51
|
Wu Z, Jin Y, Chen B, Gugger MK, Wilkinson-Johnson CL, Tiambeng TN, Jin S, Ge Y. Comprehensive Characterization of the Recombinant Catalytic Subunit of cAMP-Dependent Protein Kinase by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2561-2570. [PMID: 31792770 PMCID: PMC6922056 DOI: 10.1007/s13361-019-02341-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 05/22/2023]
Abstract
Reversible phosphorylation plays critical roles in cell growth, division, and signal transduction. Kinases which catalyze the transfer of γ-phosphate groups of nucleotide triphosphates to their substrates are central to the regulation of protein phosphorylation and are therefore important therapeutic targets. Top-down mass spectrometry (MS) presents unique opportunities to study protein kinases owing to its capabilities in comprehensive characterization of proteoforms that arise from alternative splicing, sequence variations, and post-translational modifications. Here, for the first time, we developed a top-down MS method to characterize the catalytic subunit (C-subunit) of an important kinase, cAMP-dependent protein kinase (PKA). The recombinant PKA C-subunit was expressed in Escherichia coli and successfully purified via his-tag affinity purification. By intact mass analysis with high resolution and high accuracy, four different proteoforms of the affinity-purified PKA C-subunit were detected, and the most abundant proteoform was found containing seven phosphorylations with the removal of N-terminal methionine. Subsequently, the seven phosphorylation sites of the most abundant PKA C-subunit proteoform were characterized simultaneously using tandem MS methods. Four sites were unambiguously identified as Ser10, Ser11, Ser18, and Ser30, and the remaining phosphorylation sites were localized to Ser2/Ser3, Ser358/Thr368, and Thr[215-224]Tyr in the PKA C-subunit sequence with a 20mer 6xHis-tag added at the N-terminus. Interestingly, four of these seven phosphorylation sites were located at the 6xHis-tag. Furthermore, we have performed dephosphorylation reaction by Lambda protein phosphatase and showed that all phosphorylations of the recombinant PKA C-subunit phosphoproteoforms were removed by this phosphatase.
Collapse
Affiliation(s)
- Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Morgan K Gugger
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
52
|
Shen X, Yang Z, McCool EN, Lubeckyj RA, Chen D, Sun L. Capillary zone electrophoresis-mass spectrometry for top-down proteomics. Trends Analyt Chem 2019; 120:115644. [PMID: 31537953 PMCID: PMC6752746 DOI: 10.1016/j.trac.2019.115644] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry (MS)-based top-down proteomics characterizes complex proteomes at the intact proteoform level and provides an accurate picture of protein isoforms and protein post-translational modifications in the cell. The progress of top-down proteomics requires novel analytical tools with high peak capacity for proteoform separation and high sensitivity for proteoform detection. The requirements have made capillary zone electrophoresis (CZE)-MS an attractive approach for advancing large-scale top-down proteomics. CZE has achieved a peak capacity of 300 for separation of complex proteoform mixtures. CZE-MS has shown drastically better sensitivity than commonly used reversed-phase liquid chromatography (RPLC)-MS for proteoform detection. The advanced CZE-MS identified 6,000 proteoforms of nearly 1,000 proteoform families from a complex proteome sample, which represents one of the largest top-down proteomic datasets so far. In this review, we focus on the recent progress in CZE-MS-based top-down proteomics and provide our perspectives about its future directions.
Collapse
Affiliation(s)
- Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhichang Yang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Elijah N. McCool
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Rachele A. Lubeckyj
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
53
|
Fert-Bober J, Murray CI, Parker SJ, Van Eyk JE. Precision Profiling of the Cardiovascular Post-Translationally Modified Proteome: Where There Is a Will, There Is a Way. Circ Res 2019; 122:1221-1237. [PMID: 29700069 DOI: 10.1161/circresaha.118.310966] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is an exponential increase in biological complexity as initial gene transcripts are spliced, translated into amino acid sequence, and post-translationally modified. Each protein can exist as multiple chemical or sequence-specific proteoforms, and each has the potential to be a critical mediator of a physiological or pathophysiological signaling cascade. Here, we provide an overview of how different proteoforms come about in biological systems and how they are most commonly measured using mass spectrometry-based proteomics and bioinformatics. Our goal is to present this information at a level accessible to every scientist interested in mass spectrometry and its application to proteome profiling. We will specifically discuss recent data linking various protein post-translational modifications to cardiovascular disease and conclude with a discussion for enablement and democratization of proteomics across the cardiovascular and scientific community. The aim is to inform and inspire the readership to explore a larger breadth of proteoform, particularity post-translational modifications, related to their particular areas of expertise in cardiovascular physiology.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Christopher I Murray
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Sarah J Parker
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA.
| | - Jennifer E Van Eyk
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
54
|
Chen B, Lin Z, Zhu Y, Jin Y, Larson E, Xu Q, Fu C, Zhang Z, Zhang Q, Pritts WA, Ge Y. Middle-Down Multi-Attribute Analysis of Antibody-Drug Conjugates with Electron Transfer Dissociation. Anal Chem 2019; 91:11661-11669. [PMID: 31442030 DOI: 10.1021/acs.analchem.9b02194] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antibody-drug conjugates (ADCs) are designed to combine the target specificity of monoclonal antibodies and potent cytotoxin drugs to achieve better therapeutic outcomes. Comprehensive evaluation of the quality attributes of ADCs is critical for drug development but remains challenging due to heterogeneity of the construct. Currently, peptide mapping with reversed-phase liquid chromatography (RPLC) coupled to mass spectrometry (MS) is the predominant approach to characterize ADCs. However, it is suboptimal for sequence characterization and quantification of ADCs because it lacks a comprehensive view of coexisting variants and suffers from varying ionization effects of drug-conjugated peptides compared to unconjugated counterparts. Here, we present the first middle-down RPLC-MS analysis of both cysteine (Adcetris; BV) and lysine (Kadcyla; T-DM1) conjugated ADCs at the subunit level (∼25 kDa) with electron transfer dissociation (ETD). We successfully achieved high-resolution separation of subunit isomers arising from different drug conjugation and subsequently localized the conjugation sites. Moreover, we obtained a comprehensive overview of the microvariants associated with each subunits and characterized them such as oxidized variants with different sites. Furthermore, we observed relatively high levels of conjugation near complementarity-determining regions (CDRs) from the heavy chain but no drug conjugation near CDRs of light chain (Lc) from lysine conjugated T-DM1. Based on the extracted ion chromatograms, we accurately measured average drug to antibody ratio (DAR) values and relative occupancy of drug-conjugated subunits. Overall, the middle-down MS approach enables the evaluation of multiple quality attributes including DAR, positional isomers, conjugation sites, occupancy, and microvariants, which potentially opens up a new avenue to characterize ADCs.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Yutong Jin
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Eli Larson
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Qingge Xu
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Cexiong Fu
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Zhaorui Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Qunying Zhang
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Wayne A Pritts
- Process Analytical , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program, School of Medicine and Public Health , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
55
|
Elpa DP, Prabhu GRD, Wu SP, Tay KS, Urban PL. Automation of mass spectrometric detection of analytes and related workflows: A review. Talanta 2019; 208:120304. [PMID: 31816721 DOI: 10.1016/j.talanta.2019.120304] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
The developments in mass spectrometry (MS) in the past few decades reveal the power and versatility of this technology. MS methods are utilized in routine analyses as well as research activities involving a broad range of analytes (elements and molecules) and countless matrices. However, manual MS analysis is gradually becoming a thing of the past. In this article, the available MS automation strategies are critically evaluated. Automation of analytical workflows culminating with MS detection encompasses involvement of automated operations in any of the steps related to sample handling/treatment before MS detection, sample introduction, MS data acquisition, and MS data processing. Automated MS workflows help to overcome the intrinsic limitations of MS methodology regarding reproducibility, throughput, and the expertise required to operate MS instruments. Such workflows often comprise automated off-line and on-line steps such as sampling, extraction, derivatization, and separation. The most common instrumental tools include autosamplers, multi-axis robots, flow injection systems, and lab-on-a-chip. Prototyping customized automated MS systems is a way to introduce non-standard automated features to MS workflows. The review highlights the enabling role of automated MS procedures in various sectors of academic research and industry. Examples include applications of automated MS workflows in bioscience, environmental studies, and exploration of the outer space.
Collapse
Affiliation(s)
- Decibel P Elpa
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan; Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, 1001 University Rd., Hsinchu, 300, Taiwan.
| | - Kheng Soo Tay
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan.
| |
Collapse
|
56
|
Abstract
The cardiac troponin complex, composed of three regulatory proteins (cTnI, cTnT, TnC), functions as the critical regulator of cardiac muscle contraction and relaxation. Myofilament protein-protein interactions are regulated by post-translational modifications (PTMs) to the protein constituents of this complex. Dysregulation of troponin PTMs, particularly phosphorylation, results in altered cardiac contractility. Altered PTMs and isoforms have been increasingly recognized as the molecular mechanisms underlying heart diseases. Therefore, it is essential to comprehensively analyze cardiac troponin proteoforms that arise from PTMs, alternative splicing, and sequence variations. In this chapter, we described two detailed protocols for the enrichment and purification of endogenous cardiac troponin proteoforms from cardiac tissue. Subsequently, mass spectrometry (MS)-based top-down proteomics utilizing online liquid chromatography (LC)/quadrupole time-of-flight (Q-TOF) MS for separation, profiling, and quantification of the troponins was demonstrated. Characterization of troponin amino acid sequence and the localization of PTMs were shown using Fourier-transform ion cyclotron resonance (FT-ICR) MS with electron capture dissociation (ECD) and collisionally activated dissociation (CAD). Furthermore, we described the use of MASH software, a comprehensive and free software package developed in our lab, for top-down proteomics data analysis. The methods we described can be applied for the analysis of troponin proteoforms in cardiac tissues, from animal models to human clinical samples, for heart disease.
