51
|
Liang X, Yan J, Guo S, McClements DJ, Ma C, Liu X, Liu F. Enhancing lycopene stability and bioaccessibility in homogenized tomato pulp using emulsion design principles. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
52
|
Fernández-López J, Botella-Martínez C, Navarro-Rodríguez de Vera C, Sayas-Barberá ME, Viuda-Martos M, Sánchez-Zapata E, Pérez-Álvarez JA. Vegetable Soups and Creams: Raw Materials, Processing, Health Benefits, and Innovation Trends. PLANTS 2020; 9:plants9121769. [PMID: 33327480 PMCID: PMC7764940 DOI: 10.3390/plants9121769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022]
Abstract
Vegetable soups and creams have gained popularity among consumers worldwide due to the wide variety of raw materials (vegetable fruits, tubers, bulbs, leafy vegetables, and legumes) that can be used in their formulation which has been recognized as a healthy source of nutrients (mainly proteins, dietary fiber, other carbohydrates, vitamins, and minerals) and bioactive compounds that could help maintain the body’s health and wellbeing. In addition, they are cheap and easy to preserve and prepare at home, ready to eat, so in consequence they are very useful in the modern life rhythms that modify the habits of current consumption and that reclaim foods elaborated with natural ingredients, ecologic, vegans, less invasive production processes, agroindustry coproducts valorization, and exploring new flavors and textures. This review focuses on the nutritional and healthy properties of vegetable soups and creams (depending on the raw materials used in their production) highlighting their content in bioactive compounds and their antioxidant properties. Apart from the effect that some processing steps could have on these compounds, innovation trends for the development of healthier soups and creams adapted to specific consumer requirements have also been explored.
Collapse
Affiliation(s)
- Juana Fernández-López
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Carmen Botella-Martínez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Casilda Navarro-Rodríguez de Vera
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - María Estrella Sayas-Barberá
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
| | - Elena Sánchez-Zapata
- Research & Development Pre-Cooked Convenience Food, Surinver El Grupo S.Coop, 03191 Alicante, Spain;
| | - José Angel Pérez-Álvarez
- IPOA Research Group, Agro-Food Technology Department, Higher Polytechnic School of Orihuela, Miguel Hernández University, Orihuela, 03312 Alicante, Spain; (J.F.-L.); (C.B.-M.); (C.N.-R.d.V.); (M.E.S.-B.); (M.V.-M.)
- Correspondence: ; Tel.: +94-96-674-9739
| |
Collapse
|
53
|
Jurić S, Jurić M, Król-Kilińska Ż, Vlahoviček-Kahlina K, Vinceković M, Dragović-Uzelac V, Donsì F. Sources, stability, encapsulation and application of natural pigments in foods. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1837862] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Slaven Jurić
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Marina Jurić
- Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy, University of Zagreb, Zagreb, Croatia
| | - Żaneta Król-Kilińska
- Department of Functional Food Products Development, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Marko Vinceković
- Faculty of Agriculture, Department of Chemistry, University of Zagreb, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, Department of Food Engineering, University of Zagreb, Zagreb, Croatia
| | - Francesco Donsì
- Department of Industrial Engineering, University of Salerno, Fisciano, Italy
| |
Collapse
|
54
|
Potential Role of Lycopene in the Prevention of Postmenopausal Bone Loss: Evidence from Molecular to Clinical Studies. Int J Mol Sci 2020; 21:ijms21197119. [PMID: 32992481 PMCID: PMC7582596 DOI: 10.3390/ijms21197119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is a metabolic bone disease characterized by reduced bone mineral density, which affects the quality of life of the aging population. Furthermore, disruption of bone microarchitecture and the alteration of non-collagenous protein in bones lead to higher fracture risk. This is most common in postmenopausal women. Certain medications are being used for the treatment of osteoporosis; however, these may be accompanied by undesirable side effects. Phytochemicals from fruits and vegetables are a source of micronutrients for the maintenance of bone health. Among them, lycopene has recently been shown to have a potential protective effect against bone loss. Lycopene is a lipid-soluble carotenoid that exists in both all-trans and cis-configurations in nature. Tomato and tomato products are rich sources of lycopene. Several human epidemiological studies, supplemented by in vivo and in vitro studies, have shown decreased bone loss following the consumption of lycopene/tomato. However, there are still limited studies that have evaluated the effect of lycopene on the prevention of bone loss in postmenopausal women. Therefore, the aim of this review is to summarize the relevant literature on the potential impact of lycopene on postmenopausal bone loss with molecular and clinical evidence, including an overview of bone biology and the pathophysiology of osteoporosis.
Collapse
|
55
|
Grassino AN, Pedisić S, Dragović-Uzelac V, Karlović S, Ježek D, Bosiljkov T. Insight into High-Hydrostatic Pressure Extraction of Polyphenols from Tomato Peel Waste. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:427-433. [PMID: 32572675 DOI: 10.1007/s11130-020-00831-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, high-hydrostatic pressure extraction (HHPE) as an emerging food processing and preservation technique constitutes an alternative to conventional thermal treatment that has been used for extraction of polyphenols from tomato peel waste generated by the canning industry. The impact of time (5 and 10 min), temperature (25, 35, 45 and 55 °C) and solvents (water, 1% HCl, 50 and 70% methanol with and without addition of HCl, and 50 and 70% ethanol), at a constant pressure of 600 MPa, has been evaluated in this paper with respect to polyphenols' yields. The results showed a significant (p < 0.05) variation in the contents of a great number of phenolic compounds in respect of the applied temperatures and solvents. On the other hand, the time invested in HHPE had no effect on polyphenols' yields. Among phenolic compounds, the p-coumaric acid (p-CA) and chlorogenic acid derivative (ChA der) are predominant, i.e., 0.57 to 67.41 mg/kg and 1.29 to 58.57 mg/kg, respectively, depending on the solvents and temperatures used. In particular, methanol (50 and 70%) at temperatures of 45 and 55 °C enhanced the recovery of polyphenols in comparison to other utilised solvents. In conclusion, this paper puts forth the theory that by applying HHPE with minimal expenditure of time, it is possible to achieve efficient production of polyphenols from low-cost tomato peel waste, generating income both for producers and agri-food industries.
Collapse
Affiliation(s)
- Antonela Ninčević Grassino
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia.
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Sven Karlović
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Damir Ježek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| | - Tomislav Bosiljkov
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000, Zagreb, Croatia
| |
Collapse
|
56
|
Fouad AM, El-Senousey HK, Ruan D, Xia W, Chen W, Wang S, Zheng C. Nutritional modulation of fertility in male poultry. Poult Sci 2020; 99:5637-5646. [PMID: 33142481 PMCID: PMC7647795 DOI: 10.1016/j.psj.2020.06.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/30/2020] [Accepted: 06/20/2020] [Indexed: 11/20/2022] Open
Abstract
The increased consumption of protein derived from poultry demands greater poultry production, but increased poultry production (meat and eggs) is dependent on the fertility of the parent flocks. Clearly, the fertility of poultry flocks is associated with the fertility of both males and females, but the low numbers of males used for natural or artificial insemination mean that their role is more important. Thus, enhancing the semen volume, sperm concentration, viability, forward motility, and polyunsaturated fatty acids in sperm, as well as protecting against oxidative damage, could help to optimize the sperm membrane functionality, mitochondrial activity, and sperm-egg penetration, and thus fertility. Therefore, this review summarizes the nutritional factors that could improve the fertility of poultry males as well as their associated mechanisms to allow poultry producers to overcome low-fertility problems, especially in aging poultry males, thereby obtaining beneficial impacts on the poultry production industry.
