51
|
Bijelić K, Hitl M, Kladar N. Phytochemicals in the Prevention and Treatment of SARS-CoV-2-Clinical Evidence. Antibiotics (Basel) 2022; 11:1614. [PMID: 36421257 PMCID: PMC9686831 DOI: 10.3390/antibiotics11111614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The first case of SARS-CoV-2 infection was reported in December 2019. Due to the rapid spread of the disease and the lack of adequate therapy, the use of plants that have a long history in the treatment of viral infections has often been considered. The aim of this paper is to provide a brief review of the literature on the use of phytochemicals during the new pandemic. An extensive search of published works was performed through platforms Google Scholar, PubMed, Science Direct, Web of Science and Clinicaltrials.gov. Numerous preclinical studies on the use of phytochemicals (quercetin, curcumin, baicalin, kaempferol, resveratrol, glycyrrhizin, lycorine, colchicine) against SARS-CoV-2 have shown that these components can be effective in the prevention and treatment of this infection. Clinical research has proven that the use of black cumin and green propolis as well as quercetin has positive effects. As for other phytochemicals, in addition to preclinical testing which has already been carried out, it would be necessary to conduct clinical tests in order to assert their effectiveness. For those phytochemicals whose clinical efficacy has been proven, it would be necessary to conduct research on a larger number of patients, so that the conclusions are more representative.
Collapse
Affiliation(s)
- Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigation and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
52
|
Attiq N, Arshad U, Brogi S, Shafiq N, Imtiaz F, Parveen S, Rashid M, Noor N. Exploring the anti-SARS-CoV-2 main protease potential of FDA approved marine drugs using integrated machine learning templates as predictive tools. Int J Biol Macromol 2022; 220:1415-1428. [PMID: 36122771 PMCID: PMC9479384 DOI: 10.1016/j.ijbiomac.2022.09.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022]
Abstract
Since the inception of COVID-19 pandemic in December 2019, socio-economic crisis begins to rise globally and SARS-CoV-2 was responsible for this outbreak. With this outbreak, currently, world is in need of effective and safe eradication of COVID-19. Hence, in this study anti-SAR-Co-2 potential of FDA approved marine drugs (Biological macromolecules) data set is explored computationally using machine learning algorithm of Flare by Cresset Group, Field template, 3D-QSAR and activity Atlas model was generated against FDA approved M-pro SARS-CoV-2 repurposed drugs including Nafamostat, Hydroxyprogesterone caporate, and Camostat mesylate. Data sets were categorized into active and inactive molecules on the basis of their structural and biological resemblance with repurposed COVID-19 drugs. Then these active compounds were docked against the five different M-pro proteins co-crystal structures. Highest LF VS score of Holichondrin B against all main protease co-crystal structures ranked it as lead drug. Finally, this new technique of drug repurposing remained efficient to explore the anti-SARS-CoV-2 potential of FDA approved marine drugs.
Collapse
Affiliation(s)
- Naila Attiq
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Uzma Arshad
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| | - Nusrat Shafiq
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan.
| | - Fazeelat Imtiaz
- Green Chemistry Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Products Discovery (SNPD) Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| | - Nadia Noor
- Micro-biology Laboratory, Department of Chemistry, Government College Women University Faisalabad, 38000, Pakistan
| |
Collapse
|
53
|
Dey R, Samadder A, Nandi S. Exploring the Targets of Novel Corona Virus and Docking-based Screening of Potential Natural Inhibitors to Combat COVID-19. Curr Top Med Chem 2022; 22:2410-2434. [PMID: 36281864 DOI: 10.2174/1568026623666221020163831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 01/20/2023]
Abstract
There is a need to explore natural compounds against COVID-19 due to their multitargeted actions against various targets of nCoV. They act on multiple sites rather than single targets against several diseases. Thus, there is a possibility that natural resources can be repurposed to combat COVID-19. However, the biochemical mechanisms of these inhibitors were not known. To reveal the mode of anti-nCoV action, structure-based docking plays a major role. The present study is an attempt to explore various potential targets of SARS-CoV-2 and the structure-based screening of various potential natural inhibitors to combat the novel coronavirus.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
54
|
In Silico Testing of Some Protected Galactopyranose as SARS-CoV-2 Main Protease Inhibitors. JOURNAL OF APPLIED SCIENCE & PROCESS ENGINEERING 2022. [DOI: 10.33736/jaspe.4970.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
An outbreak of novel Coronavirus disease (COVID-19 or 2019-nCoV) due to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has already demonstrated a fatal death toll all over the world. To cure this viral infection, a number of compounds of different categories have been investigated in silico. Some of the compounds showed better binding energy with COVID-19-related proteins. However, until now there is no appropriate drug except a vaccine. It was found that many antifungal drugs are used for COVID-19 patients in hospitals. Many monosaccharide esters have been reported to have antifungal potential. Thus, in the present study, some protected galactopyranose esters are chosen for molecular docking with SARS-CoV-2 main proteases (PDB id: 7BQY and 6LU7). A docking study revealed that galactopyranose esters 5-8 have very good docking scores (-8.4 to -6.5 kcal/mol) compared to the standard drugs azithromycin, remdesivir, and hydroxychloroquine. To explain such good scores interaction between amino acid residues of proteins and compounds in their docked complexes are calculated and duly discussed in this study.
Collapse
|
55
|
Jack KS, Asaruddin MRB, Bhawani SA. Pharmacophore study, molecular docking and molecular dynamic simulation of virgin coconut oil derivatives as anti-inflammatory agent against COX-2. CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE 2022; 9:73. [PMID: 37520584 PMCID: PMC9579622 DOI: 10.1186/s40538-022-00340-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/27/2022] [Indexed: 05/30/2023]
Abstract
Background Virgin coconut oil is mostly made up of saturated fatty acids in which approximately 72% are medium chain triglycerides. Medium chain triglycerides can be digested into medium chain fatty acids and medium chain monoglycerides which are bioactive components. Therefore, it is very important to study the in-silico ability of some Virgin coconut oil derivatives, namely, medium chain fatty acids and medium chain monoglycerides to inhibit Cyclooxygenase 2 (COX-2) protein for prevention of excessive inflammatory response. Results Pharmacophore study displayed monolaurin with two hydrogen bond donor, three hydrogen bond acceptor and five hydrophobic interactions, while lauric acid presented two hydrogen bond acceptor, five hydrophobic interactions and a negative ion interaction. Molecular docking underlined the ability of monolaurin in the inhibition of COX-2 protein which causes inflammatory action with a decent result of energy binding affinity of - 7.58 kcal/mol and 15 interactions out of which 3 are strong hydrogen bond with TYR385 (3.00 Å), PHE529 (2.77 Å), and GLY533 (3.10 Å) residues of the protein. Monolaurin was employed as hydrogen bond acceptor to the side of residue TYR385 of COX-2 protein with an occupancy of 67.03% and was observed to be long-living during the entire 1000 frames of the molecular dynamic simulation. The analysis of RMSD score of the Monolaurin-COX-2 complex backbone was calculated to be low (1.137 ± 0.153 Å) and was in a stable range of 0.480 to 1.520 Å. Redocking of this complex still maintained a strong hydrogen bond (2.87 Å) with the main residue TYR385. AMDET results where promising for medium chain fatty acids and medium chain monoglycerides with good physicochemical drug scores. Conclusions This can be concluded from the results obtained that the monolaurin has strong interactions with COX-2 protein to disrupt its function due to significant hydrogen bonds and hydrophobic interactions with amino acid residues present in the target protein's active site. These results displayed a very significant anti-inflammatory potential of monolaurin and a new promising drug candidates as anti-inflammatory agent. Graphical Abstract
Collapse
Affiliation(s)
- Kho Swen Jack
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak Malaysia
| | - Mohd Razip Bin Asaruddin
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak Malaysia
| | - Showkat Ahmad Bhawani
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak Malaysia
| |
Collapse
|
56
|
Pisoschi AM, Iordache F, Stanca L, Gajaila I, Ghimpeteanu OM, Geicu OI, Bilteanu L, Serban AI. Antioxidant, Anti-inflammatory, and Immunomodulatory Roles of Nonvitamin Antioxidants in Anti-SARS-CoV-2 Therapy. J Med Chem 2022; 65:12562-12593. [PMID: 36136726 PMCID: PMC9514372 DOI: 10.1021/acs.jmedchem.2c01134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Viral pathologies encompass activation of pro-oxidative pathways and inflammatory burst. Alleviating overproduction of reactive oxygen species and cytokine storm in COVID-19 is essential to counteract the immunogenic damage in endothelium and alveolar membranes. Antioxidants alleviate oxidative stress, cytokine storm, hyperinflammation, and diminish the risk of organ failure. Direct antiviral roles imply: impact on viral spike protein, interference with the ACE2 receptor, inhibition of dipeptidyl peptidase 4, transmembrane protease serine 2 or furin, and impact on of helicase, papain-like protease, 3-chyomotrypsin like protease, and RNA-dependent RNA polymerase. Prooxidative environment favors conformational changes in the receptor binding domain, promoting the affinity of the spike protein for the host receptor. Viral pathologies imply a vicious cycle, oxidative stress promoting inflammatory responses, and vice versa. The same was noticed with respect to the relationship antioxidant impairment-viral replication. Timing, dosage, pro-oxidative activities, mutual influences, and interference with other antioxidants should be carefully regarded. Deficiency is linked to illness severity.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Florin Iordache
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Loredana Stanca
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Iuliana Gajaila
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Oana Margarita Ghimpeteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
| | - Ovidiu Ionut Geicu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| | - Liviu Bilteanu
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Molecular Nanotechnology Laboratory,
National Institute for Research and Development in
Microtechnologies, 126A Erou Iancu Nicolae Street, 077190Bucharest,
Romania
| | - Andreea Iren Serban
- Faculty of Veterinary Medicine, Department Preclinical
Sciences, University of Agronomic Sciences and Veterinary Medicine of
Bucharest, 105 Splaiul Independentei, 050097Bucharest,
Romania
- Faculty of Biology, Department Biochemistry and
Molecular Biology, University of Bucharest, 91-95 Splaiul
Independentei, 050095Bucharest, Romania
| |
Collapse
|
57
|
Chu KO, Man GCW, Hung SW, Chan TH, Lee WYT, Chan KP, Pang CP, Wang CC. Determination of (-)-epigallocatechin-3-gallate octaacetate and its metabolites in plasma of rats for pharmacokinetic study by ultra-performance-liquid-chromatography coupled to quadrupole-time-of-flight-mass-spectrometry. Front Pharmacol 2022; 13:1025053. [PMID: 36304154 PMCID: PMC9592989 DOI: 10.3389/fphar.2022.1025053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
(-)-Epigallocatechin-gallate octaacetate (pro-EGCG), a prodrug of epigallocatechin-gallate (EGCG), has been used for pre-clinical study for the treatment of endometriosis. A validated analytical method has been developed for the determination of plasma pro-EGCG and its metabolites after oral administration using ultra-performance-liquid-chromatography coupled to quadrupole-time-of-flight-mass-spectrometry (UPLC-Qtof-MS). This method is more robust, rapid, sensitive, simpler, and able to detect pro-EGCG metabolites compared to our previous method. Pro-EGCG in the plasma was stabilized from rapid degradation by formic acid, extracted by isopropanol/methyl-tert-butyl ether mixture, separated by UPLC core column, and quantified by an exact mass method with Qtof-MS. The lower limit of quantification (LLOQ), intra-day and inter-day precision, and accuracy for the range of 0.01–2.5 μg/mL were within acceptable limits. The sensitivity was improved by 25 folds using pro-EGCG ammonium adduct [M + NH4]+. This is the first report on the pharmacokinetics of oral administration with maximum-concentration (Cmax) was 0.067 ± 0.04 μg/mL, time-of-maximum-concentration (Tmax) was 1.33 h, area-under-curve (AUC) was 0.20 ± 0.05 h × µg/mL, and elimination-rate was 0.20 ± 0.11 hr−1. The pharmacokinetic profiles of pro-EGCG metabolites, (-)-epigallocatechin-gallate (EGCG) diacetates and EGCG triacetates, were also presented. This method is robust, rapid, and sensitive for the pharmacokinetic study of pro-EGCG and metabolites.
