, arrestin binding and dissociation from the receptor, and receptor dephosphorylation that should reflect effects of knockdowns and overexpressions of these components; and (2) varying concentration and frequency of agonist stimulation “seen” by the β2AR to better mimic hormonal, neurophysiological and pharmacological stimulations of the β2AR. Exploring the consequences of rapid pulsatile agonist stimulation, we found that although resensitization was rapid, the β2AR system retained the memory of the previous stimuli and desensitized faster and much more strongly in response to subsequent stimuli. The latent memory that we predict is due to slower membrane dephosphorylation, which allows for progressive accumulation of phosphorylated receptor on the surface. This primes the receptor for faster arrestin binding on subsequent agonist activation leading to a greater extent of desensitization. In summary, the model is unique in accounting for the behavior of the β2AR system across multiple types of biochemical measurements using a single set of experimentally constrained parameters. It also provides insight into how the signaling machinery can retain memory of prior stimulation long after near complete resensitization has been achieved. The β2 adrenergic receptor (β2AR) is involved in regulating many cellular processes such as smooth muscle relaxation in the airways and the vasculature. Drugs that activate the β2AR are used in treating asthma and chronic obstructive pulmonary disorder (COPD), and prolonged use of these drugs leads to the loss of their effects. Thus, a dynamic model of how the β2AR responds to different drugs is fundamental to their rational use. In this study a consensus model of G protein coupled receptor kinase (GRK)-mediated receptor regulation was formulated based on quantitative measures of six processes involved in β2AR regulation. This model was then used to simulate the consequences of manipulating key rates associated with the GRK-mediated β2AR regulation, leading to predictions which will provide a useful framework for further tests and elaborations of the model in basic and clinical research.
Collapse
Affiliation(s)
- Sharat J Vayttaden
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States of America
| | | | | | | | | | | |
Collapse
|
70
|
Baameur F, Morgan DH, Yao H, Tran TM, Hammitt RA, Sabui S, McMurray JS, Lichtarge O, Clark RB. Role for the regulator of G-protein signaling homology domain of G protein-coupled receptor kinases 5 and 6 in beta 2-adrenergic receptor and rhodopsin phosphorylation. Mol Pharmacol 2009; 77:405-15. [PMID: 20038610 DOI: 10.1124/mol.109.058115] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) is a major mechanism of desensitization of these receptors. GPCR activation of GRKs involves an allosteric site on GRKs distinct from the catalytic site. Although recent studies have suggested an important role of the N- and C-termini and domains surrounding the kinase active site in allosteric activation, the nature of that site and the relative roles of the RH domain in particular remain unknown. Based on evolutionary trace analysis of both the RH and kinase domains of the GRK family, we identified an important cluster encompassing helices 3, 9, and 10 in the RH domain in addition to sites in the kinase domain. To define its function, a panel of GRK5 and -6 mutants was generated and screened by intact-cell assay of constitutive GRK phosphorylation of the beta(2)-adrenergic receptor (beta 2AR), in vitro GRK phosphorylation of light-activated rhodopsin, and basal catalytic activity measured by tubulin phosphorylation and autophosphorylation. A number of double mutations within helices 3, 9, and 10 reduced phosphorylation of the beta2AR and rhodopsin by 50 to 90% relative to wild-type GRK, as well as autophosphorylation and tubulin phosphorylation. Based on these results, helix 9 peptide mimetics were designed, and several were found to inhibit rhodopsin phosphorylation by GRK5 with an IC(50) of approximately 30 microM. In summary, our studies have uncovered previously unrecognized functionally important sites in the regulator of G-protein signaling homology domain of GRK5 and -6 and identified a peptide inhibitor with potential for specific blockade of GRK-mediated phosphorylation of receptors.
Collapse
Affiliation(s)
- Faiza Baameur
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Medical School, 6431 Fannin St, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Tilley DG, Kim IM, Patel PA, Violin JD, Rockman HA. beta-Arrestin mediates beta1-adrenergic receptor-epidermal growth factor receptor interaction and downstream signaling. J Biol Chem 2009; 284:20375-86. [PMID: 19509284 DOI: 10.1074/jbc.m109.005793] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
beta1-Adrenergic receptor (beta1AR) stimulation confers cardioprotection via beta-arrestin-de pend ent transactivation of epidermal growth factor receptors (EGFRs), however, the precise mechanism for this salutary process is unknown. We tested the hypothesis that the beta1AR and EGFR form a complex that differentially directs intracellular signaling pathways. beta1AR stimulation and EGF ligand can each induce equivalent EGFR phosphorylation, internalization, and downstream activation of ERK1/2, but only EGF ligand causes translocation of activated ERK to the nucleus, whereas beta1AR-stimulated/EGFR-transactivated ERK is restricted to the cytoplasm. beta1AR and EGFR are shown to interact as a receptor complex both in cell culture and endogenously in human heart, an interaction that is selective and undergoes dynamic regulation by ligand stimulation. Although catecholamine stimulation mediates the retention of beta1AR-EGFR interaction throughout receptor internalization, direct EGF ligand stimulation initiates the internalization of EGFR alone. Continued interaction of beta1AR with EGFR following activation is dependent upon C-terminal tail GRK phosphorylation sites of the beta1AR and recruitment of beta-arrestin. These data reveal a new signaling paradigm in which beta-arrestin is required for the maintenance of a beta1AR-EGFR interaction that can direct cytosolic targeting of ERK in response to catecholamine stimulation.
Collapse
Affiliation(s)
- Douglas G Tilley
- Department of Medicine, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
72
|
Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci U S A 2009; 106:9649-54. [PMID: 19497875 DOI: 10.1073/pnas.0904361106] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CCL19 and CCL21 are endogenous agonists for the seven-transmembrane receptor CCR7. They are equally active in promoting G protein stimulation and chemotaxis. Yet, we find that they result in striking differences in activation of the G protein-coupled receptor kinase (GRK)/ss-arrestin system. CCL19 leads to robust CCR7 phosphorylation and beta-arrestin2 recruitment catalyzed by both GRK3 and GRK6 whereas CCL21 activates GRK6 alone. This differential GRK activation leads to distinct functional consequences. Although each ligand leads to beta-arrestin2 recruitment, only CCL19 leads to redistribution of beta-arrestin2-GFP into endocytic vesicles and classical receptor desensitization. In contrast, these agonists are both capable of signaling through GRK6 and beta-arrestin2 to ERK kinases. Thus, this mechanism for "ligand bias" whereby endogenous agonists activate different GRK isoforms leads to functionally distinct pools of beta-arrestin.