Collapse
Affiliation(s)
- Ahmed Mohamed Fouad
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China; Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - HebatAllah Kasem El-Senousey
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China; Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Weiguang Xia
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Wei Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Shuang Wang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science (South China) of Ministry of Agriculture, State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, PR China.
| |
Collapse
|
57
|
Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
58
|
Kilany OE, Abdelrazek HMA, Aldayel TS, Abdo S, Mahmoud MMA. Anti-obesity potential of Moringa olifera seed extract and lycopene on high fat diet induced obesity in male Sprauge Dawely rats. Saudi J Biol Sci 2020; 27:2733-2746. [PMID: 32994733 PMCID: PMC7499387 DOI: 10.1016/j.sjbs.2020.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/17/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Present research explored the anti-obesity effect of Moringa olifera seed oil extract and lycopene (LYC). Forty eight male Sprauge Dawely rats were divided equally into 6 groups. Group Ι (C) served as control, group ΙΙ (MC) was given Moringa olifera seed oil extract (800 mg/kg b.wt) for 8 weeks, group ΙΙΙ (LC) was given (20 mg/kg b.wt) LYC for 8 weeks, group ΙV (O) received high fat diet (HFD) for 20 weeks, group Ѵ (MO), was given HFD for 20 weeks and received (800 mg/kg b.wt) Moringa olifera seed oil extract for last 8 weeks and group ѴΙ (LO), received HFD for 20 weeks and was given (20 mg/kg b.wt) LYC for last 8 weeks. Hematology, lipid peroxidation and antioxidants, non-esterified fatty acids (NEFA), glucose, lipid profile, serum liver and kidney biomarkers, inflammatory markers, leptin, resistin and heart fatty acid binding protein (HFABP) were determined. Also histopathology for liver, kidney and aorta were performed besides immunohistochemistry (IHC) for aortic inducible nitric oxide synthase (iNOS). Administration of Moringa olifera seed oil extract and LYC significantly ameliorated the HFD induced hematological and metabolic perturbations as well as reduced leptin and resistin. Both treatments exerted these effects through promotion of antioxidant enzymes and reducing lipid peroxidation as well as inflammatory cytokines along with reduced iNOS protein expression. Administration of Moringa olifera seed oil extract and LYC have anti-obesity potential in HFD induced obesity in male Sprauge Dawely rats.
Collapse
Affiliation(s)
- Omnia E Kilany
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Tahany Saleh Aldayel
- Nutrition and Food Science, Department of Physical Sport Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shimaa Abdo
- Suez Canal Authority Hospital, Ismailia, Egypt
| | - Manal M A Mahmoud
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
59
|
Bacteria as an alternate biofactory for carotenoid production: A review of its applications, opportunities and challenges. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103867] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
60
|
Domínguez R, Gullón P, Pateiro M, Munekata PES, Zhang W, Lorenzo JM. Tomato as Potential Source of Natural Additives for Meat Industry. A Review. Antioxidants (Basel) 2020; 9:antiox9010073. [PMID: 31952111 PMCID: PMC7022261 DOI: 10.3390/antiox9010073] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/13/2022] Open
Abstract
Tomato industry produces huge amounts of by-products that represent an environmental and economic problem. However, these by-products contain multiple bioactive compounds, which would make them a renewable source for obtaining natural antioxidants and colourants (carotenoids). This is in line with the preferences of the current consumer who demands more natural and healthy products. However, the lipophilic character of carotenoids means that their extraction must be carried out using toxic organic solvents. To overcome environmental and health problems of organic solvents, the application of supercritical fluid extraction (SFE) for the extraction of lipophilic compounds such as lycopene was used successfully, achieving yields similar to those obtained with conventional techniques. Nonetheless, the extraction conditions must be carefully selected, to obtain high yields and at the same time maintain a high antioxidant capacity. On the other hand, the use of tomato and tomato extracts as natural additives in meat products are reduced in comparison with other natural antioxidant/colourant extracts. However, different researches conclude that the use of tomato improved nutritional quality, reduced lipid oxidation and increased stability during the shelf-life period of meat products, while retaining or increasing sensory properties and overall acceptability, which converts tomato by-products into a promising source of natural additives.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
| | - Patricia Gullón
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China;
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (R.D.); (P.G.); (M.P.); (P.E.S.M.)
- Correspondence: ; Tel.: +34-988-548-277; Fax: +34-988-548-276
| |
Collapse
|
61
|
Danuta J, Marian C, Wiesław P, Anna R. The effect of fish oil, lycopene and organic selenium as feed additives on rabbit meat quality. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1828893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jaworska Danuta
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences Institute of Human Nutrition Sciences Warszawa, Poland
| | - Czauderna Marian
- Polish Academy of Sciences, The Kielanowski Institute of Animal Physiology and Nutrition Jabłonna; Poland
| | - Przybylski Wiesław
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences Institute of Human Nutrition Sciences Warszawa, Poland
| | - Ranachowska Anna
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences Institute of Human Nutrition Sciences Warszawa, Poland
| |
Collapse
|
62
|
Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar Drugs 2019; 18:E28. [PMID: 31905716 PMCID: PMC7024282 DOI: 10.3390/md18010028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Natural bioactive compounds with antioxidant activity play remarkable roles in the prevention of reactive oxygen species (ROS) formation. ROS, which are formed by different pathways, have various pathological influences such as DNA damage, carcinogenesis, and cellular degeneration. Incremental demands have prompted the search for newer and alternative resources of natural bioactive compounds with antioxidant properties. The marine environment encompasses almost three-quarters of our planet and is home to many eukaryotic and prokaryotic microorganisms. Because of extreme physical and chemical conditions, the marine environment is a rich source of chemical and biological diversity, and marine microorganisms have high potential as a source of commercially interesting compounds with various pharmaceutical, nutraceutical, and cosmeceutical applications. Bacteria and microalgae are the most important producers of valuable molecules including antioxidant enzymes (such as superoxide dismutase and catalase) and antioxidant substances (such as carotenoids, exopolysaccharides, and bioactive peptides) with various valuable biological properties and applications. Here, we review the current knowledge of these bioactive compounds while highlighting their antioxidant properties, production yield, health-related benefits, and potential applications in various biological and industrial fields.
Collapse
Affiliation(s)
- Masoud Hamidi
- Food and Drug Research Center, Vice-Chancellery of Food and Drug, Guilan University of Medical Sciences, Rasht P.O. Box 41446/66949, Iran;
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht P.O. Box 44771/66595, Iran;
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran P.O. Box 14115/111, Iran;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (G.P.); (P.M.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
63
|
Jurić S, Ferrari G, Velikov KP, Donsì F. High-pressure homogenization treatment to recover bioactive compounds from tomato peels. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
64
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. Tomato Fruit Development and Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:1554. [PMID: 31850035 PMCID: PMC6895250 DOI: 10.3389/fpls.2019.01554] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important fruit or vegetable crop next to potato (Solanum tuberosum L.). It is cultivated for fresh fruit and processed products. Tomatoes contain many health-promoting compounds including vitamins, carotenoids, and phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic metabolic changes occur during its fruit development. In this review, we provide an overview of our current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal control of fruit development and ripening, after which we document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and quality.