Collapse
|
57
|
Schaffer LV, Tucholski T, Shortreed MR, Ge Y, Smith LM. Intact-Mass Analysis Facilitating the Identification of Large Human Heart Proteoforms. Anal Chem 2019; 91:10937-10942. [PMID: 31393705 DOI: 10.1021/acs.analchem.9b02343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteoforms, the primary effectors of biological processes, are the different forms of proteins that arise from molecular processing events such as alternative splicing and post-translational modifications. Heart diseases exhibit changes in proteoform levels, motivating the development of a deeper understanding of the heart proteoform landscape. Our recently developed two-dimensional top-down proteomics platform coupling serial size exclusion chromatography (sSEC) to reversed-phase chromatography (RPC) expanded coverage of the human heart proteome and allowed observation of high-molecular weight proteoforms. However, most of these observed proteoforms were not identified due to the difficulty in obtaining quality tandem mass spectrometry (MS2) fragmentation data for large proteoforms from complex biological mixtures on a chromatographic time scale. Herein, we sought to identify human heart proteoforms in this data set using an enhanced version of Proteoform Suite, which identifies proteoforms by intact mass alone. Specifically, we added a new feature to Proteoform Suite to determine candidate identifications for isotopically unresolved proteoforms larger than 50 kDa, enabling subsequent MS2 identification of important high-molecular weight human heart proteoforms such as lamin A (72 kDa) and trifunctional enzyme subunit α (79 kDa). With this new workflow for large proteoform identification, endogenous human cardiac myosin binding protein C (140 kDa) was identified for the first time. This study demonstrates the integration of our sSEC-RPC-MS proteomics platform with intact-mass analysis through Proteoform Suite to create a catalog of human heart proteoforms and facilitate the identification of large proteoforms in complex systems.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Trisha Tucholski
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Michael R Shortreed
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Lloyd M Smith
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
58
|
Roberts DS, Chen B, Tiambeng TN, Wu Z, Ge Y, Jin S. Reproducible Large-Scale Synthesis of Surface Silanized Nanoparticles as an Enabling Nanoproteomics Platform: Enrichment of the Human Heart Phosphoproteome. NANO RESEARCH 2019; 12:1473-1481. [PMID: 31341559 PMCID: PMC6656398 DOI: 10.1007/s12274-019-2418-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A reproducible synthetic strategy was developed for facile large-scale (200 mg) synthesis of surface silanized magnetite (Fe3O4) nanoparticles (NPs) for biological applications. After further coupling a phosphate-specific affinity ligand, these functionalized magnetic NPs were used for the highly specific enrichment of phosphoproteins from a complex biological mixture. Moreover, correlating the surface silane density of the silanized magnetite NPs to their resultant enrichment performance established a simple and reliable quality assurance control to ensure reproducible synthesis of these NPs routinely in large scale and optimal phosphoprotein enrichment performance from batch-to-batch. Furthermore, by successful exploitation of a top-down phosphoproteomics strategy that integrates this high throughput nanoproteomics platform with online liquid chromatography (LC) and tandem mass spectrometry (MS/MS), we were able to specifically enrich, identify, and characterize endogenous phosphoproteins from highly complex human cardiac tissue homogenate. This nanoproteomics platform possesses a unique combination of scalability, specificity, reproducibility, and efficiency for the capture and enrichment of low abundance proteins in general, thereby enabling downstream proteomics applications.
Collapse
Affiliation(s)
- David S. Roberts
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Timothy N. Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Wisconsin 53706, USA
| |
Collapse
|
59
|
Schaffer LV, Millikin RJ, Miller RM, Anderson LC, Fellers RT, Ge Y, Kelleher NL, LeDuc RD, Liu X, Payne SH, Sun L, Thomas PM, Tucholski T, Wang Z, Wu S, Wu Z, Yu D, Shortreed MR, Smith LM. Identification and Quantification of Proteoforms by Mass Spectrometry. Proteomics 2019; 19:e1800361. [PMID: 31050378 PMCID: PMC6602557 DOI: 10.1002/pmic.201800361] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/07/2019] [Indexed: 12/29/2022]
Abstract
A proteoform is a defined form of a protein derived from a given gene with a specific amino acid sequence and localized post-translational modifications. In top-down proteomic analyses, proteoforms are identified and quantified through mass spectrometric analysis of intact proteins. Recent technological developments have enabled comprehensive proteoform analyses in complex samples, and an increasing number of laboratories are adopting top-down proteomic workflows. In this review, some recent advances are outlined and current challenges and future directions for the field are discussed.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert J Millikin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Ryan T Fellers
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Cell and Regenerative Biology and Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry and Molecular Biosciences and the Division of Hematology and Oncology, Northwestern University, Evanston, IL, 60208, USA
| | - Richard D LeDuc
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT, 84602
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
60
|
Toby TK, Fornelli L, Srzentić K, DeHart CJ, Levitsky J, Friedewald J, Kelleher NL. A comprehensive pipeline for translational top-down proteomics from a single blood draw. Nat Protoc 2019; 14:119-152. [PMID: 30518910 DOI: 10.1038/s41596-018-0085-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Top-down proteomics (TDP) by mass spectrometry (MS) is a technique by which intact proteins are analyzed. It has become increasingly popDesalting and concentrating GELFrEEular in translational research because of the value of characterizing distinct proteoforms of intact proteins. Compared to bottom-up proteomics (BUP) strategies, which measure digested peptide mixtures, TDP provides highly specific molecular information that avoids the bioinformatic challenge of protein inference. However, the technique has been difficult to implement widely because of inherent limitations of existing sample preparation methods and instrumentation. Recent improvements in proteoform pre-fractionation and the availability of high-resolution benchtop mass spectrometers have made it possible to use high-throughput TDP for the analysis of complex clinical samples. Here, we provide a comprehensive protocol for analysis of a common sample type in translational research: human peripheral blood mononuclear cells (PBMCs). The pipeline comprises multiple workflows that can be treated as modular by the reader and used for various applications. First, sample collection and cell preservation are described for two clinical biorepository storage schemes. Cell lysis and proteoform pre-fractionation by gel-eluted liquid fractionation entrapment electrophoresis are then described. Importantly, instrument setup and liquid chromatography-tandem MS are described for TDP analyses, which rely on high-resolution Fourier-transform MS. Finally, data processing and analysis are described using two different, application-dependent software tools: ProSight Lite for targeted analyses of one or a few proteoforms and TDPortal for high-throughput TDP in discovery mode. For a single sample, the minimum completion time of the entire experiment is 72 h.
Collapse
Affiliation(s)
- Timothy K Toby
- Departments of Chemistry and of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Luca Fornelli
- Departments of Chemistry and of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Kristina Srzentić
- Departments of Chemistry and of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Caroline J DeHart
- National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Josh Levitsky
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John Friedewald
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Neil L Kelleher
- Departments of Chemistry and of Molecular Biosciences, Northwestern University, Evanston, IL, USA. .,National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
61
|
Brown KA, Chen B, Guardado-Alvarez TM, Lin Z, Hwang L, Ayaz-Guner S, Jin S, Ge Y. A photocleavable surfactant for top-down proteomics. Nat Methods 2019; 16:417-420. [PMID: 30988469 PMCID: PMC6532422 DOI: 10.1038/s41592-019-0391-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 03/13/2019] [Indexed: 01/21/2023]
Abstract
We report the identification of a photo-cleavable anionic surfactant, 4-hexylphenylazosulfonate (Azo) that can be rapidly degraded upon UV irradiation, for top-down proteomics. Azo can effectively solubilize proteins with performance comparable to SDS and is mass spectrometry (MS)-compatible. Importantly, Azo-aided top-down proteomics enables the solubilization of membrane proteins for comprehensive characterization of post-translational modifications. Moreover, Azo is simple to synthesize and can be used as a general SDS replacement in SDS-PAGE.
Collapse
Affiliation(s)
- Kyle A Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ziqing Lin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Leekyoung Hwang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Serife Ayaz-Guner
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA. .,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
62
|
Lin Z, Wei L, Cai W, Zhu Y, Tucholski T, Mitchell SD, Guo W, Ford SP, Diffee GM, Ge Y. Simultaneous Quantification of Protein Expression and Modifications by Top-down Targeted Proteomics: A Case of the Sarcomeric Subproteome. Mol Cell Proteomics 2019; 18:594-605. [PMID: 30591534 PMCID: PMC6398208 DOI: 10.1074/mcp.tir118.001086] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/08/2018] [Indexed: 12/14/2022] Open
Abstract
Determining changes in protein expression and post-translational modifications (PTMs) is crucial for elucidating cellular signal transduction and disease mechanisms. Conventional antibody-based approaches have inherent problems such as the limited availability of high-quality antibodies and batch-to-batch variation. Top-down mass spectrometry (MS)-based proteomics has emerged as the most powerful method for characterization and quantification of protein modifications. Nevertheless, robust methods to simultaneously determine changes in protein expression and PTMs remain lacking. Herein, we have developed a straightforward and robust top-down liquid chromatography (LC)/MS-based targeted proteomics platform for simultaneous quantification of protein expression and PTMs with high throughput and high reproducibility. We employed this method to analyze the sarcomeric subproteome from various muscle types of different species, which successfully revealed skeletal muscle heterogeneity and cardiac developmental changes in sarcomeric protein isoform expression and PTMs. As demonstrated, this targeted top-down proteomics platform offers an excellent 'antibody-independent' alternative for the accurate quantification of sarcomeric protein expression and PTMs concurrently in complex mixtures, which is generally applicable to different species and various tissue types.
