51
|
Zhang C, Huang R, Zhan N, Qin L. Methyl jasmonate and selenium synergistically mitigative cadmium toxicity in hot pepper (Capsicum annuum L.) plants by improving antioxidase activities and reducing Cd accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82458-82469. [PMID: 37326735 DOI: 10.1007/s11356-023-28273-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Methyl jasmonate (MeJA) or selenium (Se)-mediated response to cadmium (Cd) stress in plant has been widely reported, but the combined effects both on plant growth in response to Cd stress and the underlying mechanisms remain obscure. Here, we showed the combined effects of MeJA (2.5 μM) and Se (7 μM) on hot pepper growth under Cd stress (CdCl2, 5 μM). The results showed Cd suppressed the accumulation of total chlorophyll and carotenoid and reduced the photosynthesis, while it increased the content of endogenous signaling molecules, e.g. nitric oxide (NO) and hydrogen peroxide (H2O2), as well as Cd content in leaves. The combined application of MeJA and Se significantly decreased the malondialdehyde (MDA) accumulation and improved the activities of antioxidant enzymes (AOEs, e.g. SOD and CAT) and defense-related enzymes (DREs, POD and PAL). Additionally, the synergistic application of MeJA and Se also obviously improved photosynthesis in hot pepper plants under Cd stress compared with those treated with MeJA or Se respectively or not. Moreover, the treatment of MeJA associated with Se also effectively reduced the Cd accumulation in hot pepper leaves under Cd stress compared with the plants treated with MeJA or Se separately, which implied a potentially synergistic role of MeJA and Se in alleviating Cd toxicity in hot pepper plants. This study provides a theoretical reference for the further analysis of the molecular mechanism of MeJA and Se in jointly mediating the response to heavy metals in plants.
Collapse
Affiliation(s)
- Chuhan Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Renquan Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Niheng Zhan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China
| | - Lijun Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025, Guiyang, China.
| |
Collapse
|
52
|
Bernatoniene J, Sciupokas A, Kopustinskiene DM, Petrikonis K. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics 2023; 15:1799. [PMID: 37513986 PMCID: PMC10384314 DOI: 10.3390/pharmaceutics15071799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a debilitating condition characterized by abnormal signaling within the nervous system, resulting in persistent and often intense sensations of pain. It can arise from various causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants, gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article highlights the need for further research in this field to identify new targets and develop more effective and targeted therapies for neuropathic pain management.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Arunas Sciupokas
- Pain Clinic, Lithuanian University of Health Sciences Hospital Kauno Klinikos, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| |
Collapse
|
53
|
Mao B, Xiang Q, Tang X, Zhang Q, Liu X, Zhao J, Cui S, Zhang H. Lactobacillus reuteri CCFM1175 and Lactobacillus paracasei CCFM1176 Could Prevent Capsaicin-Induced Ileal and Colonic Injuries. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10106-1. [PMID: 37314694 DOI: 10.1007/s12602-023-10106-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
Capsaicin (CAP) is usually reported to have many biological activities. However, a large intake of CAP may cause heartburn, gastrointestinal pain, and diarrhea. In this study, mice were gavaged with nine lactic acid bacteria (LAB) strains for two weeks, in which the mice were treated with CAP at the second week and lasted for one week. We tried to identify potential probiotics that could prevent CAP-induced intestinal injury and investigate the mechanisms. The modulation of transient receptor potential vanilloid 1 (TRPV1), levels of short-chain fatty acids (SCFAs), and the composition of gut microbiota were analyzed. The results showed that Lactobacillus reuteri CCFM1175 and Lactobacillus paracasei CCFM1176 effectively attenuated CAP-induced injuries to the ileum and colon, including relieving the damage to colonic crypt structures, increasing the number of goblet cells, decreasing levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), increasing levels of anti-inflammatory factors (IL-10), and reducing levels of substance P (SP) and calcitonin gene-related peptide (CGRP) in serum and colon tissue. Further analysis showed that L. reuteri CCFM1175 increased the relative abundance of Ruminococcaceae UCG_014 and Akkermansia. L. paracasei CCFM1176 downregulated the expression of TRPV1 in the ileal and colonic tissues and promoted the relative abundance of Ruminococcaceae UCG_014 and Lachnospiraceae UCG_006. These results indicate that L. reuteri CCFM1175 and L. paracasei CCFM1176 could prevent CAP-induced intestinal injury and be used as probiotics to improve the gastrointestinal health.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qunran Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
54
|
González-Gordo S, Muñoz-Vargas MA, Palma JM, Corpas FJ. Class III Peroxidases (POD) in Pepper ( Capsicum annuum L.): Genome-Wide Identification and Regulation during Nitric Oxide (NO)-Influenced Fruit Ripening. Antioxidants (Basel) 2023; 12:antiox12051013. [PMID: 37237879 DOI: 10.3390/antiox12051013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The class III peroxidases (PODs) catalyze the oxidation of several substrates coupled to the reduction of H2O2 to water, and play important roles in diverse plant processes. The POD family members have been well-studied in several plant species, but little information is available on sweet pepper fruit physiology. Based on the existing pepper genome, a total of 75 CaPOD genes have been identified, but only 10 genes were found in the fruit transcriptome (RNA-Seq). The time-course expression analysis of these genes showed that two were upregulated during fruit ripening, seven were downregulated, and one gene was unaffected. Furthermore, nitric oxide (NO) treatment triggered the upregulation of two CaPOD genes whereas the others were unaffected. Non-denaturing PAGE and in-gel activity staining allowed identifying four CaPOD isozymes (CaPOD I-CaPOD IV) which were differentially modulated during ripening and by NO. In vitro analyses of green fruit samples with peroxynitrite, NO donors, and reducing agents triggered about 100% inhibition of CaPOD IV. These data support the modulation of POD at gene and activity levels, which is in agreement with the nitro-oxidative metabolism of pepper fruit during ripening, and suggest that POD IV is a target for nitration and reducing events that lead to its inhibition.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
55
|
Mougin J, Lobanov V, Danion M, Roquigny R, Goardon L, Grard T, Morin T, Labbé L, Joyce A. Effects of dietary co-exposure to fungal and herbal functional feed additives on immune parameters and microbial intestinal diversity in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2023; 137:108773. [PMID: 37105422 DOI: 10.1016/j.fsi.2023.108773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Misuse and overuse of antibiotics in aquaculture has proven to be an unsustainable practice leading to increased bacterial resistance. An alternative strategy involves the inclusion of immunostimulants in fish diets, especially fungal and herbal compounds already authorized for human consumption, hence without environmental or public health concerns. In this study, we used a holistic and cross-disciplinary pipeline to assess the immunostimulatory properties of two fungi: Trametes versicolor and Ganoderma lucidum; one herbal supplement, capsaicin in the form of Espelette pepper (Capsicum annuum), and a combination of these fungal and herbal additives on rainbow trout (Oncorhynchus mykiss). We investigated the impact of diet supplementation for 7 weeks on survival, growth performance, cellular, humoral, and molecular immune parameters, as well as the intestinal microbial composition of the fish. Uptake of herbal and fungal compounds influenced the expression of immune related genes, without generating an inflammatory response. Significant differences were detected in the spleen-tlr2 gene expression. Supplementation with herbal additives correlated with structural changes in the fish intestinal microbiota and enhanced overall intestinal microbial diversity. Results demonstrated that the different treatments had no adverse effect on growth performance and survival, suggesting the safety of the different feed additives at the tested concentrations. While the mechanisms and multifactorial interactions remain unclear, this study provides insights not only in regard to nutrition and safety of these compounds, but also how a combined immune and gut microbiota approach can shed light on efficacy of immunostimulant compounds for potential commercial inclusion as feed supplements.