Collapse
Affiliation(s)
- Kai On Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, China
| | - Gene Chi Wai Man
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, China
| | - Sze Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | | | - Kwok Ping Chan
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, China
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, China
- Li Ka Shing Institute of Health Sciences; and School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- *Correspondence: Chi Chiu Wang,
| |
Collapse
|
58
|
Zhao Y, Deng S, Bai Y, Guo J, Kai G, Huang X, Jia X. Promising natural products against SARS-CoV-2: Structure, function, and clinical trials. Phytother Res 2022; 36:3833-3858. [PMID: 35932157 PMCID: PMC9538226 DOI: 10.1002/ptr.7580] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023]
Abstract
The corona virus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus type 2 (SARS-COV-2) poses a severe threat to human health and still spreads globally. Due to the high mutation ratio and breakthrough infection rate of the virus, vaccines and anti-COVID-19 drugs require continual improvements. Drug screening research has shown that some natural active products can target the critical proteins of SARS-CoV-2, including 3CLpro, ACE2, FURIN, and RdRp, which could produce great inhibitory effects on SARS-COV-2. In addition, some natural products have displayed activities of immunomodulation, antiinflammatory, and antihepatic failure in COVID-19 clinical trials, which may relate to their non-monomeric structures. However, further evaluation and high-quality assessments, including safety verification tests, drug interaction tests, and clinical trials, are needed to substantiate natural products' multi-target and multi-pathway effects on COVID-19. Here, we review the literature on several promising active natural products that may act as vaccine immune enhancers or provide targeted anti-COVID-19 drugs. The structures, mechanisms of action, and research progress of these natural products are analyzed, to hopefully provide effective ideas for the development of targeted drugs that possess better structure, potency, and safety.
Collapse
Affiliation(s)
- Yan Zhao
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Shanshan Deng
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Yujiao Bai
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| | - Jinlin Guo
- Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest ChinaChengdu University of Traditional Chinese MedicineChengduChina
| | - Guoyin Kai
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Xinhe Huang
- Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Xu Jia
- Sichuan Key Laboratory of Noncoding RNA and DrugsChengdu Medical CollegeChengduChina
| |
Collapse
|
59
|
Mousavi S, Zare S, Mirzaei M, Feizi A. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2044282. [PMID: 36199815 PMCID: PMC9527439 DOI: 10.1155/2022/2044282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in discovering potential therapeutic agents for this disease. In this regard, we conducted a systematic review through an overview of drug development (in silico, in vitro, and in vivo) for treating COVID-19. Methods A systematic search was carried out in major databases including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar from December 2019 to March 2021. A combination of the following terms was used: coronavirus, COVID-19, SARS-CoV-2, drug design, drug development, In silico, In vitro, and In vivo. A narrative synthesis was performed as a qualitative method for the data synthesis of each outcome measure. Results A total of 2168 articles were identified through searching databases. Finally, 315 studies (266 in silico, 34 in vitro, and 15 in vivo) were included. In studies with in silico approach, 98 article study repurposed drug and 91 studies evaluated herbal medicine on COVID-19. Among 260 drugs repurposed by the computational method, the best results were observed with saquinavir (n = 9), ritonavir (n = 8), and lopinavir (n = 6). Main protease (n = 154) following spike glycoprotein (n = 62) and other nonstructural protein of virus (n = 45) was among the most studied targets. Doxycycline, chlorpromazine, azithromycin, heparin, bepridil, and glycyrrhizic acid showed both in silico and in vitro inhibitory effects against SARS-CoV-2. Conclusion The preclinical studies of novel drug design for COVID-19 focused on main protease and spike glycoprotein as targets for antiviral development. From evaluated structures, saquinavir, ritonavir, eucalyptus, Tinospora cordifolia, aloe, green tea, curcumin, pyrazole, and triazole derivatives in in silico studies and doxycycline, chlorpromazine, and heparin from in vitro and human monoclonal antibodies from in vivo studies showed promised results regarding efficacy. It seems that due to the nature of COVID-19 disease, finding some drugs with multitarget antiviral actions and anti-inflammatory potential is valuable and some herbal medicines have this potential.
Collapse
Affiliation(s)
- Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Zare
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
60
|
Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022; 14:v14091991. [PMID: 36146796 PMCID: PMC9506350 DOI: 10.3390/v14091991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117545, Singapore
- Correspondence: (V.T.K.C.); (S.K.L.)
| | - Sunil K. Lal
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Malaysia
- Correspondence: (V.T.K.C.); (S.K.L.)
| |
Collapse
|
61
|
Vázquez-Jiménez LK, Juárez-Saldivar A, Gómez-Escobedo R, Delgado-Maldonado T, Méndez-Álvarez D, Palos I, Bandyopadhyay D, Gaona-Lopez C, Ortiz-Pérez E, Nogueda-Torres B, Ramírez-Moreno E, Rivera G. Ligand-Based Virtual Screening and Molecular Docking of Benzimidazoles as Potential Inhibitors of Triosephosphate Isomerase Identified New Trypanocidal Agents. Int J Mol Sci 2022; 23:10047. [PMID: 36077439 PMCID: PMC9456061 DOI: 10.3390/ijms231710047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi) is a parasite that affects humans and other mammals. T. cruzi depends on glycolysis as a source of adenosine triphosphate (ATP) supply, and triosephosphate isomerase (TIM) plays a key role in this metabolic pathway. This enzyme is an attractive target for the design of new trypanocidal drugs. In this study, a ligand-based virtual screening (LBVS) from the ZINC15 database using benzimidazole as a scaffold was accomplished. Later, a molecular docking on the interface of T. cruzi TIM (TcTIM) was performed and the compounds were grouped by interaction profiles. Subsequently, a selection of compounds was made based on cost and availability for in vitro evaluation against blood trypomastigotes. Finally, the compounds were analyzed by molecular dynamics simulation, and physicochemical and pharmacokinetic properties were determined using SwissADME software. A total of 1604 molecules were obtained as potential TcTIM inhibitors. BP2 and BP5 showed trypanocidal activity with half-maximal lytic concentration (LC50) values of 155.86 and 226.30 µM, respectively. Molecular docking and molecular dynamics simulation analyzes showed a favorable docking score of BP5 compound on TcTIM. Additionally, BP5 showed a low docking score (-5.9 Kcal/mol) on human TIM compared to the control ligand (-7.2 Kcal/mol). Both compounds BP2 and BP5 showed good physicochemical and pharmacokinetic properties as new anti-T. cruzi agents.
Collapse
Affiliation(s)
- Lenci K Vázquez-Jiménez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Rogelio Gómez-Escobedo
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Domingo Méndez-Álvarez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Isidro Palos
- Unidad Académica Multidisciplinaria Reynosa-Rodhe, Universidad Autónoma de Tamaulipas, Reynosa 88779, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry and SEEMS, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Carlos Gaona-Lopez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyra Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Ciudad de México 07320, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
62
|
Mahgoub MA, Alnaem A, Fadlelmola M, Abo-Idris M, Makki AA, Abdelgadir AA, Alzain AA. Discovery of novel potential inhibitors of TMPRSS2 and Mpro of SARS-CoV-2 using E-pharmacophore and docking-based virtual screening combined with molecular dynamic and quantum mechanics. J Biomol Struct Dyn 2022:1-14. [PMID: 35997154 DOI: 10.1080/07391102.2022.2112080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The pandemic of coronavirus disease is caused by the SARS-CoV-2 which is considered a global health issue. The main protease of COVID 19 (Mpro) has an important role in viral multiplication in the host cell. Inhibiting Mpro is a novel approach to drug discovery and development. Also, transmembrane serine proteases (TMPSS2) facilitate viral activation by cleavage S glycoproteins, thus considered one of the essential host factors for COVID-19 pathogenicity. Computational tools were widely used to reduce time and costs in search of effective inhibitors. A chemical library that contains over two million molecules was virtually screened against TMPRSS2. Also, XP docking for the top hits was screened against (Mpro) to identify dual-target inhibitors. Furthermore, MM-GBSA and predictive ADMET were performed. The top hits were further studied through density functional theory (DFT) calculation and showed good binding to the active sites. Moreover, molecular dynamics (MD) for the top hits were performed which gave information about the stability of the protein-ligand complex during the simulation period. This study has led to the discovery of potential dual-target inhibitors Z751959696, Z751954014, and Z56784282 for COVID-19 with acceptable pharmacokinetic properties. The outcome of this study can participate in the development of novel inhibitors to defeat SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohanad A Mahgoub
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Ahmed Alnaem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Mohammed Fadlelmola
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Mazin Abo-Idris
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | - Alaa A Makki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| | | | - Abdulrahim A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan
| |
Collapse
|
63
|
Karakkadparambil Sankaran S, Nair AS. Molecular dynamics and docking studies on potentially active natural phytochemicals for targeting SARS-CoV-2 main protease. J Biomol Struct Dyn 2022:1-17. [PMID: 35930306 DOI: 10.1080/07391102.2022.2107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In the present study, we screened eighty seven novel phytochemical compounds from four popular herbs, such as, Aegle Marmelos, Coleus Amboinicus, Aerva Lanata and Biophytum Sensitivum and identified the best three for targeting the main protease (Mpro) receptor of SARS-CoV-2. After categorizing all the phytochemicals based upon LibDock scores and hydrogen bonding interactions, the top ranked 26 compounds were further subjected for detailed Molecular dynamics (MD) study. From these screening we identified that Aegelinosides B leads the list with a high LibDock value of 142.50 (binding energy: -8.54 kcal/mol), which is better than several popular reference compounds namely, Tipranavir (LibDock score, 141.50), Saquinavir (125.34), Zopicole (122.9), Pirenepine (122.70), (115.37), Metixene (109.18), Oxiconazole Pimozide (138.00) and Rimonabant (91.88). Detailed analysis for structural stability (RMSD), Cα fluctuations (RMSF), intermolecular hydrogen bond interactions, effect of solvent accessibility (SASA) and compactness (Rg) factors were performed for the best six compounds and it is found that they are very stable and exhibit folding behavior. Apart from the docking and MD tests, through further drug-likeness and toxicity tests, three compounds, such as, Aegelinosides B, Epicatechin, and Feruloyltyramine (LibDock scores, respectively, 142.50, 124.33 and 129.06) can be suggested for fighting SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
64
|
Clerbaux LA, Albertini MC, Amigó N, Beronius A, Bezemer GFG, Coecke S, Daskalopoulos EP, del Giudice G, Greco D, Grenga L, Mantovani A, Muñoz A, Omeragic E, Parissis N, Petrillo M, Saarimäki LA, Soares H, Sullivan K, Landesmann B. Factors Modulating COVID-19: A Mechanistic Understanding Based on the Adverse Outcome Pathway Framework. J Clin Med 2022; 11:4464. [PMID: 35956081 PMCID: PMC9369763 DOI: 10.3390/jcm11154464] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022] Open
Abstract
Addressing factors modulating COVID-19 is crucial since abundant clinical evidence shows that outcomes are markedly heterogeneous between patients. This requires identifying the factors and understanding how they mechanistically influence COVID-19. Here, we describe how eleven selected factors (age, sex, genetic factors, lipid disorders, heart failure, gut dysbiosis, diet, vitamin D deficiency, air pollution and exposure to chemicals) influence COVID-19 by applying the Adverse Outcome Pathway (AOP), which is well-established in regulatory toxicology. This framework aims to model the sequence of events leading to an adverse health outcome. Several linear AOPs depicting pathways from the binding of the virus to ACE2 up to clinical outcomes observed in COVID-19 have been developed and integrated into a network offering a unique overview of the mechanisms underlying the disease. As SARS-CoV-2 infectibility and ACE2 activity are the major starting points and inflammatory response is central in the development of COVID-19, we evaluated how those eleven intrinsic and extrinsic factors modulate those processes impacting clinical outcomes. Applying this AOP-aligned approach enables the identification of current knowledge gaps orientating for further research and allows to propose biomarkers to identify of high-risk patients. This approach also facilitates expertise synergy from different disciplines to address public health issues.