Collapse
Affiliation(s)
- Ziqing Lin
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Liming Wei
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ¶Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Wenxuan Cai
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Yanlong Zhu
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Trisha Tucholski
- **Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Stanford D Mitchell
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Wei Guo
- ‡‡Department of Animal Science, Fetal Programming Center, University of Wyoming, Laramie, Wyoming 82071
| | - Stephen P Ford
- ‡‡Department of Animal Science, Fetal Programming Center, University of Wyoming, Laramie, Wyoming 82071
| | - Gary M Diffee
- §§Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705;
- §Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
- ‖Molecular & Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705
- **Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
63
|
Tucholski T, Knott SJ, Chen B, Pistono P, Lin Z, Ge Y. A Top-Down Proteomics Platform Coupling Serial Size Exclusion Chromatography and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 2019; 91:3835-3844. [PMID: 30758949 DOI: 10.1021/acs.analchem.8b04082] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mass spectrometry (MS) based top-down proteomics provides rich information about proteoforms arising from combinatorial amino acid sequence variations and post-translational modifications (PTMs). Fourier transform ion cyclotron resonance (FT-ICR) MS affords ultrahigh resolving power and provides high-accuracy mass measurements, presenting a powerful tool for top-down MS characterization of proteoforms. However, the detection and characterization of large proteins from complex mixtures remain challenging due to the exponential decrease in S: N with increasing molecular weight (MW) and coeluting low-MW proteins; thus, size-based fractionation of complex protein mixtures prior to MS analysis is necessary. Here, we directly combine MS-compatible serial size exclusion chromatography (sSEC) fractionation with 12 T FT-ICR MS for targeted top-down characterization of proteins from complex mixtures extracted from human and swine heart tissue. Benefiting from the ultrahigh resolving power of FT-ICR, we isotopically resolved 31 distinct proteoforms (30-50 kDa) simultaneously in a single mass spectrum within a 100 m/ z window. Notably, within a 5 m/ z window, we obtained baseline isotopic resolution for 6 distinct large proteoforms (30-50 kDa). The ultrahigh resolving power of FT-ICR MS combined with sSEC fractionation enabled targeted top-down analysis of large proteoforms (>30 kDa) from the human heart proteome without extensive chromatographic separation or protein purification. Further separation of proteoforms inside the mass spectrometer (in-MS) allowed for isolation of individual proteoforms and targeted electron capture dissociation (ECD), yielding high sequence coverage. sSEC/FT-ICR ECD facilitated the identification and sequence characterization of important metabolic enzymes. This platform, which facilitates deep interrogation of proteoform primary structure, is highly tunable, allows for adjustment of MS and MS/MS parameters in real time, and can be utilized for a variety of complex protein mixtures.
Collapse
Affiliation(s)
- Trisha Tucholski
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Samantha J Knott
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Bifan Chen
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Paige Pistono
- Department of Biochemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , 1111 Highland Avenue , WIMR II 8551, Madison , Wisconsin 53705 , United States
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Human Proteomics Program , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , 1111 Highland Avenue , WIMR II 8551, Madison , Wisconsin 53705 , United States
| |
Collapse
|
64
|
Łącki MK, Lermyte F, Miasojedow B, Startek MP, Sobott F, Valkenborg D, Gambin A. masstodon: A Tool for Assigning Peaks and Modeling Electron Transfer Reactions in Top-Down Mass Spectrometry. Anal Chem 2019; 91:1801-1807. [DOI: 10.1021/acs.analchem.8b01479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mateusz K. Łącki
- University Medical Center, Johannes Gutenberg University, Mainz D-55131, Germany
| | - Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Błażej Miasojedow
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Michał P. Startek
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp 2020, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp 2000, Belgium
- Flemish Institute for Technological Research (VITO), Mol 2400, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt 3500, Belgium
| | - Anna Gambin
- Department of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
65
|
Proteomics: Tools of the Trade. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:1-22. [DOI: 10.1007/978-3-030-12298-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
66
|
Gomes F, Lemma B, Abeykoon D, Chen D, Wang Y, Fushman D, Fenselau C. Top-down analysis of novel synthetic branched proteins. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:19-25. [PMID: 30347468 PMCID: PMC7236025 DOI: 10.1002/jms.4303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 05/21/2023]
Abstract
A strategy for top-down analysis of branched proteins has been reported earlier, which relies on electron transfer dissociation assisted by collisional activation, and software designed for graphic interpretation of tandem mass spectra and adapted for branched proteins. In the present study, the strategy is applied to identify unknown and novel products of reactions in which rationally mutated proteoforms of Rub1 are used to probe the selectivity of E1 and E2 enzymes normally active in ubiquitination. To test and demonstrate this application, components and attachment sites of three branched dimers are deduced and the mutations are confirmed.
Collapse
Affiliation(s)
- Fabio Gomes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Betsegaw Lemma
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Dulith Abeykoon
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Dapeng Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Yan Wang
- Proteomic Core Facility, University of Maryland, College Park, MD 20742, USA
| | - David Fushman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
67
|
Reid DJ, Diesing JM, Miller MA, Perry SM, Wales JA, Montfort WR, Marty MT. MetaUniDec: High-Throughput Deconvolution of Native Mass Spectra. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:118-127. [PMID: 29667162 PMCID: PMC6192864 DOI: 10.1007/s13361-018-1951-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/23/2018] [Accepted: 03/10/2018] [Indexed: 05/11/2023]
Abstract
The expansion of native mass spectrometry (MS) methods for both academic and industrial applications has created a substantial need for analysis of large native MS datasets. Existing software tools are poorly suited for high-throughput deconvolution of native electrospray mass spectra from intact proteins and protein complexes. The UniDec Bayesian deconvolution algorithm is uniquely well suited for high-throughput analysis due to its speed and robustness but was previously tailored towards individual spectra. Here, we optimized UniDec for deconvolution, analysis, and visualization of large data sets. This new module, MetaUniDec, centers around a hierarchical data format 5 (HDF5) format for storing datasets that significantly improves speed, portability, and file size. It also includes code optimizations to improve speed and a new graphical user interface for visualization, interaction, and analysis of data. To demonstrate the utility of MetaUniDec, we applied the software to analyze automated collision voltage ramps with a small bacterial heme protein and large lipoprotein nanodiscs. Upon increasing collisional activation, bacterial heme-nitric oxide/oxygen binding (H-NOX) protein shows a discrete loss of bound heme, and nanodiscs show a continuous loss of lipids and charge. By using MetaUniDec to track changes in peak area or mass as a function of collision voltage, we explore the energetic profile of collisional activation in an ultra-high mass range Orbitrap mass spectrometer. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Deseree J Reid
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jessica M Diesing
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Matthew A Miller
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Scott M Perry
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Jessica A Wales
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E University Blvd, Tucson, AZ, 85721, USA.
| |
Collapse
|
68
|
Ben-Nissan G, Vimer S, Tarnavsky M, Sharon M. Structural mass spectrometry approaches to study the 20S proteasome. Methods Enzymol 2019; 619:179-223. [DOI: 10.1016/bs.mie.2018.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
69
|
Abstract
The mechanism underlying many biological phenotypes remains unknown despite the increasing availability of whole genome and transcriptome sequencing. Direct measurement of changes in protein expression is an attractive alternative and has the potential to reveal novel processes. Mass spectrometry has become the standard method for proteomics, allowing both the confident identification and quantification of thousands of proteins from biological samples. In this review, mass spectrometry-based proteomic methods and their applications are described.