Collapse
Affiliation(s)
- Julia Mougin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Victor Lobanov
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, 29280, Plouzané, France
| | - Roxane Roquigny
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Lionel Goardon
- PEIMA-INRAe, UE0937, Fish Farming Systems Experimental Facility, Sizun, France
| | - Thierry Grard
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan-Plouzané-Niort Laboratory, Unit Virology, Immunology and Ecotoxicology of Fish, 29280, Plouzané, France
| | - Laurent Labbé
- PEIMA-INRAe, UE0937, Fish Farming Systems Experimental Facility, Sizun, France
| | - Alyssa Joyce
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
56
|
Xing N, Du Q, Guo S, Xiang G, Zhang Y, Meng X, Xiang L, Wang S. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov 2023; 9:110. [PMID: 37005430 PMCID: PMC10067943 DOI: 10.1038/s41420-023-01407-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Lung cancer is a common malignant tumor that occurs in the human body and poses a serious threat to human health and quality of life. The existing treatment methods mainly include surgical treatment, chemotherapy, and radiotherapy. However, due to the strong metastatic characteristics of lung cancer and the emergence of related drug resistance and radiation resistance, the overall survival rate of lung cancer patients is not ideal. There is an urgent need to develop new treatment strategies or new effective drugs to treat lung cancer. Ferroptosis, a novel type of programmed cell death, is different from the traditional cell death pathways such as apoptosis, necrosis, pyroptosis and so on. It is caused by the increase of iron-dependent reactive oxygen species due to intracellular iron overload, which leads to the accumulation of lipid peroxides, thus inducing cell membrane oxidative damage, affecting the normal life process of cells, and finally promoting the process of ferroptosis. The regulation of ferroptosis is closely related to the normal physiological process of cells, and it involves iron metabolism, lipid metabolism, and the balance between oxygen-free radical reaction and lipid peroxidation. A large number of studies have confirmed that ferroptosis is a result of the combined action of the cellular oxidation/antioxidant system and cell membrane damage/repair, which has great potential application in tumor therapy. Therefore, this review aims to explore potential therapeutic targets for ferroptosis in lung cancer by clarifying the regulatory pathway of ferroptosis. Based on the study of ferroptosis, the regulation mechanism of ferroptosis in lung cancer was understood and the existing chemical drugs and natural compounds targeting ferroptosis in lung cancer were summarized, with the aim of providing new ideas for the treatment of lung cancer. In addition, it also provides the basis for the discovery and clinical application of chemical drugs and natural compounds targeting ferroptosis to effectively treat lung cancer.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
57
|
MYB24 Negatively Regulates the Biosynthesis of Lignin and Capsaicin by Affecting the Expression of Key Genes in the Phenylpropanoid Metabolism Pathway in Capsicum chinense. Molecules 2023; 28:molecules28062644. [PMID: 36985616 PMCID: PMC10054932 DOI: 10.3390/molecules28062644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The wide application of pepper is mostly related to the content of capsaicin, and phenylpropanoid metabolism and its branch pathways may play an important role in the biosynthesis of capsaicin. The expression level of MYB24, a transcription factor screened from the transcriptome data of the pepper fruit development stage, was closely related to the spicy taste. In this experiment, CcMYB24 was cloned from Hainan Huangdenglong pepper, a hot aromatic pepper variety popular in the world for processing, and its function was confirmed by tissue expression characteristics, heterologous transformation in Arabidopsis thaliana, and VIGS technology. The results showed that the relative expression level of CcMYB24 was stable in the early stage of pepper fruit development, and increased significantly from 30 to 50 days after flowering. Heterologous expression led to a significant increase in the expression of CcMYB24 and decrease in lignin content in transgenic Arabidopsis thaliana plants. CcMYB24 silencing led to a significant increase in the expression of phenylpropanoid metabolism pathway genes PAL, 4CL, and pAMT; lignin branch CCR1 and CAD; and capsaicin pathway CS, AT3, and COMT genes in the placenta of pepper, with capsaicin content increased by more than 31.72% and lignin content increased by 20.78%. However, the expression of PAL, pAMT, AT3, COMT, etc., in the corresponding pericarps did not change significantly. Although CS, CCR1, and CAD increased significantly, the relative expression amount was smaller than that in placental tissue, and the lignin content did not change significantly. As indicated above, CcMYB24 may negatively regulate the formation of capsaicin and lignin by regulating the expression of genes from phenylpropanoid metabolism and its branch pathways.
Collapse
|
58
|
Oz M, Lorke DE, Howarth FC. Transient receptor potential vanilloid 1 (TRPV1)-independent actions of capsaicin on cellular excitability and ion transport. Med Res Rev 2023. [PMID: 36916676 DOI: 10.1002/med.21945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/15/2023]
Abstract
Capsaicin is a naturally occurring alkaloid derived from chili pepper that is responsible for its hot pungent taste. Capsaicin is known to exert multiple pharmacological actions, including analgesia, anticancer, anti-inflammatory, antiobesity, and antioxidant effects. The transient receptor potential vanilloid subfamily member 1 (TRPV1) is the main receptor mediating the majority of the capsaicin effects. However, numerous studies suggest that the TRPV1 receptor is not the only target for capsaicin. An increasing number of studies indicates that capsaicin, at low to mid µM ranges, not only indirectly through TRPV1-mediated Ca2+ increases, but also directly modulates the functions of voltage-gated Na+ , K+ , and Ca2+ channels, as well as ligand-gated ion channels and other ion transporters and enzymes involved in cellular excitability. These TRPV1-independent effects are mediated by alterations of the biophysical properties of the lipid membrane and subsequent modulation of the functional properties of ion channels and by direct binding of capsaicin to the channels. The present study, for the first time, systematically categorizes this diverse range of non-TRPV1 targets and discusses cellular and molecular mechanisms mediating TRPV1-independent effects of capsaicin in excitable, as well as nonexcitable cells.