Collapse
Affiliation(s)
- Laure-Alix Clerbaux
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | | | - Núria Amigó
- Biosfer Teslab SL., 43204 Reus, Spain;
- Department of Basic Medical Sciences, Universitat Rovira i Virgili (URV), 23204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Gillina F. G. Bezemer
- Impact Station, 1223 JR Hilversum, The Netherlands;
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Evangelos P. Daskalopoulos
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-30200 Bagnols-sur-Ceze, France;
| | - Alberto Mantovani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium;
| | - Elma Omeragic
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Nikolaos Parissis
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Mauro Petrillo
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| | - Laura A. Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland; (G.d.G.); (D.G.); (L.A.S.)
| | - Helena Soares
- Laboratory of Immunobiology and Pathogenesis, Chronic Diseases Research Centre, Faculdade de Ciências Médicas Medical School, University of Lisbon, 1649-004 Lisbon, Portugal;
| | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC 20016, USA;
| | - Brigitte Landesmann
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (S.C.); (E.P.D.); (N.P.); (M.P.); (B.L.)
| |
Collapse
|
65
|
The Main Protease of SARS-CoV-2 as a Target for Phytochemicals against Coronavirus. PLANTS 2022; 11:plants11141862. [PMID: 35890496 PMCID: PMC9319234 DOI: 10.3390/plants11141862] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
In late December 2019, the first cases of COVID-19 emerged as an outbreak in Wuhan, China that later spread vastly around the world, evolving into a pandemic and one of the worst global health crises in modern history. The causative agent was identified as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although several vaccines were authorized for emergency use, constantly emerging new viral mutants and limited treatment options for COVID-19 drastically highlighted the need for developing an efficient treatment for this disease. One of the most important viral components to target for this purpose is the main protease of the coronavirus (Mpro). This enzyme is an excellent target for a potential drug, as it is essential for viral replication and has no closely related homologues in humans, making its inhibitors unlikely to be toxic. Our review describes a variety of approaches that could be applied in search of potential inhibitors among plant-derived compounds, including virtual in silico screening (a data-driven approach), which could be structure-based or fragment-guided, the classical approach of high-throughput screening, and antiviral activity cell-based assays. We will focus on several classes of compounds reported to be potential inhibitors of Mpro, including phenols and polyphenols, alkaloids, and terpenoids.
Collapse
|
66
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
67
|
Ohishi T, Hishiki T, Baig MS, Rajpoot S, Saqib U, Takasaki T, Hara Y. Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2. PLoS One 2022; 17:e0271112. [PMID: 35830431 PMCID: PMC9278780 DOI: 10.1371/journal.pone.0271112] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
The outbreak of the coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2 triggered a global pandemic where control is needed through therapeutic and preventive interventions. This study aims to identify natural compounds that could affect the fusion between the viral membrane (receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein) and the human cell receptor angiotensin-converting enzyme 2. Accordingly, we performed the enzyme-linked immunosorbent assay-based screening of 10 phytochemicals that already showed numerous positive effects on human health in several epidemiological studies and clinical trials. Among these phytochemicals, epigallocatechin gallate, a polyphenol and a major component of green tea, could effectively inhibit the interaction between the receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 spike protein and the human cell receptor angiotensin-converting enzyme 2. Alternately, in silico molecular docking studies of epigallocatechin gallate and angiotensin-converting enzyme 2 indicated a binding score of −7.8 kcal/mol and identified a hydrogen bond between R393 and angiotensin-converting enzyme 2, which is considered as a key interacting residue involved in binding with the severe acute respiratory syndrome coronavirus 2 spike protein receptor-binding domain, suggesting the possible blocking of interaction between receptor-binding domain and angiotensin-converting enzyme 2. Furthermore, epigallocatechin gallate could attenuate severe acute respiratory syndrome coronavirus 2 infection and replication in Caco-2 cells. These results shed insight into identification and validation of severe acute respiratory syndrome coronavirus 2 entry inhibitors.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu-shi, Shizuoka, Japan
- * E-mail:
| | - Takayuki Hishiki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Mirza S. Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Simrol, Indore, India
| | - Sajjan Rajpoot
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology (IIT), Simrol, Indore, India
| | - Uzma Saqib
- Department of Chemistry, Indian Institute of Technology (IIT), Simrol, Indore, India
| | - Tomohiko Takasaki
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| | - Yukihiko Hara
- Tea Solutions, Hara Office Inc., Sumida-ku, Tokyo, Japan
| |
Collapse
|
68
|
Antimicrobial Alkaloids from Marine-Derived Fungi as Drug Leads versus COVID-19 Infection: A Computational Approach to Explore their Anti-COVID-19 Activity and ADMET Properties. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5403757. [PMID: 35911157 PMCID: PMC9325633 DOI: 10.1155/2022/5403757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022]
Abstract
Therapeutic strategies based upon enzyme inhibition have recently gained higher attention in treating hazardous ailments. Herein, the potential use of seventy-two antimicrobial alkaloids isolated from marine-derived fungi to fight COVID-19 infection via inhibition of SARS-CoV-2 lethal virus was performed using in silico analyses. Molecular modelling was performed to assess their enzyme inhibitory potential on the main protease SARS-CoV-2 MPro, 3-chymotrypsin-like protease SARS-CoV-2 3CLpro, and papain-like protease SARS-CoV-2 PLpro using Discovery Studio 4.5. Validation of the docking experiments was done by determination of RMSD (root mean square deviation) after redocking the superimposition of the cocrystalized ligands. Results showed that gymnastatin Z (72) showed the best fitting score in SARS-CoV-2 MPro and SARS-CoV-2 3CLpr active sites with ∆G equal −34.15 and −34.28 Kcal/mol, respectively. Meanwhile, scalusamide C (62) displayed the highest fitting within SARS-CoV-2 PLpro active sites (∆G = −26.91 Kcal/mol) followed by eutypellazine M (57). ADMET/TOPKAT prediction displayed that eutypellazine M and scalusamide C showed better pharmacokinetic and pharmacodynamic properties. Gymnastatin Z is safer showing better toxicity criteria and higher rat oral LD50 and rat chronic LOAEL (lowest observed adverse effect level). Chemometric analysis using principle component analysis (PCA) based on the binding energies observed for the compounds with respect to the three tested enzymes revealed the clustering of the compounds into different clusters. Eutypellazine M, scalusamide C, and gymnastatin Z appear in one cluster due to their closeness in activity. Thus, these compounds could serve as promising SARS-CoV-2 enzymes inhibitors that could help in alleviation of COVID-19 infection. Further investigations are recommended to confirm the results of molecular modelling.
Collapse
|
69
|
Allosteric Modulation of the Main Protease (MPro) of SARS-CoV-2 by Casticin—Insights from Molecular Dynamics Simulations. CHEMISTRY AFRICA 2022. [PMCID: PMC9261893 DOI: 10.1007/s42250-022-00411-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inhibition of the main protease (Mpro) of SARS-CoV-2 has been suggested to be vital in shutting down viral replication in a host. Most efforts aimed at inhibiting MPro activity have been channeled into competitive inhibition at the active site, but this strategy will require a high inhibitor concentration and impressive inhibitor-MPro binding affinity. Allosteric inhibition can potentially serve as an effective strategy for alleviating these limitations. In this study, the ability of antiviral natural products to inhibit MPro in an allosteric fashion was explored with in silico techniques. Molecular docking revealed a strong interaction between casticin, an antiviral flavonoid, and Mpro at a site distant from the active site. This site, characterized as a distal site, has been shown to have an interdependent dynamic effect with the active site region. Mpro only, Mpro-peptide (binary) and Mpro-peptide-casticin (ternary) complexes were subjected to molecular dynamics simulations for 50 ns to investigate the modulatory activity of casticin binding on Mpro. Molecular dynamic simulations revealed that binding of casticin at the distal site interferes with the proper orientation of the peptide substrate in the oxyanion hole of the active site, and this could lead to a halt or decrease in catalytic activity. This study therefore highlights casticin as a potential allosteric modulator of the SARS-CoV-2 main protease, which could be optimized and developed into a potential lead compound for anti-SARS-CoV-2 chemotherapy.