Collapse
Affiliation(s)
- J Robert O'Neill
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK. Robert.o'.,Department of Clinical Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK. Robert.o'
| |
Collapse
|
70
|
Jin Y, Lin Z, Xu Q, Fu C, Zhang Z, Zhang Q, Pritts WA, Ge Y. Comprehensive characterization of monoclonal antibody by Fourier transform ion cyclotron resonance mass spectrometry. MAbs 2019; 11:106-115. [PMID: 30230956 PMCID: PMC6343775 DOI: 10.1080/19420862.2018.1525253] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
Abstract
The pharmaceutical industry's interest in monoclonal antibodies (mAbs) and their derivatives has spurred rapid growth in the commercial and clinical pipeline of these effective therapeutics. The complex micro-heterogeneity of mAbs requires in-depth structural characterization for critical quality attribute assessment and quality assurance. Currently, mass spectrometry (MS)-based methods are the gold standard in mAb analysis, primarily with a bottom-up approach in which immunoglobulins G (IgGs) and their variants are digested into peptides to facilitate the analysis. Comprehensive characterization of IgGs and the micro-variants remains challenging at the proteoform level. Here, we used both top-down and middle-down MS for in-depth characterization of a human IgG1 using ultra-high resolution Fourier transform MS. Our top-down MS analysis provided characteristic fingerprinting of the IgG1 proteoforms at unit mass resolution. Subsequently, the tandem MS analysis of intact IgG1 enabled the detailed sequence characterization of a representative IgG1 proteoform at the intact protein level. Moreover, we used the middle-down MS analysis to characterize the primary glycoforms and micro-variants. Micro-variants such as low-abundance glycoforms, C-terminal glycine clipping, and C-terminal proline amidation were characterized with bond cleavages higher than 44% at the subunit level. By combining top-down and middle-down analysis, 76% of bond cleavage (509/666 amino acid bond cleaved) of IgG1 was achieved. Taken together, we demonstrated the combination of top-down and middle-down MS as powerful tools in the comprehensive characterization of mAbs.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziqing Lin
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qingge Xu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cexiong Fu
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Zhaorui Zhang
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Qunying Zhang
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Wayne A. Pritts
- Process Analytical, AbbVie Inc, North Chicago, Illinois, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
71
|
Pandeswari PB, Sabareesh V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 2018; 9:313-344. [PMID: 35521579 PMCID: PMC9059502 DOI: 10.1039/c8ra07200k] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Owing to rapid growth in the elucidation of genome sequences of various organisms, deducing proteome sequences has become imperative, in order to have an improved understanding of biological processes. Since the traditional Edman method was unsuitable for high-throughput sequencing and also for N-terminus modified proteins, mass spectrometry (MS) based methods, mainly based on soft ionization modes: electrospray ionization and matrix-assisted laser desorption/ionization, began to gain significance. MS based methods were adaptable for high-throughput studies and applicable for sequencing N-terminus blocked proteins/peptides too. Consequently, over the last decade a new discipline called 'proteomics' has emerged, which encompasses the attributes necessary for high-throughput identification of proteins. 'Proteomics' may also be regarded as an offshoot of the classic field, 'biochemistry'. Many protein sequencing and proteomic investigations were successfully accomplished through MS dependent sequence elucidation of 'short proteolytic peptides (typically: 7-20 amino acid residues), which is called the 'shotgun' or 'bottom-up (BU)' approach. While the BU approach continues as a workhorse for proteomics/protein sequencing, attempts to sequence intact proteins without proteolysis, called the 'top-down (TD)' approach started, due to ambiguities in the BU approach, e.g., protein inference problem, identification of proteoforms and the discovery of posttranslational modifications (PTMs). The high-throughput TD approach (TD proteomics) is yet in its infancy. Nevertheless, TD characterization of purified intact proteins has been useful for detecting PTMs. With the hope to overcome the pitfalls of BU and TD strategies, another concept called the 'middle-down (MD)' approach was put forward. Similar to BU, the MD approach also involves proteolysis, but in a restricted manner, to produce 'longer' proteolytic peptides than the ones usually obtained in BU studies, thereby providing better sequence coverage. In this regard, special proteases (OmpT, Sap9, IdeS) have been used, which can cleave proteins to produce longer proteolytic peptides. By reviewing ample evidences currently existing in the literature that is predominantly on PTM characterization of histones and antibodies, herein we highlight salient features of the MD approach. Consequently, we are inclined to claim that the MD concept might have widespread applications in future for various research areas, such as clinical, biopharmaceuticals (including PTM analysis) and even for general/routine characterization of proteins including therapeutic proteins, but not just limited to analysis of histones or antibodies.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Varatharajan Sabareesh
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
72
|
Shliaha PV, Gibb S, Gorshkov V, Jespersen MS, Andersen GR, Bailey D, Schwartz J, Eliuk S, Schwämmle V, Jensen ON. Maximizing Sequence Coverage in Top-Down Proteomics By Automated Multimodal Gas-Phase Protein Fragmentation. Anal Chem 2018; 90:12519-12526. [DOI: 10.1021/acs.analchem.8b02344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pavel V. Shliaha
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Sebastian Gibb
- Department of Anesthesiology and Intensive Care, University Medicine Greifswald, Greifswald 17489, Germany
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Malena Schack Jespersen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gregers R. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Derek Bailey
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Jacob Schwartz
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Shannon Eliuk
- Thermo Fisher Scientific, San Jose, California 95134, United States
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Ole N. Jensen
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
73
|
Srzentić K, Nagornov KO, Fornelli L, Lobas AA, Ayoub D, Kozhinov AN, Gasilova N, Menin L, Beck A, Gorshkov MV, Aizikov K, Tsybin YO. Multiplexed Middle-Down Mass Spectrometry as a Method for Revealing Light and Heavy Chain Connectivity in a Monoclonal Antibody. Anal Chem 2018; 90:12527-12535. [DOI: 10.1021/acs.analchem.8b02398] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Kristina Srzentić
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Luca Fornelli
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Anna A. Lobas
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Daniel Ayoub
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Natalia Gasilova
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laure Menin
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alain Beck
- Centre d’Immunologie Pierre Fabre, 74160 St. Julien-en-Genevois, France
| | - Mikhail V. Gorshkov
- Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
- Moscow Institute of Physics and Technology State University, 141707 Dolgoprudny, Moscow Region, Russia
| | | | - Yury O. Tsybin
- Spectroswiss, EPFL Innovation Park, 1015 Lausanne, Switzerland
| |
Collapse
|
74
|
Cai W, Hite ZL, Lyu B, Wu Z, Lin Z, Gregorich ZR, Messer AE, McIlwain SJ, Marston SB, Kohmoto T, Ge Y. Temperature-sensitive sarcomeric protein post-translational modifications revealed by top-down proteomics. J Mol Cell Cardiol 2018; 122:11-22. [PMID: 30048711 DOI: 10.1016/j.yjmcc.2018.07.247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
Abstract
Despite advancements in symptom management for heart failure (HF), this devastating clinical syndrome remains the leading cause of death in the developed world. Studies using animal models have greatly advanced our understanding of the molecular mechanisms underlying HF; however, differences in cardiac physiology and the manifestation of HF between animals, particularly rodents, and humans necessitates the direct interrogation of human heart tissue samples. Nevertheless, an ever-present concern when examining human heart tissue samples is the potential for artefactual changes related to temperature changes during tissue shipment or sample processing. Herein, we examined the effects of temperature on the post-translational modifications (PTMs) of sarcomeric proteins, the proteins responsible for muscle contraction, under conditions mimicking those that might occur during tissue shipment or sample processing. Using a powerful top-down proteomics method, we found that sarcomeric protein PTMs were differentially affected by temperature. Specifically, cardiac troponin I and enigma homolog isoform 2 showed robust increases in phosphorylation when tissue was incubated at either 4 °C or 22 °C. The observed increase is likely due to increased cyclic AMP levels and activation of protein kinase A in the tissue. On the contrary, cardiac troponin T and myosin regulatory light chain phosphorylation decreased when tissue was incubated at 4 °C or 22 °C. Furthermore, significant protein degradation was also observed after incubation at 4 °C or 22 °C. Overall, these results indicate that temperature exerts various effects on sarcomeric protein PTMs and careful tissue handling is critical for studies involving human heart samples. Moreover, these findings highlight the power of top-down proteomics for examining the integrity of cardiac tissue samples.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary L Hite
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Beini Lyu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Takushi Kohmoto
- Department of Surgery, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
75
|
Calvete JJ. Snake venomics – from low-resolution toxin-pattern recognition to toxin-resolved venom proteomes with absolute quantification. Expert Rev Proteomics 2018; 15:555-568. [DOI: 10.1080/14789450.2018.1500904] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan J. Calvete
- Evolutionary and Translational Venomics Laboratory, CSIC, Valencia, Spain
| |
Collapse
|
76
|
Lin Z, Guo F, Gregorich ZR, Sun R, Zhang H, Hu Y, Shanmuganayagam D, Ge Y. Comprehensive Characterization of Swine Cardiac Troponin T Proteoforms by Top-Down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1284-1294. [PMID: 29633223 PMCID: PMC6109964 DOI: 10.1007/s13361-018-1925-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 05/12/2023]
Abstract
Cardiac troponin T (cTnT) regulates the Ca2+-mediated interaction between myosin thick filaments and actin thin filaments during cardiac contraction and relaxation. cTnT is released into the blood following injury, and increased serum levels of the protein are used clinically as a biomarker for myocardial infarction. Moreover, mutations in cTnT are causative in a number of familial cardiomyopathies. With the increasing use of large animal (swine) model to recapitulate human diseases, it is essential to characterize species-dependent protein sequence variants, alternative RNA splicing, and post-translational modifications (PTMs), but challenges remain due to the incomplete database and lack of validation of the predicted splicing isoforms. Herein, we integrated top-down mass spectrometry (MS) with online liquid chromatography (LC) and immunoaffinity purification to comprehensively characterize miniature swine cTnT proteoforms, including those arising from alternative RNA splicing and PTMs. A total of seven alternative splicing isoforms of cTnT were identified by LC/MS from swine left ventricular tissue, with each isoform containing un-phosphorylated and mono-phosphorylated proteoforms. The phosphorylation site was localized to Ser1 for the mono-phosphorylated proteoforms of cTnT1, 3, 4, and 6 by online MS/MS combining collisionally activated dissociation (CAD) and electron transfer dissociation (ETD). Offline MS/MS on Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer with CAD and electron capture dissociation (ECD) was then utilized to achieve deep sequencing of mono-phosphorylated cTnT1 (35.2 kDa) with a high sequence coverage of 87%. Taken together, this study demonstrated the unique advantage of top-down MS in the comprehensive characterization of protein alternative splicing isoforms together with PTMs. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Fang Guo
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Cardiology, Shandong Provincial Hospital, Jinan, 250021, Shandong, People's Republic of China
| | - Zachery R Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ruixiang Sun
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Han Zhang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yang Hu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
77
|
Chen D, Gomes F, Abeykoon D, Lemma B, Wang Y, Fushman D, Fenselau C. Top-Down Analysis of Branched Proteins Using Mass Spectrometry. Anal Chem 2018; 90:4032-4038. [PMID: 29513006 PMCID: PMC6146919 DOI: 10.1021/acs.analchem.7b05234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-translational modifications by the covalent attachment of Rub1 (NEDD8), ubiquitin, SUMO, and other small signaling proteins have profound impacts on the functions and fates of cellular proteins. Investigations of the relationship of these bioactive structures and their functions are limited by analytical methods that are scarce and tedious. A novel strategy is reported here for the analysis of branched proteins by top-down mass spectrometry and illustrated by application to four recombinant proteins and one synthetic peptide modified by covalent bonds with ubiquitin or Rub1. The approach allows an analyte to be recognized as a branched protein; the participating proteins to be identified; the site of conjugation to be defined; and other chemical, native, and recombinant modifications to be characterized. In addition to the high resolution and high accuracy provided by the mass spectrometer, success is based on sample fragmentation by electron-transfer dissociation assisted by collisional activation and on software designed for graphic interpretation and adapted for branched proteins. The strategy allows for structures of unknown, two-component branched proteins to be elucidated directly the first time and can potentially be extended to more complex systems.