Collapse
Affiliation(s)
- Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rémi Blanchard-Gros
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
65
|
Dobrzyńska MM, Gajowik A, Radzikowska J. The effect of lycopene supplementation on radiation-induced micronuclei in mice reticulocytes in vivo. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:425-432. [PMID: 31123854 PMCID: PMC6609584 DOI: 10.1007/s00411-019-00795-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/07/2019] [Indexed: 05/05/2023]
Abstract
Lycopene (LYC) is a natural pigment present in tomatoes and other red fruits and vegetables including red carrots, red peppers, watermelons, pink grapefruits, apricots, pink guavas, and papaya. There is some evidence that LYC may provide protection against mutations induced by ionizing radiation. The study aimed to investigate whether the genetic material of reticulocytes (RET) could be protected from radiation-induced damage by LYC. Mice were treated with LYC [0.15 mg/kg bodyweight (bw), 0.30 mg/kg bw], acute and fractionated irradiation (0.5 Gy, 1 Gy applied daily), or with both agents (0.5 Gy + 0.15 mg/kg bw LYC, 0.5 Gy + 0.30 mg/kg bw LYC, 1 Gy + 0.15 mg/kg bw LYC, 1 Gy + 0.30 mg/kg LYC). LYC supplementation was started at 24 h or 1 week after the first irradiation. Irradiation significantly enhanced the frequency of micronuclei (MN) in RET. LYC treatment at a dose of 0.15 mg/kg bw 24 h after starting fractionated radiation at 1 Gy significantly decreased (41-68%, p < 0.0125) the level of MN in peripheral blood and bone marrow RET. LYC supplementation at 0.30 mg/kg bw did not significantly alter the frequency of MN in peripheral blood, but significantly increased the frequency of bone marrow RET MN. LYC treatment on day 8 following the first radiation exposure showed results similar (92-117%, p > 0.24) to those obtained with irradiation alone. Lycopene may act as a radiomitigator but must be administered at low doses and as soon as possible after irradiation. Contrary, combined exposure with high doses of irradiation and LYC may enhance the mutagenic effect of irradiation.
Collapse
Affiliation(s)
- Małgorzata M Dobrzyńska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland.
| | - Aneta Gajowik
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland
| | - Joanna Radzikowska
- Department of Radiation Hygiene and Radiobiology, National Institute of Public Health - National Institute of Hygiene, 24 Chocimska Street, 00-791, Warsaw, Poland
| |
Collapse
|
66
|
Saini RK, Keum YS. Microbial platforms to produce commercially vital carotenoids at industrial scale: an updated review of critical issues. J Ind Microbiol Biotechnol 2019; 46:657-674. [PMID: 30415292 DOI: 10.1007/s10295-018-2104-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/31/2018] [Indexed: 10/27/2022]
Abstract
Carotenoids are a diverse group of isoprenoid pigments that play crucial roles in plants, animals, and microorganisms, including body pigmentation, bio-communication, precursors for vitamin A, and potent antioxidant activities. With their potent antioxidant activities, carotenoids are emerging as molecules of vital importance in protecting against chronic degenerative disease, such as aging, cancer, cataract, cardiovascular, and neurodegenerative diseases. Due to countless functions in the cellular system, carotenoids are extensively used in dietary supplements, food colorants, aquaculture and poultry feed, nutraceuticals, and cosmetics. Moreover, the emerging demand for carotenoids in these vast areas has triggered their industrial-scale production. Currently, 80%-90% of carotenoids are produced synthetically by chemical synthesis. However, the demand for naturally produced carotenoids is increasing due to the health concern of synthetic counterparts. This article presents a review of the industrial production of carotenoids utilizing a number of diverse microbes, including microalgae, bacteria, and fungi, some of which have been genetically engineered to improve production titers.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, Konkuk University, Seoul, 143-701, Republic of Korea.
- Institute of Natural Science and Agriculture, Konkuk University, Seoul, 143-701, Republic of Korea.
- Department of Crop Science, Konkuk University, Seoul, 143-701, Republic of Korea.
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
67
|
Faustino M, Veiga M, Sousa P, Costa EM, Silva S, Pintado M. Agro-Food Byproducts as a New Source of Natural Food Additives. Molecules 2019; 24:E1056. [PMID: 30889812 PMCID: PMC6471601 DOI: 10.3390/molecules24061056] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Nowadays, the agro-food industry generates high amounts of byproducts that may possess added value compounds with high functionality and/or bioactivity. Additionally, consumers' demand for healthier foodstuffs has increased over the last years, and thus the food industry has strived to answer this challenge. Byproducts are generally secondary products derived from primary agro-food production processes and represent an interesting and cheaper source of potentially functional ingredients, such as peptides, carotenoids, and phenolic compounds, thus promoting a circular economy concept. The existing body of work has shown that byproducts and their extracts may be successfully incorporated into foodstuffs, for instance, phenolic compounds from eggplant can be potentially used as a mulfitunctional food additive with antimicrobial, antioxidant, and food colorant properties. As such, the aim of this review is to provide insights into byproducts and their potential as new sources of foodstuffs additives.
Collapse
Affiliation(s)
- Margarida Faustino
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Mariana Veiga
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Pedro Sousa
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Eduardo M Costa
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Sara Silva
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | - Manuela Pintado
- CBQF⁻Centro de Biotecnologia e Química Fina⁻Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| |
Collapse
|
68
|
Microencapsulation of Tomato (Solanum lycopersicum L.) Pomace Ethanolic Extract by Spray Drying: Optimization of Process Conditions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030612] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microencapsulation by spray-drying is a process used in the stabilization of active compounds from various natural sources, such as tomato by-products, with the purpose to be used as additives in the food industry. The aim of this work was to study the effects of wall material and spray drying conditions on physicochemical properties of microcapsules loaded with lycopene rich extract from tomato pomace. The assays were carried out with ethanolic tomato pomace extract as core material and arabic gum or inulin as wall materials. A central composite rotatable design was used to evaluate the effect of drying air inlet temperature (110–200 °C) and concentration of arabic gum (5–35 wt %) or inulin (5–25 wt %) on the antioxidant activity, encapsulation efficiency, loading capacity, and drying yield. SEM images showed that the produced particles were in the category of skin-forming structures. The most suitable conditions, within the ranges studied, to obtain lycopene loaded microparticles were a biopolymer concentration of 10 wt % for both materials and an inlet temperature of 200 and 160 °C for arabic gum and inulin, respectively. Arabic gum and inulin possessed a good performance in the encapsulation of tomato pomace extract by spray drying. It is envisaged that the capsules produced have good potential to be incorporated in foods systems with diverse chemical and physical properties.
Collapse
|
69
|
Kim S, Oh J, Jang CH, Kim JS. Improvement of cognitive function by Gochujang supplemented with tomato paste in a mouse model. Food Sci Biotechnol 2019; 28:1225-1233. [PMID: 31275723 DOI: 10.1007/s10068-019-00565-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 11/29/2022] Open
Abstract
Gochujang, a traditional Korean hot sauce, was prepared with a variety of antioxidant-rich supplements to improve its bioactive functions and preference by pungency-sensitive people. Among the tested ingredients, tomato paste exhibited the strongest antioxidant and neuroprotective activities when added as a supplement to traditional gochujang. Furthermore, oral administration of gochujang prepared with tomato paste to mice significantly improved cognitive function compared to original gochujang. As gochujang supplemented with tomato paste was found to contain an appreciable amount of lycopene with neuroprotective activity, it is most likely that the neuroprotective activity and cognitive improvement by the product was partially attributable to cis-lycopene, a highly bioavailable form converted from trans-lycopene during the manufacturing process of the product. However, a further study is required to verify the precise underlying mechanism of action.