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Dietrich E Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Frank C Howarth
- Department of Physiology, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
59
|
Choi MH, Kim MH, Han YS. Physicochemical properties and antioxidant activity of colored peppers ( Capsicum annuum L.). Food Sci Biotechnol 2023; 32:209-219. [PMID: 36647520 PMCID: PMC9839908 DOI: 10.1007/s10068-022-01177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/10/2022] [Accepted: 09/05/2022] [Indexed: 01/19/2023] Open
Abstract
Peppers are spices consumed all around the world. This study evaluated the physicochemical properties and antioxidant activities of red, orange, yellow, green, and purple peppers. Total capsaicinoids showed the highest concentration in the green pepper (2416.50 µg/g). Vitamin C showed similar concentrations in all peppers (28.90-30.95 mg/g), except for the purple pepper (25.59 mg/g). Chlorophyll was abundant in the green and the purple peppers (280.36 and 102.13 mg/100 g). Total carotenoid was abundant in the red and the orange peppers (237.04 and 276.94 mg/100 g). Total anthocyanin was detected only in the purple pepper (67.13 mg/100 g). Total flavonoid showed a high concentration in the green and the purple peppers (24.27 and 22.27 CAE mg/g). The yellow pepper showed the highest antioxidant activity according to total polyphenol, DPPH radical scavenging activity, ABTS radical scavenging activity and reducing power assays. Therefore, peppers showed potential for the development of functional food materials.
Collapse
Affiliation(s)
- Mun-Hee Choi
- Department of Food & Nutrition, Sookmyung Women’s University, 100 Cheongpa-ro 47gil, Seoul, 04310 Korea
| | - Myung-Hyun Kim
- Department of Food & Nutrition, Sookmyung Women’s University, 100 Cheongpa-ro 47gil, Seoul, 04310 Korea
| | - Young-Sil Han
- Department of Food & Nutrition, Sookmyung Women’s University, 100 Cheongpa-ro 47gil, Seoul, 04310 Korea
| |
Collapse
|
60
|
Aleman RS, Marcía JA, Montero-Fernández I, King J, Pournaki SK, Hoskin RT, Moncada M. Novel Liquor-Based Hot Sauce: Physicochemical Attributes, Volatile Compounds, Sensory Evaluation, Consumer Perception, Emotions, and Purchase Intent. Foods 2023; 12:369. [PMID: 36673461 PMCID: PMC9857492 DOI: 10.3390/foods12020369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Hot sauces are popular peppery condiments used to add flavor and sensory excitement to gastronomical preparations. While hot sauce occupies a retail category well over a century old, a novel production method using liquor as the base preservative rather than traditional vinegar is now commercially available, and its uniqueness begs study. Hot sauces produced with tequila, rum, vodka, and bourbon were compared to traditional vinegar-based hot sauces concerning physicochemical properties, volatile compounds, microbiological quality, sensory scores, emotions, and purchase intent (PI). Under accelerated conditions, pH, titratable acidity (TA), water activity (Aw), viscosity, and color were analyzed weekly for 20 weeks, whereas rheological properties, coliforms and yeasts and molds were examined on weeks 1 and 20. Hexyl n-valerate, butanoic acid, 3-methyl-, hexyl ester, and 4-methylpentyl 3-methylbutanoate were found in high concentrations in the pepper mix as well as the hot sauce produced with vinegar. When compared to vinegar-based hot sauces, liquor-based hot sauces had similar Aw (p > 0.05), higher pH, viscosity, and L* values and lower TA, a*, and b* values (p < 0.05). Samples formulated with liquors increased the relaxation exponent derived from G’ values having a greater paste formation when compared to vinegar-based hot sauces. The sensory evaluation was carried out in Honduras. The liquor-based hot sauces had a significant (p < 0.05) impact on emotion and wellness terms. Bourbon and tequila samples had higher ratings than control samples in several wellness and emotion responses (active, energetic, enthusiastic, good, curious, pleased, stimulated, and wild). Adventurous, joyful, free, worried, refreshed, and healthy scores were not significantly (p > 0.05) different among treatments.
Collapse
Affiliation(s)
- Ricardo S. Aleman
- School of Nutrition and Food Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jhunior A. Marcía
- Faculty of Technological Sciences, Universidad Universidad Nacional de Agricultura, Catacamas 16201, Honduras
| | - Ismael Montero-Fernández
- Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías Agrarias, Universidad de Extremadura, 06007 Badajoz, Spain
| | - Joan King
- School of Nutrition and Food Sciences, Agricultural Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Roberta Targino Hoskin
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| | - Marvin Moncada
- Department of Food Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA
| |
Collapse
|
61
|
Impact of Dietary Supplementation of Spice Extracts on Growth Performance, Nutrient Digestibility and Antioxidant Response in Broiler Chickens. Animals (Basel) 2023; 13:ani13020250. [PMID: 36670790 PMCID: PMC9854518 DOI: 10.3390/ani13020250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
This study aimed to investigate the effects of supplementing broiler chicken diets with an encapsulated product based on capsicum and other spice (black pepper and ginger) extracts on growth performance, nutrient digestibility, digestive enzyme activity and antioxidant response. To this end, 480 1-day-old male chicks were randomly assigned to two experimental treatments (12 pens/treatment; 20 birds/pen). Dietary treatments included a basal diet with no additives (CONTROL) and a basal diet supplemented with 250 ppm of the spice additive (SPICY; Lucta S.A., Spain). Supplementation of SPICY increased body weight (p < 0.05) compared with CONTROL at 7 d of age and improved (p < 0.01) ADG from 0 to 7 d of age. The apparent ileal digestibility of dry matter, gross energy and crude protein was higher (p < 0.05) in birds fed the SPICY diet compared with the CONTROL diet. Birds fed SPICY showed lower (p < 0.05) plasma catalase (CAT) activity, and the hepatic gene expression of CAT and Nrf2 was down-regulated (p < 0.05) compared with the CONTROL. In conclusion, the inclusion of 250 ppm of SPICY in broiler diets improved growth performance at 7 d of age and positively affected nutrient digestibility and antioxidant response.
Collapse
|
62
|
Dong L, He J, Luo L, Wang K. Targeting the Interplay of Autophagy and ROS for Cancer Therapy: An Updated Overview on Phytochemicals. Pharmaceuticals (Basel) 2023; 16:ph16010092. [PMID: 36678588 PMCID: PMC9865312 DOI: 10.3390/ph16010092] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Autophagy is an evolutionarily conserved self-degradation system that recycles cellular components and damaged organelles, which is critical for the maintenance of cellular homeostasis. Intracellular reactive oxygen species (ROS) are short-lived molecules containing unpaired electrons that are formed by the partial reduction of molecular oxygen. It is widely known that autophagy and ROS can regulate each other to influence the progression of cancer. Recently, due to the wide potent anti-cancer effects with minimal side effects, phytochemicals, especially those that can modulate ROS and autophagy, have attracted great interest of researchers. In this review, we afford an overview of the complex regulatory relationship between autophagy and ROS in cancer, with an emphasis on phytochemicals that regulate ROS and autophagy for cancer therapy. We also discuss the effects of ROS/autophagy inhibitors on the anti-cancer effects of phytochemicals, and the challenges associated with harnessing the regulation potential on ROS and autophagy of phytochemicals for cancer therapy.