Collapse
Affiliation(s)
- Dapeng Chen
- University of Maryland , College Park , Maryland 20742 , United States
| | - Fabio Gomes
- University of Maryland , College Park , Maryland 20742 , United States
| | - Dulith Abeykoon
- University of Maryland , College Park , Maryland 20742 , United States
| | - Betsegaw Lemma
- University of Maryland , College Park , Maryland 20742 , United States
| | - Yan Wang
- University of Maryland , College Park , Maryland 20742 , United States
| | - David Fushman
- University of Maryland , College Park , Maryland 20742 , United States
| | | |
Collapse
|
78
|
Misra BB. Updates on resources, software tools, and databases for plant proteomics in 2016-2017. Electrophoresis 2018; 39:1543-1557. [PMID: 29420853 DOI: 10.1002/elps.201700401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 11/05/2022]
Abstract
Proteomics data processing, annotation, and analysis can often lead to major hurdles in large-scale high-throughput bottom-up proteomics experiments. Given the recent rise in protein-based big datasets being generated, efforts in in silico tool development occurrences have had an unprecedented increase; so much so, that it has become increasingly difficult to keep track of all the advances in a particular academic year. However, these tools benefit the plant proteomics community in circumventing critical issues in data analysis and visualization, as these continually developing open-source and community-developed tools hold potential in future research efforts. This review will aim to introduce and summarize more than 50 software tools, databases, and resources developed and published during 2016-2017 under the following categories: tools for data pre-processing and analysis, statistical analysis tools, peptide identification tools, databases and spectral libraries, and data visualization and interpretation tools. Intended for a well-informed proteomics community, finally, efforts in data archiving and validation datasets for the community will be discussed as well. Additionally, the author delineates the current and most commonly used proteomics tools in order to introduce novice readers to this -omics discovery platform.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Department of Internal Medicine, Section of Molecular Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
79
|
Smelter DF, de Lange WJ, Cai W, Ge Y, Ralphe JC. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability. Am J Physiol Heart Circ Physiol 2018; 314:H1179-H1191. [PMID: 29451820 DOI: 10.1152/ajpheart.00686.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a functional sarcomeric protein that regulates contractility in response to contractile demand, and many mutations in cMyBP-C lead to hypertrophic cardiomyopathy (HCM). To gain insight into the effects of disease-causing cMyBP-C missense mutations on contractile function, we expressed the pathogenic W792R mutation (substitution of a highly conserved tryptophan residue by an arginine residue at position 792) in mouse cardiomyocytes lacking endogenous cMyBP-C and studied the functional effects using three-dimensional engineered cardiac tissue constructs (mECTs). Based on complete conservation of tryptophan at this location in fibronectin type II (FnIII) domains, we hypothesized that the W792R mutation affects folding of the C6 FnIII domain, destabilizing the mutant protein. Adenoviral transduction of wild-type (WT) and W792R cDNA achieved equivalent mRNA transcript abundance, but not equivalent protein levels, with W792R compared with WT controls. mECTs expressing W792R demonstrated abnormal contractile kinetics compared with WT mECTs that were nearly identical to cMyBP-C-deficient mECTs. We studied whether common pathways of protein degradation were responsible for the rapid degradation of W792R cMyBP-C. Inhibition of both ubiquitin-proteasome and lysosomal degradation pathways failed to increase full-length mutant protein abundance to WT equivalence, suggesting rapid cytosolic degradation. Bacterial expression of WT and W792R protein fragments demonstrated decreased mutant stability with altered thermal denaturation and increased susceptibility to trypsin digestion. These data suggest that the W792R mutation destabilizes the C6 FnIII domain of cMyBP-C, resulting in decreased full-length protein expression. This study highlights the vulnerability of FnIII-like domains to mutations that alter domain stability and further indicates that missense mutations in cMyBP-C can cause disease through a mechanism of haploinsufficiency. NEW & NOTEWORTHY This study is one of the first to describe a disease mechanism for a missense mutation in cardiac myosin-binding protein C linked to hypertrophic cardiomyopathy. The mutation decreases stability of the fibronectin type III domain and results in substantially reduced mutant protein expression dissonant to transcript abundance.
Collapse
Affiliation(s)
- Dan F Smelter
- Department of Pediatrics, University of Wisconsin-Madison , Madison, Wisconsin
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin-Madison , Madison, Wisconsin
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin.,Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison , Madison, Wisconsin
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin.,Human Proteomics Program, University of Wisconsin-Madison , Madison, Wisconsin.,Department of Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
80
|
Kou Q, Wu S, Liu X. Systematic Evaluation of Protein Sequence Filtering Algorithms for Proteoform Identification Using Top-Down Mass Spectrometry. Proteomics 2018; 18. [PMID: 29327814 DOI: 10.1002/pmic.201700306] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/20/2017] [Indexed: 01/19/2023]
Abstract
Complex proteoforms contain various primary structural alterations resulting from variations in genes, RNA, and proteins. Top-down mass spectrometry is commonly used for analyzing complex proteoforms because it provides whole sequence information of the proteoforms. Proteoform identification by top-down mass spectral database search is a challenging computational problem because the types and/or locations of some alterations in target proteoforms are in general unknown. Although spectral alignment and mass graph alignment algorithms have been proposed for identifying proteoforms with unknown alterations, they are extremely slow to align millions of spectra against tens of thousands of protein sequences in high throughput proteome level analyses. Many software tools in this area combine efficient protein sequence filtering algorithms and spectral alignment algorithms to speed up database search. As a result, the performance of these tools heavily relies on the sensitivity and efficiency of their filtering algorithms. Here, we propose two efficient approximate spectrum-based filtering algorithms for proteoform identification. We evaluated the performances of the proposed algorithms and four existing ones on simulated and real top-down mass spectrometry data sets. Experiments showed that the proposed algorithms outperformed the existing ones for complex proteoform identification. In addition, combining the proposed filtering algorithms and mass graph alignment algorithms identified many proteoforms missed by ProSightPC in proteome-level proteoform analyses.
Collapse
Affiliation(s)
- Qiang Kou
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
81
|
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
82
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
83
|
Khan A, Eikani CK, Khan H, Iavarone AT, Pesavento JJ. Characterization of Chlamydomonas reinhardtii Core Histones by Top-Down Mass Spectrometry Reveals Unique Algae-Specific Variants and Post-Translational Modifications. J Proteome Res 2017; 17:23-32. [PMID: 29198113 DOI: 10.1021/acs.jproteome.7b00780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The unicellular microalga Chlamydomonas reinhardtii has played an instrumental role in the development of many new fields (bioproducts, biofuels, etc.) as well as the advancement of basic science (photosynthetic apparati, flagellar function, etc.). Chlamydomonas' versatility ultimately derives from the genes encoded in its genome and the way that the expression of these genes is regulated, which is largely influenced by a family of DNA binding proteins called histones. We characterize C. reinhardtii core histones, both variants and their post-translational modifications, by chromatographic separation, followed by top-down mass spectrometry (TDMS). Because TDMS has not been previously used to study Chlamydomonas proteins, we show rampant artifactual protein oxidation using established nuclei purification and histone extraction methods. After addressing oxidation, both histones H3 and H4 are found to each have a single polypeptide sequence that is minimally acetylated and methylated. Surprisingly, we uncover a novel monomethylation at lysine 79 on histone H4 present on all observed molecules. Histone H2B and H2A are found to have two and three variants, respectively, and both are minimally modified. This study provides an updated assessment of the core histone proteins in the green alga C. reinhardtii by top-down mass spectrometry and lays the foundation for further investigation of these essential proteins.
Collapse
Affiliation(s)
- Aliyya Khan
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| | - Carlo K Eikani
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| | - Hana Khan
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California , Berkeley, California 94720, United States
| | - James J Pesavento
- Department of Biology, Saint Mary's College of California , Moraga, California 94575, United States
| |
Collapse
|
84
|
Chang HY, Chen CT, Ko CL, Chen YJ, Chen YJ, Hsu WL, Juo CG, Sung TY. iTop-Q: an Intelligent Tool for Top-down Proteomics Quantitation Using DYAMOND Algorithm. Anal Chem 2017; 89:13128-13136. [DOI: 10.1021/acs.analchem.7b02343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hui-Yin Chang
- Institute
of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Tai Chen
- Institute
of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chu-Ling Ko
- Department
of Computer Science, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yi-Ju Chen
- Institute
of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Ju Chen
- Institute
of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Lian Hsu
- Institute
of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - Chiun-Gung Juo
- Molecular
Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- PharmaEssentia Corp., Taipei 115, Taiwan
| | - Ting-Yi Sung
- Institute
of Information Science, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
85
|
Wei L, Gregorich ZR, Lin Z, Cai W, Jin Y, McKiernan SH, McIlwain S, Aiken JM, Moss RL, Diffee GM, Ge Y. Novel Sarcopenia-related Alterations in Sarcomeric Protein Post-translational Modifications (PTMs) in Skeletal Muscles Identified by Top-down Proteomics. Mol Cell Proteomics 2017; 17:134-145. [PMID: 29046390 DOI: 10.1074/mcp.ra117.000124] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/17/2017] [Indexed: 11/06/2022] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and strength, is a significant cause of morbidity in the elderly and is a major burden on health care systems. Unfortunately, the underlying molecular mechanisms in sarcopenia remain poorly understood. Herein, we utilized top-down proteomics to elucidate sarcopenia-related changes in the fast- and slow-twitch skeletal muscles of aging rats with a focus on the sarcomeric proteome, which includes both myofilament and Z-disc proteins-the proteins that constitute the contractile apparatuses. Top-down quantitative proteomics identified significant changes in the post-translational modifications (PTMs) of critical myofilament proteins in the fast-twitch skeletal muscles of aging rats, in accordance with the vulnerability of fast-twitch muscles to sarcopenia. Surprisingly, age-related alterations in the phosphorylation of Cypher isoforms, proteins that localize to the Z-discs in striated muscles, were also noted in the fast-twitch skeletal muscle of aging rats. This represents the first report of changes in the phosphorylation of Z-disc proteins in skeletal muscle during aging. In addition, increased glutathionylation of slow skeletal troponin I, a novel modification that may help protect against oxidative damage, was observed in slow-twitch skeletal muscles. Furthermore, we have identified and characterized novel muscle type-specific proteoforms of myofilament proteins and Z-disc proteins, including a novel isoform of the Z-disc protein Enigma. The finding that the phosphorylation of Z-disc proteins is altered in response to aging in the fast-twitch skeletal muscles of aging rats opens new avenues for the investigation of the role of Z-discs in age-related muscle dysfunction.