Collapse
Affiliation(s)
- Sunghee Kim
- 1Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jisun Oh
- 2School of Food Science and Technology (BK21PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Chan Ho Jang
- 2School of Food Science and Technology (BK21PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jong-Sang Kim
- 1Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566 Republic of Korea.,2School of Food Science and Technology (BK21PLUS Program), Kyungpook National University, Daegu, 41566 Republic of Korea
| |
Collapse
|
70
|
Ancient Tomato (Solanum lycopersicum L.) Varieties of Tuscany Have High Contents of Bioactive Compounds. HORTICULTURAE 2018. [DOI: 10.3390/horticulturae4040051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Tuscan Region has a vast repertoire of ancient plants that have been recovered across the territory over the years. These plants thrive in an environment characterized by minimal human intervention and are thus the result of the process of adaptation to the territory of origin. In this work, we focused on the quantification of bioactive compounds in ancient tomato varieties. More specifically, we quantified polyphenols, flavonoids, carotenoids, and vitamin C in eight local Tuscan tomato varieties and found higher contents with respect to those in commercial tomatoes Polyphenol and antioxidant compounds in ancient varieties reported a two- and, in some instances, three-fold increase in concentration, compared to the commercial counterparts. Interestingly, the data relative to the carotenoids did not show any significant differences when comparing the ancient varieties with the commercial ones, a finding confirming the market selection criterion based on color. On a longer-term perspective, this study aims at drawing attention to the importance of preserving autochthonous natural plant biodiversity and towards promoting research on local varieties. We believe that this study will pave the way to the valorization of local plant biodiversity and promote an extended use of products in the nutraceutical sector derived from vegetables.
Collapse
|
71
|
Zuo ZQ, Xue Q, Zhou J, Zhao DH, Han J, Xiang H. Engineering Haloferax mediterranei as an Efficient Platform for High Level Production of Lycopene. Front Microbiol 2018; 9:2893. [PMID: 30555438 PMCID: PMC6282799 DOI: 10.3389/fmicb.2018.02893] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/12/2018] [Indexed: 01/22/2023] Open
Abstract
Lycopene attracts increasing interests in the pharmaceutical, food, and cosmetic industries due to its anti-oxidative and anti-cancer properties. Compared with other lycopene production methods, such as chemical synthesis or direct extraction from plants, the biosynthesis approach using microbes is more economical and sustainable. In this work, we engineered Haloferax mediterranei, a halophilic archaeon, as a new lycopene producer. H. mediterranei has the de novo synthetic pathway for lycopene but cannot accumulate this compound. To address this issue, we reinforced the lycopene synthesis pathway, blocked its flux to other carotenoids and disrupted its competitive pathways. The reaction from geranylgeranyl-PP to phytoene catalyzed by phytoene synthase (CrtB) was identified as the rate-limiting step in H. mediterranei. Insertion of a strong promoter PphaR immediately upstream of the crtB gene, or overexpression of the heterologous CrtB and phytoene desaturase (CrtI) led to a higher yield of lycopene. In addition, blocking bacterioruberin biosynthesis increased the purity and yield of lycopene. Knock-out of the key genes, responsible for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biosynthesis, diverted more carbon flux into lycopene synthesis, and thus further enhanced lycopene production. The metabolic engineered H. mediterranei strain produced lycopene at 119.25 ± 0.55 mg per gram of dry cell weight in shake flask fermentation. The obtained yield was superior compared to the lycopene production observed in most of the engineered Escherichia coli or yeast even when they were cultivated in pilot scale bioreactors. Collectively, this work offers insights into the mechanism involved in carotenoid biosynthesis in haloarchaea and demonstrates the potential of using haloarchaea for the production of lycopene or other carotenoids.
Collapse
Affiliation(s)
- Zhen-Qiang Zuo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Da-He Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
72
|
Torregrosa-Crespo J, Montero Z, Fuentes JL, Reig García-Galbis M, Garbayo I, Vílchez C, Martínez-Espinosa RM. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms. Mar Drugs 2018; 16:E203. [PMID: 29890662 PMCID: PMC6025630 DOI: 10.3390/md16060203] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022] Open
Abstract
Carotenoids are among the most abundant natural pigments available in nature. These pigments have received considerable attention because of their biotechnological applications and, more importantly, due to their potential beneficial uses in human healthcare, food processing, pharmaceuticals and cosmetics. These bioactive compounds are in high demand throughout the world; Europe and the USA are the markets where the demand for carotenoids is the highest. The in vitro synthesis of carotenoids has sustained their large-scale production so far. However, the emerging modern standards for a healthy lifestyle and environment-friendly practices have given rise to a search for natural biocompounds as alternatives to synthetic ones. Therefore, nowadays, biomass (vegetables, fruits, yeast and microorganisms) is being used to obtain naturally-available carotenoids with high antioxidant capacity and strong color, on a large scale. This is an alternative to the in vitro synthesis of carotenoids, which is expensive and generates a large number of residues, and the compounds synthesized are sometimes not active biologically. In this context, marine biomass has recently emerged as a natural source for both common and uncommon valuable carotenoids. Besides, the cultivation of marine microorganisms, as well as the downstream processes, which are used to isolate the carotenoids from these microorganisms, offer several advantages over the other approaches that have been explored previously. This review summarizes the general properties of the most-abundant carotenoids produced by marine microorganisms, focusing on the genuine/rare carotenoids that exhibit interesting features useful for potential applications in biotechnology, pharmaceuticals, cosmetics and medicine.
Collapse
Affiliation(s)
- Javier Torregrosa-Crespo
- Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology division, Faculty of Science, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| | - Zaida Montero
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Juan Luis Fuentes
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Manuel Reig García-Galbis
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Atacama, Copayapu 2862, CP 1530000 Copiapó, Chile.
| | - Inés Garbayo
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Carlos Vílchez
- Algal Biotechnology Group, University of Huelva, CIDERTA and Faculty of Science, Marine International Campus of Excellence (CEIMAR), Parque Huelva Empresarial S/N, 21007 Huelva, Spain.
| | - Rosa María Martínez-Espinosa
- Department of Agrochemistry and Biochemistry, Biochemistry and Molecular Biology division, Faculty of Science, University of Alicante, Ap. 99, E-03080 Alicante, Spain.
| |
Collapse
|
73
|
Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology 2018; 55:2833-2849. [PMID: 30065393 DOI: 10.1007/s13197-018-3221-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/28/2018] [Accepted: 05/10/2018] [Indexed: 12/25/2022]
Abstract
Tomato is a wonder fruit fortified with health-promoting phytochemicals that are beneficial in preventing important chronic degenerative disorders. Tomato is a good source of phenolic compounds (phenolic acids and flavonoids), carotenoids (lycopene, α, and β carotene), vitamins (ascorbic acid and vitamin A) and glycoalkaloids (tomatine). Bioactive constituents present in tomato have antioxidant, anti-mutagenic, anti-proliferative, anti-inflammatory and anti-atherogenic activities. Health promoting bioactivities of tomatoes make them useful ingredient for the development of functional foods. Protective role of tomato (lycopene as a potent antioxidant) in humans against various degenerative diseases are known throughout the world. Intake of tomato is inversely related to the incidence of cancer, cardiovascular diseases, ageing and many other health problems. Bioavailability of phytoconstituents in tomato is generally not affected by routine cooking processes making it even more beneficial for human consumption. The present review provides collective information of phytochemicals in tomato along with discussing their bioactivities and possible health benefits.
Collapse
|
74
|
Mozos I, Stoian D, Caraba A, Malainer C, Horbańczuk JO, Atanasov AG. Lycopene and Vascular Health. Front Pharmacol 2018; 9:521. [PMID: 29875663 PMCID: PMC5974099 DOI: 10.3389/fphar.2018.00521] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/30/2018] [Indexed: 01/20/2023] Open
Abstract
Lycopene is a lipophilic, unsaturated carotenoid, found in red-colored fruits and vegetables, including tomatoes, watermelon, papaya, red grapefruits, and guava. The present work provides an up to date overview of mechanisms linking lycopene in the human diet and vascular changes, considering epidemiological data, clinical studies, and experimental data. Lycopene may improve vascular function and contributes to the primary and secondary prevention of cardiovascular disorders. The main activity profile of lycopene includes antiatherosclerotic, antioxidant, anti-inflammatory, antihypertensive, antiplatelet, anti-apoptotic, and protective endothelial effects, the ability to improve the metabolic profile, and reduce arterial stiffness. In this context, lycopene has been shown in numerous studies to exert a favorable effect in patients with subclinical atherosclerosis, metabolic syndrome, hypertension, peripheral vascular disease, stroke and several other cardiovascular disorders, although the obtained results are sometimes inconsistent, which warrants further studies focusing on its bioactivity.