Collapse
|
73
|
DiPilato LM, Zhang J. The role of membrane microdomains in shaping beta2-adrenergic receptor-mediated cAMP dynamics. MOLECULAR BIOSYSTEMS 2009; 5:832-7. [PMID: 19603118 DOI: 10.1039/b823243a] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recently, membrane rafts and caveolae have received much attention for their role as signaling platforms, particularly due to their involvement in the pathogenesis of a number of diseases, including HIV as well as neurological and cardiovascular conditions. Signaling mediated by the beta-adrenergic receptor (beta-AR), a member of the large family of G-protein coupled receptors (GPCRs) that transduce extracellular messages via the ubiquitous second messenger, cAMP, has been a focus of raft studies since multiple components of the pathway are compartmentalized by these membrane microdomains. However, how these membrane rafts behave and regulate signaling dynamics in a cellular context is poorly understood. Here, we describe a live-cell assay based on single-cell, real-time fluorescence imaging, via an improved FRET-based cAMP biosensor, to monitor raft regulation of second messenger dynamics. Upon cholesterol depletion with methyl-beta-cyclodextrin (MbetaCD), beta(2)-AR-mediated cAMP accumulation was enhanced and prolonged in HEK-293 cells, demonstrating that membrane raft integrity helps shape beta-AR signaling. Single-cell imaging in parallel with fractionation studies reveal that the enhancement and change of dynamics are mediated by the receptor and correlated with its redistribution. Finally, the effect of cholesterol depletion is receptor-type specific as MbetaCD treatment did not show the same effect when the raft-excluded prostaglandin E receptor was stimulated. This study highlights the potential of a live-cell, real-time imaging assay for studying membrane rafts, including high sensitivity and spatiotemporal resolution, to achieve a better understanding of the nuances of membrane microdomains in both healthy and diseased states.
Collapse
Affiliation(s)
- Lisa M DiPilato
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Maryland, USA
| | | |
Collapse
|
74
|
Walters RW, Shukla AK, Kovacs JJ, Violin JD, DeWire SM, Lam CM, Chen JR, Muehlbauer MJ, Whalen EJ, Lefkowitz RJ. beta-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. J Clin Invest 2009; 119:1312-21. [PMID: 19349687 DOI: 10.1172/jci36806] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 02/18/2009] [Indexed: 12/21/2022] Open
Abstract
Nicotinic acid is one of the most effective agents for both lowering triglycerides and raising HDL. However, the side effect of cutaneous flushing severely limits patient compliance. As nicotinic acid stimulates the GPCR GPR109A and Gi/Go proteins, here we dissected the roles of G proteins and the adaptor proteins, beta-arrestins, in nicotinic acid-induced signaling and physiological responses. In a human cell line-based signaling assay, nicotinic acid stimulation led to pertussis toxin-sensitive lowering of cAMP, recruitment of beta-arrestins to the cell membrane, an activating conformational change in beta-arrestin, and beta-arrestin-dependent signaling to ERK MAPK. In addition, we found that nicotinic acid promoted the binding of beta-arrestin1 to activated cytosolic phospholipase A2 as well as beta-arrestin1-dependent activation of cytosolic phospholipase A2 and release of arachidonate, the precursor of prostaglandin D2 and the vasodilator responsible for the flushing response. Moreover, beta-arrestin1-null mice displayed reduced cutaneous flushing in response to nicotinic acid, although the improvement in serum free fatty acid levels was similar to that observed in wild-type mice. These data suggest that the adverse side effect of cutaneous flushing is mediated by beta-arrestin1, but lowering of serum free fatty acid levels is not. Furthermore, G protein-biased ligands that activate GPR109A in a beta-arrestin-independent fashion may represent an improved therapeutic option for the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Robert W Walters
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
A polymorphism of G-protein coupled receptor kinase5 alters agonist-promoted desensitization of beta2-adrenergic receptors. Pharmacogenet Genomics 2008; 18:729-32. [PMID: 18622265 DOI: 10.1097/fpc.0b013e32830967e9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Beta-agonist treatment of asthma displays substantial interindividual variation, which has prompted polymorphism discovery and characterization of beta2-adrenergic (beta2AR) signaling genes. beta2AR function undergoes desensitization during persistent agonist exposure because of receptor phosphorylation by G-protein coupled receptor kinases (GRKs). GRK5 was found to be highly expressed in airway smooth muscle, the tissue target for beta-agonists. The coding region is polymorphic at codon 41, where Gln can be substituted by Leu (minor allele), but almost exclusively in those of African descent. In transfected cells, GRK5-Leu41 evoked a greater degree of agonist-promoted desensitization of adenylyl cyclase compared with GRK5-Gln41. Consistent with this functional effect, agonist-promoted beta2AR phosphorylation was greater in cells expressing GRK5-Leu41, as was the rate of agonist-promoted receptor internalization. In studies with mutated beta2AR lacking PKA-phosphorylation sites, this phenotype was confirmed as being GRK-specific. So, GRK5-Leu41 represents a gain-of-function polymorphism that evokes enhanced loss-of-function of beta2AR during persistent agonist exposure, and thus may contribute to beta-agonist variability in asthma treatment of African-Americans.
Collapse
|
76
|
Gong K, Li Z, Xu M, Du J, Lv Z, Zhang Y. A novel protein kinase A-independent, beta-arrestin-1-dependent signaling pathway for p38 mitogen-activated protein kinase activation by beta2-adrenergic receptors. J Biol Chem 2008; 283:29028-36. [PMID: 18678875 PMCID: PMC2662007 DOI: 10.1074/jbc.m801313200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Revised: 07/28/2008] [Indexed: 01/14/2023] Open
Abstract
A growing body of evidence has demonstrated that p38 mitogen-activated protein kinase (MAPK) has a crucial role in various physiological and pathological processes mediated by beta(2)-adrenergic receptors (beta(2)-ARs). However, the detailed mechanism of beta(2)-ARs-induced p38 MAPK activation has not yet been fully defined. The present study demonstrates a novel kinetic model of p38 MAPK activation induced by beta(2)-ARs in human embryonic kidney 293A cells. The beta(2)-AR agonist isoproterenol induced a time-dependent biphasic phosphorylation of p38 MAPK: the early phase peaked at 10 min, and was followed by a delayed phase that appeared at 90 min and was sustained for 6 h. Interestingly, inhibition of the cAMP/protein kinase A (PKA) pathway failed to affect the early phosphorylation but abolished the delayed activation. By contrast, silencing of beta-arrestin-1 expression by small interfering RNA inhibited the early phase activation of p38 MAPK. Furthermore, the NADPH oxidase complex is a downstream target of beta-arrestin-1, as evidenced by the fact that isoproterenol-induced Rac1 activation was also suppressed by beta-arrestin-1 knockdown. In addition, early phase activation of p38 MAPK was prevented by inactivation of Rac1 and NADPH oxidase by pharmacological inhibitors, overexpression of a dominant negative mutant of Rac1, and p47(phox) knockdown by RNA interference. Of note, we demonstrated that only early activation of p38 MAPK is involved in isoproterenol-induced F-actin rearrangement. Collectively, these data suggest that the classic cAMP/PKA pathway is responsible for the delayed activation, whereas a beta-arrestin-1/Rac1/NADPH oxidase-dependent signaling is a heretofore unrecognized mechanism for beta(2)-AR-mediated early activation of p38 MAPK.
