51
|
Social interaction and sex differences influence rat temperature circadian rhythm under LD cycles and constant light. Physiol Behav 2011; 103:365-71. [DOI: 10.1016/j.physbeh.2011.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 02/21/2011] [Accepted: 03/08/2011] [Indexed: 11/22/2022]
|
52
|
Kanarik M, Alttoa A, Matrov D, Kõiv K, Sharp T, Panksepp J, Harro J. Brain responses to chronic social defeat stress: effects on regional oxidative metabolism as a function of a hedonic trait, and gene expression in susceptible and resilient rats. Eur Neuropsychopharmacol 2011; 21:92-107. [PMID: 20656462 DOI: 10.1016/j.euroneuro.2010.06.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/21/2010] [Accepted: 06/27/2010] [Indexed: 12/17/2022]
Abstract
Chronic social defeat stress, a depression model in rats, reduced struggling in the forced swimming test dependent on a hedonic trait-stressed rats with high sucrose intake struggled less. Social defeat reduced brain regional energy metabolism, and this effect was also more pronounced in rats with high sucrose intake. A number of changes in gene expression were identified after social defeat stress, most notably the down-regulation of Gsk3b and Map1b. The majority of differences were between stress-susceptible and resilient rats. Conclusively, correlates of inter-individual differences in stress resilience can be identified both at gene expression and oxidative metabolism levels.
Collapse
Affiliation(s)
- Margus Kanarik
- Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Tiigi 78, 50410 Tartu, Estonia
| | | | | | | | | | | | | |
Collapse
|
53
|
Abstract
The circadian clock organizes biochemical and physiological processes of an organism in a temporal fashion. This temporal organization is crucial to avoid interference of processes that have adverse effects on each other. Thus, disruption of temporal organization can lead to health problems and behavioral disorders related to mood alterations. To alleviate the consequences of a disrupted temporal organization in the body, it is of importance to understand the processes involved in the synchronization of all body clocks and their phase relationship to the environmental day/night cycle at the mechanistic level. This review will focus on internal and external factors affecting synchronization and function of the circadian system and highlight connections to mood-related behavior.
Collapse
Affiliation(s)
- Urs Albrecht
- Department of Medicine, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
54
|
Segall LA, Amir S. Glucocorticoid regulation of clock gene expression in the mammalian limbic forebrain. J Mol Neurosci 2010; 42:168-75. [PMID: 20191328 DOI: 10.1007/s12031-010-9341-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/08/2010] [Indexed: 11/30/2022]
Abstract
Glucocorticoids regulate a wide variety of functions, including synaptic plasticity, hypothalamic-pituitary-adrenal axis activation, conditional fear learning, metabolism, and sensitization to drugs of abuse. The diurnal secretion of glucocorticoids, driven by the mammalian master clock located in the suprachiasmatic nucleus of the hypothalamus, has been shown to induce and entrain clock gene expression in peripheral tissues. However, little attention has been given to the form and function of centrally located subordinate oscillators, and the synchronizing factors that influence them. Here we review findings that implicate glucocorticoids in the circadian regulation of clock genes in select oscillators in the limbic forebrain and propose mechanisms whereby glucocorticoids can feed back on rhythms downstream from the master clock and possibly alter the functional output of these nuclei.
Collapse
Affiliation(s)
- Lauren A Segall
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, SP-244, 7141 Sherbrooke St. West, Montreal, QC H4B1R6, Canada
| | | |
Collapse
|
55
|
Abstract
The incidence of depressive illness is high in the United States and worldwide, and the inadequacy of currently available drug treatments contributes to the significant health burden associated with depression. A basic understanding of the underlying disease processes in depression is lacking, and therefore, recreating the disease in animal models is not possible. Currently used models of depression attempt to produce quantifiable correlates of human symptoms in experimental animals. The models differ in the degree to which they produce features that resemble a depressive-like state, and models that include stress exposure are widely used. Paradigms that employ acute or subchronic stress exposure include learned helplessness, forced swim test, and tail suspension test, which employ relatively short-term exposure to inescapable or uncontrollable stress and can reliably detect antidepressant drug response. Longer-term models include chronic mild stress models, early-life stress models, and social conflict models, which may more accurately simulate processes that lead to depression. These models each have varying degrees of face, construct, and predictive validity for depression and contribute differently to our understanding of antidepressant processes.