Collapse
|
70
|
Yilmaz H, Gultekin Subasi B, Celebioglu HU, Ozdal T, Capanoglu E. Chemistry of Protein-Phenolic Interactions Toward the Microbiota and Microbial Infections. Front Nutr 2022; 9:914118. [PMID: 35845785 PMCID: PMC9284217 DOI: 10.3389/fnut.2022.914118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Along with health concerns, interest in plants as food and bioactive phytochemical sources has been increased in the last few decades. Phytochemicals as secondary plant metabolites have been the subject of many studies in different fields. Breakthrough for research interest on this topic is re-juvenilized with rising relevance in this global pandemics' era. The recent COVID-19 pandemic attracted the attention of people to viral infections and molecular mechanisms behind these infections. Thus, the core of the present review is the interaction of plant phytochemicals with proteins as these interactions can affect the functions of co-existing proteins, especially focusing on microbial proteins. To the best of our knowledge, there is no work covering the protein-phenolic interactions based on their effects on microbiota and microbial infections. The present review collects and defines the recent data, representing the interactions of phenolic compounds -primarily flavonoids and phenolic acids- with various proteins and explores how these molecular-level interactions account for the human health directly and/or indirectly, such as increased antioxidant properties and antimicrobial capabilities. Furthermore, it provides an insight about the further biological activities of interacted protein-phenolic structure from an antiviral activity perspective. The research on the protein-phenolic interaction mechanisms is of great value for guiding how to take advantage of synergistic effects of proteins and polyphenolics for future medical and nutritive approaches and related technologies.
Collapse
Affiliation(s)
- Hilal Yilmaz
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Busra Gultekin Subasi
- Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
- Hafik Kamer Ornek MYO, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Tugba Ozdal
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
- *Correspondence: Esra Capanoglu
| |
Collapse
|
71
|
Nath M, Debnath P. Therapeutic role of traditionally used Indian medicinal plants and spices in combating COVID-19 pandemic situation. J Biomol Struct Dyn 2022:1-20. [PMID: 35773779 DOI: 10.1080/07391102.2022.2093793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 is a big challenge and burning issue to the scientific community and doctors worldwide. Globally, COVID-19 has created a health disaster and adversely affects the economic growth. Although some vaccines have already emerged, no therapeutic medication has yet been approved by FDA for the treatment of COVID-19 patients. Traditionally, we have been using different medicinal plants like neem, tulsi, tea, and many spices like garlic, ginger, turmeric, black seed, onion, etc. for the treatment of flu-like diseases. In this paper, we are highlighting the recent research progress in the identification of natural products from the Indian medicinal plants and spices that have potential inhibition properties against SARS-CoV-2. This study will provide an initiative to stimulate further research by providing useful guidance to the medicinal chemists for designing new protease inhibitors effective against SARS-CoV-2 in future.
Collapse
Affiliation(s)
- Moumita Nath
- Department of Botany, Tripura University, Suryamaninagar, Tripura, India
| | - Pradip Debnath
- Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura, India
| |
Collapse
|
72
|
Johnson TO, Adegboyega AE, Ojo OA, Yusuf AJ, Iwaloye O, Ugwah-Oguejiofor CJ, Asomadu RO, Chukwuma IF, Ejembi SA, Ugwuja EI, Alotaibi SS, Albogami SM, Batiha GES, Rajab BS, Conte-Junior CA. A Computational Approach to Elucidate the Interactions of Chemicals From Artemisia annua Targeted Toward SARS-CoV-2 Main Protease Inhibition for COVID-19 Treatment. Front Med (Lausanne) 2022; 9:907583. [PMID: 35783612 PMCID: PMC9240657 DOI: 10.3389/fmed.2022.907583] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/12/2022] [Indexed: 12/23/2022] Open
Abstract
The inhibitory potential of Artemisia annua, a well-known antimalarial herb, against several viruses, including the coronavirus, is increasingly gaining recognition. The plant extract has shown significant activity against both the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the novel SARS-CoV-2 that is currently ravaging the world. It is therefore necessary to evaluate individual chemicals of the plant for inhibitory potential against SARS-CoV-2 for the purpose of designing drugs for the treatment of COVID-19. In this study, we employed computational techniques comprising molecular docking, binding free energy calculations, pharmacophore modeling, induced-fit docking, molecular dynamics simulation, and ADMET predictions to identify potential inhibitors of the SARS-CoV-2 main protease (Mpro) from 168 bioactive compounds of Artemisia annua. Rhamnocitrin, isokaempferide, kaempferol, quercimeritrin, apigenin, penduletin, isoquercitrin, astragalin, luteolin-7-glucoside, and isorhamnetin were ranked the highest, with docking scores ranging from −7.84 to −7.15 kcal/mol compared with the −6.59 kcal/mol demonstrated by the standard ligand. Rhamnocitrin, Isokaempferide, and kaempferol, like the standard ligand, interacted with important active site amino acid residues like HIS 41, CYS 145, ASN 142, and GLU 166, among others. Rhamnocitrin demonstrated good stability in the active site of the protein as there were no significant conformational changes during the simulation process. These compounds also possess acceptable druglike properties and a good safety profile. Hence, they could be considered for experimental studies and further development of drugs against COVID-19.
Collapse
Affiliation(s)
- Titilayo Omolara Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
- Jaris Computational Biology Centre, Jos, Nigeria
- *Correspondence: Titilayo Omolara Johnson
| | - Abayomi Emmanuel Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
- Jaris Computational Biology Centre, Jos, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Group, Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Amina Jega Yusuf
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Chinenye Jane Ugwah-Oguejiofor
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | | | - Ifeoma Felicia Chukwuma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Stephen Adakole Ejembi
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos, Nigeria
| | - Emmanuel Ike Ugwuja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Bodour S. Rajab
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Carlos Adam Conte-Junior
- Technological Development Support Laboratory (LADETEC), Center for Food Analysis (NAL), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
73
|
Khedri M, Maleki R, Dahri M, Sadeghi MM, Rezvantalab S, Santos HA, Shahbazi MA. Engineering of 2D nanomaterials to trap and kill SARS-CoV-2: a new insight from multi-microsecond atomistic simulations. Drug Deliv Transl Res 2022; 12:1408-1422. [PMID: 34476766 PMCID: PMC8413075 DOI: 10.1007/s13346-021-01054-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/23/2022]
Abstract
In late 2019, coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Spike protein is one of the surface proteins of SARS-CoV-2 that is essential for its infectious function. Therefore, it received lots of attention for the preparation of antiviral drugs, vaccines, and diagnostic tools. In the current study, we use computational methods of chemistry and biology to study the interaction between spike protein and its receptor in the body, angiotensin-I-converting enzyme-2 (ACE2). Additionally, the possible interaction of two-dimensional (2D) nanomaterials, including graphene, bismuthene, phosphorene, p-doped graphene, and functionalized p-doped graphene, with spike protein is investigated. The functionalized p-doped graphene nanomaterials were found to interfere with spike protein better than the other tested nanomaterials. In addition, the interaction of the proposed nanomaterials with the main protease (Mpro) of SARS-CoV-2 was studied. Functionalized p-doped graphene nanomaterials showed more capacity to prevent the activity of Mpro. These 2D nanomaterials efficiently reduce the transmissibility and infectivity of SARS-CoV-2 by both the deformation of the spike protein and inhibiting the Mpro. The results suggest the potential use of 2D nanomaterials in a variety of prophylactic approaches, such as masks or surface coatings, and would deserve further studies in the coming years.
Collapse
Affiliation(s)
- Mohammad Khedri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Moein Sadeghi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Rezvantalab
- Renewable Energies Department, Faculty of Chemical Engineering, Urmia University of Technology, 57166-419, Urmia, Iran.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland.
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland.
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran.
| |
Collapse
|
74
|
Rahman MM, Bibi S, Rahaman MS, Rahman F, Islam F, Khan MS, Hasan MM, Parvez A, Hossain MA, Maeesa SK, Islam MR, Najda A, Al-Malky HS, Mohamed HRH, AlGwaiz HIM, Awaji AA, Germoush MO, Kensara OA, Abdel-Daim MM, Saeed M, Kamal MA. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed Pharmacother 2022; 150:113041. [PMID: 35658211 DOI: 10.1016/j.biopha.2022.113041] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lung diseases including chronic obstructive pulmonary disease (COPD), infections like influenza, acute respiratory distress syndrome (ARDS), asthma and pneumonia lung cancer (LC) are common causes of sickness and death worldwide due to their remoteness, cold and harsh climatic conditions, and inaccessible health care facilities. PURPOSE Many drugs have already been proposed for the treatment of lung diseases. Few of them are in clinical trials and have the potential to cure infectious diseases. Plant extracts or herbal products have been extensively used as Traditional Chinese Medicine (TCM) and Indian Ayurveda. Moreover, it has been involved in the inhibition of certain genes/protiens effects to promote regulation of signaling pathways. Natural remedies have been scientifically proven with remarkable bioactivities and are considered a cheap and safe source for lung disease. METHODS This comprehensive review highlighted the literature about traditional plants and their metabolites with their applications for the treatment of lung diseases through experimental models in humans. Natural drugs information and mode of mechanism have been studied through the literature retrieved by Google Scholar, ScienceDirect, SciFinder, Scopus and Medline PubMed resources against lung diseases. RESULTS In vitro, in vivo and computational studies have been explained for natural metabolites derived from plants (like flavonoids, alkaloids, and terpenoids) against different types of lung diseases. Probiotics have also been biologically active therapeutics against cancer, anti-inflammation, antiplatelet, antiviral, and antioxidants associated with lung diseases. CONCLUSION The results of the mentioned natural metabolites repurposed for different lung diseases especially for SARS-CoV-2 should be evaluated more by advance computational applications, experimental models in the biological system, also need to be validated by clinical trials so that we may be able to retrieve potential drugs for most challenging lung diseases especially SARS-CoV-2.
Collapse
Affiliation(s)
- Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, Yunnan, China; Department of Biosciences, Shifa Tameer-e-Milat University, Islamabad, Pakistan.
| | - Md Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Anwar Parvez
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Abid Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Saila Kabir Maeesa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Aeshah A Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Osama A Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O. Box 7067, Makkah 21955, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudia Arabia
| | - Mohammad Amjad Kamal
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh; West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| |
Collapse
|
75
|
Kiriacos CJ, Khedr MR, Tadros M, Youness RA. Prospective Medicinal Plants and Their Phytochemicals Shielding Autoimmune and Cancer Patients Against the SARS-CoV-2 Pandemic: A Special Focus on Matcha. Front Oncol 2022; 12:837408. [PMID: 35664773 PMCID: PMC9157490 DOI: 10.3389/fonc.2022.837408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Being "positive" has been one of the most frustrating words anyone could hear since the end of 2019. This word had been overused globally due to the high infectious nature of SARS-CoV-2. All citizens are at risk of being infected with SARS-CoV-2, but a red warning sign has been directed towards cancer and immune-compromised patients in particular. These groups of patients are not only more prone to catch the virus but also more predisposed to its deadly consequences, something that urged the research community to seek other effective and safe solutions that could be used as a protective measurement for cancer and autoimmune patients during the pandemic. Aim The authors aimed to turn the spotlight on specific herbal remedies that showed potential anticancer activity, immuno-modulatory roles, and promising anti-SARS-CoV-2 actions. Methodology To attain the purpose of the review, the research was conducted at the States National Library of Medicine (PubMed). To search databases, the descriptors used were as follows: "COVID-19"/"SARS-CoV-2", "Herbal Drugs", "Autoimmune diseases", "Rheumatoid Arthritis", "Asthma", "Multiple Sclerosis", "Systemic Lupus Erythematosus" "Nutraceuticals", "Matcha", "EGCG", "Quercetin", "Cancer", and key molecular pathways. Results This manuscript reviewed most of the herbal drugs that showed a triple action concerning anticancer, immunomodulation, and anti-SARS-CoV-2 activities. Special attention was directed towards "matcha" as a novel potential protective and therapeutic agent for cancer and immunocompromised patients during the SARS-CoV-2 pandemic. Conclusion This review sheds light on the pivotal role of "matcha" as a tri-acting herbal tea having a potent antitumorigenic effect, immunomodulatory role, and proven anti-SARS-CoV-2 activity, thus providing a powerful shield for high-risk patients such as cancer and autoimmune patients during the pandemic.