Collapse
Affiliation(s)
- Liming Wei
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,§Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| | - Zachery R Gregorich
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,¶Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705
| | - Ziqing Lin
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,‖Human Proteomics Program,University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705
| | - Wenxuan Cai
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,¶Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705
| | - Yutong Jin
- **Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706
| | - Susan H McKiernan
- ‡‡Department of Kinesiology, University of Wisconsin-Madison, 2000 Observatory Dr., Madison, Wisconsin, 53705
| | - Sean McIlwain
- §§Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792.,¶¶UW Carbone Cancer Center, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792
| | - Judd M Aiken
- ‖‖Departments of Agriculture, Food, and Nutritional Sciences, University of Alberta-Edmonton, Edmonton, AB, Canada
| | - Richard L Moss
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,‖Human Proteomics Program,University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705
| | - Gary M Diffee
- ‡‡Department of Kinesiology, University of Wisconsin-Madison, 2000 Observatory Dr., Madison, Wisconsin, 53705
| | - Ying Ge
- From the ‡Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705; .,¶Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,‖Human Proteomics Program,University of Wisconsin-Madison, 1111 Highland Ave., Madison, Wisconsin, 53705.,**Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706
| |
Collapse
|
86
|
Park J, Piehowski PD, Wilkins C, Zhou M, Mendoza J, Fujimoto GM, Gibbons BC, Shaw JB, Shen Y, Shukla AK, Moore RJ, Liu T, Petyuk VA, Tolic N, Pasa-Tolic L, Smith RD, Payne SH, Kim S. Informed-Proteomics: open-source software package for top-down proteomics. Nat Methods 2017; 14:909-914. [PMID: 28783154 PMCID: PMC5578875 DOI: 10.1038/nmeth.4388] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Top-down proteomics, the analysis of intact proteins in their endogenous form, preserves valuable information about post-translation modifications, isoforms and proteolytic processing. The quality of top-down liquid chromatography-tandem MS (LC-MS/MS) data sets is rapidly increasing on account of advances in instrumentation and sample-processing protocols. However, top-down mass spectra are substantially more complex than conventional bottom-up data. New algorithms and software tools for confident proteoform identification and quantification are needed. Here we present Informed-Proteomics, an open-source software suite for top-down proteomics analysis that consists of an LC-MS feature-finding algorithm, a database search algorithm, and an interactive results viewer. We compare our tool with several other popular tools using human-in-mouse xenograft luminal and basal breast tumor samples that are known to have significant differences in protein abundance based on bottom-up analysis.
Collapse
Affiliation(s)
- Jungkap Park
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Paul D. Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Christopher Wilkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Joshua Mendoza
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Grant M Fujimoto
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Bryson C. Gibbons
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Jared B. Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Yufeng Shen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Anil K. Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Nikola Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Ljiljana Pasa-Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Samuel H. Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| | - Sangtae Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington USA
| |
Collapse
|
87
|
Chen B, Guo X, Tucholski T, Lin Z, McIlwain S, Ge Y. The Impact of Phosphorylation on Electron Capture Dissociation of Proteins: A Top-Down Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1805-1814. [PMID: 28685494 PMCID: PMC5711594 DOI: 10.1007/s13361-017-1710-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 05/12/2023]
Abstract
Electron capture dissociation (ECD) is well suited for the characterization of phosphoproteins, with which labile phosphate groups are generally preserved during the fragmentation process. However, the impact of phosphorylation on ECD fragmentation of intact proteins remains unclear. Here, we have performed a systematic investigation of the phosphorylation effect on ECD of intact proteins by comparing the ECD cleavages of mono-phosphorylated α-casein, multi-phosphorylated β-casein, and immunoaffinity-purified phosphorylated cardiac troponin I with those of their unphosphorylated counterparts, respectively. In contrast to phosphopeptides, phosphorylation has significantly reduced deleterious effects on the fragmentation of intact proteins during ECD. On a global scale, the fragmentation patterns are highly comparable between unphosphorylated and phosphorylated precursors under the same ECD conditions, despite a slight decrease in the number of fragment ions observed for the phosphorylated forms. On a local scale, single phosphorylation of intact proteins imposes minimal effects on fragmentation near the phosphorylation sites, but multiple phosphorylations in close proximity result in a significant reduction of ECD bond cleavages. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiao Guo
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
- UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
88
|
Ainsworth S, Petras D, Engmark M, Süssmuth RD, Whiteley G, Albulescu LO, Kazandjian TD, Wagstaff SC, Rowley P, Wüster W, Dorrestein PC, Arias AS, Gutiérrez JM, Harrison RA, Casewell NR, Calvete JJ. The medical threat of mamba envenoming in sub-Saharan Africa revealed by genus-wide analysis of venom composition, toxicity and antivenomics profiling of available antivenoms. J Proteomics 2017; 172:173-189. [PMID: 28843532 DOI: 10.1016/j.jprot.2017.08.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/05/2017] [Accepted: 08/22/2017] [Indexed: 12/23/2022]
Abstract
Mambas (genus Dendroaspis) are among the most feared of the medically important elapid snakes found in sub-Saharan Africa, but many facets of their biology, including the diversity of venom composition, remain relatively understudied. Here, we present a reconstruction of mamba phylogeny, alongside genus-wide venom gland transcriptomic and high-resolution top-down venomic analyses. Whereas the green mambas, D. viridis, D. angusticeps, D. j. jamesoni and D. j. kaimosae, express 3FTx-predominant venoms, black mamba (D. polylepis) venom is dominated by dendrotoxins I and K. The divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas makes it plausible that this major difference in venom composition is due to dietary variation. The pattern of intrageneric venom variability across Dendroaspis represented a valuable opportunity to investigate, in a genus-wide context, the variant toxicity of the venom, and the degree of paraspecific cross-reactivity between antivenoms and mamba venoms. To this end, the immunological profiles of the five mamba venoms were assessed against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview of which available antivenoms may be more efficacious in neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the notably different potency and pharmacological profiles of Dendroaspis venoms at locus resolution. This understanding will allow selection and design of toxin immunogens with a view to generating a safer and more efficacious pan-specific antivenom against any mamba envenomation. BIOLOGICAL SIGNIFICANCE The mambas (genus Dendroaspis) comprise five especially notorious medically important venomous snakes endemic to sub-Saharan Africa. Their highly potent venoms comprise a high diversity of pharmacologically active peptides, including extremely rapid-acting neurotoxins. Previous studies on mamba venoms have focused on the biochemical and pharmacological characterisation of their most relevant toxins to rationalize the common neurological and neuromuscular symptoms of envenomings caused by these species, but there has been little work on overall venom composition or comparisons between them. Only very recently an overview of the composition of the venom of two Dendroaspis species, D. angusticeps and D. polylepis, has been unveiled through venomics approaches. Here we present the first genus-wide transcriptomic-proteomic analysis of mamba venom composition. The transcriptomic analyses described in this paper have contributed 29 (D. polylepis), 23 (D. angusticeps), 40 (D. viridis), 25 (D. j. jamesoni) and 21 (D. j. kaimosae), novel full-length toxin sequences to the non-redundant Dendroaspis sequence database. The mamba genus-wide venomic analysis demonstrated that major D. polylepis venom components are Kunitz-fold family toxins. This feature is unique in relation to the relatively conserved three-finger toxin (3FTx)-dominated venom compositions of the green mambas. Venom variation was interpreted in the context of dietary variation due to the divergent terrestrial ecology of D. polylepis compared to the arboreal niche occupied by all other mambas. Additionally, the degree of cross-reactivity conservation of mamba venoms was assessed by antivenomics against a panel of commercial antivenoms generated for the sub-Saharan Africa market. This study provides a genus-wide overview to infer which available antivenoms may be capable of neutralising human envenomings caused by mambas, irrespective of the species responsible. The information gathered in this study lays the foundations for rationalising the pharmacological profiles of mamba venoms at locus resolution. This understanding will contribute to the generation of a safer and more efficacious pan-Dendroaspis therapeutic antivenom against any mamba envenomation.