Collapse
Affiliation(s)
- Catharine H Duman
- Department of Psychiatry, Yale University, Connecticut Mental Health Center, New Haven, Connecticut, USA
| |
Collapse
|
56
|
Amir S, Stewart J. Behavioral and hormonal regulation of expression of the clock protein, PER2, in the central extended amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1321-8. [PMID: 19376186 DOI: 10.1016/j.pnpbp.2009.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 04/01/2009] [Indexed: 11/30/2022]
Abstract
PER2, a key molecular component of the mammalian circadian clock, is expressed rhythmically in many brain areas and peripheral tissues in mammals. Here we review findings from our work on the nature and regulation of rhythms of expression of PER2 in two anatomically and neurochemically defined subregions of the central extended amygdala, the oval nucleus of the bed nucleus of the stria terminalis (BNSTov) and the central nucleus of the amygdala (CEA). Daily rhythms in the expression of PER2 in these regions are coupled to those of the master circadian pacemaker, the suprachiasmatic nucleus (SCN) but, importantly, they are sensitive to homeostatic perturbations and to hormonal states that directly influence motivated behavior.
Collapse
Affiliation(s)
- Shimon Amir
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, Montreal, QC, Canada.
| | | |
Collapse
|
57
|
Cooper MA, Grober MS, Nicholas CR, Huhman KL. Aggressive encounters alter the activation of serotonergic neurons and the expression of 5-HT1A mRNA in the hamster dorsal raphe nucleus. Neuroscience 2009; 161:680-90. [PMID: 19362123 PMCID: PMC2692818 DOI: 10.1016/j.neuroscience.2009.03.084] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 10/20/2022]
Abstract
Serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN) have been implicated in stress-induced changes in behavior. Previous research indicates that stressful stimuli activate 5-HT neurons in select subregions of the DRN. Uncontrollable stress is thought to sensitize 5-HT neurons in the DRN and allow for an exaggerated 5-HT response to future stimuli. In the current study, we tested the hypothesis that following aggressive encounters, losing male Syrian hamsters would exhibit increased c-Fos immunoreactivity in 5-HT DRN neurons compared to winners or controls. In addition, we tested the hypothesis that losers would have decreased 5-HT1A mRNA levels in the DRN compared to winners or controls. We found that a single 15-min aggressive encounter increased c-Fos expression in 5-HT and non-5-HT neurons in losers compared to winners and controls. The increased c-Fos expression in losers was restricted to ventral regions of the rostral DRN. We also found that four 5-min aggressive encounters reduced total 5-HT1A mRNA levels in the DRN in losers compared to winners and controls, and that differences in mRNA levels were not restricted to specific DRN subregions. These results suggest that social defeat activates neurons in select subregions of the DRN and reduces message for DRN 5-HT1A autoreceptors. Our results support the hypothesis that social stress can activate 5-HT neurons in the DRN, reduce 5-HT1A autoreceptor-mediated inhibition, and lead to hyperactivity of 5-HT neurons.
Collapse
Affiliation(s)
- M A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN 37996-0900, USA.
| | | | | | | |
Collapse
|
58
|
Amir S, Stewart J. Motivational Modulation of Rhythms of the Expression of the Clock Protein PER2 in the Limbic Forebrain. Biol Psychiatry 2009; 65:829-34. [PMID: 19200536 DOI: 10.1016/j.biopsych.2008.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
Key molecular components of the mammalian circadian clock are expressed rhythmically in many brain areas and peripheral tissues in mammals. Here we review findings from our work on rhythms of expression of the clock protein Period2 (PER2) in four regions of the limbic forebrain known to be important in the regulation of motivational and emotional states. These regions include the oval nucleus of the bed nucleus of the stria terminalis (BNSTov), the central nucleus of the amygdala (CEA), the basolateral amygdala (BLA), and the dentate gyrus (DG). Daily rhythms in the expression of PER2 in these regions are controlled by the master circadian pacemaker, the suprachiasmatic nucleus (SCN), but, importantly, they are also sensitive to homeostatic perturbations and to hormonal states that directly influence motivated behavior. Thus, circadian information from the SCN and homeostatic signals are integrated in these regions of the limbic forebrain to affect the temporal organization of motivational and emotional processes.
Collapse
Affiliation(s)
- Shimon Amir
- Center for Studies in Behavioral Neurobiology/Groupe de Recherche en Neurobiologie Comportementale, Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6 Canada.
| | | |
Collapse
|
59
|
Mendoza J, Challet E. Brain Clocks: From the Suprachiasmatic Nuclei to a Cerebral Network. Neuroscientist 2009; 15:477-88. [DOI: 10.1177/1073858408327808] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Circadian timing affects almost all life’s processes. It not only dictates when we sleep, but also keeps every cell and tissue working under a tight temporal regimen. The daily variations of physiology and behavior are controlled by a highly complex system comprising of a master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus, extra-SCN cerebral clocks, and peripheral oscillators. Here are presented similarities and differences in the molecular mechanisms of the clock machinery between the primary SCN clock and extra-SCN brain clocks. Diversity of secondary clocks in the brain, their specific sensitivities to time-giving cues, as their differential coupling to the master SCN clock, may allow more plasticity in the ability of the circadian timing system to integrate a wide range of temporal information. Furthermore, it raises the possibility that pathophysiological alterations of internal timing that are deleterious for health may result from internal desynchronization within the network of cerebral clocks.