Collapse
Affiliation(s)
- Ioana Mozos
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
- Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
| | - Dana Stoian
- 2nd Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
| | - Alexandru Caraba
- 1st Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, Timiṣoara, Romania
| | | | - Jarosław O. Horbańczuk
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
75
|
An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids. Food Res Int 2018; 108:516-529. [PMID: 29735087 DOI: 10.1016/j.foodres.2018.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 11/24/2022]
Abstract
Globally, the amount of food processing waste has become a major concern for environmental sustainability. The valorization of these waste materials can solve the problems of its disposal. Notably, the tomato pomace and crustacean processing waste presents enormous opportunities for the extraction of commercially vital carotenoids, lycopene, and astaxanthin, which have diverse applications in the food, feed, pharmaceuticals, and cosmetic industries. Moreover, such waste can generate surplus revenue which can significantly improve the economics of food production and processing. Considering these aspects, many reports have been published on the efficient use of tomato and crustacean processing waste to recover lycopene and astaxanthin. The current review provides up-to-date information available on the chemistry of lycopene and astaxanthin, their extraction methods that use environmentally friendly green solvents to minimize the impact of toxic chemical solvents on health and environment. Future research challenges in this context are also identified.
Collapse
|
76
|
Langi P, Kiokias S, Varzakas T, Proestos C. Carotenoids: From Plants to Food and Feed Industries. Methods Mol Biol 2018; 1852:57-71. [PMID: 30109624 DOI: 10.1007/978-1-4939-8742-9_3] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this review, carotenoids from plants are described, and their natural existence is addressed. Carotenoids are 40-carbon isoprenoid molecules that produce the red, yellow, and orange pigmentation found in nature. Various plants, microalgae, bacteria, and fungi are natural sources of carotenoids and are presented in detail. The chemistry of carotenoids and their classification is also described along with the effect of carotenoids on human health which is explained with focus on lutein-zeaxanthin, astaxanthin, canthaxanthin, capsanthin, and lycopene. Clinical studies suggest that carotenoid consumption is associated with lower risk of cardiovascular disease, cancer, and eye disease. Finally, another issue discussed is the role of carotenoids in animals and their feed with focus on birds, fish and crustaceans, livestock, and poultry.
Collapse
Affiliation(s)
- Panagiota Langi
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Kiokias
- Department of Food Technology, School of Agricultural Technology, Food Technology and Nutrition, Technological Educational Institute of Peloponnese, Kalamata, Greece
| | - Theodoros Varzakas
- Department of Food Technology, School of Agricultural Technology, Food Technology and Nutrition, Technological Educational Institute of Peloponnese, Kalamata, Greece.
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
77
|
Vergara C, Araujo KEC, Urquiaga S, Schultz N, Balieiro FDC, Medeiros PS, Santos LA, Xavier GR, Zilli JE. Dark Septate Endophytic Fungi Help Tomato to Acquire Nutrients from Ground Plant Material. Front Microbiol 2017; 8:2437. [PMID: 29312163 PMCID: PMC5732191 DOI: 10.3389/fmicb.2017.02437] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/23/2017] [Indexed: 01/09/2023] Open
Abstract
Dark septate endophytic (DSE) fungi are facultative biotrophs that associate with hundreds of plant species, contributing to their growth. These fungi may therefore aid in the search for sustainable agricultural practices. However, several ecological functions of DSE fungi need further clarification. The present study investigated the effects of DSE fungi inoculation on nutrient recovery efficiency, nutrient accumulation, and growth of tomato plants fertilized with organic and inorganic N sources. Two experiments were carried out under greenhouse conditions in a randomized blocks design, with five replicates of tomato seedlings grown in pots filled with non-sterile sandy soil. Tomato seedlings (cv. Santa Clara I-5300) inoculated with DSE fungi (isolates A101, A104, and A105) and without DSE fungi (control) were transplanted to pots filled with 12 kg of soil which had previously received finely ground plant material [Canavalia ensiformis (L.)] that was shoot enriched with 0.7 atom % 15N (organic N source experiment) or ammonium sulfate-15N enriched with 1 atom % 15N (mineral N source experiment). Growth indicators, nutrient content, amount of nitrogen (N) in the plant derived from ammonium sulfate-15N or C. ensiformis-15N, and recovery efficiency of 15N, P, and K by plants were quantified 50 days after transplanting. The treatment inoculated with DSE fungi and supplied with an organic N source showed significantly higher recovery efficiency of 15N, P, and K. In addition, the 15N, N, P, K, Ca, Mg, Fe, Mn, and Zn content, plant height, leaf number, leaf area (only for the A104 inoculation), and shoot dry matter increased. In contrast, the only positive effects observed in the presence of an inorganic N source were fertilizer-K recovery efficiency, content of K, and leaf area when inoculated with the fungus A104. Inoculation with A101, A104, and A105 promoted the growth of tomato using organic N source (finely ground C. ensiformis-15N plant material).
Collapse
Affiliation(s)
- Carlos Vergara
- Departamento de Ciências do Solo, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Karla E. C. Araujo
- Departamento de Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Nivaldo Schultz
- Departamento de Ciências do Solo, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Peter S. Medeiros
- Departamento de Ciências do Solo, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Leandro A. Santos
- Departamento de Ciências do Solo, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | | |
Collapse
|
78
|
Effect of tomato paste addition and high pressure processing to preserve pork burgers. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-3002-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
79
|
Siracusa L, Patanè C, Rizzo V, Cosentino SL, Ruberto G. Targeted secondary metabolic and physico-chemical traits analysis to assess genetic variability within a germplasm collection of "long storage" tomatoes. Food Chem 2017; 244:275-283. [PMID: 29120782 DOI: 10.1016/j.foodchem.2017.10.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 11/29/2022]
Abstract
"Long storage" tomato is a crop traditionally cultivated in the Mediterranean area under no water supply, that recently has attracted the interest of breeders for its high tolerance to drought and as potential genetic source in breeding programs for water stress resistance. A collection of 28 genotypes of "long storage" tomato (Solanum lycopersicum L.) was studied for carotenoid and polyphenol profile and content, vitamin C, and other physico-chemical traits of fruits. Tomato carotenoids and polyphenols were identified and quantified using high-performance liquid chromatography coupled with diode array detection and electrospray-mass spectrometry (HPLC/DAD/ESI-MS); nineteen different phenolic compounds and six different carotenoids, for a total of 25 markers, have been detected, quantified and used to discriminate among the different landraces to find out which could be the best candidate for a medium-to-large scale cultivation. Different statistical approaches (ANOVA, Principal Components Analysis, Cluster Analysis) have been used for data analysis.