Collapse
Affiliation(s)
- Lixia Dong
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jingqiu He
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| | - Kui Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
- Correspondence: (L.L.); (K.W.)
| |
Collapse
|
63
|
Oh MJ, Lee HB, Yoo G, Park M, Lee CH, Choi I, Park HY. Anti-obesity effects of red pepper ( Capsicum annuum L.) leaf extract on 3T3-L1 preadipocytes and high fat diet-fed mice. Food Funct 2023; 14:292-304. [PMID: 36504043 DOI: 10.1039/d2fo03201e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patients with obesity mostly have metabolic syndrome and this can lead to multiple health problems. In the present study, we evaluated the anti-obesity effect of water-soluble red pepper (Capsicum annuum L.) leaf extract (PLE) on 3T3-L1 adipocytes and high-fat diet (HFD)-fed mice. The adipocyte lipid content was determined using Oil Red O staining, which revealed that 100 μg mL-1 PLE markedly reduced fat accumulation without affecting the cell viability. PLE exhibited high prebiotic activity scores by modulating probiotic strains, contributing to host health improvement. In vivo investigation in HFD-fed mice revealed that PLE supplementation significantly decreased the HFD-induced increases in the body weight, amount of white adipose tissue, and serum triglyceride, total cholesterol, leptin, and insulin levels. Consistent with its effects on reduced lipid droplet formation in the liver, PLE supplementation suppressed the expression of lipid synthesis-related proteins including SREBP-1, FAS, and PPAR-γ in the liver and increased that of PGC-1α, CPT1, and adiponectin in epididymal WAT. PLE treatment improved intestinal barrier function and inflammation and reduced harmful intestinal enzyme activities in the feces. Collectively, these results indicate that PLE inhibits fat accumulation in HFD-fed mice via the suppression of adipogenesis and lipogenesis, suggesting its potential in preventing obesity.
Collapse
Affiliation(s)
- Mi-Jin Oh
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Hye-Bin Lee
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Guijae Yoo
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Miri Park
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Chang-Hyun Lee
- Department of Anatomy, Woosuk University, Jeollabuk-do 55338, Republic of Korea
| | - Inwook Choi
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - Ho-Young Park
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
64
|
Luo N, Ye A, Wolber FM, Singh H. Digestion behaviour of capsaicinoid-loaded emulsion gels and bioaccessibility of capsaicinoids: Effect of emulsifier type. Curr Res Food Sci 2023; 6:100473. [PMID: 36910917 PMCID: PMC9993031 DOI: 10.1016/j.crfs.2023.100473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In this study, the effect of emulsifier type, i.e. whey protein versus Tween 80, on the digestion behaviour of emulsion gels containing capsaicinoids (CAPs) was examined. The results indicate that the CAP-loaded Tween 80 emulsion gel was emptied out significantly faster during gastric digestion than the CAP-loaded whey protein emulsion gel. The Tween-80-coated oil droplets appeared to be in a flocculated state in the emulsion gel, had no interactions with the protein matrix and were easily released from the protein matrix during gastric digestion. The whey-protein-coated oil droplets showed strong interactions with the protein matrix, and the presence of thick protein layer around the oil droplets protected their liberation during gastric digestion. During intestinal digestion, the CAP-loaded Tween 80 emulsion gel had a lower extent of lipolysis than the CAP-loaded whey protein emulsion gel, probably because the interfacial layer formed by Tween 80 was resistance to displacement by bile salts, and/or because Tween 80 formed interfacial complexes with bile salts/lipolytic enzymes. Because of the softer structure of the CAP-loaded Tween 80 emulsion gel, the gel particles were broken down much faster and the oil droplets were liberated from the protein matrix more readily than for the CAP-loaded whey protein emulsion gel during intestinal digestion; this promoted the release of CAP molecules from the gel. In addition, the Tween 80 molecules displaced from the interface would participate in the formation of mixed micelles and would help to solubilize the released CAP molecules, leading to improved bioaccessibility of CAP. Information obtained from this study could be useful in designing functional foods for the delivery of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Nan Luo
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Frances M Wolber
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| |
Collapse
|
65
|
Maddah M, Hoseinian N, Pourfath M. An ensemble docking-based virtual screening according to different TRPV1 pore states toward identifying phytochemical activators. NEW J CHEM 2023. [DOI: 10.1039/d2nj04918j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Identifying phytochemical activators for TRPV1 using ensemble-based virtual screening, machine learning, and MD simulation.
Collapse
Affiliation(s)
- Mina Maddah
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran
| | - Nadia Hoseinian
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran
| | - Mahdi Pourfath
- School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
66
|
Vázquez-Espinosa M, González-de-Peredo AV, Espada-Bellido E, Ferreiro-González M, Barbero GF, Palma M. The effect of ripening on the capsaicinoids composition of Jeromin pepper (Capsicum annuum L.) at two different stages of plant maturity. Food Chem 2023; 399:133979. [DOI: 10.1016/j.foodchem.2022.133979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
67
|
Non-Apoptotic Programmed Cell Death in Thyroid Diseases. Pharmaceuticals (Basel) 2022; 15:ph15121565. [PMID: 36559016 PMCID: PMC9788139 DOI: 10.3390/ph15121565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Thyroid disorders are among the most common endocrinological conditions. As the prevalence of thyroid diseases increases annually, the exploration of thyroid disease mechanisms and the development of treatments are also gradually improving. With the gradual advancement of therapies, non-apoptotic programmed cell death (NAPCD) has immense potential in inflammatory and neoplastic diseases. Autophagy, pyroptosis, ferroptosis, and immunogenic cell death are all classical NAPCD. In this paper, we have compiled the recent mechanistic investigations of thyroid diseases and established the considerable progress by NAPCD in thyroid diseases. Furthermore, we have elucidated the role of various types of NAPCD in different thyroid disorders. This will help us to better understand the pathophysiology of thyroid-related disorders and identify new targets and mechanisms of drug resistance, which may facilitate the development of novel diagnostic and therapeutic strategies for patients with thyroid diseases. Here, we have reviewed the advances in the role of NAPCD in the occurrence, progression, and prognosis of thyroid diseases, and highlighted future research prospects in this area.
Collapse
|
68
|
Allicin and Capsaicin Ameliorated Hypercholesterolemia by Upregulating LDLR and Downregulating PCSK9 Expression in HepG2 Cells. Int J Mol Sci 2022; 23:ijms232214299. [PMID: 36430776 PMCID: PMC9695077 DOI: 10.3390/ijms232214299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Hypercholesterolemia is a common cause of cardiovascular diseases (CVDs). Although allicin and capsaicin possess hypolipidemic effects through several molecular mechanisms, their effects on LDLR and PCSK9 expression are still unknown. This study aimed to investigate the effects of allicin and capsaicin on LDLR and PCSK9 expression in HepG2 cells. The effects of allicin and capsaicin on cell viability were evaluated by MTT assay and trypan blue exclusion assay. Low-density lipoprotein receptor (LDLR) levels and LDL uptake were determined by flow cytometry and confocal laser scanning microscopy (CLSM), respectively. RT-qPCR and Western blot analyses were performed to evaluate the expression of PCSK9, LDLR, SREBP-2, and HNF1α. ELISA was used to measure PCSK9 levels in culture media. Allicin and capsaicin increased the protein expression levels of LDLR via activation of the transcription factor SREBP2. However, allicin and capsaicin decreased the expression of PCSK9 protein and the secretion of PCSK9 in culture media via the suppression of HNF1α. Moreover, allicin and capsaicin increased LDL uptake into HepG2 cells. The efficacies of the hypolipidemic effects of allicin (200 µM) and capsaicin (200 µM) were comparable to that of atorvastatin (10 µM) in this study. In conclusion, allicin and capsaicin possessed hypolipidemic effects via the upregulation of LDLR and downregulation of PCSK9 expression, thereby enhancing LDL uptake into HepG2 cells. This indicates that allicin and capsaicin should be used as potent supplements to ameliorate hypercholesterolemia.