Collapse
Affiliation(s)
- Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences,
Centre National dela Recherche Scientifique, University Louis Pasteur, Strasbourg,
France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences,
Centre National dela Recherche Scientifique, University Louis Pasteur, Strasbourg,
France,
| |
Collapse
|
60
|
Stemkens-Sevens S, van Berkel K, de Greeuw I, Snoeijer B, Kramer K. The use of radiotelemetry to assess the time needed to acclimatize guineapigs following several hours of ground transport. Lab Anim 2009; 43:78-84. [PMID: 18987063 DOI: 10.1258/la.2007.007039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of this study was to investigate the effect of ground transportation on guineapigs. Physiological parameters, i.e. heart rate (HR), body temperature (BT) and activity (ACT), were measured before and after transport, using previously implanted radiotelemetry transmitters. Body weight was measured before and after transport. After a postsurgical recovery period and data recording at the breeder's facility, the animals were transported for 2.25 h (Group 1) and for 7.5 h (Group 2) to a different animal facility. Data collection started immediately after arrival at the second animal facility. All parameters measured changed significantly after transport. These results suggest that a 10- to 12-day period is required for guineapigs to return to pre-transport levels of HR, BT and ACT.
Collapse
Affiliation(s)
| | | | | | | | - Klaas Kramer
- IMTC and Rephartox, Lelystad, The Netherlands
- Department of Health, Safety and Environment, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
61
|
Vazquez J, Hall SC, Witkowska HE, Greco MA. Rapid alterations in cortical protein profiles underlie spontaneous sleep and wake bouts. J Cell Biochem 2008; 105:1472-84. [DOI: 10.1002/jcb.21970] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
62
|
Cooper MA, McIntyre KE, Huhman KL. Activation of 5-HT1A autoreceptors in the dorsal raphe nucleus reduces the behavioral consequences of social defeat. Psychoneuroendocrinology 2008; 33:1236-47. [PMID: 18692968 PMCID: PMC2572256 DOI: 10.1016/j.psyneuen.2008.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 05/20/2008] [Accepted: 06/24/2008] [Indexed: 11/17/2022]
Abstract
In animal models, serotonin (5-HT) activity contributes to stress-induced changes in behavior. Syrian hamsters (Mesocricetus auratus) exhibit a stress-induced change in behavior in which social defeat results in increased submissive and defensive behavior and a complete loss of normal territorial aggression directed toward a novel, non-aggressive opponent. We refer to this defeat-induced change in agonistic behavior as conditioned defeat. In this study we tested the hypothesis that 5-HT activity in the dorsal raphe nucleus (DRN) contributes to the acquisition and expression of conditioned defeat. We investigated whether injection of the selective 5-HT1A agonist flesinoxan (200 ng, 400 ng, or 800 ng in 200 nl saline) into the DRN would reduce the acquisition and expression of conditioned defeat. Additionally, we investigated whether injection of the selective 5-HT1A antagonist WAY 100635 (400 ng in 200 nl saline) into the DRN would enhance the acquisition and expression of conditioned defeat following a sub-optimal social defeat experience. We found that injection of flesinoxan into the DRN before exposure to a 15-min social defeat reduced the amount of submissive and defensive behavior shown at testing. We also found that injection of flesinoxan into the DRN before testing similarly reduced submissive and defensive behavior. In addition, we found that WAY 100635 enhanced conditioned defeat when injected either before social defeat or before testing. These data support the hypothesis that the activity of 5-HT cells in the DRN, as regulated by 5-HT1A autoreceptors, contributes to the formation and display of conditioned defeat. Further, our results suggest that 5-HT release in DRN projection regions augments defeat-induced changes in social behavior.
Collapse
Affiliation(s)
- Matthew A Cooper
- Department of Psychology, University of Tennessee, Knoxville, TN 37996-0900, USA.
| | | | | |
Collapse
|
63
|
Paul MJ, Schwartz WJ. On the chronobiology of cohabitation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2008; 72:615-21. [PMID: 18419321 DOI: 10.1101/sqb.2007.72.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Social regulation of animal circadian rhythms may enable individuals in a population to temporally synchronize or segregate their activities within the community. Relatively little is known about the mechanisms for such interindividual temporal adaptations or how the circadian system might be involved. The literature suggests that actual prolonged cohabitation might lead to robust effects on the rhythmicity of cohoused individuals but that these effects are not easily reproduced by indirect or pulsatile social contacts. We have begun to study the conditions under which such cohabitation effects might be revealed in the laboratory, and we present and discuss initial data that cohousing pairs of golden hamsters can result in a persistent change in the free-running circadian period of one of the two hamsters of the pair. We believe that analyzing the societal level of temporal organization, and ultimately dissecting its underlying mechanisms, will enrich our understanding of the circadian clock and its role in establishing ecological communities.