Collapse
Affiliation(s)
- Laura Siracusa
- Consiglio Nazionale delle Ricerche - Istituto di Chimica Biomolecolare (CNR-ICB), Via Paolo Gaifami 18, 95126 Catania, Italy.
| | - Cristina Patanè
- Consiglio Nazionale delle Ricerche - Istituto per la Valorizzazione del Legno e delle Specie Arboree (CNR-IVALSA), Via Paolo Gaifami 18, 95126 Catania, Italy.
| | - Valeria Rizzo
- Di3A - Dipartimento di Agricoltura, Alimentazione ed Ambiente - Università degli Studi di Catania, Via Santa Sofia, 100, 95123 Catania, Italy
| | - Salvatore Luciano Cosentino
- Di3A - Dipartimento di Agricoltura, Alimentazione ed Ambiente - Università degli Studi di Catania, Via Santa Sofia, 100, 95123 Catania, Italy
| | - Giuseppe Ruberto
- Consiglio Nazionale delle Ricerche - Istituto di Chimica Biomolecolare (CNR-ICB), Via Paolo Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
80
|
Leong HY, Show PL, Lim MH, Ooi CW, Ling TC. Natural red pigments from plants and their health benefits: A review. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1326935] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hui Yi Leong
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Miang Hoong Lim
- Crops For the Future, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
81
|
Neuroprotective effects of lycopene in spinal cord injury in rats via antioxidative and anti-apoptotic pathway. Neurosci Lett 2017; 642:107-112. [DOI: 10.1016/j.neulet.2017.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 02/02/2023]
|
82
|
Bandeira ACB, da Silva TP, de Araujo GR, Araujo CM, da Silva RC, Lima WG, Bezerra FS, Costa DC. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice. Chem Biol Interact 2016; 263:7-17. [PMID: 27989599 DOI: 10.1016/j.cbi.2016.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 12/28/2022]
Abstract
Our aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme. In the in vivo study, male C57BL/6 mice received lycopene (10 or 100 mg/kg by oral gavage) and 1 h later, acetaminophen (APAP) (500 mg/kg) was administrated. Lycopene decreased ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway. Lycopene improved hepatotoxicity acting as an antioxidant, reduced GSSG and regulated tGSH and CAT levels, reduced oxidative damage primarily by decreasing protein carbonylation, promoted the downregulation of MMP-2 and reduced areas of necrosis improving the general appearance of the lesion in C57BL/6 mice. Lycopene is a natural compound that was able to inhibit the production of ROS in vitro and mitigate the damage caused by APAP overdose in vivo.
Collapse
Affiliation(s)
- Ana Carla Balthar Bandeira
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Talita Prato da Silva
- Postgraduated Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil
| | - Glaucy Rodrigues de Araujo
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil
| | - Carolina Morais Araujo
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil
| | | | - Wanderson Geraldo Lima
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Frank Silva Bezerra
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil
| | - Daniela Caldeira Costa
- Postgraduated Program in Biological Sciences of the Research Center for Biological Sciences - NUPEB, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, 35.400-000, Brazil; Department of Biological Sciences, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Brazil.
| |
Collapse
|
83
|
Carotenoids from microalgae: A review of recent developments. Biotechnol Adv 2016; 34:1396-1412. [DOI: 10.1016/j.biotechadv.2016.10.005] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
|
84
|
Comparison of the nutritional as well as the volatile composition of in-season and off-season Hezuo 903 tomato at red stage. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2736-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
85
|
Azabou S, Abid Y, Sebii H, Felfoul I, Gargouri A, Attia H. Potential of the solid-state fermentation of tomato by products by Fusarium solani pisi for enzymatic extraction of lycopene. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
86
|
Di Paola Naranjo RD, Otaiza S, Saragusti AC, Baroni V, Carranza ADV, Peralta IE, Valle EM, Carrari F, Asis R. Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivo. Food Chem 2016; 206:146-55. [PMID: 27041310 DOI: 10.1016/j.foodchem.2016.03.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/25/2016] [Accepted: 03/08/2016] [Indexed: 11/29/2022]
Abstract
Potential nutraceutical properties of hydrophilic antioxidants in fruits of tomato landraces collected in Andean valleys were characterised. Antioxidant metabolites were measured by HPLC-DAD-MS/MS in mature fruits and their biological activities were assessed by in vitro and in vivo methods. In vitro antioxidant capacities were established by TEAC and FRAP methods. For in vivo biological activities we used a procedure based on Caenorhabditis elegans subjected to thermal stress. In addition, Saccharomyces cerevisiae was also used as a rapid screening system to evaluate tomato antioxidant capacity. All tomato accessions displayed significant differences regarding metabolic composition, biological activity and antioxidant capacity. Metabolite composition was associated with geographical origin and fruit size. Antioxidant activities showed significant association with phenolic compounds, such as caffeoylquinic acids, ferulic acid-O-hexosides and rutin. Combination of in vitro and in vivo methods applied here allowed evaluation of the variability in nutraceutical properties of tomato landraces, which could be applied to other fruits or food products.
Collapse
Affiliation(s)
- Romina D Di Paola Naranjo
- Facultad de Ciencias Químicas - CIBICI, Universidad Nacional de Córdoba - CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina; SECyT - ISIDSA/ICYTAC, Universidad Nacional de Córdoba - CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Santiago Otaiza
- Facultad de Ciencias Químicas - CIBICI, Universidad Nacional de Córdoba - CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alejandra C Saragusti
- Facultad de Ciencias Químicas - CIBICI, Universidad Nacional de Córdoba - CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Veronica Baroni
- SECyT - ISIDSA/ICYTAC, Universidad Nacional de Córdoba - CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Andrea Del V Carranza
- Facultad de Ciencias Químicas - CIBICI, Universidad Nacional de Córdoba - CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Iris E Peralta
- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo y CCT CONICET Mendoza, Mendoza, Argentina
| | - Estela M Valle
- Instituto de Biología Molecular de Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Ramón Asis
- Facultad de Ciencias Químicas - CIBICI, Universidad Nacional de Córdoba - CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
87
|
Rootstock effect on serotonin and nutritional quality of tomatoes produced under low temperature and light conditions. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2015.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
88
|
Ilahy R, Piro G, Tlili I, Riahi A, Sihem R, Ouerghi I, Hdider C, Lenucci MS. Fractionate analysis of the phytochemical composition and antioxidant activities in advanced breeding lines of high-lycopene tomatoes. Food Funct 2016; 7:574-83. [DOI: 10.1039/c5fo00553a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The results of the first study characterizing new high-lycopene tomato advanced breeding lines, to determine the phytochemical content as well asin vitroantioxidant activities of peel, pulp and seed fractions are presented.
Collapse
Affiliation(s)
- Riadh Ilahy
- Laboratory of Horticulture
- National Agricultural Research Institute of Tunisia
- 2049 Ariana
- Tunisia
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali
- Università del Salento
- 73100 Lecce
- Italy
| | - Imen Tlili
- Laboratory of Horticulture
- National Agricultural Research Institute of Tunisia
- 2049 Ariana
- Tunisia
| | | | - Rabaoui Sihem
- Laboratory of Agricultural Applied Biotechnology
- National Agricultural Research Institute of Tunisia
- Tunis
- Tunisia
| | - Imen Ouerghi
- Laboratory of Horticulture
- National Agricultural Research Institute of Tunisia
- 2049 Ariana
- Tunisia
| | - Chafik Hdider
- Laboratory of Horticulture
- National Agricultural Research Institute of Tunisia
- 2049 Ariana
- Tunisia
| | | |
Collapse
|
89
|
Cao WL, Huang HB, Fang L, Hu JN, Jin ZM, Wang RW. Protective effect of ginkgo proanthocyanidins against cerebral ischemia/reperfusion injury associated with its antioxidant effects. Neural Regen Res 2016; 11:1779-1783. [PMID: 28123420 PMCID: PMC5204232 DOI: 10.4103/1673-5374.194722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Proanthocyanidins have been shown to effectively protect ischemic neurons, but its mechanism remains poorly understood. Ginkgo proanthocyanidins (20, 40, 80 mg/kg) were intraperitoneally administered 1, 24, 48 and 72 hours before reperfusion. Results showed that ginkgo proanthocyanidins could effectively mitigate neurological disorders, shorten infarct volume, increase superoxide dismutase activity, and decrease malondialdehyde and nitric oxide contents. Simultaneously, the study on grape seed proanthocyanidins (40 mg/kg) confirmed that different sources of proanthocyanidins have a similar effect. The neurological outcomes of ginkgo proanthocyanidins were similar to that of nimodipine in the treatment of cerebral ischemia/reperfusion injury. Our results suggest that ginkgo proanthocyanidins can effectively lessen cerebral ischemia/reperfusion injury and protect ischemic brain tissue and these effects are associated with antioxidant properties.