Collapse
Affiliation(s)
- Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monika Rafik Khedr
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Miray Tadros
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
76
|
Rudrapal M, Celik I, Chinnam S, Azam Ansari M, Khan J, Alghamdi S, Almehmadi M, Zothantluanga JH, Khairnar SJ. Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi J Biol Sci 2022; 29:3456-3465. [PMID: 35233172 PMCID: PMC8873046 DOI: 10.1016/j.sjbs.2022.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recognized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study, we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations, and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on binding affinity, dynamics behavior, and binding free energies, the present study identifies pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-4'-neohesperidoside as promising inhibitors of SARS-CoV-2 Mpro and PLpro, respectively.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru 560054, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Um Al-Qura University, Makkah 24382, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shubham J. Khairnar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Nasik 422003, Maharashtra, India
| |
Collapse
|
77
|
Maiti S, Banerjee A, Kanwar M. Effects of theaflavin-gallate in-silico binding with different proteins of SARS-CoV-2 and host inflammation and vasoregulations referring an experimental rat-lung injury. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100237. [PMID: 35403090 PMCID: PMC8820952 DOI: 10.1016/j.phyplu.2022.100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Background SARS-CoV-2 claimed 5,209,104 lives, infected 260,997,910 individuals, globally. Infection is caused due to exposure or susceptibility; deaths occur due to age,comorbidity,higher-viral-load, immuno-suppression, inflammation, and multi-organ failure. Theaflavin-gallate, the major black tea component, showed previous evidence to inhibit HIV-1. Purpose As theaflavin-gallate prevents experimental rat-lung injury, the study of inhibitory effects of theaflavin-gallate was done, on SARS-CoV-2proteins and various host proteins related to some adverse effects in COVID-19 patients. Study Design Currently, some prospective phytochemical, black-tea (Camellia-sinensis) extract (BTE) was initially tested in vivo in strong oxidant-mutagen arsenic-induced model rat lung injury similar to that of COVID-19 manifestations like severe inflammation, oxidative stress, lung tissue degenerations, and apoptotic death. In silico, extensive bioinformatics and molecular docking experiments were performed on all catechin or theaflavin derivatives of C. sinensis, and finally theaflavin-3'-O-gallate (TFMG) were screened for blocking or inactivation of several proteins of SARS CoV-2 and host adversely-acting proteins or factors. Methods In vivo experiments in DNA stability (ladder, comet assay), free radicals attack (malondialdehyde; MDA, superoxide dismutase SOD, catalase gel-zymogram assay), extra cellular matrix damage (matrix metalloprotease; MMP2and9 zymogram assay) and inflammation (TNF-α, ELISA). In silico experiments- molecular docking by AutoDock-Patchdock analysis, Surface Topology Calculation by CASTp, Grid-value calculation, and Ramachandran Plot study. Results The BTE showed strong protection of lung DNA and cell-matrix by decreasing MMPs, TNF-α, and free radicals, the same factors affecting COVID-19 patients. In silico data suggest that TFMG significantly blocked the entry, exit, and amino acids at catalytic active-site of more than thirty proteins including viral (nsp1,nsp2,Mainpro,∼-9.0 kcal/mol) and host inflammatory, oxidants, apoptotic, vaso-destabilizer molecules (FAS, CD40R, BCL2, TLR2, ∼ -10 and ACE1or2 ∼ -9.0 and AT1or2∼ -7.5 kcal/mol and more). When the binding energy of TFMG ranged from -7 to -11.7 kcal/mol(average -9.0) the same for hydroxy‑Chloroquine ranged (-2.5 to -7 average -4.5) and dexamethasone (-3.0 to -6.0, average -4.0 kcal/mol). Conclusions TFMG has some novel physicochemical or structural properties like (ACE values of binding to all tested proteins, -300 to -625), (for TFMG H-bond acceptor or donor: 15/10, for TFDG 20/13). Their topological-polar-surface-area (264Ų and 351Ų) and travel depth/height; 17.0/9.6 Å and 15.4/11.3 Å, respectively) were more potent than other compounds. Conclusively, the efficacy of TFMG may be further verified.
Collapse
Affiliation(s)
- Smarajit Maiti
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
- Agricure Biotech Research Society, Epidemiology and Human Health Division, Midnapore 721101, India
| | - Amrita Banerjee
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| | - Mehak Kanwar
- Departmentof Biochemistry and Biotechnology, Cell and Molecular Therapeutics Laboratory Oriental Institute of Science and Technology, Midnapore, India
| |
Collapse
|
78
|
Generation of wild-type rat Glucocerebrosidase homology modeling: Identification of putative interactions site and mechanism for chaperone using combined in-silico and in-vitro studies. Bioorg Chem 2022; 126:105871. [DOI: 10.1016/j.bioorg.2022.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
|
79
|
Prasetyo WE, Purnomo H, Sadrini M, Wibowo FR, Firdaus M, Kusumaningsih T. Identification of potential bioactive natural compounds from Indonesian medicinal plants against 3-chymotrypsin-like protease (3CL pro) of SARS-CoV-2: molecular docking, ADME/T, molecular dynamic simulations, and DFT analysis. J Biomol Struct Dyn 2022:1-18. [DOI: 10.1080/07391102.2022.2068071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wahyu Eko Prasetyo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Heri Purnomo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Miracle Sadrini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Fajar Rakhman Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Triana Kusumaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| |
Collapse
|
80
|
Ghosh R, Badavath VN, Chowdhuri S, Sen A. Identification of Alkaloids from Terminalia chebula as Potent SARS- CoV-2 Main Protease Inhibitors: An In Silico Perspective. ChemistrySelect 2022; 7:e202200055. [PMID: 35600910 PMCID: PMC9111116 DOI: 10.1002/slct.202200055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022]
Abstract
Natural compounds in medicinal plants are best remedies for different diseases and are important to develop new drugs. This work was dedicated to understand the role of different natural compounds of Terminalia Chebula, a well-known herbal plant, in the treating of Covid 19. In this article, we have investigated interactions of such natural compounds from Terminalia Chebula with the main protease (Mpro) of the SARS-CoV-2, which is a key component for cleavage of viral polyprotein, and an important target for the development of drugs towards COVID-19. We have performed molecular docking study on 22 different molecules of Terminalia Chebula and proposed that 7 of the natural compounds (triterpenoids and sterols) interacts with a comparable or stronger interactions than the inhibitor N3. Molecular dynamics simulations (100 ns) revealed that 7 Mpro-Terminalia Chebula complexes are stable, conformationally less fluctuated, slightly less compact, and marginally expanded than ligand-free conformation of Mpro. The intermolecular H-bonding and detailed MM/PBSA and MM-GBSA analysis showed Daucosterol interaction to be the most strong, whereas comparable interactions were observed for Arjunetin, Maslinic acid, and Bellericoside. Our study suggested that these natural compounds can act as potent Mpro inhibitors for SARS-CoV-2, and may evolve as promising anti-COVID-19 drugs in the near future.
Collapse
Affiliation(s)
- Rajesh Ghosh
- School of Basic SciencesIndian Institute of Technology BhubaneswarBhubaneswarIndia
| | | | - Snehasis Chowdhuri
- School of Basic SciencesIndian Institute of Technology BhubaneswarBhubaneswarIndia
| | - Anik Sen
- Department of ChemistryInstitute of ScienceGITAM (Deemed to be University)Visakhapatnam530045Andhra PradeshIndia
| |
Collapse
|
81
|
Dagur P, Rakshit G, Sheikh M, Biswas A, Jha P, Al-Khafaji K, Ghosh M. Target prediction, computational identification, and network-based pharmacology of most potential phytoconstituent in medicinal leaves of Justicia adhatoda against SARS-CoV-2. J Biomol Struct Dyn 2022; 41:3926-3942. [PMID: 35412437 DOI: 10.1080/07391102.2022.2059010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current global epidemic of the novel coronavirus (SARS-CoV-2) has been labeled a global public health emergency since it is causing substantial morbidity and mortality on daily basis. We need to identify an effective medication against SARS-CoV-2 because of its fast dissemination and re-emergence. This research is being carried out as part of a larger strategy to identify the most promising therapeutic targets using protein-protein interactions analysis. Mpro has been identified as one of the most important therapeutic targets. In this study, we did in-silico investigations to identify the target and further molecular docking, ADME, and toxicity prediction were done to assess the potential phyto-active antiviral compounds from Justicia adhatoda as powerful inhibitors of the Mpro of SARS-COV-2. We also investigated the capacity of these molecules to create stable interactions with the Mpro using 100 ns molecular dynamics simulation. The highest scoring compounds (taraxerol, friedelanol, anisotine, and adhatodine) were also found to exhibit excellent solubility and pharmacodynamic characteristics. We employed MMPBSA simulations to assess the stability of docked molecules in the Mpro binding site, revealing that the above compounds form the most stable complex with the Mpro. Network-based Pharmacology suggested that the selected compounds have various modes of action against SARS-CoV-2 that include immunoreaction enrichment, inflammatory reaction suppression, and more. These findings point to a promising class of drugs that should be investigated further in biochemical and cell-based studies to see their effectiveness against nCOVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pankaj Dagur
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Murtuja Sheikh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Parineeta Jha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Khattab Al-Khafaji
- Department of Medical Laboratory Technology, Al-Nisour University College, Baghdad, Iraq
| | - Manik Ghosh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| |
Collapse
|
82
|
Medoro C, Cianciabella M, Magli M, Daniele GM, Lippi N, Gatti E, Volpe R, Longo V, Nazzaro F, Mattoni S, Tenaglia F, Predieri S. Food Involvement, Food Choices, and Bioactive Compounds Consumption Correlation during COVID-19 Pandemic: How Food Engagement Influences Consumers' Food Habits. Nutrients 2022; 14:1490. [PMID: 35406102 PMCID: PMC9003202 DOI: 10.3390/nu14071490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
The containment measures due to the COVID-19 pandemic affected food-related activities, influencing dietary behavior, food habits, and dietary choices. This study aimed to compare the relationship between food involvement and dietary choices before and during the pandemic, investigating the role played by food in dietary habits. Responses given by 2773 Italian consumers to an online survey were studied through the Food Involvement Scale (FIS) and correlated to eating habits. FIS scores were then used to explain the importance given to food in circumstances related to well-being, health, and protection against COVID-19 and used to study the relationship between FIS and bioactive compound knowledge, use, and efficacy against COVID-19. The consumers more involved in food issues recognized the importance of food in circumstances related to well-being, health, and protection against COVID-19 and improved their diet during the pandemic. Moreover, consumers who gave more importance to food also revealed higher attention to the use of healthy substances, such as bioactive compounds, considering them effective against COVID-19. These results showed that food experiencing and involvement could be important elements to promote healthy dietary habits that are essential to maintain physical and mental health during emergency periods such as the COVID-19 pandemic.