Collapse
Affiliation(s)
- Kaizheng Gong
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
77
|
Krasel C, Zabel U, Lorenz K, Reiner S, Al-Sabah S, Lohse MJ. Dual role of the beta2-adrenergic receptor C terminus for the binding of beta-arrestin and receptor internalization. J Biol Chem 2008; 283:31840-8. [PMID: 18801735 DOI: 10.1074/jbc.m806086200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Homologous desensitization of beta2-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta2-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta2-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.
Collapse
Affiliation(s)
- Cornelius Krasel
- Institute of Pharmacology and Toxicology, Versbacher Strasse 9, D-97078 Wuerzburg, Germany.
| | | | | | | | | | | |
Collapse
|
78
|
Newton CA, Chou PJ, Perkins I, Klein TW. CB(1) and CB(2) cannabinoid receptors mediate different aspects of delta-9-tetrahydrocannabinol (THC)-induced T helper cell shift following immune activation by Legionella pneumophila infection. J Neuroimmune Pharmacol 2008; 4:92-102. [PMID: 18792785 DOI: 10.1007/s11481-008-9126-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 09/02/2008] [Indexed: 12/16/2022]
Abstract
Legionella pneumophila infection of mice induces proinflammatory cytokines and Th1 immunity as well as rapid increases in serum levels of IL-12 and IFNgamma and splenic IL-12Rbeta2 expression. Delta-9-tetrahydrocannabinol (THC) treatment prior to infection causes a shift from Th1 to Th2 immunity and here we demonstrate that CB(1) and CB(2) cannabinoid receptors mediate different aspects of the shift. Using cannabinoid receptor antagonists and cannabinoid receptor gene deficient mice (CB(1) (-/-) and CB(2) (-/-)), we showed that both CB(1) and CB(2) receptors were involved in the THC-induced attenuation of serum IL-12 and IFNgamma. IFNgamma production is dependent upon signaling through IL-12Rbeta2 (beta2) and THC treatment suppressed splenic beta2 message; moreover, this effect was CB(1) but not CB(2)-dependent from studies with receptor antagonists and CB1(-/-) and CB2(-/-) mice. Furthermore, observed increases in IL-4 induced by THC, were not involved in the drug effect on beta2 from studies with IL-4 deficient mice. The GATA-3 transcription factor is necessary for IL-4 production and is selectively expressed in Th2 cells. GATA-3 message levels were elevated in spleens of THC-treated and L. pneumophila-infected mice and the effect was shown to be CB(2) but not CB(1)-dependent. Furthermore, GATA-3 regulatory factors were modulated in that Notch ligand Delta4 mRNA was decreased and Jagged1 increased by THC also in a CB2-dependent manner and splenic NFkappaB p65 was increased. Together, these results indicate that CB(1) and CB(2) mediate the THC-induced shift in T helper activity in L. pneumophila-infected mice, with CB(1) involved in suppressing IL-12Rbeta2 and CB(2) involved in enhancing GATA-3.
Collapse
MESH Headings
- Animals
- Calcium-Binding Proteins/biosynthesis
- Calcium-Binding Proteins/genetics
- Dendritic Cells/drug effects
- Dronabinol/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Female
- GATA3 Transcription Factor/biosynthesis
- GATA3 Transcription Factor/genetics
- Hallucinogens/pharmacology
- Immunity, Cellular/drug effects
- Intercellular Signaling Peptides and Proteins/biosynthesis
- Intercellular Signaling Peptides and Proteins/genetics
- Interleukin-12 Receptor beta 2 Subunit/biosynthesis
- Jagged-1 Protein
- Legionnaires' Disease/immunology
- Macrophage Activation/drug effects
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Serrate-Jagged Proteins
- Spleen/cytology
- Spleen/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- Th2 Cells/drug effects
- Transcription Factor RelA/biosynthesis
- Transcription Factor RelA/genetics
Collapse
Affiliation(s)
- Catherine A Newton
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
79
|
Miao H, Chen L, Riordan SM, Li W, Juarez S, Crabb AM, Lukas TJ, Du P, Lin SM, Wise A, Agapova OA, Yang P, Gu CC, Hernandez MR. Gene expression and functional studies of the optic nerve head astrocyte transcriptome from normal African Americans and Caucasian Americans donors. PLoS One 2008; 3:e2847. [PMID: 18716680 PMCID: PMC2518525 DOI: 10.1371/journal.pone.0002847] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/07/2008] [Indexed: 11/19/2022] Open
Abstract
PURPOSE To determine whether optic nerve head (ONH) astrocytes, a key cellular component of glaucomatous neuropathy, exhibit differential gene expression in primary cultures of astrocytes from normal African American (AA) donors compared to astrocytes from normal Caucasian American (CA) donors. METHODS We used oligonucleotide Affymetrix microarray (HG U133A & HG U133A 2.0 chips) to compare gene expression levels in cultured ONH astrocytes from twelve CA and twelve AA normal age matched donor eyes. Chips were normalized with Robust Microarray Analysis (RMA) in R using Bioconductor. Significant differential gene expression levels were detected using mixed effects modeling and Statistical Analysis of Microarray (SAM). Functional analysis and Gene Ontology were used to classify differentially expressed genes. Differential gene expression was validated by quantitative real time RT-PCR. Protein levels were detected by Western blots and ELISA. Cell adhesion and migration assays tested physiological responses. Glutathione (GSH) assay detected levels of intracellular GSH. RESULTS Multiple analyses selected 87 genes differentially expressed between normal AA and CA (P<0.01). The most relevant genes expressed in AA were categorized by function, including: signal transduction, response to stress, ECM genes, migration and cell adhesion. CONCLUSIONS These data show that normal astrocytes from AA and CA normal donors display distinct expression profiles that impact astrocyte functions in the ONH. Our data suggests that differences in gene expression in ONH astrocytes may be specific to the development and/or progression of glaucoma in AA.