Collapse
Affiliation(s)
- M J Paul
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
64
|
Assessment of welfare from physiological and behavioural responses of New Zealand dairy cows exposed to cold and wet conditions. Anim Welf 2008. [DOI: 10.1017/s0962728600031948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractThere is a need to assess the welfare of dairy cows that live outdoors under cold and wet conditions. This study combined a number of techniques to measure stress and make an assessment of welfare in this situation. Two groups of ten non-pregnant, non-lactating Holstein Friesian cows were exposed to a week of wind and rain (WR) or housed indoors (I) with pre- and post-treatment weeks indoors in a cross-over design. Wind and rain consisted of continual air movement (7.1 kph) using fans, water sprinkling for 15 min (3.0 mm) per hour, a mean temperature of 3.4°C and wind chill of –0.3°C. Internal body temperature was recorded every ten min and behaviour for 16 h per day. Blood, faeces and infrared temperatures were sampled at 0800h each morning during treatment weeks, and three times per week during pre- and post-treatment weeks. All cows were challenged with 2 ml Leptoshield Vaccine (CSL Animal Health, Australia) subcutaneously after 3 days of cold exposure to test immune responses. During WR, cows spent a greater proportion of time standing and less time lying down and eating than during I. Infrared temperatures were lower during WR than I in both dorsal and orbital (eye) regions. There was a distinct diurnal pattern of internal body temperature which had a greater amplitude during WR than I resulting from both a lower minimum and a higher maximum. The time of the minimum was 40 min later for WR than I. The overall mean body temperature was 0.07°C higher in WR than I. There were greater increases in plasma and faecal cortisol during WR than I, respectively. Total T4 was higher during WR than I. Non-esterified fatty acid concentration was higher in the week following WR than I. Total white blood cell numbers were lower during WR than I. No treatment differences were found for creatine kinase or for tumour necrosis factor, heat shock protein 90, interleukin 6 or interferon gamma expression in response to vaccination. In conclusion, this study applied a suite of stress measures to dairy cows exposed to extreme cold and wet conditions. Together, these measures indicated activation of the stress axis, physiological and behavioural adaptations to cold and a reduction in welfare. A number of these measures could be used to assess welfare under cold conditions on farms.
Collapse
|
65
|
Bartolomucci A. Social stress, immune functions and disease in rodents. Front Neuroendocrinol 2007; 28:28-49. [PMID: 17379284 DOI: 10.1016/j.yfrne.2007.02.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/22/2006] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
The link between social factors, stress and health has been the focus of many interdisciplinary studies mostly because: (i) animals, including humans, often live in societies; (ii) positive and negative social relationships affect disease and well being; (iii) physiological alterations, which parallel social interactions also modulate immune and neuroendocrine functions. This review will focus on studies conducted on laboratory and wild rodents where social factors such as dyadic interactions, individual housing and differential group housing were investigated. The results obtained allow one to conclude that social factors in rodents are causally linked with immune disorders/disease susceptibility. In particular, lower lymphocyte proliferation and antigen-specific-IgG, granulocytosis and lymphopenia, as well as higher tumor induction and progression, are reliably associated with negative social events. Finally, due to the increasing utilization of social stress-based animal models the reliability of the concept of "social stress" and its evolutionary context are re-evaluated.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Evolutionary and Functional Biology, University of Parma, V.le G.P. Usberti 11A, 43100 Parma, Italy.
| |
Collapse
|
66
|
Huhman KL. Social conflict models: can they inform us about human psychopathology? Horm Behav 2006; 50:640-6. [PMID: 16870189 DOI: 10.1016/j.yhbeh.2006.06.022] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/22/2006] [Accepted: 06/23/2006] [Indexed: 12/30/2022]
Abstract
Social conflict models have been proposed as a powerful way to investigate basic questions of how brain and behavior are altered by social experience. Social defeat, in particular, appears to be a major stressor for most species, and in humans, this stressor is thought to play an important role in the onset of a variety of psychiatric disorders including depression and post-traumatic stress disorder. Aggressive experience, on the other hand, may promote disorders involving inappropriate aggression and violence. Current research using animal models of social conflict involves multiple levels of analysis from genetic and molecular to systems and overt behavior. This review briefly examines a variety of these animal models of social conflict in order to assess whether they are useful for advancing our understanding of how experience can shape brain and behavior and for translating this information so that we have the potential to improve the quality of life of individuals with mental illness and behavioral disorders.