Collapse
Affiliation(s)
- Stuart Ainsworth
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Daniel Petras
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA; Technische Universität Berlin, Institut für Chemie, Straße des 17.Juni 124, 10623 Berlin, Germany
| | - Mikael Engmark
- Technical University of Denmark, Department of Bio and Health Informatics, 2800 Kgs. Lyngby, Denmark
| | - Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Straße des 17.Juni 124, 10623 Berlin, Germany
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Laura-Oana Albulescu
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Taline D Kazandjian
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Simon C Wagstaff
- Bioinformatics Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Paul Rowley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Pieter C Dorrestein
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Ana Silvia Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - José M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Robert A Harrison
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom.
| | - Juan J Calvete
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Jaume Roig 11, 46010, Valencia, Spain.
| |
Collapse
|
89
|
Wu CG, Chen H, Guo F, Yadav VK, Mcilwain SJ, Rowse M, Choudhary A, Lin Z, Li Y, Gu T, Zheng A, Xu Q, Lee W, Resch E, Johnson B, Day J, Ge Y, Ong IM, Burkard ME, Ivarsson Y, Xing Y. PP2A-B' holoenzyme substrate recognition, regulation and role in cytokinesis. Cell Discov 2017; 3:17027. [PMID: 28884018 PMCID: PMC5586252 DOI: 10.1038/celldisc.2017.27] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a major Ser/Thr phosphatase; it forms diverse heterotrimeric holoenzymes that counteract kinase actions. Using a peptidome that tiles the disordered regions of the human proteome, we identified proteins containing [LMFI]xx[ILV]xEx motifs that serve as interaction sites for B′-family PP2A regulatory subunits and holoenzymes. The B′-binding motifs have important roles in substrate recognition and in competitive inhibition of substrate binding. With more than 100 novel ligands identified, we confirmed that the recently identified LxxIxEx B′α-binding motifs serve as common binding sites for B′ subunits with minor variations, and that S/T phosphorylation or D/E residues at positions 2, 7, 8 and 9 of the motifs reinforce interactions. Hundreds of proteins in the human proteome harbor intrinsic or phosphorylation-responsive B′-interaction motifs, and localize at distinct cellular organelles, such as midbody, predicting kinase-facilitated recruitment of PP2A-B′ holoenzymes for tight spatiotemporal control of phosphorylation at mitosis and cytokinesis. Moroever, Polo-like kinase 1-mediated phosphorylation of Cyk4/RACGAP1, a centralspindlin component at the midbody, facilitates binding of both RhoA guanine nucleotide exchange factor (epithelial cell transforming sequence 2 (Ect2)) and PP2A-B′ that in turn dephosphorylates Cyk4 and disrupts Ect2 binding. This feedback signaling loop precisely controls RhoA activation and specifies a restricted region for cleavage furrow ingression. Our results provide a framework for further investigation of diverse signaling circuits formed by PP2A-B′ holoenzymes in various cellular processes.
Collapse
Affiliation(s)
- Cheng-Guo Wu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA.,Biophysics Program, University of Wisconsin at Madison, Madison, WI, USA
| | - Hui Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Feng Guo
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Vikash K Yadav
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Sean J Mcilwain
- Biostatistics and Medical Informatics, Wisconsin Institutes of Medical Research, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Michael Rowse
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Alka Choudhary
- Department of Medicine, Hematology/Oncology, UW Carbone Cancer Center, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, Human Proteomic Program, School of Medicine and Public Health, Madison, WI, USA
| | - Yitong Li
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Tingjia Gu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Aiping Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Qingge Xu
- Department of Cell and Regenerative Biology, Human Proteomic Program, School of Medicine and Public Health, Madison, WI, USA
| | - Woojong Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology TMP, Frankfurt am Main, Germany
| | - Benjamin Johnson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Jenny Day
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, Human Proteomic Program, School of Medicine and Public Health, Madison, WI, USA
| | - Irene M Ong
- Biostatistics and Medical Informatics, Wisconsin Institutes of Medical Research, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Mark E Burkard
- Department of Medicine, Hematology/Oncology, UW Carbone Cancer Center, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA
| | - Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| | - Yongna Xing
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin at Madison, School of Medicine and Public Health, Madison, WI, USA.,Biophysics Program, University of Wisconsin at Madison, Madison, WI, USA
| |
Collapse
|
90
|
Rana ASJB, Ge Y, Strieter ER. Ubiquitin Chain Enrichment Middle-Down Mass Spectrometry (UbiChEM-MS) Reveals Cell-Cycle Dependent Formation of Lys11/Lys48 Branched Ubiquitin Chains. J Proteome Res 2017; 16:3363-3369. [PMID: 28737031 DOI: 10.1021/acs.jproteome.7b00381] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dynamics of cellular signaling events are tightly regulated by a diverse set of ubiquitin chains. Recent work has suggested that branched ubiquitin chains composed of Lys11 and Lys48 isopeptide linkages play a critical role in regulating cell cycle progression. Yet, endogenous Lys11/Lys48 branched chains could not be detected. By combining a Lys11 linkage specific antibody with high-resolution middle-down mass spectrometry (an approach termed UbiChEM-MS) we sought to identify endogenous Lys11/Lys48 branched ubiquitin chains in cells. Using asynchronous cells, we find that Lys11-linked branched chains can only be detected upon cotreatment with a proteasome and nonselective deubiquitinase inhibitor. Releasing cells from mitotic arrest results in a marked accumulation of Lys11/Lys48 branched chains in which branch points represent ∼3-4% of the total ubiquitin population. This report highlights the utility of UbiChEM-MS in characterizing the architecture of Lys11 Ub chains under various cellular conditions and corroborates the formation of Lys11/Lys48 branched chains during mitosis.
Collapse
Affiliation(s)
- Ambar S J B Rana
- Department of Chemistry, University of Massachusetts - Amherst , Amherst, Massachusetts 01003, United States.,Department of Chemistry, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States.,Human Proteomics Program, University of Wisconsin - Madison , Madison, Wisconsin 53706, United States
| | - Eric R Strieter
- Department of Chemistry, University of Massachusetts - Amherst , Amherst, Massachusetts 01003, United States.,Department of Biochemistry and Molecular Biology, University of Massachusetts - Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
91
|
Tholey A, Becker A. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2191-2199. [PMID: 28711385 DOI: 10.1016/j.bbamcr.2017.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Alexander Becker
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
92
|
Cai W, Tucholski T, Chen B, Alpert AJ, McIlwain S, Kohmoto T, Jin S, Ge Y. Top-Down Proteomics of Large Proteins up to 223 kDa Enabled by Serial Size Exclusion Chromatography Strategy. Anal Chem 2017; 89:5467-5475. [PMID: 28406609 DOI: 10.1021/acs.analchem.7b00380] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mass spectrometry (MS)-based top-down proteomics is a powerful method for the comprehensive analysis of proteoforms that arise from genetic variations and post-translational modifications (PTMs). However, top-down MS analysis of high molecular weight (MW) proteins remains challenging mainly due to the exponential decay of signal-to-noise ratio with increasing MW. Size exclusion chromatography (SEC) is a favored method for size-based separation of biomacromolecules but typically suffers from low resolution. Herein, we developed a serial size exclusion chromatography (sSEC) strategy to enable high-resolution size-based fractionation of intact proteins (10-223 kDa) from complex protein mixtures. The sSEC fractions could be further separated by reverse phase chromatography (RPC) coupled online with high-resolution MS. We have shown that two-dimensional (2D) sSEC-RPC allowed for the identification of 4044 more unique proteoforms and a 15-fold increase in the detection of proteins above 60 kDa, compared to one-dimensional (1D) RPC. Notably, effective sSEC-RPC separation of proteins significantly enhanced the detection of high MW proteins up to 223 kDa and also revealed low abundance proteoforms that are post-translationally modified. This sSEC method is MS-friendly, robust, and reproducible and, thus, can be applied to both high-efficiency protein purification and large-scale proteomics analysis of cell or tissue lysate for enhanced proteome coverage, particularly for low abundance and high MW proteoforms.
Collapse
Affiliation(s)
- Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Bifan Chen
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Andrew J Alpert
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,PolyLC Inc. , Columbia, Maryland 21045, United States
| | - Sean McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Takushi Kohmoto
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
93
|
Jin Y, Wei L, Cai W, Lin Z, Wu Z, Peng Y, Kohmoto T, Moss RL, Ge Y. Complete Characterization of Cardiac Myosin Heavy Chain (223 kDa) Enabled by Size-Exclusion Chromatography and Middle-Down Mass Spectrometry. Anal Chem 2017; 89:4922-4930. [PMID: 28366003 PMCID: PMC5526197 DOI: 10.1021/acs.analchem.7b00113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Myosin heavy chain (MHC), the major component of the myosin motor molecule, plays an essential role in force production during muscle contraction. However, a comprehensive analysis of MHC proteoforms arising from sequence variations and post-translational modifications (PTMs) remains challenging due to the difficulties in purifying MHC (∼223 kDa) and achieving complete sequence coverage. Herein, we have established a strategy to effectively purify and comprehensively characterize MHC from heart tissue by combining size-exclusion chromatography (SEC) and middle-down mass spectrometry (MS). First, we have developed a MS-compatible SEC method for purifying MHC from heart tissue with high efficiency. Next, we have optimized the Glu-C, Asp-N, and trypsin limited digestion conditions for middle-down MS. Subsequently, we have applied this strategy with optimized conditions to comprehensively characterize human MHC and identified β-MHC as the predominant isoform in human left ventricular tissue. Full sequence coverage based on highly accurate mass measurements has been achieved using middle-down MS combining 1 Glu-C, 1 Asp-N, and 1 trypsin digestion. Three different PTMs: acetylation, methylation, and trimethylation were identified in human β-MHC and the corresponding sites were localized to the N-terminal Gly, Lys34, and Lys129, respectively, by electron capture dissociation (ECD). Taken together, we have demonstrated this strategy is highly efficient for purification and characterization of MHC, which can be further applied to studies of the role of MHC proteoforms in muscle-related diseases. We also envision that this integrated SEC/middle-down MS strategy can be extended for the characterization of other large proteins over 200 kDa.