Collapse
Affiliation(s)
- Haixi Miao
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lin Chen
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Sean M. Riordan
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Wenjun Li
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Santiago Juarez
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Andrea M. Crabb
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Pan Du
- Robert H, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Simon M. Lin
- Robert H, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexandria Wise
- Department of Biology, City College of New York, New York, New York, United States of America
| | - Olga A. Agapova
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ping Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Charles C. Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - M. Rosario Hernandez
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
80
|
Shukla AK, Violin JD, Whalen EJ, Gesty-Palmer D, Shenoy SK, Lefkowitz RJ. Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Proc Natl Acad Sci U S A 2008; 105:9988-93. [PMID: 18621717 PMCID: PMC2481318 DOI: 10.1073/pnas.0804246105] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Indexed: 12/26/2022] Open
Abstract
Beta-arrestins critically regulate G protein-coupled receptors (GPCRs), also known as seven-transmembrane receptors (7TMRs), both by inhibiting classical G protein signaling and by initiating distinct beta-arrestin-mediated signaling. The recent discovery of beta-arrestin-biased ligands and receptor mutants has allowed characterization of these independent "G protein-mediated" and "beta-arrestin-mediated" signaling mechanisms of 7TMRs. However, the molecular mechanisms underlying the dual functions of beta-arrestins remain unclear. Here, using an intramolecular BRET (bioluminescence resonance energy transfer)-based biosensor of beta-arrestin 2 and a combination of biased ligands and/or biased mutants of three different 7TMRs, we provide evidence that beta-arrestin can adopt multiple "active" conformations. Surprisingly, phosphorylation-deficient mutants of the receptors are also capable of directing similar conformational changes in beta-arrestin as is the wild-type receptor. This indicates that distinct receptor conformations induced and/or stabilized by different ligands can promote distinct and functionally specific conformations in beta-arrestin even in the absence of receptor phosphorylation. Our data thus highlight another interesting aspect of 7TMR signaling--i.e., functionally specific receptor conformations can be translated to downstream effectors such as beta-arrestins, thereby governing their functional specificity.
Collapse
MESH Headings
- Arrestins/chemistry
- Arrestins/genetics
- Arrestins/metabolism
- Biophysical Phenomena
- Biophysics
- Biosensing Techniques
- Cells
- Fluorescence Resonance Energy Transfer
- Humans
- Ligands
- Mutagenesis, Site-Directed
- Phosphorylation
- Protein Conformation
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- beta-Arrestin 2
- beta-Arrestins
Collapse
Affiliation(s)
| | | | | | | | | | - Robert J. Lefkowitz
- Departments of *Medicine and
- Biochemistry, and
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
81
|
Tobin AB, Butcher AJ, Kong KC. Location, location, location...site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signalling. Trends Pharmacol Sci 2008; 29:413-20. [PMID: 18606460 PMCID: PMC2880250 DOI: 10.1016/j.tips.2008.05.006] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 12/21/2022]
Abstract
It is now established that most of the approximately 800 G-protein-coupled receptors (GPCRs) are regulated by phosphorylation in a process that results in the recruitment of arrestins, leading to receptor desensitization and the activation of arrestin-dependent processes. This generalized view of GPCR regulation, however, does not provide an adequate mechanism for the control of tissue-specific GPCR signalling. Here, we review the evidence that GPCR phosphorylation is, in fact, a flexible and dynamic regulatory process in which GPCRs are phosphorylated in a unique manner that is associated with the cell type in which the receptor is expressed. In this scenario, phosphorylation offers a mechanism of regulating the signalling outcome of GPCRs that can be tailored to meet a specific physiological role.
Collapse
Affiliation(s)
- Andrew B Tobin
- Department of Cell Physiology and Pharmacology, University of Leicester, LE1 9HN, UK.
| | | | | |
Collapse
|
82
|
Gurevich VV, Gurevich EV. Rich tapestry of G protein-coupled receptor signaling and regulatory mechanisms. Mol Pharmacol 2008; 74:312-6. [PMID: 18515421 DOI: 10.1124/mol.108.049015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest family of signaling proteins and the most common therapeutic targets. In the last 2 decades, impressive progress in the understanding of GPCR function has been achieved, driven largely by the idea of similarity of the molecular mechanisms underlying their signaling and regulation. However, recent comprehensive studies of signaling and trafficking of several GPCR subtypes, including endogenous M3 muscarinic and H1 histamine receptor and expressed cysteinyl leukotriene type 1 receptor in human embryonic kidney 293 cells, clearly demonstrate that each receptor is regulated by a unique set of molecular mechanisms involving different players. These data indicate that the "gold mine" of similarities is nearly exhausted and that extrapolation from one receptor to another is as likely to be misleading as illuminating. Further progress in the field requires careful analysis of the regulation of individual GPCR subtypes in defined cellular context. In this issue of Molecular Pharmacology, Luo et al. (p. 338) describe a complex pattern of the regulation of M3 muscarinic receptor signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
83
|
Balabanian K, Levoye A, Klemm L, Lagane B, Hermine O, Harriague J, Baleux F, Arenzana-Seisdedos F, Bachelerie F. Leukocyte analysis from WHIM syndrome patients reveals a pivotal role for GRK3 in CXCR4 signaling. J Clin Invest 2008; 118:1074-84. [PMID: 18274673 DOI: 10.1172/jci33187] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 12/19/2007] [Indexed: 01/17/2023] Open
Abstract
Leukocytes from individuals with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a rare immunodeficiency, and bearing a wild-type CXCR4 ORF (WHIM(WT)) display impaired CXCR4 internalization and desensitization upon exposure to CXCL12. The resulting enhanced CXCR4-dependent responses, including chemotaxis, probably impair leukocyte trafficking and account for the immunohematologic clinical manifestations of WHIM syndrome. We provided here evidence that GPCR kinase-3 (GRK3) specifically regulates CXCL12-promoted internalization and desensitization of CXCR4. GRK3-silenced control cells displayed altered CXCR4 attenuation and enhanced chemotaxis, as did WHIM(WT) cells. These findings identified GRK3 as a negative regulator of CXCL12-induced chemotaxis and as a candidate responsible for CXCR4 dysfunction in WHIM(WT) leukocytes. Consistent with this, we showed that GRK3 overexpression in both leukocytes and skin fibroblasts from 2 unrelated WHIM(WT) patients restored CXCL12-induced internalization and desensitization of CXCR4 and normalized chemotaxis. Moreover, we found in cells derived from one patient a profound and selective decrease in GRK3 products that probably resulted from defective mRNA synthesis. Taken together, these results have revealed a pivotal role for GRK3 in regulating CXCR4 attenuation and have provided a mechanistic link between the GRK3 pathway and the CXCR4-related WHIM(WT) disorder.