Collapse
Affiliation(s)
- Kim L Huhman
- Department of Psychology, P.O. Box 3966, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-3966, USA.
| |
Collapse
|
67
|
Williams MT, Schaefer TL, Furay AR, Ehrman LA, Vorhees CV. Ontogeny of the adrenal response to (+)-methamphetamine in neonatal rats: the effect of prior drug exposure. Stress 2006; 9:153-63. [PMID: 17060049 PMCID: PMC2756087 DOI: 10.1080/10253890600902842] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
We examined the ontogeny of the corticosterone response to (+)-methamphetamine in neonatal rats. In experiment-1, animals were injected with 10 mg/kg of (+)-methamphetamine or saline and plasma corticosterone levels were examined in separate groups 30 or 105 min later on postnatal day (P) 1, 3, 5, 7, 9, 11, 13, 15, 17, or 19. The adrenal response to methamphetamine was best described by a U-shaped function with the nadir of corticosterone release occurring between P7 and P13. Experiment-2 was similar except that the effect of four consecutive days of exposure to (+)-methamphetamine (four times daily at 2 h intervals with 10 mg/kg) was assessed with a single final dose early on the fifth day (i.e. P1-5, 3-7, 5-9, 7-11, 9-13, 11-15, 13-17, 15-19). The 30 min corticosterone response after multiple methamphetamine doses was augmented compared to single exposures, with the exception of the two earliest dosing intervals ending on P5 and P7, where the responses were lower. In addition, at 105 min, the levels of corticosterone were attenuated relative to a single drug administration. With the exception of animals receiving methamphetamine from P15 to P19, thymus weights were unaffected. The data demonstrate that (+)-methamphetamine is a robust activator of corticosterone release in developing animals and this release is extensively modified by age and previous drug exposure.
Collapse
Affiliation(s)
- Michael T Williams
- Division of Neurology, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, 45229-3039, USA.
| | | | | | | | | |
Collapse
|
68
|
Stoddard PK, Zakon HH, Markham MR, McAnelly L. Regulation and modulation of electric waveforms in gymnotiform electric fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:613-24. [PMID: 16437223 PMCID: PMC2430267 DOI: 10.1007/s00359-006-0101-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 11/10/2005] [Accepted: 12/26/2005] [Indexed: 12/17/2022]
Abstract
Weakly electric gymnotiform fish specialize in the regulation and modulation of the action potentials that make up their multi-purpose electric signals. To produce communication signals, gymnotiform fish modulate the waveforms of their electric organ discharges (EODs) over timescales spanning ten orders of magnitude within the animal's life cycle: developmental, reproductive, circadian, and behavioral. Rapid changes lasting milliseconds to seconds are the result of direct neural control of action potential firing in the electric organ. Intermediate-term changes taking minutes to hours result from the action of melanocortin peptides, the pituitary hormones that induce skin darkening and cortisol release in many vertebrates. Long-term changes in the EOD waveform taking days to weeks result from the action of sex steroids on the electrocytes in the electric organ as well as changes in the neural control structures in the brain. These long-term changes in the electric organ seem to be associated with changes in the expression of voltage-gated ion channels in two gene families. Electric organs express multiple voltage-gated sodium channel genes, at least one of which seems to be regulated by androgens. Electric organs also express multiple subunits of the shaker (Kv1) family of voltage-gated potassium channels. Expression of the Kv1 subtype has been found to vary with the duration of the waveform in the electric signal. Our increasing understanding of the mechanisms underlying precise control of electric communication signals may yield significant insights into the diversity of natural mechanisms available for modifying the performance of ion channels in excitable membranes. These mechanisms may lead to better understanding of normal function in a wide range of physiological systems and future application in treatment of disease states involving pathology of excitable membranes.
Collapse
Affiliation(s)
- Philip K Stoddard
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL 33199, USA.
| | | | | | | |
Collapse
|
69
|
Carboni L, Piubelli C, Pozzato C, Astner H, Arban R, Righetti PG, Hamdan M, Domenici E. Proteomic analysis of rat hippocampus after repeated psychosocial stress. Neuroscience 2006; 137:1237-46. [PMID: 16338082 DOI: 10.1016/j.neuroscience.2005.10.045] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 10/17/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
Since stress plays a role in the onset and physiopathology of psychiatric diseases, animal models of chronic stress may offer insights into pathways operating in mood disorders. The aim of this study was to identify the molecular changes induced in rat hippocampus by repeated exposure to psychosocial stress with a proteomic technique. In the social defeat model, the experimental animal was defeated by a dominant male eight times. Additional groups of rats were submitted to a single defeat or placed in an empty cage (controls). The open field test was carried out on parallel animal groups. The day after the last exposure, levels of hippocampal proteins were compared between groups after separation by 2-D gel electrophoresis and image analysis. Spots showing significantly altered levels were submitted to peptide fingerprinting mass spectrometry for protein identification. The intensity of 69 spots was significantly modified by repeated stress and 21 proteins were unambiguously identified, belonging to different cellular functions, including protein folding, signal transduction, synaptic plasticity, cytoskeleton regulation and energy metabolism. This work identified molecular changes in protein levels caused by exposure to repeated psychosocial stress. The pattern of changes induced by repeated stress was quantitatively and qualitatively different from that observed after a single exposure. Several changed proteins have already been associated with stress-related responses; some of them are here described for the first time in relation to stress.