Collapse
Affiliation(s)
- Chiara Medoro
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Marta Cianciabella
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Massimiliano Magli
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Giulia Maria Daniele
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Nico Lippi
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Edoardo Gatti
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| | - Roberto Volpe
- Health and Safety Unit (SPP), National Research Council (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy;
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy;
| | - Filomena Nazzaro
- Institute of Food Sciences, CNR-ISA, Via Roma 64, 83100 Avellino, Italy;
| | - Silvia Mattoni
- Public Relations Unit, National Research Council (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy;
| | - Federica Tenaglia
- Department of Biology, Agriculture and Food Sciences-DiSBA, National Research Council (CNR), Piazzale Aldo Moro, 7, 00185 Roma, Italy;
| | - Stefano Predieri
- Institute for BioEconomy, National Research Council (CNR), Via Piero Gobetti 101, 40129 Bologna, Italy; (C.M.); (M.M.); (G.M.D.); (N.L.); (E.G.); (S.P.)
| |
Collapse
|
83
|
Cheung LK, Yada RY. Predicting global diet-disease relationships at the atomic level: a COVID-19 case study. Curr Opin Food Sci 2022; 44:100804. [PMID: 35004187 PMCID: PMC8721929 DOI: 10.1016/j.cofs.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few months, numerous studies harnessed in silico methods such as molecular docking to evaluate food compounds for inhibitory activity against coronavirus infection and replication. These studies capitalize on the efficiency of computational methods to quickly guide subsequent research and examine diet-disease relationships, and their sudden widespread utility may signal new opportunities for future antiviral and bioactive food research. Using Coronavirus Disease 2019 (COVID-19) research as a case study, we herein provide an overview of findings from studies using molecular docking to study food compounds as potential inhibitors of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), explore considerations for the critical interpretation of study findings, and discuss how these studies help shape larger conversations of diet and disease.
Collapse
Affiliation(s)
- Lennie Ky Cheung
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
84
|
Patnin S, Makarasen A, Vijitphan P, Baicharoen A, Chaivisuthangkura A, Kuno M, Techasakul S. Computational Screening of Phenylamino-Phenoxy-Quinoline Derivatives against the Main Protease of SARS-CoV-2 Using Molecular Docking and the ONIOM Method. Molecules 2022; 27:1793. [PMID: 35335157 PMCID: PMC8955101 DOI: 10.3390/molecules27061793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/02/2023] Open
Abstract
In the search for new anti-HIV-1 agents, two forms of phenylamino-phenoxy-quinoline derivatives have been synthesized, namely, 2-phenylamino-4-phenoxy-quinoline and 6-phenylamino-4-phenoxy-quinoline. In this study, the binding interactions of phenylamino-phenoxy-quinoline derivatives and six commercially available drugs (hydroxychloroquine, ritonavir, remdesivir, S-217622, N3, and PF-07321332) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) were investigated using molecular docking and the ONIOM method. The molecular docking showed the hydrogen bonding and hydrophobic interactions of all the compounds in the pocket of SARS-CoV-2 main protease (Mpro), which plays an important role for the division and proliferation of the virus into the cell. The binding free energy values between the ligands and Mpro ranged from -7.06 to -10.61 kcal/mol. The molecular docking and ONIOM results suggested that 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline and 4-(4'-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline have low binding energy values and appropriate molecular properties; moreover, both compounds could bind to Mpro via hydrogen bonding and Pi-Pi stacking interactions with amino acid residues, namely, HIS41, GLU166, and GLN192. These amino acids are related to the proteolytic cleavage process of the catalytic triad mechanisms. Therefore, this study provides important information for further studies on synthetic quinoline derivatives as antiviral candidates in the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Suwicha Patnin
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| | - Arthit Makarasen
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| | - Pongsit Vijitphan
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| | - Apisara Baicharoen
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| | - Apinya Chaivisuthangkura
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand; (A.C.); (M.K.)
| | - Mayuso Kuno
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Wattana, Bangkok 10110, Thailand; (A.C.); (M.K.)
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Department of Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand; (S.P.); (P.V.); (A.B.)
| |
Collapse
|
85
|
Bhattacharya K, Bordoloi R, Chanu NR, Kalita R, Sahariah BJ, Bhattacharjee A. In silico discovery of 3 novel quercetin derivatives against papain-like protease, spike protein, and 3C-like protease of SARS-CoV-2. J Genet Eng Biotechnol 2022; 20:43. [PMID: 35262828 PMCID: PMC8905286 DOI: 10.1186/s43141-022-00314-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND The derivatives of quercetin is known for their immune-modulating antiviral, anti-blood clotting, antioxidant, and also for its anti-inflammatory efficacy. The current study was therefore conducted to examine the noted novel derivatives of quercetin present in plant sources as an immune modulator and as an antiviral molecule in the COVID-19 disease and also to study their affinity of binding with potential three targets reported for coronavirus, i.e., papain-like protease, spike protein receptor-binding domain, and 3C-like protease. Based on the high-positive drug-likeness score, the reported derivatives of quercetin obtained from an open-source database were further filtered. Compounds with positive and high drug-likeness scores were further predicted for their potential targets using DIGEP-Pred software, and STRING was used to evaluate the interaction between modulated proteins. The associated pathways were recorded based on the Kyoto Encyclopedia of Genes and Genomes pathway database. Docking was performed finally using PyRx having AutoDock Vina to identify the efficacy of binding between quercetin derivatives with papain-like protease, spike protein receptor-binding domain, and 3C-like protease. The ligand that scored minimum binding energy was chosen to visualize the interaction between protein and ligand. Normal mode analysis in internal coordinates was done with normal mode analysis to evaluate the physical movement and stability of the best protein-ligand complexes using the iMODS server. RESULTS Forty bioactive compounds with the highest positive drug-likeness scores were identified. These 40 bioactives were responsible for regulating different pathways associated with antiviral activity and modulation of immunity. Finally, three lead molecules were identified based on the molecular docking and dynamics simulation studies with the highest anti-COVID-19 and immunomodulatory potentials. Standard antiviral drug remdesivir on docking showed a binding affinity of - 5.8 kcal/mol with PLpro, - 6.4 kcal/mol with 3CLpro, and - 8.6 kcal/mol with spike protein receptor-binding domain of SARS-CoV-2, the discovered hit molecules quercetin 3-O-arabinoside 7-O-rhamnoside showed binding affinity of - 8.2 kcal/mol with PLpro, whereas quercetin 3-[rhamnosyl-(1- > 2)-alpha-L-arabinopyranoside] and quercetin-3-neohesperidoside-7-rhamnoside was predicted to have a binding affinity of - 8.5 kcal/mol and - 8.8 kcal/mol with spike protein receptor-binding domain and 3CLpro respectively CONCLUSION: Docking study revealed quercetin 3-O-arabinoside 7-O-rhamnoside to possess the highest binding affinity with papain-like protease, quercetin 3-[rhamnosyl-(1- > 2)-alpha-L-arabinopyranoside] with spike protein receptor-binding domain, and quercetin-3-neohesperidoside-7-rhamnoside with 3C-like protease and all the protein-ligand complexes were found to be stable after performing the normal mode analysis of the complexes in internal coordinates.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, Assam, 781125, India.
| | - Ripunjoy Bordoloi
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, Assam, 781125, India
- Assam Science and Technology University, Guwahati, Assam, India
| | | | - Ramen Kalita
- NETES Institute of Pharmaceutical Science, Mirza, Guwahati, Assam, 781125, India
| | | | | |
Collapse
|
86
|
Song X, Jiang Z, Li J, Lu X, Han Q, Zhu K, Li H, Ling Y, Duan H. Synthesis, antifungal activity, and molecular dynamics study of novel geranyl aromatic sulfonamide compounds as potential complex III inhibitors. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
87
|
Pan SY, Nie Q, Tai HC, Song XL, Tong YF, Zhang LJF, Wu XW, Lin ZH, Zhang YY, Ye DY, Zhang Y, Wang XY, Zhu PL, Chu ZS, Yu ZL, Liang C. Tea and tea drinking: China's outstanding contributions to the mankind. Chin Med 2022; 17:27. [PMID: 35193642 PMCID: PMC8861626 DOI: 10.1186/s13020-022-00571-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Tea trees originated in southwest China 60 million or 70 million years ago. Written records show that Chinese ancestors had begun drinking tea over 3000 years ago. Nowadays, with the aging of populations worldwide and more people suffering from non-communicable diseases or poor health, tea beverages have become an inexpensive and fine complementary and alternative medicine (CAM) therapy. At present, there are 3 billion people who like to drink tea in the world, but few of them actually understand tea, especially on its development process and the spiritual and cultural connotations. Methods We searched PubMed, Google Scholar, Web of Science, CNKI, and other relevant platforms with the key word “tea”, and reviewed and analyzed tea-related literatures and pictures in the past 40 years about tea’s history, culture, customs, experimental studies, and markets. Results China is the hometown of tea, tea trees, tea drinking, and tea culture. China has the oldest wild and planted tea trees in the world, fossil of a tea leaf from 35,400,000 years ago, and abundant tea-related literatures and art works. Moreover, tea may be the first Chinese herbal medicine (CHM) used by Chinese people in ancient times. Tea drinking has many benefits to our physical health via its antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, and anti-obesity activities. At the moment, COVID-19 is wreaking havoc across the globe and causing severe damages to people’s health and lives. Tea has anti-COVID-19 functions via the enhancement of the innate immune response and inhibition of viral growth. Besides, drinking tea can allow people to acquire a peaceful, relaxed, refreshed and cheerful enjoyment, and even longevity. According to the meridian theory of traditional Chinese medicine, different kinds of tea can activate different meridian systems in the human body. At present, black tea (fermented tea) and green tea (non-fermented tea) are the most popular in the world. Black tea accounts for over 90% of all teas sold in western countries. The world’s top-grade black teas include Qi Men black in China, Darjeeling and Assam black tea in India, and Uva black tea in Sri Lanka. However, all top ten famous green teas in the world are produced in China, and Xi Hu Long Jing tea is the most famous among all green teas. More than 700 different kinds of components and 27 mineral elements can be found in tea. Tea polyphenols and theaflavin/thearubigins are considered to be the major bioactive components of black tea and green tea, respectively. Overly strong or overheated tea liquid should be avoided when drinking tea. Conclusions Today, CAM provides an array of treatment modalities for the health promotion in both developed and developing countries all over the world. Tea drinking, a simple herb-based CAM therapy, has become a popular man-made non-alcoholic beverage widely consumed worldwide, and it can improve the growth of economy as well. Tea can improve our physical and mental health and promote the harmonious development of society through its chemical and cultural elements.