Collapse
|
84
|
Xin W, Tran TM, Richter W, Clark RB, Rich TC. Roles of GRK and PDE4 activities in the regulation of beta2 adrenergic signaling. ACTA ACUST UNITED AC 2008; 131:349-64. [PMID: 18347080 PMCID: PMC2279169 DOI: 10.1085/jgp.200709881] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
An important focus in cell biology is understanding how different feedback mechanisms regulate G protein-coupled receptor systems. Toward this end we investigated the regulation of endogenous beta(2) adrenergic receptors (beta2ARs) and phosphodiesterases (PDEs) by measuring cAMP signals in single HEK-293 cells. We monitored cAMP signals using genetically encoded cyclic nucleotide-gated (CNG) channels. This high resolution approach allowed us to make several observations. (a) Exposure of cells to 1 muM isoproterenol triggered transient increases in cAMP levels near the plasma membrane. Pretreatment of cells with 10 muM rolipram, a PDE4 inhibitor, prevented the decline in the isoproterenol-induced cAMP signals. (b) 1 muM isoproterenol triggered a sustained, twofold increase in phosphodiesterase type 4 (PDE4) activity. (c) The decline in isoproterenol-dependent cAMP levels was not significantly altered by including 20 nM PKI, a PKA inhibitor, or 3 muM 59-74E, a GRK inhibitor, in the pipette solution; however, the decline in the cAMP levels was prevented when both PKI and 59-74E were included in the pipette solution. (d) After an initial 5-min stimulation with isoproterenol and a 5-min washout, little or no recovery of the signal was observed during a second 5-min stimulation with isoproterenol. (e) The amplitude of the signal in response to the second isoproterenol stimulation was not altered when PKI was included in the pipette solution, but was significantly increased when 59-74E was included. Taken together, these data indicate that either GRK-mediated desensitization of beta2ARs or PKA-mediated stimulation of PDE4 activity is sufficient to cause declines in cAMP signals. In addition, the data indicate that GRK-mediated desensitization is primarily responsible for a sustained suppression of beta2AR signaling. To better understand the interplay between receptor desensitization and PDE4 activity in controlling cAMP signals, we developed a mathematical model of this system. Simulations of cAMP signals using this model are consistent with the experimental data and demonstrate the importance of receptor levels, receptor desensitization, basal adenylyl cyclase activity, and regulation of PDE activity in controlling cAMP signals, and hence, on the overall sensitivity of the system.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Pharmacology, College of Medicine and Center for Lung Biology, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | |
Collapse
|
85
|
Hawkes C, Amritraj A, Macdonald RG, Jhamandas JH, Kar S. Heterotrimeric G proteins and the single-transmembrane domain IGF-II/M6P receptor: functional interaction and relevance to cell signaling. Mol Neurobiol 2008; 35:329-45. [PMID: 17917122 DOI: 10.1007/s12035-007-0021-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 11/30/1999] [Accepted: 04/02/2007] [Indexed: 12/11/2022]
Abstract
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor's structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.
Collapse
Affiliation(s)
- C Hawkes
- Department of Psychiatry, Centre for Alzheimer and Neurodegenerative Research, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | | | | | | | | |
Collapse
|
86
|
Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci 2008; 29:159-65. [PMID: 18262662 DOI: 10.1016/j.tips.2007.12.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 12/29/2022]
Abstract
The activation of G-protein-coupled receptors (GPCRs) is traditionally measured either by monitoring downstream physiological events or by membrane-based biochemical assays. Neither of these approaches permits detailed kinetic or spatial analysis of receptor activation and signaling. Recently, several optical techniques have been developed to monitor receptor activation either by using purified reconstituted GPCRs or by observing GPCRs, G proteins and second messengers in intact cells. These techniques are providing, literally, new views on both the mechanistic basis of the signaling process and the kinetic and spatial properties of GPCR-mediated signals. They suggest that agonists can activate GPCRs within milliseconds, that different compounds can induce distinct active conformations of GPCRs, that G-protein activation is the rate-limiting step in GPCR signaling, and that cellular signals can be temporally and spatially confined. They are also raising controversial issues, such as whether or not receptors and G proteins are pre-coupled and whether G proteins dissociate during activation.
Collapse
|
87
|
Abstract
Almost all G-protein coupled receptors (GPCRs) are regulated by phosphorylation and this process is a key event in determining the signalling properties of this receptor super-family. Receptors are multiply phosphorylated at sites that can occur throughout the intracellular regions of the receptor. This diversity of phospho-acceptor sites together with a lack of consensus phosphorylation sequences has led to the suggestion that the precise site of phosphorylation is not important in the phosphorylation-dependent regulation of GPCR function but rather it is the increase in bulk negative charge of the intracellular face of the receptor which is the significant factor. This review investigates the possibility that the multi-site nature of GPCR phosphorylation reflects the importance of specific phosphorylation events which mediate distinct signalling outcomes. In this way receptor phosphorylation may provide for a flexible regulatory mechanism that can be tailored in a tissue specific manner to regulate physiological processes. By understanding the flexible nature of GPCR phosphorylation if may be possible to develop agonists or allosteric modulators that promote a subset of phosphorylation events on the target GPCR and thereby restrict the action of the drug to a particular receptor mediated signalling response.
Collapse
|
88
|
Lohse MJ, Hein P, Hoffmann C, Nikolaev VO, Vilardaga JP, Bünemann M. Kinetics of G-protein-coupled receptor signals in intact cells. Br J Pharmacol 2008; 153 Suppl 1:S125-32. [PMID: 18193071 DOI: 10.1038/sj.bjp.0707656] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest group of cell surface receptors. They are stimulated by a variety of stimuli and signal to different classes of effectors, including several types of ion channels and second messenger-generating enzymes. Recent technical advances, most importantly in the optical recording with energy transfer techniques--fluorescence and bioluminescence resonance energy transfer, FRET and BRET--, have permitted a detailed kinetic analysis of the individual steps of the signalling chain, ranging from ligand binding to the production of second messengers in intact cells. The transfer of information, which is initiated by ligand binding, triggers a signalling cascade that displays various rate-controlling steps at different levels. This review summarizes recent findings illustrating the speed and the complexity of this signalling system.
Collapse
Affiliation(s)
- M J Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | |
Collapse
|
89
|
Drake MT, Violin JD, Whalen EJ, Wisler JW, Shenoy SK, Lefkowitz RJ. beta-arrestin-biased agonism at the beta2-adrenergic receptor. J Biol Chem 2007; 283:5669-76. [PMID: 18086673 DOI: 10.1074/jbc.m708118200] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Classically, the beta 2-adrenergic receptor (beta 2AR) and other members of the seven-transmembrane receptor (7TMR) superfamily activate G protein-dependent signaling pathways in response to ligand stimulus. It has recently been discovered, however, that a number of 7TMRs, including beta 2AR, can signal via beta-arrestin-dependent pathways independent of G protein activation. It is currently unclear if among beta 2AR agonists there exist ligands that disproportionately signal via G proteins or beta-arrestins and are hence "biased." Using a variety of approaches that include highly sensitive fluorescence resonance energy transfer-based methodologies, including a novel assay for receptor internalization, we show that the majority of known beta 2AR agonists exhibit relative efficacies for beta-arrestin-associated activities (beta-arrestin membrane translocation and beta 2AR internalization) identical to the irrelative efficacies for G protein-dependent signaling (cyclic AMP generation). However, for three betaAR ligands there is a marked bias toward beta-arrestin signaling; these ligands stimulate beta-arrestin-dependent receptor activities to a much greater extent than would be expected given their efficacy for G protein-dependent activity. Structural comparison of these biased ligands reveals that all three are catecholamines containing an ethyl substitution on the alpha-carbon, a motif absent on all of the other, unbiased ligands tested. Thus, these studies demonstrate the potential for developing a novel class of 7TMR ligands with a distinct bias for beta-arrestin-mediated signaling.