Collapse
Affiliation(s)
- L Carboni
- Department of Behavioural Neuroscience, Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline, Via A. Fleming 4, 37135 Verona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Yamamoto T, Nakahata Y, Tanaka M, Yoshida M, Soma H, Shinohara K, Yasuda A, Mamine T, Takumi T. Acute physical stress elevates mouse period1 mRNA expression in mouse peripheral tissues via a glucocorticoid-responsive element. J Biol Chem 2005; 280:42036-43. [PMID: 16249183 DOI: 10.1074/jbc.m509600200] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammals, the circadian and stress systems (both centers of which are located in the hypothalamus) are involved in adaptation to predictable and unpredictable environmental stimuli, respectively. Although the interaction and relationship between these two systems are intriguing and have been studied in different ways since the "pre-clock gene" era, the molecular interaction between them remains largely unknown. Here, we show by systematic molecular biological analysis that acute physical stress elevated only Period1 (Per1) mRNA expression in mouse peripheral organs. Although behavioral rhythms in vivo and peripheral molecular clocks are rather stable against acute restraint stress, the results of a series of promoter analyses, including chromatin immunoprecipitation assays, indicate that a glucocorticoid-responsive element in the Per1 promoter is indispensable for induction of this mRNA both in vitro and in vivo. These results suggest that Per1 can be a potential stress marker and that a third pathway of Per1 transcriptional control may exist in addition to the clock-regulated CLOCK-BMAL1/E-box and light-responsive cAMP-responsive element-binding protein/cAMP-responsive element pathways.
Collapse
|
71
|
Tuma J, Strubbe JH, Mocaër E, Koolhaas JM. Anxiolytic-like action of the antidepressant agomelatine (S 20098) after a social defeat requires the integrity of the SCN. Eur Neuropsychopharmacol 2005; 15:545-55. [PMID: 16139172 DOI: 10.1016/j.euroneuro.2005.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 02/01/2005] [Accepted: 02/15/2005] [Indexed: 11/16/2022]
Abstract
In rats, social defeat by an aggressive opponent induces a state of anxiety, shown by a decrease in time spent on active explorative behaviour, an increase in immobility, a clear decrease in frequency of all active behavioural parameters (enhanced passivity). We tested the hypothesis whether acute or sub-chronic agomelatine would antagonize the negative consequences of a social defeat. As many chronobiological actions of melatonin and its receptor agonist agomelatine require the integrity of the suprachiasmatic nuclei (SCN), we examined whether the anxiolytic-like action of agomelatine 1 day after a social defeat is still present in SCN-lesioned rats. Sub-chronic administration of agomelatine caused a clear reduction of the social defeat induced behavioural consequences. A single agomelatine injection prior to the post-defeat test was less effective and a single melatonin injection was hardly effective. SCN lesion did not affect the anxiety reaction after a social defeat. Thus, sub-chronic agomelatine treatment or a single agomelatine injection reduced a state of anxiety and passivity caused by asocial defeat. The defeat-induced behavioural changes do not depend on the SCN but agomelatine showed its anxiolytic action only in sham-lesioned animals, which indicates that the anxiolytic-like action of agomelatine requires the integrity of the SCN. Mechanisms sustaining this activity are discussed.
Collapse
Affiliation(s)
- Jolanda Tuma
- Department of Animal Physiology, University of Groningen, Kerklaan, 30, 9751 NN, Haren, The Netherlands
| | | | | | | |
Collapse
|
72
|
Papale LA, Andersen ML, Antunes IB, Alvarenga TAF, Tufik S. Sleep pattern in rats under different stress modalities. Brain Res 2005; 1060:47-54. [PMID: 16226230 DOI: 10.1016/j.brainres.2005.08.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/10/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
The present study was designed to evaluate the sleep pattern of rats submitted to chronic stressors (restraint, electrical footshock, swimming and cold) applied to male rats. After 48 h-baseline recording, rats were submitted to 4 days of chronic stress, and electrocorticogram recordings were carried out continuously. The stressors (footshock, swimming and cold) were applied twice a day for periods of 1 h at 9:00 and 16:00 h. Restrained animals were maintained in plastic cylinders for 22 h/day. The findings indicated that sleep efficiency, slow wave sleep (SWS) and paradoxical sleep (PS) were decreased on the third and fourth days of unpredictable shocks compared to baseline while immobilization and swimming presented reduced sleep efficiency in all 4-day recordings. Swimming led to decreased SWS, whereas augmented PS was observed on the first day compared to baseline. Immobilization produced drastic alterations in sleep patterns since it reduced SWS during the 4 days and PS at days 1 to 4 in relation to baseline. Of all stressors, cold was the only one that did not result in any statistical differences in sleep pattern during the light periods. Regarding the effect of stress compared to baseline on the dark recordings, PS was higher during cold stress periods, whereas footshock increased PS on days 2 to 4 and swimming only on day 2. Immobilization decreased PS throughout the 4 days of the stress sessions. Thus, the data suggest that different stress modalities result in distinct sleep responses, with immobilization producing the most dramatic alterations.