Collapse
|
69
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
70
|
Cao Y, Zhang K, Yu H, Chen S, Xu D, Zhao H, Zhang Z, Yang Y, Gu X, Liu X, Wang H, Jing Y, Mei Y, Wang X, Lefebvre V, Zhang W, Jin Y, An D, Wang R, Bosland P, Li X, Paran I, Zhang B, Giuliano G, Wang L, Cheng F. Pepper variome reveals the history and key loci associated with fruit domestication and diversification. MOLECULAR PLANT 2022; 15:1744-1758. [PMID: 36176193 DOI: 10.1016/j.molp.2022.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Pepper (Capsicum spp.) is an important vegetable crop that provides a unique pungent sensation when eaten. Through construction of a pepper variome map, we examined the main groups that emerged during domestication and breeding of C. annuum, their relationships and temporal succession, and the molecular events underlying the main transitions. The results showed that the initial differentiation in fruit shape and pungency, increase in fruit weight, and transition from erect to pendent fruits, as well as the recent appearance of large, blocky, sweet fruits (bell peppers), were accompanied by strong selection/fixation of key alleles and introgressions in two large genomic regions. Furthermore, we identified Up, which encodes a BIG GRAIN protein involved in auxin transport, as a key domestication gene that controls erect vs pendent fruit orientation. The up mutation gained increased expression especially in the fruit pedicel through a 579-bp sequence deletion in its 5' upstream region, resulting in the phenotype of pendent fruit. The function of Up was confirmed by virus-induced gene silencing. Taken together, these findings constitute a cornerstone for understanding the domestication and differentiation of a key horticultural crop.
Collapse
Affiliation(s)
- Yacong Cao
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Kang Zhang
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Hailong Yu
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Shumin Chen
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Donghui Xu
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Hong Zhao
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Zhenghai Zhang
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yinqing Yang
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xiaozhen Gu
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xinyan Liu
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Haiping Wang
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yaxin Jing
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yajie Mei
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Xiang Wang
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Véronique Lefebvre
- INRAE, GAFL, Unité de Génétique et Amélioration des Fruits et Légumes, 84140 Montfavet, France
| | - Weili Zhang
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Yuan Jin
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Dongliang An
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Risheng Wang
- Institute of Vegetables, Academy of Agricultural Sciences of Guangxi, 174 Daxue East Road, Nanning 53007, P. R. China
| | - Paul Bosland
- Department of Plant and Environmental Sciences, NMSU, Las Cruces, NM 88003, USA
| | - Xixiang Li
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Ilan Paran
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel
| | - Baoxi Zhang
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China
| | - Giovanni Giuliano
- Biotechnology and Agroindustry Division, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Development, Via Anguillarese, 301-00123 Roma, Italy.
| | - Lihao Wang
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| | - Feng Cheng
- Key Laboratory of Vegetables, Genetics, and Physiology of China Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, CAAS (Chinese Academy of Agricultural Sciences), 12 Zhongguancun South Street, Beijing 100081, P. R. China.
| |
Collapse
|
71
|
Chen C, Zhang M, Zheng X, Lang H. Association between chili pepper consumption and risk of gastrointestinal-tract cancers: A meta-analysis. Front Nutr 2022; 9:935865. [PMID: 36407551 PMCID: PMC9669750 DOI: 10.3389/fnut.2022.935865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/10/2022] [Indexed: 08/25/2024] Open
Abstract
BACKGROUND Stimulating food is emerging as an important modifiable factor in the development of gastrointestinal (GI) tract cancers, but the association between chili pepper consumption and the risk of GI cancers is unclear. We aimed to evaluate the direction and magnitude of the association between chili pepper consumption and the risk of GI cancers. METHODS A literature search was performed in PubMed, Embase, and Web of Science databases from inception to 22 December 2021. Observational studies reporting the association between chili pepper consumption and the risk of gastric cancer (GC), esophageal cancer (EC), and/or colorectal cancer (CRC) in adults were eligible for inclusion. Data extraction and quality assessment were conducted independently by two reviewers for the included literature. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using a random-effects model. Subgroup analyses were also performed based on the cancer type, study design, region of the study, study quality, and adjustments. RESULTS A total of 11,421 studies were screened, and 14 case-control studies were included involving 5009 GI cancers among 11,310 participants. The summary OR showed that high consumption of chili pepper was positively related to the risk of GI cancers (OR = 1.64; 95% CI: 1.00-2.70). A stronger positive relationship was observed between chili pepper consumption and EC risk (OR = 2.71; 95% CI: 1.54-4.75), but there was no statistically significant association between GC and CRC risk. In analyses stratified by geographical location, a positive association was found between chili pepper consumption and the risk of GI cancers in Asian studies (OR = 2.50; 95% CI: 1.23-5.08), African studies (OR = 1.62; 95% CI: 1.04-2.52), and North American studies (OR = 2.61; 95% CI: 1.34-5.08), but an inverse association was seen in South American studies (OR = 0.50; 95% CI: 0.29-0.87) and European studies (OR = 0.30; 95% CI: 0.15-0.61). CONCLUSION This meta-analysis suggests that chili pepper is a risk factor for certain GI cancers (e.g., EC). Geographical regions influence the risk of GI cancers, especially in Asian, African, and North American populations, which require more attention during dietary guidance. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42022320670].