Collapse
Affiliation(s)
- Wang-Li Cao
- Zhejiang Modern Chinese Medicine and Natural Drug Research Academy Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Hai-Bo Huang
- Zhejiang Conba Pharmaceutical Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Ling Fang
- Zhejiang Conba Pharmaceutical Co., Ltd., Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, Zhejiang Province, China
| | - Jiang-Ning Hu
- Zhejiang Modern Chinese Medicine and Natural Drug Research Academy Co., Ltd., Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, Zhejiang Province, China
| | - Zhu-Ming Jin
- Zhejiang Conba Pharmaceutical Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Ru-Wei Wang
- Zhejiang Modern Chinese Medicine and Natural Drug Research Academy Co., Ltd., Hangzhou, Zhejiang Province, China; Zhejiang Conba Pharmaceutical Co., Ltd., Hangzhou, Zhejiang Province, China; Zhejiang Key Laboratory of Traditional Chinese Medicine Pharmaceutical Technology, Hangzhou, Zhejiang Province, China
| |
Collapse
|
90
|
Saphier O, Silberstein T, Yardeni G, Blumenfeld J, Zilbermann I, Burg A. Role of lycopene in preventing lipid peroxidation products, in commercial infant milk formula. J Matern Fetal Neonatal Med 2015; 29:2865-9. [PMID: 26592530 DOI: 10.3109/14767058.2015.1107897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The aim of the study was to investigate whether lycopene from natural sources (tomato extract) is able to protect newborns milk formula, against oxidative damage caused by exposure to hydroxyl radicals, and is there a difference between milk substitutes from various sources. METHODS Four commercial brands of infant milk formula: two of the formulas were dairy milk (A-d and B-d) and two were based on soy bean vegan milk (A-s and B-s), were exposed to ionizing radiation radical (·OH). Lipid peroxidation was determined by measuring malondialdehyde (MDA) using thiobarbituric acid reactive substance test (TBARS). RESULTS When suspensions containing the four brands of formula were subjected to oxidizing media produced by ionizing radiation (hydroxyl radicals), lipid peroxidation increased linearly as a function of the irradiation dose (R = 0.99). It was found that lycopene in a concentration of 0.6 mM, reduced the radiation damage only in the soy-based formula; decrease of ∼40% of the damage achieved in B-s, and ∼20% reduction in the damage caused to A-s, significantly p < 0.01. CONCLUSIONS Lycopene in dairy milk did not protect against hydroxyl radicals; however, lycopene found to protect against hydroxyl radicals in soy milk. This result suggests different mechanisms of radical production that arises from high iron levels present in the soy milk and involving the high-valent iron peroxo species.
Collapse
Affiliation(s)
- Oshra Saphier
- a Department of Chemical Engineering , Sami Shamoon College of Engineering , Beer-Sheva , Israel
| | - Tali Silberstein
- b Department of Gynecology and Obstetrics , Soroka University Medical Center, Ben-Gurion University of the Negev , Beer-Sheva , Israel , and
| | - Guy Yardeni
- c Department of Chemistry , Nuclear Research Center-Negev , Beer-Sheva , Israel and Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Jeanine Blumenfeld
- a Department of Chemical Engineering , Sami Shamoon College of Engineering , Beer-Sheva , Israel
| | - Israel Zilbermann
- c Department of Chemistry , Nuclear Research Center-Negev , Beer-Sheva , Israel and Department of Chemistry , Ben-Gurion University of the Negev , Beer-Sheva , Israel
| | - Ariela Burg
- a Department of Chemical Engineering , Sami Shamoon College of Engineering , Beer-Sheva , Israel
| |
Collapse
|
91
|
Martínez-Huélamo M, Tulipani S, Jáuregui O, Valderas-Martinez P, Vallverdú-Queralt A, Estruch R, Torrado X, Lamuela-Raventós RM. Sensitive and Rapid UHPLC-MS/MS for the Analysis of Tomato Phenolics in Human Biological Samples. Molecules 2015; 20:20409-25. [PMID: 26580589 PMCID: PMC6332008 DOI: 10.3390/molecules201119702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/19/2015] [Accepted: 11/04/2015] [Indexed: 11/21/2022] Open
Abstract
An UHPLC-MS/MS method for the quantification of tomato phenolic metabolites in human fluids was optimized and validated, and then applied in a pilot dietary intervention study with healthy volunteers. A 5-fold gain in speed (3.5 min of total run); 7-fold increase in MS sensitivity and 2-fold greater efficiency (50% peak width reduction) were observed when comparing the proposed method with the reference-quality HPLC-MS/MS system, whose assay performance has been previously documented. The UHPLC-MS/MS method led to an overall improvement in the limits of detection (LOD) and quantification (LOQ) for all the phenolic compounds studied. The recoveries ranged between 68% and 100% in urine and 61% and 100% in plasma. The accuracy; intra- and interday precision; and stability met with the acceptance criteria of the AOAC International norms. Due to the improvements in the analytical method; the total phenolic metabolites detected in plasma and urine in the pilot intervention study were 3 times higher than those detected by HPLC-MS/MS. Comparing with traditional methods; which require longer time of analysis; the methodology described is suitable for the analysis of phenolic compounds in a large number of plasma and urine samples in a reduced time frame.
Collapse
Affiliation(s)
- Miriam Martínez-Huélamo
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain.
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
| | - Sara Tulipani
- Biomedical Research Institute (IBIMA), Service of Endocrinology and Nutrition, Hospital Virgen de la Victoria, Teatinos Campus, University of Malaga, Malaga 29010, Spain.
| | - Olga Jáuregui
- Scientific and Technological Centers of the University of Barcelona (CCiTUB), Barcelona 08028, Spain.
| | - Palmira Valderas-Martinez
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
- Department of Internal Medicine, Hospital Clinic, Institute of Biomedical Investigation August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain.
| | - Anna Vallverdú-Queralt
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
- INRA, UMR1083 Sciences for Oenology, 2 place Pierre Viala, Montpellier Cedex 34060, France.
| | - Ramón Estruch
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
- Department of Internal Medicine, Hospital Clinic, Institute of Biomedical Investigation August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona 08036, Spain.
| | - Xavier Torrado
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain.
| | - Rosa M Lamuela-Raventós
- Department of Nutrition and Food Science-XARTA-INSA, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain.