Collapse
Affiliation(s)
- Matthew T Drake
- Departments of Medicine, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
90
|
Violin JD, DiPilato LM, Yildirim N, Elston TC, Zhang J, Lefkowitz RJ. beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 2007; 283:2949-61. [PMID: 18045878 DOI: 10.1074/jbc.m707009200] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor signaling is dynamically regulated by multiple feedback mechanisms, which rapidly attenuate signals elicited by ligand stimulation, causing desensitization. The individual contributions of these mechanisms, however, are poorly understood. Here, we use an improved fluorescent biosensor for cAMP to measure second messenger dynamics stimulated by endogenous beta(2)-adrenergic receptor (beta(2)AR) in living cells. beta(2)AR stimulation with isoproterenol results in a transient pulse of cAMP, reaching a maximal concentration of approximately 10 microm and persisting for less than 5 min. We investigated the contributions of cAMP-dependent kinase, G protein-coupled receptor kinases, and beta-arrestin to the regulation of beta(2)AR signal kinetics by using small molecule inhibitors, small interfering RNAs, and mouse embryonic fibroblasts. We found that the cAMP response is restricted in duration by two distinct mechanisms in HEK-293 cells: G protein-coupled receptor kinase (GRK6)-mediated receptor phosphorylation leading to beta-arrestin mediated receptor inactivation and cAMP-dependent kinase-mediated induction of cAMP metabolism by phosphodiesterases. A mathematical model of beta(2)AR signal kinetics, fit to these data, revealed that direct receptor inactivation by cAMP-dependent kinase is insignificant but that GRK6/beta-arrestin-mediated inactivation is rapid and profound, occurring with a half-time of 70 s. This quantitative system analysis represents an important advance toward quantifying mechanisms contributing to the physiological regulation of receptor signaling.
Collapse
Affiliation(s)
- Jonathan D Violin
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
91
|
Tran TM, Jorgensen R, Clark RB. Phosphorylation of the beta2-adrenergic receptor in plasma membranes by intrinsic GRK5. Biochemistry 2007; 46:14438-49. [PMID: 18034461 DOI: 10.1021/bi700922h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Characterization of the GRKs participating in the phosphorylation of the beta2-adrenergic receptor (beta2AR) have in part been limited by the lack of a simple cell-free assay with membrane-bound beta2AR and GRKs. We describe here a cell-free assay for GRK phosphorylation of the beta2AR in a postnuclear 600g fraction and washed membranes by intrinsic GRK activity using the GRK phosphosite-specific antibody that recognizes pS(355,356). Treatment of these cell-free preparations with 1.0 microM isoproterenol (ISO) caused a rapid maximal 10-15-fold increase in GRK site phosphorylation of the beta2AR (t1/2 = 1 min) with an EC50 for ISO stimulation of approximately 80 nM. Extensively washed plasma membrane fractions retained the 10-15-fold ISO stimulation of GRK site phosphorylation and GRK5 levels while being depleted of GRK2 and GRK6. Stimulation of GRK site phosphorylation by a range of partial agonists correlated well with their intrinsic efficacy for stimulation of adenylyl cyclase. GRK phosphorylation of the beta2AR in the washed membrane fraction caused minimal desensitization of ISO stimulation of adenylyl cyclase activity. Association of GRK5 with the beta2AR in intact cells was demonstrated by a high level of basal BRET2 using beta2AR-Rluc and GRK5-GFP2 that was not diminished by agonist stimulation. BRET2 between the beta2AR-Rluc and GFP2-betaarrestin 2 was increased by agonist, whereas BRET2 between the beta2AR and GRK2-GFP2 was not significant. On the basis of the level of GRK5-mediated phosphorylation we observe in isolated membrane fractions and co-localization of the beta2AR and GRK5, we conclude that GRK5 plays a distinctive role in the phosphorylation of the beta2AR.
Collapse
Affiliation(s)
- Tuan M Tran
- The University of Texas Health Science Center Houston, P.O Box 20708, Houston, Texas 77225, USA
| | | | | |
Collapse
|
92
|
Potapova IA, Cohen IS, Doronin SV. Voltage-gated ion channel Kv4.3 is associated with Rap guanine nucleotide exchange factors and regulates angiotensin receptor type 1 signaling to small G-protein Rap. FEBS J 2007; 274:4375-84. [PMID: 17725712 DOI: 10.1111/j.1742-4658.2007.05966.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The voltage-gated potassium channel Kv4.3 was coexpressed with its beta-subunit Kv channel-interacting protein 2 and the angiotensin type 1 receptor in HEK-293 cells. Proteomic analysis of proteins coimmunoprecipitated with Kv4.3 revealed that Kv4.3 is associated with Rap guanine nucleotide exchange factors MR-GEF and EPAC-1. Previously, we demonstrated that Kv4.3 interacts with the angiotensin type 1 receptor in HE293 cells and cardiac myocytes. On the basis of this, we investigated the angiotensin type 1 receptor signaling to small G-proteins Ras and Rap-1 in the presence and absence of the Kv4.3-Kv channel-interacting protein 2 macromolecular complex. Ras activation was not significantly affected by coexpression of Kv4.3 and Kv channel-interacting protein 2. Ras exhibited a rapid activation-inactivation pattern with maximum activity at 2.5 min after addition of angiotensin II. In contrast, activation of Rap-1 was affected dramatically by coexpression of Kv4.3 and Kv channel-interacting protein 2 with the angiotensin type 1 receptor. In the absence of Kv4.3 and Kv channel-interacting protein 2, stimulation of the angiotensin type 1 receptor resulted in steady activation of Rap-1 that reached a plateau 25 min after addition of angiotensin II. In the presence of Kv4.3 and Kv channel-interacting protein 2, Rap-1 reaches a maximum activity 2.5 min after addition of angiotensin II and then deactivates rapidly, demonstrating a pattern of activation similar to that of Ras. Our findings show that Kv4.3 regulates angiotensin type 1 receptor signaling to the small G-protein Rap-1.
Collapse
Affiliation(s)
- Irina A Potapova
- Department of Physiology and Biophysics, Institute of Molecular Cardiology, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
93
|
Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, Le Corvoisier P, Violin JD, Wei H, Lefkowitz RJ, Rockman HA. Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 2007; 117:2445-58. [PMID: 17786238 PMCID: PMC1952636 DOI: 10.1172/jci31901] [Citation(s) in RCA: 353] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 06/12/2007] [Indexed: 12/16/2022] Open
Abstract
Deleterious effects on the heart from chronic stimulation of beta-adrenergic receptors (betaARs), members of the 7 transmembrane receptor family, have classically been shown to result from Gs-dependent adenylyl cyclase activation. Here, we identify a new signaling mechanism using both in vitro and in vivo systems whereby beta-arrestins mediate beta1AR signaling to the EGFR. This beta-arrestin-dependent transactivation of the EGFR, which is independent of G protein activation, requires the G protein-coupled receptor kinases 5 and 6. In mice undergoing chronic sympathetic stimulation, this novel signaling pathway is shown to promote activation of cardioprotective pathways that counteract the effects of catecholamine toxicity. These findings suggest that drugs that act as classical antagonists for G protein signaling, but also stimulate signaling via beta-arrestin-mediated cytoprotective pathways, would represent a novel class of agents that could be developed for multiple members of the 7 transmembrane receptor family.