Collapse
Affiliation(s)
- Changchang Chen
- Department of Nursing, Fourth Military Medical University, Xi’an, China
| | - Man Zhang
- School of Nursing, Yan’an University, Yan’an, China
| | - Xutong Zheng
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hongjuan Lang
- Department of Nursing, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
72
|
Yi S, Lee DG, Back S, Hong JP, Jang S, Han K, Kang BC. Genetic mapping revealed that the Pun2 gene in Capsicum chacoense encodes a putative aminotransferase. FRONTIERS IN PLANT SCIENCE 2022; 13:1039393. [PMID: 36388488 PMCID: PMC9664168 DOI: 10.3389/fpls.2022.1039393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Several genes regulating capsaicinoid biosynthesis including Pun1 (also known as CS), Pun3, pAMT, and CaKR1 have been studied. However, the gene encoded by Pun2 in the non-pungent Capsicum chacoense is unknown. This study aimed to identify the Pun2 gene by genetic mapping using interspecific (C. chacoense × Capsicum annuum) and intraspecific (C. chacoense × C. chacoense) populations. QTL mapping using the interspecific F2 population revealed two major QTLs on chromosomes 3 and 9. Two bin markers within the QTL regions on two chromosomes were highly correlated with the capsaicinoid content in the interspecific population. The major QTL, Pun2_PJ_Gibbs_3.11 on chromosome 3, contained the pAMT gene, indicating that the non-pungency of C. chacoense may be attributed to a mutation in the pAMT gene. Sequence analysis revealed a 7 bp nucleotide insertion in the 8th exon of pAMT of the non-pungent C. chacoense. This mutation resulted in the generation of an early stop codon, resulting in a truncated mutant lacking the PLP binding site, which is critical for pAMT enzymatic activity. This insertion co-segregated with the pungency phenotype in the intraspecific F2 population. We named this novel pAMT allele pamt11 . Taken together, these data indicate that the non-pungency of C. chacoense is due to the non-functional pAMT allele, and Pun2 encodes the pAMT gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry, and Bioresources, Research Institute of Agriculture and Life Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| |
Collapse
|
73
|
Amini MR, Payandeh N, Sheikhhossein F, Alvani M, Talebyan A, Mohtashaminia F, Hekmatdoost A. The Effects of Capsinoids and Fermented Red Pepper Paste Supplementation on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Nutr Res 2022; 11:302-315. [PMID: 36381475 PMCID: PMC9633970 DOI: 10.7762/cnr.2022.11.4.302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 01/24/2023] Open
Abstract
The present systematic review and meta-analysis were conducted in order to investigate the effects of capsinoids and fermented red pepper paste (FRPP) supplementation on lipid profile. Relevant studies were identified by searches of five databases from inception to November 2021 using relevant keywords. All clinical trials investigating the effect of capsinoids and FRPP on total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were included. Out of 1,203 citations, eight trials that enrolled 393 participants were included. Capsinoids and FRPP resulted in a significant reduction in TC (weighted mean differences [WMD], -9.92 mg/dL; 95% confidence interval [CI], -17.92 to -1.92; p = 0.015) but no significant changes in TG (WMD, -19.38 mg/dL; 95% CI, -39.94 to 1.18; p = 0.065), HDL-C (WMD, 0.83 mg/dL; 95% CI, -0.76 to 2.42; p = 0.305) and LDL-C (WMD, -0.59 mg/dL; 95% CI, -4.96 to 3.79; p = 0.793). Greater effects on TC were detected in trials performed on duration lasting less than twelve weeks, mean age of > 40, both sexes, and sample size of > 50. TG was reduced by using FRPP in studies conducted on mean age of > 40. HDL-C increased by using FRPP in studies conducted on duration of < 12 weeks, mean age of > 40, and sample size of ≤ 50. Overall, these data provided evidence that capsinoids and FRPP supplementation has beneficial effects on TC but not TG, HDL-C, and LDL-C.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Nastaran Payandeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Mohsen Alvani
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Alireza Talebyan
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Fatemeh Mohtashaminia
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
74
|
Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. THE NUCLEUS 2022; 65:399-411. [PMID: 36276225 PMCID: PMC9579558 DOI: 10.1007/s13237-022-00405-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Nature has abundant source of drugs that need to be identified/purified for use as essential biologics, either individually or in combination in the modern medical field. These drugs are divided into small bio-molecules, plant-made biologics, and a recently introduced third category known as phytopharmaceutical drugs. The development of phytopharmaceutical medicines is based on the ethnopharmacological approach, which relies on the traditional medicine system. The concept of ‘one-disease one-target drug’ is becoming less popular, and the use of plant extracts, fractions, and molecules is the new paradigm that holds promising scope to formulate appropriate drugs. This led to discovering a new concept known as polypharmacology, where natural products from varying sources can engage with multiple human physiology targets. This article summarizes different approaches for phytopharmaceutical drug development and discusses the progress in systems biology and computational tools for identifying drug targets. We review the existing drug delivery methods to facilitate the efficient delivery of drugs to the targets. In addition, we describe different analytical techniques for the authentication and fingerprinting of plant materials. Finally, we highlight the role of biopharming in developing plant-based biologics.
Collapse
Affiliation(s)
- Noohi Nasim
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Inavolu Sriram Sandeep
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Sujata Mohanty
- grid.506052.40000 0004 4911 8595Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| |
Collapse
|
75
|
Dai Z, Li S, Meng Y, Zhao Q, Zhang Y, Suonan Z, Sun Y, Shen Q, Liao X, Xue Y. Capsaicin Ameliorates High-Fat Diet-Induced Atherosclerosis in ApoE−/− Mice via Remodeling Gut Microbiota. Nutrients 2022; 14:nu14204334. [PMID: 36297020 PMCID: PMC9611743 DOI: 10.3390/nu14204334] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Capsaicin is a pungent alkaloid abundantly present in peppers with outstanding biological activities, including the anti-atherosclerosis effect. Previous studies revealed that gut microbiota played an important role in the beneficial effects of capsaicin, but whether it is essential for the anti-atherosclerosis effect of capsaicin is unclear. This study evaluated the anti-atherosclerosis effect of capsaicin in ApoE−/− mice and further explored the role of depleting gut microbiota in the improvement of atherosclerosis. The results showed that capsaicin administration could prevent the development of atherosclerosis and improve serum lipids and inflammation, while antibiotic intervention abolished the alleviation of atherosclerosis by capsaicin. In addition, capsaicin administration could significantly increase the abundance of Turicibacter, Odoribacter, and Ileibacterium in feces, and decrease the abundance of deoxycholic acid, cholic acid, hypoxanthine, and stercobilin in cecal content. Our study provides evidence that gut microbiota plays a critical role in the anti-atherosclerosis effect of capsaicin.
Collapse
Affiliation(s)
- Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Siqi Li
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yantong Meng
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qingyu Zhao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yiyun Zhang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhuoma Suonan
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuge Sun
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xiaojun Liao
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62737524
| |
Collapse
|
76
|
Zhou J, Zhang R, Lv P, Zhang S, Zhang Y, Yang J, Yang B. Acyclic cucurbit[n]urils-based supramolecular encapsulation for enhancing the protective effect of capsaicin on gastric mucosa and reducing irritation. Int J Pharm 2022; 626:122190. [PMID: 36100146 DOI: 10.1016/j.ijpharm.2022.122190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Capsaicin (CAP) is an alkaloid isolated from pepper fruit, which possesses various pharmacological activities including antioxidant, anti-inflammatory, antibacterial and gastric mucosa protection. However, its inherent poor aqueous solubility and strong irritation impede the further clinical application. In our study, acyclic cucurbit[n]urils (ACBs, M1, M2 and M3) were rationally utilized to prepare a series of CAP inclusion complexes to improve the bioavailability and reduce stimulation. Their properties and inclusion behaviors were further investigated by multiple characterization methods, the data indicated that the inclusion complexes of ACBs/CAP were formed by a stoichiometric ratio of 2:1 with strong binding interaction. After complexation, the solubility of CAP was significantly increased by 12,076 times and its antioxidant activity also increased. Moreover, the anti-inflammatory activity and the ability to prevent gastric mucosal injury were both significantly improved, and the inhibition rate of nitric oxide (NO) and interleukin-1β (IL-1β) has been effectively improved while cytotoxicity against human normal hepatocytes cell (LO2), human lung fibroblasts cell (HLF) and the human gastric mucosal cell (GES-1) was greatly attenuated. Confocal laser scanning microscope (CLSM) images indicated that the complexes could be efficiently internalized by GES-1 cells and primarily located in cytoplasm. In vivo model of mouse, our complexes exhibited excellent biosafety. In summary, our study may provide a promising new strategy for the further clinical application of CAP.