- Centre for Biomedical Network Research on the Pathophysiology of Obesity and Nutrition (CIBEROBN). Carlos III Health Institute, Madrid 28029, Spain.
| |
Collapse
|
92
|
Wang Y, Cui R, Xiao Y, Fang J, Xu Q. Effect of Carotene and Lycopene on the Risk of Prostate Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. PLoS One 2015; 10:e0137427. [PMID: 26372549 PMCID: PMC4570783 DOI: 10.1371/journal.pone.0137427] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022] Open
Abstract
Background Many epidemiologic studies have investigated the association between carotenoids intake and risk of Prostate cancer (PCa). However, results have been inconclusive. Methods We conducted a systematic review and dose-response meta-analysis of dietary intake or blood concentrations of carotenoids in relation to PCa risk. We summarized the data from 34 eligible studies (10 cohort, 11 nested case-control and 13 case-control studies) and estimated summary Risk Ratios (RRs) and 95% confidence intervals (CIs) using random-effects models. Results Neither dietary β-carotene intake nor its blood levels was associated with reduced PCa risk. Dietary α-carotene intake and lycopene consumption (both dietary intake and its blood levels) were all associated with reduced risk of PCa (RR for dietary α-carotene intake: 0.87, 95%CI: 0.76–0.99; RR for dietary lycopene intake: 0.86, 95%CI: 0.75–0.98; RR for blood lycopene levels: 0.81, 95%CI: 0.69–0.96). However, neither blood α-carotene levels nor blood lycopene levels could reduce the risk of advanced PCa. Dose-response analysis indicated that risk of PCa was reduced by 2% per 0.2mg/day (95%CI: 0.96–0.99) increment of dietary α-carotene intake or 3% per 1mg/day (95%CI: 0.94–0.99) increment of dietary lycopene intake. Conclusions α-carotene and lycopene, but not β-carotene, were inversely associated with the risk of PCa. However, both α-carotene and lycopene could not lower the risk of advanced PCa.
Collapse
Affiliation(s)
- Yulan Wang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, No.301 Middle Yanchang Road, Zhabei District, Shanghai 200072, China
| | - Ran Cui
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, No.301 Middle Yanchang Road, Zhabei District, Shanghai 200072, China
| | - Yuanyuan Xiao
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, No.301 Middle Yanchang Road, Zhabei District, Shanghai 200072, China
| | - Juemin Fang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, No.301 Middle Yanchang Road, Zhabei District, Shanghai 200072, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, No.301 Middle Yanchang Road, Zhabei District, Shanghai 200072, China
- * E-mail:
| |
Collapse
|
93
|
Clément A, Bacon R, Sirois S, Dorais M. Mature-ripe tomato spectral classification according to lycopene content and fruit type by visible, NIR reflectance and intrinsic fluorescence. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2015. [DOI: 10.3920/qas2014.0521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- A. Clément
- Agriculture and Agri-Food Canada, Food Research and Development Centre, 3600 Casavant Ouest, St-Hyacinthe, QC, J2S 8E3, Canada
| | - R. Bacon
- Agriculture and Agri-Food Canada, Horticultural Research Centre, Laval University, 2480 boulevard Hochelaga, Quebec, QC, G1V 0A6, Canada
| | - S. Sirois
- Agriculture and Agri-Food Canada, Food Research and Development Centre, 3600 Casavant Ouest, St-Hyacinthe, QC, J2S 8E3, Canada
| | - M. Dorais
- Agriculture and Agri-Food Canada, Horticultural Research Centre, Laval University, 2480 boulevard Hochelaga, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
94
|
Borel P, Desmarchelier C, Nowicki M, Bott R. Lycopene bioavailability is associated with a combination of genetic variants. Free Radic Biol Med 2015; 83:238-44. [PMID: 25772008 DOI: 10.1016/j.freeradbiomed.2015.02.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022]
Abstract
The intake of tomatoes and tomato products, which constitute the main dietary source of the red pigment lycopene (LYC), has been associated with a reduced risk of prostate cancer and cardiovascular disease, suggesting a protective role of this carotenoid. However, LYC bioavailability displays high interindividual variability. This variability may lead to varying biological effects following LYC consumption. Based on recent results obtained with two other carotenoids, we assumed that this variability was due, at least in part, to several single nucleotide polymorphisms (SNPs) in genes involved in LYC and lipid metabolism. Thus, we aimed at identifying a combination of SNPs significantly associated with the variability in LYC bioavailability. In a postprandial study, 33 healthy male volunteers consumed a test meal containing 100g tomato puree, which provided 9.7 mg all-trans LYC. LYC concentrations were measured in plasma chylomicrons (CM) isolated at regular time intervals over 8 h postprandially. For the study 1885 SNPs in 49 candidate genes, i.e., genes assumed to play a role in LYC bioavailability, were selected. Multivariate statistical analysis (partial least squares regression) was used to identify and validate the combination of SNPs most closely associated with postprandial CM LYC response. The postprandial CM LYC response to the meal was notably variable with a CV of 70%. A significant (P=0.037) and validated partial least squares regression model, which included 28 SNPs in 16 genes, explained 72% of the variance in the postprandial CM LYC response. The postprandial CM LYC response was also positively correlated to fasting plasma LYC concentrations (r=0.37, P<0.05). The ability to respond to LYC is explained, at least partly, by a combination of 28 SNPs in 16 genes. Interindividual variability in bioavailability apparently affects the long-term blood LYC status, which could ultimately modulate the biological response following LYC supplementation.
Collapse
Affiliation(s)
- Patrick Borel
- INRA, UMR INRA1260, F-13005, Marseille, France; INSERM, UMR_S 1062, F-13005, Marseille, France; Aix-Marseille Université, NORT, F-13005, Marseille, France.
| | - Charles Desmarchelier
- INRA, UMR INRA1260, F-13005, Marseille, France; INSERM, UMR_S 1062, F-13005, Marseille, France; Aix-Marseille Université, NORT, F-13005, Marseille, France
| | - Marion Nowicki
- INRA, UMR INRA1260, F-13005, Marseille, France; INSERM, UMR_S 1062, F-13005, Marseille, France; Aix-Marseille Université, NORT, F-13005, Marseille, France
| | - Romain Bott
- INRA, UMR INRA1260, F-13005, Marseille, France; INSERM, UMR_S 1062, F-13005, Marseille, France; Aix-Marseille Université, NORT, F-13005, Marseille, France
| |
Collapse
|
95
|
|
96
|
Martínez-Hernández GB, Boluda-Aguilar M, Taboada-Rodríguez A, Soto-Jover S, Marín-Iniesta F, López-Gómez A. Processing, Packaging, and Storage of Tomato Products: Influence on the Lycopene Content. FOOD ENGINEERING REVIEWS 2015. [DOI: 10.1007/s12393-015-9113-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
97
|
Pirayesh Islamian J, Mehrali H. Lycopene as a carotenoid provides radioprotectant and antioxidant effects by quenching radiation-induced free radical singlet oxygen: an overview. CELL JOURNAL 2015; 16:386-91. [PMID: 25685729 PMCID: PMC4297477 DOI: 10.22074/cellj.2015.485] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/25/2013] [Indexed: 01/14/2023]
Abstract
Radio-protectors are agents that protect human cells and tissues from undesirable effects of ionizing radiation by mainly scavenging radiation-induced free radicals. Although chemical radio-protectors diminish these deleterious side effects they induce a number of unwanted effects on humans such as blood pressure modifications, vomiting, nausea, and both local and generalized cutaneous reactions. These disadvantages have led to emphasis on the use of some botanical radio-protectants as alternatives. This review has collected and organized studies on a plant-derived radio-protector, lycopene. Lycopene protects normal tissues and cells by scavenging free radicals. Therefore, treatment of cells with lycopene prior to exposure to an oxidative stress, oxidative molecules or ionizing radiation may be an effective approach in diminishing undesirable effects of radiation byproducts. Studies have designated lycopene to be an effective radio-protector with negligible side effects.
Collapse
Affiliation(s)
- Jalil Pirayesh Islamian
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Mehrali
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
98
|
Chung SH, Son AR, Lee SA, Kim BG. Effects of Dietary Tomato Processing Byproducts on Pork Nutrient Composition and Loin Quality of Pigs. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajava.2014.775.781] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|