Collapse
Affiliation(s)
- Takahisa Noma
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Anthony Lemaire
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Sathyamangla V. Naga Prasad
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Liza Barki-Harrington
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Douglas G. Tilley
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Juhsien Chen
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Philippe Le Corvoisier
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Jonathan D. Violin
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Huijun Wei
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert J. Lefkowitz
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| | - Howard A. Rockman
- Department of Medicine,
Howard Hughes Medical Institute,
Department of Cell Biology, and
Department of Molecular Genetics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
94
|
Willoughby D, Baillie GS, Lynch MJ, Ciruela A, Houslay MD, Cooper DMF. Dynamic regulation, desensitization, and cross-talk in discrete subcellular microdomains during beta2-adrenoceptor and prostanoid receptor cAMP signaling. J Biol Chem 2007; 282:34235-49. [PMID: 17855344 DOI: 10.1074/jbc.m706765200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamic and localized actions of cAMP are central to the generation of discrete cellular events in response to a range of G(s)-coupled receptor agonists. In the present study we have employed a cyclic nucleotide-gated channel sensor to report acute changes in cAMP in the restricted cellular microdomains adjacent to two different G(s)-coupled receptor pathways, beta(2)-adrenoceptors and prostanoid receptors that are expressed endogenously in HEK293 cells. We probed by either selective small interference RNA-mediated knockdown or dominant negative overexpression the contribution of key signaling components in the rapid attenuation of the local cAMP signaling and subsequent desensitization of each of these G-protein-coupled receptor signaling pathways immediately following receptor activation. Direct measurements of cAMP changes just beneath the plasma membrane of single HEK293 cells reveal novel insights into key regulatory roles provided by protein kinase A-RII, beta-arrestin2, cAMP phosphodiesterase-4D3, and cAMP phosphodiesterase-4D5. We provide new evidence for distinct modes of cAMP down-regulation in these two G(s)-linked pathways and show that these distinct G-protein-coupled receptor signaling systems are subject to unidirectional, heterologous desensitization that allows for limited cross-talk between distinct, dynamically regulated pools of cAMP.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
95
|
Pin SS, Xu C, Bahr BA. Desensitization and re-sensitization of CGRP receptor function in human neuroblastoma SK-N-MC cells. Eur J Pharmacol 2007; 577:7-16. [PMID: 17825280 DOI: 10.1016/j.ejphar.2007.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 07/31/2007] [Accepted: 08/06/2007] [Indexed: 11/21/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a highly potent vasodilator known to be involved in many physiological functions within the cardiovascular, gastrointestinal, immune, and nervous systems. This study assessed the desensitization of CGRP receptors by measuring agonist-mediated activation of adenylate cyclase in a model system employing human neuroblastoma-derived SK-N-MC cells. In these cells, we demonstrated that pre-incubation with CGRP (20 nM) induces a rapid desensitization of CGRP signaling (t(1/2)<or=3 min) by causing a decrease in potency and efficacy. CGRP's desensitization potency (DC(50)=0.29 nM) is similar to its activation potency on non-desensitized cells (EC(50)=0.20 nM). The desensitized receptors exhibited slow and incomplete re-sensitization upon removal of the pre-incubated ligand, resulting in 52-65% functional recovery after 3-5 h while CGRP binding sites were completely restored. Additional agonists within the calcitonin/CGRP family of peptides (calcitonin, amylin, adrenomedullin, and adrenomedullin 2) were compared to CGRP with regard to their ability to activate and desensitize CGRP receptors. Calcitonin and amylin did not cause receptor activation nor did they produce desensitization. Adrenomedullin and adrenomedullin 2 activated the receptors and produced desensitization, but at a slower rate and with a weaker desensitization potency than CGRP-induced desensitization. Adrenomedullin exhibited similar potency for receptor activation and desensitization, whereas adrenomedullin 2 has a 4-fold higher preference for receptor desensitization than for receptor activation. Activation and desensitization induced by CGRP, adrenomedullin and adrenomedullin 2 were blocked by the CGRP receptor antagonist CGRP8-37. These data indicate that CGRP receptors are desensitized by select peptides in the calcitonin/CGRP family. Slow recovery from the desensitized state may provide a strategy for timed modulation of the CGRP signaling pathway.
Collapse
Affiliation(s)
- Sokhom S Pin
- Bristol-Myers Squibb Co., 5 Research Parkway, Wallingford, CT 06492, United States.
| | | | | |
Collapse
|
96
|
Aplin M, Christensen GL, Schneider M, Heydorn A, Gammeltoft S, Kjølbye AL, Sheikh SP, Hansen JL. The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts. Basic Clin Pharmacol Toxicol 2007; 100:289-95. [PMID: 17448113 DOI: 10.1111/j.1742-7843.2007.00063.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The angiotensin II (AngII) type 1 receptor (AT(1)R) has been shown to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) through G proteins or G protein-independently through beta-arrestin2 in cellular expression systems. As activation mechanisms may greatly influence the biological effects of ERK1/2 activity, differential activation of the AT(1)R in its native cellular context could have important biological and pharmacological implications. To examine if AT(1)R activates ERK1/2 by G protein-independent mechanisms in the heart, we used the [Sar(1), Ile(4), Ile(8)]-AngII ([SII] AngII) analogue in native preparations of cardiac myocytes and beating hearts. We found that [SII] AngII does not activate G(q)-coupling, yet stimulates the beta-arrestin2-dependent ERK1/2. The G(q)-activated pool of ERK1/2 rapidly translocates to the nucleus, while the beta-arrestin2-scaffolded pool remains in the cytosol. Similar biased agonism was achieved in Langendorff-perfused hearts, where both agonists elicit ERK1/2 phosphorylation, but [SII] AngII induces neither inotropic nor chronotropic effects.
Collapse
Affiliation(s)
- Mark Aplin
- Laboratory for Molecular Cardiology, Danish National Research Foundation Centre for Cardiac Arrhythmia, and the Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Whalen EJ, Foster MW, Matsumoto A, Ozawa K, Violin JD, Que LG, Nelson CD, Benhar M, Keys JR, Rockman HA, Koch WJ, Daaka Y, Lefkowitz RJ, Stamler JS. Regulation of beta-adrenergic receptor signaling by S-nitrosylation of G-protein-coupled receptor kinase 2. Cell 2007; 129:511-22. [PMID: 17482545 DOI: 10.1016/j.cell.2007.02.046] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 01/12/2007] [Accepted: 02/26/2007] [Indexed: 01/08/2023]
Abstract
beta-adrenergic receptors (beta-ARs), prototypic G-protein-coupled receptors (GPCRs), play a critical role in regulating numerous physiological processes. The GPCR kinases (GRKs) curtail G-protein signaling and target receptors for internalization. Nitric oxide (NO) and/or S-nitrosothiols (SNOs) can prevent the loss of beta-AR signaling in vivo, but the molecular details are unknown. Here we show in mice that SNOs increase beta-AR expression and prevent agonist-stimulated receptor downregulation; and in cells, SNOs decrease GRK2-mediated beta-AR phosphorylation and subsequent recruitment of beta-arrestin to the receptor, resulting in the attenuation of receptor desensitization and internalization. In both cells and tissues, GRK2 is S-nitrosylated by SNOs as well as by NO synthases, and GRK2 S-nitrosylation increases following stimulation of multiple GPCRs with agonists. Cys340 of GRK2 is identified as a principal locus of inhibition by S-nitrosylation. Our studies thus reveal a central molecular mechanism through which GPCR signaling is regulated.