Collapse
Affiliation(s)
- Jiawei Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Ruihao Zhang
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, PR China
| | - Pin Lv
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China; Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, PR China
| | - Shuqing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yazhou Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
77
|
Wu J, Wang F, Dong J, Zhang S, Li N, Zhao H, Liu X, Gao Z, Zhang B, Tian G. Therapeutic Response of Multifunctional Lipid and Micelle Formulation in Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45110-45123. [PMID: 36167351 DOI: 10.1021/acsami.2c10446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hepatic stellate cells (HSCs), as an important part of the tumor microenvironment (TME), could be activated by tumor cells as cancer-associated fibroblasts (CAFs), thereby promoting the production of extracellular matrix (ECM) and favoring the development of tumors. Therefore, blocking the "CAFs-ECM" axis is a promising pathway to improve antitumor efficacy. Based on this, we developed a multifunctional nanosized delivery system composed of hyaluronic acid-modified pH-sensitive liposomes (CTHLs) and glycyrrheic acid-modified nanomicelles (DGNs), which combines the advantages of targeted delivery, pH-sensitivity, and deep drug penetration. To mimic actual TME, a novel HSCs+BEL-7402 cocultured cell model and a m-HSCs+H22 coimplanted mice model were established. As expected, CTHLs and DGNs could target CAFs and tumor cells, respectively, and promote the drug penetration and retention in tumor regions. Notably, CTHLs+DGNs not only exhibited a superior antitumor effect in three-level tumor-bearing mice but also presented excellent antimetastasis efficiency in lung-metastatic mice. The antitumor mechanism revealed that the lipid&micelle mixed formulations effectively inhibited the activation of CAFs, reduced the deposition of ECM, and reversed the epithelial-mesenchymal transition (EMT) of tumor cells. In brief, the nanosized delivery system composed of CTHLs and DGNs could effectively improve the therapeutic effect of liver cancer by blocking the "CAFs-ECM" axis, which has a good clinical application prospect.
Collapse
Affiliation(s)
- Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Fangqing Wang
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, P.R. China
| | - Jinping Dong
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Suqiu Zhang
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Na Li
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Huifang Zhao
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Xuemin Liu
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, P.R. China
| | - Zhiqin Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, P.R. China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, P.R. China
| | - Guixiang Tian
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, P.R. China
| |
Collapse
|
78
|
Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022; 238:108177. [PMID: 35351463 PMCID: PMC9510151 DOI: 10.1016/j.pharmthera.2022.108177] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.
Collapse
Affiliation(s)
- Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Emily G Moles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| |
Collapse
|
79
|
Deng Y, Wang Y, Huo X, Deng S, Jin L, Zhang H, Yu Z, Ning J, Ma X, Wang C. Microbial transformation of capsaicin by several human intestinal fungi and their inhibitory effects against lysine-specific demethylase 1. PHYTOCHEMISTRY 2022; 202:113365. [PMID: 35940425 DOI: 10.1016/j.phytochem.2022.113365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Capsaicin widely exists in the Capsicum genus (e.g., hot peppers) and is commonly used as a food additive or medicinal material. In this work, microbial transformation of capsaicin was performed based on the three cultivated human intestinal fungi. Fourteen metabolites were obtained, and their chemical structures were elucidated by spectroscopic data analysis, including 13 compounds with undescribed structures. Hydroxylation, lactylation, succinylation, citric acylation, and acetylation were observed for these microbial metabolites derived from capsaicin, which indicated diverse catalytic characteristics of human intestinal fungi. In an in vitro bioassay, four metabolites and capsaicin inhibited the activity of lysine-specific demethylase 1 (LSD1) with a more than 70% inhibitory rate at 10 μM. In particular, 9,5'-dihydroxycapsaicin displayed the strongest inhibitory effect with an IC50 of 1.52 μM. Therefore, capsaicin analogs displayed potential application as LSD1 inhibitors against the invasion and migration of cancer cells.
Collapse
Affiliation(s)
- Ying Deng
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Yan Wang
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaokui Huo
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Sa Deng
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Lingling Jin
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Houli Zhang
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Zhenlong Yu
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Jing Ning
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, People's Republic of China.
| | - Chao Wang
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian, 116044, People's Republic of China.
| |
Collapse
|
80
|
Nutraceuticals: A source of benefaction for neuropathic pain and fibromyalgia. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
81
|
Wang H, Tian W, Li Y, Yuan Y, Lv M, Cao Y, Xiao J. Intervention effects of multilayer core-shell particles on colitis amelioration mechanisms of capsaicin. J Control Release 2022; 351:324-340. [PMID: 36155206 DOI: 10.1016/j.jconrel.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/15/2022]
Abstract
The intervention effects of delivery systems on the digestion and adsorption profiles and, thus, the pharmacological effects of bioactive compounds represent an intriguing scientific hypothesis that can be proven with research case studies. Delivery systems with tailor-made structures fabricating from the same building materials offer a new research strategy for deciphering the modulating effects of the digestive fate on the therapeutic efficacy of encapsulated bioactive compounds. Herein, we developed capsaicin-loaded core-shell nanoparticles (Cap NPs), microparticles (Cap MPs) and nano-in-micro particles (Cap NPs in MPs) and investigated their regulatory effects on the digestive fate and colitis-alleviating mechanisms of capsaicin. Results suggested that the small intestine dominant absorption of Cap NPs differed significantly with the colorectal dominated accumulation of Cap MPs and Cap NPs in MPs in terms of the colitis alleviating mechanisms. Cap NPs alleviated colitis mainly through promoting the colonization of short-chain fatty acid-producing bacteria, maintaining intestinal barrier homeostasis and partially inhibiting the activation of the NF-κB pro-inflammatory pathway. Whereas, better dietary intervention effects were achieved from Cap NPs in MPs via promoting the proliferation of mucus-related bacteria and enhanced triggering efficiency on the TRPV1-mucus-microbiotas cyclic cascade. This work confirmed that rationally designed biomaterial-based delivery vehicles can flexibly interfere with the therapeutic mechanisms of encapsulated cargos, representing a new horizon in the field of precise nutrition.
Collapse
Affiliation(s)
- Haonan Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Muwen Lv
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
82
|
Lin Z, Sui X, Jiao W, Chen C, Zhang X, Zhao J. Mechanism investigation and experiment validation of capsaicin on uterine corpus endometrial carcinoma. Front Pharmacol 2022; 13:953874. [PMID: 36210802 PMCID: PMC9532580 DOI: 10.3389/fphar.2022.953874] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Using bioinformatics analysis and experimental operations, we intend to analyze the potential mechanism of action of capsaicin target gene GATA1 in the treatment of uterine corpus endometrial carcinoma (UCEC) and develop a prognostic model for the disease to validate this model. Methods: By obtaining capsaicin and UCEC-related DR-DEGs, the prognosis-related gene GATA1 was screened. The survival analysis was conducted via establishing high and low expression groups of GATA1. Whether the GATA1 could be an independent prognostic factor for UCEC, it was also validated. The therapeutic mechanism of capsaicin-related genes in UCEC was further investigated using enrichment analysis and immune methods as well as in combination with single-cell sequencing data. Finally, it was validated by cell experiments. Results: GATA1, a high-risk gene associated with prognosis, was obtained by screening. Kaplan-Meier analysis showed that the survival of the high expression group was lower than that of low expression group. ROC curves showed that the prediction effect of the model was good and stable (1-year area under curve (AUC): 0.601; 2-years AUC: 0.575; 3-years AUC: 0.610). Independent prognosis analysis showed that the GATA1 can serve as an independent prognostic factor for UCEC. Enrichment analysis showed that “neuroactive Ligand - receptor interaction and TYPE I DIABETES MELLITUS” had a significant enrichment effect. Single-cell sequencing showed that the GATA1 was significantly expressed in mast cells. Cell experiments showed that the capsaicin significantly reduced the UCEC cell activity and migration ability, as well as inhibited the expression of GATA1. Conclusion: This study suggests that the capsaicin has potential value and application prospect in the treatment of UCEC. It provides new genetic markers for the prognosis of UCEC patients.