Collapse
Affiliation(s)
- Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Liming Wei
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Peng
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Takushi Kohmoto
- Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
94
|
Calvete JJ, Petras D, Calderón-Celis F, Lomonte B, Encinar JR, Sanz-Medel A. Protein-species quantitative venomics: looking through a crystal ball. J Venom Anim Toxins Incl Trop Dis 2017; 23:27. [PMID: 28465678 PMCID: PMC5408492 DOI: 10.1186/s40409-017-0116-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 12/16/2022] Open
Abstract
In this paper we discuss recent significant developments in the field of venom research, specifically the emergence of top-down proteomic applications that allow achieving compositional resolution at the level of the protein species present in the venom, and the absolute quantification of the venom proteins (the term “protein species” is used here to refer to all the different molecular forms in which a protein can be found. Please consult the special issue of Jornal of Proteomics “Towards deciphering proteomes via the proteoform, protein speciation, moonlighting and protein code concepts” published in 2016, vol. 134, pages 1-202). Challenges remain to be solved in order to achieve a compact and automated platform with which to routinely carry out comprehensive quantitative analysis of all toxins present in a venom. This short essay reflects the authors’ view of the immediate future in this direction for the proteomic analysis of venoms, particularly of snakes.
Collapse
Affiliation(s)
- Juan J Calvete
- Structural and Functional Venomics Laboratory, Instituto de Biomedicina de Valencia, C.S.I.C, Jaime Roig 11, 46010 Valencia, Spain
| | - Daniel Petras
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA USA
| | | | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - Alfredo Sanz-Medel
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
95
|
Chen B, Hwang L, Ochowicz W, Lin Z, Guardado-Alvarez TM, Cai W, Xiu L, Dani K, Colah C, Jin S, Ge Y. Coupling functionalized cobalt ferrite nanoparticle enrichment with online LC/MS/MS for top-down phosphoproteomics. Chem Sci 2017; 8:4306-4311. [PMID: 28660060 PMCID: PMC5472028 DOI: 10.1039/c6sc05435h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/30/2017] [Indexed: 01/02/2023] Open
Abstract
An integrated top-down phosphoproteomics strategy enabled by functionalized cobalt ferrite nanoparticle enrichment and online LC/MS/MS for identification, quantification, and characterization of low abundance phosphoproteins is presented.
Phosphorylation plays pivotal roles in cellular processes and dysregulated phosphorylation is considered as an underlying mechanism in many human diseases. Top-down mass spectrometry (MS) analyzes intact proteins and provides a comprehensive analysis of protein phosphorylation. However, top-down MS-based phosphoproteomics is challenging due to the difficulty in enriching low abundance intact phosphoproteins as well as separating and detecting the enriched phosphoproteins from complex mixtures. Herein, we have designed and synthesized the next generation functionalized superparamagnetic cobalt ferrite (CoFe2O4) nanoparticles (NPs), and have further developed a top-down phosphoproteomics strategy coupling phosphoprotein enrichment enabled by the functionalized CoFe2O4 NPs with online liquid chromatography (LC)/MS/MS for comprehensive characterization of phosphoproteins. We have demonstrated the highly specific enrichment of a minimal amount of spike-in β-casein from a complex tissue lysate as well as effective separation and quantification of its phosphorylated genetic variants. More importantly, this integrated top-down phosphoproteomics strategy allows for enrichment, identification, quantification, and comprehensive characterization of low abundance endogenous phosphoproteins from complex tissue extracts on a chromatographic time scale.
Collapse
Affiliation(s)
- Bifan Chen
- Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA .
| | - Leekyoung Hwang
- Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA .
| | - William Ochowicz
- Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA .
| | - Ziqing Lin
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA
| | | | - Wenxuan Cai
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA
| | - Lichen Xiu
- Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA .
| | - Kunal Dani
- Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA .
| | - Cyrus Colah
- Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA
| | - Song Jin
- Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA .
| | - Ying Ge
- Department of Chemistry , University of Wisconsin-Madison , Madison , WI , USA . .,Department of Cell and Regenerative Biology , University of Wisconsin-Madison , Madison , WI , USA.,Human Proteomics Program , School of Medicine and Public Health , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
96
|
Maizel AC, Remucal CK. Molecular Composition and Photochemical Reactivity of Size-Fractionated Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2113-2123. [PMID: 28121132 PMCID: PMC5889133 DOI: 10.1021/acs.est.6b05140] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The photochemical production of reactive species, such as triplet dissolved organic matter (3DOM) and singlet oxygen (1O2), contributes to the degradation of aquatic contaminants and is related to an array of DOM structural characteristics, notably molecular weight. In order to relate DOM molecular weight, optical properties, and reactive species production, Suwannee River (SRFA) and Pony Lake fulvic acid (PLFA) isolates are fractionated by sequential ultrafiltration, and the resultant fractions are evaluated in terms of molecular composition and photochemical reactivity. UV-visible measurements of aromaticity increase with molecular weight in both fulvic acids, while PLFA molecular weight fractions are shown to be structurally similar by Fourier-transform ion cyclotron resonance mass spectrometry. In addition, Bray-Curtis dissimilarity analysis of formulas identified in the isolates and their size fractions reveal that SRFA and PLFA have distinct molecular compositions. Quantum yields of 3DOM, measured by electron and energy transfer probes, and 1O2 decreased with molecular weight. Decreasing [3DOM]ss with molecular weight is shown to derive from elevated quenching in high molecular weight fractions, rather than increased 3DOM formation. This work has implications for the photochemistry of waters undergoing natural or engineered treatment processes that alter DOM molecular weight, such as photooxidation and biological degradation.
Collapse
Affiliation(s)
- Andrew C. Maizel
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
| | - Christina K. Remucal
- Department of Civil and Environmental Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
- Environmental Chemistry and Technology Program, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States
- Corresponding Author: ; telephone: (608) 262-1820; fax: (608) 262-0454; Twitter: @remucal
| |
Collapse
|
97
|
Gil G, Mao P, Avula B, Ali Z, Chittiboyina AG, Khan IA, Walker LA, Wang D. Proteoform-Specific Protein Binding of Small Molecules in Complex Matrices. ACS Chem Biol 2017; 12:389-397. [PMID: 28001351 PMCID: PMC5315634 DOI: 10.1021/acschembio.6b01018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original bioactivity. Most proteins undergo posttranslational modification, and only certain proteoforms have the right conformation with accessible domains and available residues for small molecule binding. We developed a top-down mass spectrometry (MS) centric workflow for rapid evaluation of the bioactivity of crude botanical extracts after a one-step reaction. Our assay distinguished covalent from noncovalent binding and mapped the residue for covalent binding between bioactive constituents and specific proteoforms of the target protein. We augmented our approach with a nanoflow liquid chromatography-selected reaction monitoring (SRM)-MS assay for simultaneous identification and label-free multiplex quantitation of small molecules in the crude botanical extracts. Our assay was validated for various proteoforms of human serum albumin, which plays a key role in pharmacokinetics of small molecules in vivo. We demonstrated the utility of our proteoform-specific assay for evaluating thymoquinone in crude botanical extracts, studying its pharmacokinetics in human blood, and interpreting its toxicity to human breast cancer cells in tissue culture.
Collapse
Affiliation(s)
- Geuncheol Gil
- Newomics Inc., Emeryville, California 94608, United States
| | - Pan Mao
- Newomics Inc., Emeryville, California 94608, United States
| | - Bharathi Avula
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
| | - Amar G. Chittiboyina
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
| | - Ikhlas A. Khan
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Larry A. Walker
- National Center for Natural Products Research, The University of Mississippi, University, Mississippi 38677, United States
- Division of Pharmacology, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Daojing Wang
- Newomics Inc., Emeryville, California 94608, United States
| |
Collapse
|
98
|
Zhou M, Paša-Tolić L, Stenoien DL. Profiling of Histone Post-Translational Modifications in Mouse Brain with High-Resolution Top-Down Mass Spectrometry. J Proteome Res 2016; 16:599-608. [DOI: 10.1021/acs.jproteome.6b00694] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mowei Zhou
- Pacific Northwest National
Laboratory, Earth and Biological Sciences Directorate, P.O. Box 999, Richland, Washington 99352, United States
| | - Ljiljana Paša-Tolić
- Pacific Northwest National
Laboratory, Earth and Biological Sciences Directorate, P.O. Box 999, Richland, Washington 99352, United States
| | - David L. Stenoien
- Pacific Northwest National
Laboratory, Earth and Biological Sciences Directorate, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
99
|
Top-Down Proteomics and Farm Animal and Aquatic Sciences. Proteomes 2016; 4:proteomes4040038. [PMID: 28248248 PMCID: PMC5260971 DOI: 10.3390/proteomes4040038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/25/2016] [Accepted: 12/05/2016] [Indexed: 01/16/2023] Open
Abstract
Proteomics is a field of growing importance in animal and aquatic sciences. Similar to other proteomic approaches, top-down proteomics is slowly making its way within the vast array of proteomic approaches that researchers have access to. This opinion and mini-review article is dedicated to top-down proteomics and how its use can be of importance to animal and aquatic sciences. Herein, we include an overview of the principles of top-down proteomics and how it differs regarding other more commonly used proteomic methods, especially bottom-up proteomics. In addition, we provide relevant sections on how the approach was or can be used as a research tool and conclude with our opinions of future use in animal and aquatic sciences.
Collapse
|
100
|
Lössl P, van de Waterbeemd M, Heck AJ. The diverse and expanding role of mass spectrometry in structural and molecular biology. EMBO J 2016; 35:2634-2657. [PMID: 27797822 PMCID: PMC5167345 DOI: 10.15252/embj.201694818] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/20/2022] Open
Abstract
The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes.
Collapse
Affiliation(s)
- Philip Lössl
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Michiel van de Waterbeemd
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands
- Netherlands Proteomics Center, Utrecht, The Netherlands
| |
Collapse
|