Collapse
Affiliation(s)
- Si-Yuan Pan
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China. .,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| | - Qu Nie
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Hai-Chuan Tai
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Xue-Lan Song
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yu-Fan Tong
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Long-Jian-Feng Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Xue-Wei Wu
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Zhao-Heng Lin
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yong-Yu Zhang
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Du-Yun Ye
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, Yunnan, China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pei-Li Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhu-Sheng Chu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China. .,EnKang Pharmaceuticals (Guangzhou) Ltd, Guangzhou, China.
| |
Collapse
|
88
|
Souid I, Korchef A, Souid S. In silico evaluation of Vitis amurensis Rupr. polyphenol compounds for their inhibition potency against CoVID-19 main enzymes Mpro and RdRp. Saudi Pharm J 2022; 30:570-584. [PMID: 35250347 PMCID: PMC8883852 DOI: 10.1016/j.jsps.2022.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/21/2022] [Indexed: 02/07/2023] Open
Abstract
The rapid transmission of the pneumonia (COVID-19) emerged as an entire worldwide health concern and it was declared as pandemic by the World Health Organization (WHO) as a consequence of the increasing reported infections number. COVID-19 disease is caused by the novel SARS-CoV-2 virus, and unfortunatly no drugs are currently approved against this desease. Accordingly, it is of outmost importance to review the possible therapeutic effects of naturally-occuring compounds that showed approved antiviral activities. The molecular docking approach offers a rapid prediction of a possible inhibition of the main enzymes Mpro and RdRp that play crucial role in the SARS-CoV-2 replication and transcription. In the present work, we review the anti-viral activities of polyphenol compounds (phenolic acids, flavonoids and stilbene) derived from the traditional Chinese medicinal Vitis amurensis. Recent molecular docking studies reported the possible binding of these polyphenols on SARS-CoV-2 enzymes Mpro and RdRp active sites and showed interesting inhibitory effects. This antiviral activity was explained by the structure-activity relationships of the studied compounds. Also, pharmacokinetic analysis of the studied molecules is simulated in the present work. Among the studied polyphenol compounds, only five, namely caffeic acid, ferulic acid, quercetin, naringenin and catechin have drug-likeness characteristics. These five polyphenols derived from Vitis amurensis are promising drug candidates for the COVID-19 treatment.
Collapse
|
89
|
Identification of Potential Inhibitors of SARS-CoV-2 Main Protease from Allium roseum L. Molecular Docking Study. CHEMISTRY AFRICA 2022. [PMCID: PMC8607792 DOI: 10.1007/s42250-021-00296-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
90
|
Kankariya RA, Chaudhari AB, Dandi ND. Inhibitory efficacy of 2, 4-diacetylphloroglucinol against SARS-COV-2 proteins: in silico study. Biologia (Bratisl) 2022; 77:815-828. [PMID: 35125499 PMCID: PMC8800849 DOI: 10.1007/s11756-021-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Raksha A. Kankariya
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS 425001 India
| | - Ambalal B. Chaudhari
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS 425001 India
| | - Navin D. Dandi
- School of Life Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, MS 425001 India
| |
Collapse
|
91
|
Hong M, Cheng L, Liu Y, Wu Z, Zhang P, Zhang X. A Natural Plant Source-Tea Polyphenols, a Potential Drug for Improving Immunity and Combating Virus. Nutrients 2022; 14:nu14030550. [PMID: 35276917 PMCID: PMC8839699 DOI: 10.3390/nu14030550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is still in a global epidemic, which has profoundly affected people’s lives. Tea polyphenols (TP) has been reported to enhance the immunity of the body to COVID-19 and other viral infectious diseases. The inhibitory effect of TP on COVID-19 may be achieved through a series of mechanisms, including the inhibition of multiple viral targets, the blocking of cellular receptors, and the activation of transcription factors. Emerging evidence shows gastrointestinal tract is closely related to respiratory tract, therefore, the relationship between the state of the gut–lung axis microflora and immune homeostasis of the host needs further research. This article summarized that TP can improve the disorder of flora, reduce the occurrence of cytokine storm, improve immunity, and prevent COVID-19 infection. TP may be regarded as a potential and valuable source for the design of new antiviral drugs with high efficiency and low toxicity.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
| | - Lu Cheng
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
- Correspondence: (P.Z.); (X.Z.)
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (M.H.); (Y.L.); (Z.W.)
- Correspondence: (P.Z.); (X.Z.)
| |
Collapse
|
92
|
Zhang Y, Cai P, Cheng G, Zhang Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat Prod Commun 2022. [DOI: 10.1177/1934578x211069721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phenolic compounds are the most abundant secondary metabolites in plants, showing a wide range of distinct biological activities, have received more and more attention in recent years. This review aims to gather and systematize available information on the phenolic compounds from plants by discussing different types of phenolic compounds, extraction, and analysis methods, with an emphasis on their potential biological activities. The research direction and problems that should be paid attention to in the future are also put forward to provide some references for the further study of phenolic compounds.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Ping Cai
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
| | - Guanghui Cheng
- Chongqing Agricultural Products Quality & Safety Center, Chongqing, China
| | - Yongqiang Zhang
- College of Plant Protection, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Chongqing, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, China
| |
Collapse
|
93
|
Kılınç N, Açar M, Tuncay S, Karasakal ÖF. Potential Inhibitors Identification of Severe Acute Respiratory Syndrome-Related Coronavirus 2 (SARS-CoV-2) Angiotensin-Converting Enzyme 2 and Main Protease from Anatolian Traditional Plants. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180819666211230123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The 2019 novel coronavirus disease (COVID-19) has caused a global health catastrophe by affecting the whole human population around the globe. Unfortunately, there is no specific medication or treatment for COVID-19 currently available.
Objective:
It’s extremely necessary to apply effective drug treatment in order to end the pandemic period and return daily life to normal. In terms of the urgency of treatment, rather than focusing on the discovery of novel compounds, it is critical to explore the effects of existing herbal agents with proven antiviral properties on the virus.
Method:
Molecular docking studies were carried out with three different methods, Glide extra precision (XP) docking, Induced Fit docking (IFD), and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA), to determine the potential effects of 58 phytochemicals in the content of Rosmarinus officinalis, Thymbra spicata, Satureja thymbra, and Stachys lavandulifolia plants -have antiviral and antibacterial effects- against Main Protease (Mpro) and Angiotensin Converting Enzyme 2 (ACE2) enzymes.
Results:
7 compounds stand out among all molecules by showing very high binding affinities. According to our findings, the substances chlorogenic acid, rosmarinic acid, and rosmanol exhibit extremely significant binding affinities for both Mpro and ACE2 enzymes. Furthermore, it was discovered that carnosic acid and alpha-cadinol showed potential anti-Mpro activity, whereas caffeic acid and carvacrol had promising anti-ACE2 activity.
Conclusion:
Chlorogenic acid, rosmarinic acid, rosmanol, carnosic acid, alpha-cadinol, caffeic acid, and carvacrol compounds have been shown to be powerful anti-SARS-COV-2 agents in docking simulations against Mpro and ACE2 enzymes, as well as ADME investigations.
Collapse
Affiliation(s)
- Namık Kılınç
- Department of Medical Services and Techniques, Vocational School of Health Service, Igdir University, Igdir, Turkey
| | - Mikail Açar
- Department of Plant and Animal Production, Tunceli Vocational School, Munzur University, Tunceli, Turkey
| | - Salih Tuncay
- Department of Food Technology, Vocational School of Health Service, Uskudar University, Istanbul, Turkey
| | - Ömer Faruk Karasakal
- Department of Medical Laboratory Techniques, Vocational School of Health Service, Uskudar University, Istanbul, Turkey
| |
Collapse
|
94
|
Lochab A, Thareja R, Gadre SD, Saxena R. Potential Protein and Enzyme Targets for In‐silico Development and Repurposing of Drug Against Coronaviruses. ChemistrySelect 2021. [DOI: 10.1002/slct.202103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amit Lochab
- Department of Chemistry Kirori Mal College University of Delhi Delhi India
| | - Rakhi Thareja
- Department of Chemistry St. Stephens College University of Delhi Delhi India
| | - Sangeeta D. Gadre
- Department of Physics Kirori Mal College University of Delhi Delhi India
| | - Reena Saxena
- Department of Chemistry Kirori Mal College University of Delhi Delhi India
| |
Collapse
|
95
|
Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, Janmeda P, Jain D, Panneerselvam P, Shrivastav R, Pant K, Das Mohapatra PK. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PL pro and M pro/ 3CL pro: molecular docking and simulation studies of three pertinent medicinal plant natural components. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100038. [PMID: 34870149 PMCID: PMC8178537 DOI: 10.1016/j.crphar.2021.100038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - coronavirus disease 2019 (COVID-19) has raised a severe global public health issue and creates a pandemic situation. The present work aims to study the molecular -docking and dynamic of three pertinent medicinal plants i.e. Eurycoma harmandiana, Sophora flavescens and Andrographis paniculata phyto-compounds against SARS-COV-2 papain-like protease (PLpro) and main protease (Mpro)/3-chymotrypsin-like protease (3CLpro). The interaction of protein targets and ligands was performed through AutoDock-Vina visualized using PyMOL and BIOVIA-Discovery Studio 2020. Molecular docking with canthin-6-one 9-O-beta-glucopyranoside showed highest binding affinity and less binding energy with both PLpro and Mpro/3CLpro proteases and was subjected to molecular dynamic (MD) simulations for a period of 100ns. Stability of the protein-ligand complexes was evaluated by different analyses. The binding free energy calculated using MM-PBSA and the results showed that the molecule must have stable interactions with the protein binding site. ADMET analysis of the compounds suggested that it is having drug-like properties like high gastrointestinal (GI) absorption, no blood-brain barrier permeability and high lipophilicity. The outcome revealed that canthin-6-one 9-O-beta-glucopyranoside can be used as a potential natural drug against COVID-19 protease.