Collapse
Affiliation(s)
- L A Papale
- Department of Psychobiology-Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, Vila Clementino-SP-04024-002, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
73
|
Mohawk JA, Lee TM. Restraint stress delays reentrainment in male and female diurnal and nocturnal rodents. J Biol Rhythms 2005; 20:245-56. [PMID: 15851531 DOI: 10.1177/0748730405276323] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A temporary loss of normal circadian entrainment, such as that associated with shift work and transmeridian travel, can result in an array of detrimental symptoms, making rapid reentrainment of rhythmicity essential. While there is a wealth of literature examining the effects of stress on the entrained circadian system, less is known about the influence of stress on circadian function following a phase shift of the light: dark (LD) cycle. The authors find that recovery of locomotor activity synchronization is altered by restraint stress in the diurnal rodent Octodon degus (degu) and the nocturnal rat. In the first experiment, degus were subjected to a 6-h phase advance of the LD cycle. Sixty minutes after the new lights-on, animals underwent 60 min of restraint stress. The number of days it took each animal to reentrain its activity rhythms to the new LD cycle was recorded and compared to the number of days it took the animal to reentrain under control conditions. When subjected to restraint stress, degus took 30% longer to reentrain their activity rhythms (p < 0.01). In a second experiment, rats underwent a similar experimental paradigm. As with the degus, stress significantly delayed the reentrainment of rats' activity rhythms (p < 0.01). There was no interaction between sex and stress on the rate of reentrainment for either rats or degus. Furthermore, there was no effect of stress on the free-running activity rhythm of degus, suggesting that the effect of stress on reentrainment rate is not secondary to alterations of period length. Together, these data point to a detrimental effect of stress on recovery of entrainment of circadian rhythms, which is independent of activity niche and sex.
Collapse
Affiliation(s)
- Jennifer A Mohawk
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, USA
| | | |
Collapse
|
74
|
de Jong JG, van der Vegt BJ, Buwalda B, Koolhaas JM. Social environment determines the long-term effects of social defeat. Physiol Behav 2005; 84:87-95. [PMID: 15642611 DOI: 10.1016/j.physbeh.2004.10.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 10/18/2004] [Accepted: 10/20/2004] [Indexed: 11/20/2022]
Abstract
A single social defeat by a dominant conspecific induces long-term changes in several physiological and behavioral parameters in rats. These changes may represent an increased vulnerability to subsequent stress and stress-related pathology. Environmental factors, in particular possibilities for social interactions, could modulate these effects. Therefore, we assessed the influence of social environment on susceptibility for the long-term effects of social defeat. Socially housed males of an unselected strain of wild-type rats were equipped with radio-telemetry transmitters that recorded heart rate, temperature and activity. They were individually subjected to defeat and subsequently either housed alone or returned to their group. Behavioral and physiological responses to various novelty stressors were determined during a three-week period after the social defeat. Furthermore, changes in baseline behavior and physiology following defeat were studied in the rat's homecage. The results show a complex interaction between defeat and housing conditions. Depending on the parameters measured, effects were caused by both isolation alone, defeat alone or a combination of both defeat and isolation. Individual housing alone caused a characteristic hyperactive response to novelty stress. Though defeat did not affect behavioral responses, it amplified the physiological response to novelty and social housing did not attenuate this effect. However, social housing did reduce the effects of defeat on heart rate, temperature and activity in the home cage and completely prevented defeat-induced weight loss. Together these results indicate that social housing may indeed positively affect the animal's capacity to cope with stressors.