Collapse
Affiliation(s)
- Erin J Whalen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Vinge LE, Andressen KW, Attramadal T, Andersen GØ, Ahmed MS, Peppel K, Koch WJ, Freedman NJ, Levy FO, Skomedal T, Osnes JB, Attramadal H. Substrate specificities of g protein-coupled receptor kinase-2 and -3 at cardiac myocyte receptors provide basis for distinct roles in regulation of myocardial function. Mol Pharmacol 2007; 72:582-91. [PMID: 17573483 DOI: 10.1124/mol.107.035766] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The closely related G protein-coupled receptor kinases GRK2 and GRK3 are both expressed in cardiac myocytes. Although GRK2 has been extensively investigated in terms of regulation of cardiac beta-adrenergic receptors, the substrate specificities of the two GRK isoforms at G protein-coupled receptors (GPCR) are poorly understood. In this study, the substrate specificities of GRK2 and GRK3 at GPCRs that control cardiac myocyte function were determined in fully differentiated adult cardiac myocytes. Concentration-effect relationships of GRK2, GRK3, and their respective competitive inhibitors, GRK2ct and GRK3ct, at endogenous endothelin, alpha(1)-adrenergic, and beta(1)-adrenergic receptor-generated responses in cardiac myocytes were achieved by adenovirus gene transduction. GRK3 and GRK3ct were highly potent and efficient at the endothelin receptors (IC(50) for GRK3, 5 +/- 0.7 pmol/mg of protein; EC(50) for GRK3ct, 2 +/- 0.2 pmol/mg of protein). The alpha(1)-adrenergic receptor was also a preferred substrate of GRK3 (IC(50),7 +/- 0.4 pmol/mg of protein). GRK2 lacked efficacy at both endothelin and alpha(1)-adrenergic receptors despite massive overexpression. On the contrary, both GRK2ct and GRK3ct enhanced beta(1)-adrenergic receptor-induced cAMP production with comparable potencies. However, the potency of GRK3ct at beta(1)-adrenergic receptors was at least 20-fold lower than that at endothelin receptors. In conclusion, this study demonstrates distinct substrate specificities of GRK2 and GRK3 at different GPCRs in fully differentiated adult cardiac myocytes. As inferred from the above findings, GRK2 may play its primary role in regulation of cardiac contractility and chronotropy by controlling beta(1)-adrenergic receptors, whereas GRK3 may play important roles in regulation of cardiac growth and hypertrophy by selectively controlling endothelin and alpha(1)-adrenergic receptors.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Cells, Cultured
- G-Protein-Coupled Receptor Kinase 2
- G-Protein-Coupled Receptor Kinase 3
- Gene Expression Regulation, Enzymologic
- Genes, Reporter
- Inhibitory Concentration 50
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Male
- Myocardium/cytology
- Myocardium/enzymology
- Myocytes, Cardiac/metabolism
- Rats
- Rats, Wistar
- Receptors, Adrenergic, alpha-1/genetics
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Endothelin/metabolism
- Substrate Specificity
- Transduction, Genetic
- beta-Adrenergic Receptor Kinases/analysis
- beta-Adrenergic Receptor Kinases/genetics
- beta-Adrenergic Receptor Kinases/metabolism
Collapse
Affiliation(s)
- Leif Erik Vinge
- Institute for Surgical Research, Rikshospitalet-Radiumhospitalet Medical Center, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
So CH, Verma V, O'Dowd BF, George SR. Desensitization of the dopamine D1 and D2 receptor hetero-oligomer mediated calcium signal by agonist occupancy of either receptor. Mol Pharmacol 2007; 72:450-62. [PMID: 17519357 DOI: 10.1124/mol.107.034884] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When dopamine D1 and D2 receptors were coactivated in D1-D2 receptor hetero-oligomeric complexes, a novel phospholipase C-mediated calcium signal was generated. In this report, desensitization of this Gq/11-mediated calcium signal was demonstrated by pretreatment with dopamine or with the D1-selective agonist (+/-)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (SKF-81297) or the D2-selective agonist quinpirole. Desensitization of the calcium signal mediated by D1-D2 receptor hetero-oligomers was initiated by agonist occupancy of either receptor subtype even though the signal was generated only by occupancy of both receptors. The efficacy, potency, and rate of calcium signal desensitization by agonist occupancy of the D1 receptor (t1/2, approximately 1 min) was far greater than by the D2 receptor (t1/2, approximately 10 min). Desensitization of the calcium signal was not mediated by depletion of calcium stores or internalization of the hetero-oligomer and was not decreased by inhibiting second messenger-activated kinases. The involvement of G protein-coupled receptor kinases 2 or 3, but not 5 or 6, in the desensitization of the calcium signal was shown, occurring through a phosphorylation independent mechanism. Inhibition of Gi protein function associated with D2 receptors increased D1 receptor-mediated desensitization of the calcium signal, suggesting that cross-talk between the signals mediated by the activation of different G proteins controlled the efficacy of calcium signal desensitization. Together, these results demonstrate the desensitization of a signal mediated only by hetero-oligomerization of two G protein-coupled receptors that was initiated by agonist occupancy of either receptor within the hetero-oligomer, albeit with differences in desensitization profiles observed.
Collapse
Affiliation(s)
- Christopher H So
- Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | |
Collapse
|
100
|
Abstract
To ensure that extracellular stimuli are translated into intracellular signals of appropriate magnitude and specificity, most signaling cascades are tightly regulated. One of the major mechanisms involved in the regulation of G protein-coupled receptors (GPCRs) involves their endocytic trafficking. GPCR endocytic trafficking entails the targeting of receptors to discrete endocytic sites at the plasma membrane, followed by receptor internalization and intracellular sorting. This regulates the level of cell surface receptors, the sorting of receptors to degradative or recycling pathways, and in some cases the specific signaling pathways. In this chapter we discuss the mechanisms that regulate receptor endocytic trafficking, emphasizing the role of GPCR kinases (GRKs) and arrestins in this process.
Collapse
Affiliation(s)
- Catherine A C Moore
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | |
Collapse
|