Collapse
Affiliation(s)
- Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, Uttar Dinajpur, West Bengal, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, 757003, Odisha, India
| | - Priya Chaudhary
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, 304022, Rajasthan, India
| | - Anshul Kamboj
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, 757003, Odisha, India
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, 304022, Rajasthan, India
| | - Divya Jain
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, 304022, Rajasthan, India
| | - Periyasamy Panneerselvam
- Microbiology, Crop Production Division, ICAR- National Rice Research Institute, Cuttack, 753 006, Odisha, India
| | - Rakesh Shrivastav
- Department of Applied Sciences, NGF College of Engineering and Technology, Palwal, Haryana, India
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248 002, Uttarakhand, India
| | - Pradeep K Das Mohapatra
- Department of Microbiology, Raiganj University, Raiganj, 733 134, Uttar Dinajpur, West Bengal, India.,PAKB Environment Conservation Centre, Raiganj University, Raiganj, 733 134, Uttar Dinajpur, West Bengal, India
| |
Collapse
|
96
|
Kumar S, Kumar P, Kodidela S, Duhart B, Cernasev A, Nookala A, Kumar A, Singh UP, Bissler J. Racial Health Disparity and COVID-19. J Neuroimmune Pharmacol 2021; 16:729-742. [PMID: 34499313 PMCID: PMC8426163 DOI: 10.1007/s11481-021-10014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
The infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and resultant coronavirus diseases-19 (COVID-19) disproportionally affects minorities, especially African Americans (AA) compared to the Caucasian population. The AA population is disproportionally affected by COVID-19, in part, because they have high prevalence of underlying conditions such as obesity, diabetes, and hypertension, which are known to exacerbate not only kidney diseases, but also COVID-19. Further, a decreased adherence to COVID-19 guidelines among tobacco smokers could result in increased infection, inflammation, reduced immune response, and lungs damage, leading to more severe form of COVID-19. As a result of high prevalence of underlying conditions that cause kidney diseases in the AA population coupled with tobacco smoking make the AA population vulnerable to severe form of both COVID-19 and kidney diseases. In this review, we describe how tobacco smoking interact with SARS-CoV-2 and exacerbates SARS-CoV-2-induced kidney diseases including renal failure, especially in the AA population. We also explore the role of extracellular vesicles (EVs) in COVID-19 patients who smoke tobacco. EVs, which play important role in tobacco-mediated pathogenesis in infectious diseases, have also shown to be important in COVID-19 pathogenesis and organ injuries including kidney. Further, we explore the potential role of EVs in biomarker discovery and therapeutics, which may help to develop early diagnosis and treatment of tobacco-induced renal injury in COVID-19 patients, respectively.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - Prashant Kumar
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Benjamin Duhart
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Alina Cernasev
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Sciences Center, Nashville, TN, USA
| | | | - Asit Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - John Bissler
- Department of Pediatrics, University of Tennessee Health Science Center and Le Bonheur Children's Hospital, Memphis, TN, USA.
| |
Collapse
|
97
|
Islam SS, Midya S, Sinha S, Saadi SMAI. Natural medicinal plant products as an immune-boosters: A possible role to lessen the impact of Covid-19. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2021; 4:100105. [PMID: 38620656 PMCID: PMC8096520 DOI: 10.1016/j.cscee.2021.100105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 05/27/2023]
Abstract
Transmissible Covid-19, caused by novel corona virus since last of 2019 has outspread widely until now. Where, India was the second most affected country and 3rd in mortality rate. In world ancient history, medicinal plants were played a crucial role to cure several diseases. In present study, we show some novel natural medicinal plant metabolites as the potential inhibitors against papain-like protease (PLpro), main protease (Mpro) and RNA-dependent RNA polymerase (RdRp), transmembrane proteinase Serine 2 (TMPRSS2) and angiotensin converting enzyme-2 (ACE-2) of Covid-19. Plant metabolites were having been proven to inhibit SARS-CoVs, which also actively walkable against Covid-19.
Collapse
Key Words
- ACE-2, angiotensin converting enzyme-2
- CSG, Coronavirus Study Group
- Covid-19
- Covid-19, corona virus disease-2019
- E, small envelope protein
- IC, Inhibitory concentration
- ICTV, International Committee on Taxonomy of Viruses
- M, matrix protein
- Medicinal plant
- Mpro, main protease
- N, nucleocapsid protein
- PLpro, papain-like protease
- Plant metabolites
- RBD, receptor binding domain
- RdRp, RNA-dependent RNA polymerase
- S, spike protein
- SARS-CoV
- ST, swine testicular
- TMPRSS2, transmembrane proteinase Serine 2
- WHO, world health organization
- nsps, non-structural proteins
Collapse
Affiliation(s)
- Sk Saruk Islam
- Department of Plant Pathology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, 741235, West Bengal, India
| | - Sujoy Midya
- Department of Zoology, Raja N.L. Khan Women's College, Midnapore, West Bengal, 721102, India
| | - Sanjit Sinha
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sk Md Abu Imam Saadi
- Department of Biological Sciences, Aliah University, IIA/27, New Town, Kolkata, 700160, West Bengal, India
| |
Collapse
|
98
|
Baranwal M, Gupta Y, Dey P, Majaw S. Antiinflammatory phytochemicals against virus-induced hyperinflammatory responses: Scope, rationale, application, and limitations. Phytother Res 2021; 35:6148-6169. [PMID: 34816512 DOI: 10.1002/ptr.7222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
Uncontrolled inflammatory responses or cytokine storm associated with viral infections results in deleterious consequences such as vascular leakage, severe hemorrhage, shock, immune paralysis, multi-organ failure, and even death. With the emerging new viral infections and lack of effective prophylactic vaccines, evidence-based complementary strategies that limit viral infection-mediated hyperinflammatory responses could be a promising approach to limit host tissue injury. The present review emphasizes the potentials of antiinflammatory phytochemicals in limiting hyperinflammatory injury caused by viral infections. The predominant phytochemicals along with their mechanism in limiting hyperimmune and pro-inflammatory responses under viral infection have been reviewed comprehensively. How certain phytochemicals can be effective in limiting hyper-inflammatory response indirectly by favorably modulating gut microbiota and maintaining a functional intestinal barrier has also been presented. Finally, we have discussed improved systemic bioavailability of phytochemicals, efficient delivery strategies, and safety measures for effective antiinflammatory phytotherapies, in addition to emphasizing the requirement of tightly controlled clinical studies to establish the antiinflammatory efficacy of the phytochemicals. Collectively, the review provides a scooping overview on the potentials of bioactive phytochemicals to mitigate pro-inflammatory injury associated with viral infections.
Collapse
Affiliation(s)
- Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Yogita Gupta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Priyankar Dey
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Suktilang Majaw
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, India
| |
Collapse
|
99
|
Xiao T, Cui M, Zheng C, Zhang P, Ren S, Bao J, Gao D, Sun R, Wang M, Lin J, Zhang L, Li M, Li D, Zhou H, Yang C. Both Baicalein and Gallocatechin Gallate Effectively Inhibit SARS-CoV-2 Replication by Targeting M pro and Sepsis in Mice. Inflammation 2021; 45:1076-1088. [PMID: 34822072 PMCID: PMC8613464 DOI: 10.1007/s10753-021-01602-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
The emergence of severe acute syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has led to the global COVID-19 pandemic. Although the symptoms of most COVID-19 patients are mild or self-curable, most of severe patients have sepsis caused by cytokine storms, which greatly increases the case fatality rate. Moreover, there is no effective drug that can limit the novel coronavirus thus far, so it is more needed to develop antiviral drugs for the SARS-CoV-2. In our research, we employed the techniques of molecular docking to screen 35 flavonoid compounds among which 29 compounds have Z-scores lower than − 6. Then, ( −)-gallocatechin gallate, ( +)-gallocatechin and baicalein were identified to have potent inhibitory activity against SARS-CoV-2 Mpro with IC50 values of 5.774 ± 0.805 μM, 13.14 ± 2.081 μM and 5.158 ± 0.928 μM respectively by FRET assay. Molecular docking results also showed that ( −)-gallocatechin gallate, ( +)-gallocatechin and baicalein can non-covalently bind to Mpro through π-π stacking and hydrogen bonds in the Cys145 catalytic site. We further evaluated the effect of ( −)-gallocatechin gallate and baicalein on cytokine storms using a mouse model of sepsis. ( −)-Gallocatechin gallate and baicalein significantly reduced sepsis of mouse models on weight, murine sepsis score, and survival rate and reduced the inflammatory factor levels, such as TNF-α, IL-1α, IL-4, and IL-10. Overall, ( −)-gallocatechin gallate and baicalein show certain potential of treatment against COVID-19.
Collapse
Affiliation(s)
- Ting Xiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Mengqi Cui
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Caijuan Zheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Peipei Zhang
- Department of Neurology, The Fifth Central Hospital of Tianjin Binhai Hospital of Peking University, Tianjin, 300450, China
| | - Shanfa Ren
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jiali Bao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Dandi Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ronghao Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ming Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Liang Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Nankai University, 300192, Tianjin, People's Republic of China
| | - Mingjiang Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Nankai University, 300192, Tianjin, People's Republic of China
| | - Dongmei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
100
|
Gligorijevic N, Radomirovic M, Nedic O, Stojadinovic M, Khulal U, Stanic-Vucinic D, Cirkovic Velickovic T. Molecular Mechanisms of Possible Action of Phenolic Compounds in COVID-19 Protection and Prevention. Int J Mol Sci 2021; 22:12385. [PMID: 34830267 PMCID: PMC8625847 DOI: 10.3390/ijms222212385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
The worldwide outbreak of COVID-19 was caused by a pathogenic virus called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Therapies against SARS-CoV-2 target the virus or human cells or the immune system. However, therapies based on specific antibodies, such as vaccines and monoclonal antibodies, may become inefficient enough when the virus changes its antigenicity due to mutations. Polyphenols are the major class of bioactive compounds in nature, exerting diverse health effects based on their direct antioxidant activity and their effects in the modulation of intracellular signaling. There are currently numerous clinical trials investigating the effects of polyphenols in prophylaxis and the treatment of COVID-19, from symptomatic, via moderate and severe COVID-19 treatment, to anti-fibrotic treatment in discharged COVID-19 patients. Antiviral activities of polyphenols and their impact on immune system modulation could serve as a solid basis for developing polyphenol-based natural approaches for preventing and treating COVID-19.
Collapse
Affiliation(s)
- Nikola Gligorijevic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Mirjana Radomirovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
| | - Olgica Nedic
- Institute for the Application of Nuclear Energy, Department for Metabolism, University of Belgrade, Banatska 31b, 11080 Belgrade, Serbia; (N.G.); (O.N.)
| | - Marija Stojadinovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
| | - Urmila Khulal
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 21985, Korea
| | - Dragana Stanic-Vucinic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
| | - Tanja Cirkovic Velickovic
- Center of Excellence for Molecular Food Sciences, Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia; (M.R.); (M.S.); (D.S.-V.)
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
- Global Campus, Ghent University, Yeonsu-gu, Incheon 21985, Korea
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| |
Collapse
|