Collapse
Affiliation(s)
- Jelly G de Jong
- Department of Animal Physiology, Biological Center, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
75
|
Buwalda B, Kole MHP, Veenema AH, Huininga M, de Boer SF, Korte SM, Koolhaas JM. Long-term effects of social stress on brain and behavior: a focus on hippocampal functioning. Neurosci Biobehav Rev 2004; 29:83-97. [PMID: 15652257 DOI: 10.1016/j.neubiorev.2004.05.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/25/2004] [Indexed: 11/24/2022]
Abstract
In order to study mechanisms involved in the etiology of human affective disorders, there is an abundant use of various animal models. Next to genetic factors that predispose for psychopathologies, environmental stress is playing an important role in the etiology of these mental diseases. Since the majority of stress stimuli in humans that lead to psychopathology are of social nature, the study of consequences of social stress in experimental animal models is very valuable. The present review focuses on one of these models that uses the resident-intruder paradigm. In particular the long-lasting effects of social defeat in rats will be evaluated. Data from our laboratory on the consequences of social defeat on emotional behavior, stress responsivity and serotonergic functionality are presented. Furthermore, we will go into detail on hippocampal functioning in socially stressed rats. Very recent results show that there is a differential effect of a brief double social defeat and repetitive social defeat stress on dendritic remodeling in hippocampal CA3 neurons and that this has repercussions on hippocampal LTP and LTD. Both the structural and electrophysiological changes of principal neurons in the hippocampal formation after defeat are discussed as to their relationship with the maintenance in cognitive performance that was observed in socially stressed rats. The results are indicative of a large dynamic range in the adaptive plasticity of the brain, allowing the animals to adapt behaviorally to the previously occurred stressful situation with the progression of time.
Collapse
Affiliation(s)
- Bauke Buwalda
- Department of Animal physiology, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
76
|
Costoli T, Bartolomucci A, Graiani G, Stilli D, Laviola G, Sgoifo A. Effects of chronic psychosocial stress on cardiac autonomic responsiveness and myocardial structure in mice. Am J Physiol Heart Circ Physiol 2004; 286:H2133-40. [PMID: 14962836 DOI: 10.1152/ajpheart.00869.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repeated single exposures to social stressors induce robust shifts of cardiac sympathovagal balance toward sympathetic dominance both during and after each agonistic interaction. However, little evidence is available regarding possible persistent pathophysiological changes due to chronic social challenge. In this study, male CD-1 mice (n = 14) were implanted with a radiotelemetry system for electrocardiographic recordings. We assessed the effects of chronic psychosocial stress (15-day sensory contact with a dominant animal and daily 5-min defeat episodes) on 1) sympathovagal responsiveness to each defeat episode, as measured via time-domain indexes of heart rate variability (R-R interval, standard deviation of R-R interval, and root mean square of successive R-R interval differences), 2) circadian rhythmicity of heart rate across the chronic challenge (night phase, day phase, and rhythm amplitude values), and 3) amount of myocardial structural damage (volume fraction, density, and extension of fibrosis). This study indicated that there was habituation of acute cardiac autonomic responsiveness, i.e., the shift of sympathovagal balance toward sympathetic dominance was significantly reduced across repeated defeat episodes. Moreover, animals exhibited significant changes in heart rate rhythmicity, i.e., increments in day and night values and reductions in the rhythm amplitude, but these were limited to the first 5 days of chronic psychosocial stress. The volume fraction of fibrosis was sixfold larger than in control animals, because of the appearance of many microscopic scarrings. In summary, although mice appeared to adapt to chronic psychosocial stress in terms of acute cardiovascular responsiveness and heart rate rhythmicity, structural alterations occurred at the myocardial level.
Collapse
Affiliation(s)
- Tania Costoli
- Dipartimento di Biologia Evolutiva e Funzionale, Università di Parma, Parco Area delle Scienze 11A, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
77
|
Bartolomucci A, Palanza P, Costoli T, Savani E, Laviola G, Parmigiani S, Sgoifo A. Chronic psychosocial stress persistently alters autonomic function and physical activity in mice. Physiol Behav 2003; 80:57-67. [PMID: 14568308 DOI: 10.1016/s0031-9384(03)00209-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated heart rate (HR), temperature (T), and physical activity (Act) (by means of radiotelemetry) in male mice subjected to chronic psychosocial stress. Resident/intruder dyads lived in sensory contact for 15 days with the possibility to physically interact daily during the light phase for a maximum of 15 min. Intruders becoming dominants (InD) or subordinates (InS) were investigated here. The aims were to investigate; if a daily aggressive interaction would result in adaptation of autonomic responses; the effects of the social stress on daily rhythmicity and the way these effects change over time; whether acute and long-term autonomic changes do correlate; to compare dominants and subordinates. InD and InS showed a strong autonomic activation during the interactions, with moderate (InS) or no (InD) habituation over time. On the long term, InD showed tachycardia and marked hyperthermia but normal physical activity, while InS showed tachycardia, slight hyperthermia, and depressed physical activity. No correlation emerged between the acute and the long-term autonomic responses. These results highlight the existence of a sustained autonomic activation under chronic stress, which was also affected by mice social status.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Dipartimento di Biologia Evolutiva e Funzionale, Università di Parma, Parco area delle Scienze 11A, 43100, Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|