Collapse
Affiliation(s)
- Zhiheng Lin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Sui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjian Jiao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chong Chen
- Obstetrics Department of Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Xiaodan Zhang
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Junde Zhao, ; Xiaodan Zhang,
| | - Junde Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong University Cheeloo College of Medicine Laboratory of Basic Medical Sciences, Jinan, China
- *Correspondence: Junde Zhao, ; Xiaodan Zhang,
| |
Collapse
|
83
|
A proteomic and RNA-seq transcriptomic dataset of capsaicin-aggravated mouse chronic colitis model. Sci Data 2022; 9:549. [PMID: 36071055 PMCID: PMC9452536 DOI: 10.1038/s41597-022-01637-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022] Open
Abstract
An inappropriate diet is a risk factor for inflammatory bowel disease (IBD). It is established that the consumption of spicy food containing capsaicin is strongly associated with the recurrence and worsening of IBD symptoms. Moreover, capsaicin can induce neutrophil accumulation in the lamina propria, contributing to disease deterioration. To uncover the potential signaling pathway involved in capsaicin-induced relapse and the effects of capsaicin on neutrophil activation, we performed proteomic analyses of intestinal tissues from chronic colitis mice following capsaicin administration and transcriptomic analyses of dHL-60 cells after capsaicin stimulation. Collectively, these multiomic analyses identified proteins and genes that may be involved in disease flares, thereby providing new insights for future research.
Collapse
|
84
|
Dludla PV, Nkambule BB, Cirilli I, Marcheggiani F, Mabhida SE, Ziqubu K, Ntamo Y, Jack B, Nyambuya TM, Hanser S, Mazibuko-Mbeje SE. Capsaicin, its clinical significance in patients with painful diabetic neuropathy. Biomed Pharmacother 2022; 153:113439. [DOI: 10.1016/j.biopha.2022.113439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/14/2022] Open
|
85
|
Schenck CA, Anthony TM, Jacobs M, Jones AD, Last RL. Natural variation meets synthetic biology: Promiscuous trichome-expressed acyltransferases from Nicotiana. PLANT PHYSIOLOGY 2022; 190:146-164. [PMID: 35477794 PMCID: PMC9434288 DOI: 10.1093/plphys/kiac192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Acylsugars are defensive, trichome-synthesized sugar esters produced in plants across the Solanaceae (nightshade) family. Although assembled from simple metabolites and synthesized by a relatively short core biosynthetic pathway, tremendous within- and across-species acylsugar structural variation is documented across the family. To advance our understanding of the diversity and the synthesis of acylsugars within the Nicotiana genus, trichome extracts were profiled across the genus coupled with transcriptomics-guided enzyme discovery and in vivo and in vitro analysis. Differences in the types of sugar cores, numbers of acylations, and acyl chain structures contributed to over 300 unique annotated acylsugars throughout Nicotiana. Placement of acyl chain length into a phylogenetic context revealed that an unsaturated acyl chain type was detected in a few closely related species. A comparative transcriptomics approach identified trichome-enriched Nicotiana acuminata acylsugar biosynthetic candidate enzymes. More than 25 acylsugar variants could be produced in a single enzyme assay with four N. acuminata acylsugar acyltransferases (NacASAT1-4) together with structurally diverse acyl-CoAs and sucrose. Liquid chromatography coupled with mass spectrometry screening of in vitro products revealed the ability of these enzymes to make acylsugars not present in Nicotiana plant extracts. In vitro acylsugar production also provided insights into acyltransferase acyl donor promiscuity and acyl acceptor specificity as well as regiospecificity of some ASATs. This study suggests that promiscuous Nicotiana acyltransferases can be used as synthetic biology tools to produce novel and potentially useful metabolites.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Thilani M Anthony
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - MacKenzie Jacobs
- Department of Physical Sciences and Mathematics, West Liberty University, West Liberty, West Virginia 26074, USA
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
86
|
Acute Supplementation with Capsaicin Enhances Upper-Limb Performance in Male Jiu-Jitsu Athletes. Sports (Basel) 2022; 10:sports10080120. [PMID: 36006086 PMCID: PMC9415344 DOI: 10.3390/sports10080120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
The present study investigated whether acute capsaicin (CAP) supplementation improves mean power output (MPO) and peak velocity (PV) during the performance of the free bench press exercise (FBP). Twelve (n = 12) male Brazilian Jiu-Jitsu (BJJ) athletes (age: 24.3 ± 1.5 years, height: 1.74 ± 0.1 m, body mass: 75.7 ± 10.1 kg) participated in this randomized, placebo (PLA)-controlled, double-blind, crossover trial. For each condition, 45 min after CAP (12 mg purified) or PLA (12 mg of Celulomax E) consumption, the participants performed four sets of five repetitions of FBP at a load of 60% of body mass with five-min rest intervals. The MPO (t = 5.6, df = 11, p = 0.001, EF = 0.3, IC 95% = −0.55 to 1.05) and PV (t = 5.4, df = 11, p = 0.001, EF = 0.5, IC 95% = −0.32 to 1.30) were significantly higher with CAP supplementation versus PLA. Acute CAP supplementation appears to improve MPO and PV during FBP in male BJJ athletes.
Collapse
|
87
|
Waqas M, Ahmed D, Qamar MT. Surfactant-mediated extraction of capsaicin from Capsicum annuum L. fruit in various solvents. Heliyon 2022; 8:e10273. [PMID: 36033307 PMCID: PMC9403339 DOI: 10.1016/j.heliyon.2022.e10273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/02/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Capsaicin is a valuable compound found in Capsicum annuum. The present study aimed to explore the efficiency of different solvents and surfactants on its extraction by maceration. Ethyl acetate was found to be the best solvent followed by dichloromethane and acetone, respectively. Overall order of efficiency of the solvents used was this: ethyl acetate > dichloromethane > acetone > glycerol > acetonitrile > methanol > acetic acid > toluene. Extractability of ethyl acetate for capsaicin remained unaffected by the surfactants. Tween-80 had very positive effect on the extraction efficiency of dichloromethane (DCM) and acetone. Kinetics of the extraction with the most efficient solvent ethyl acetate showed extraction of capsaicin to follow a pseudo-second order kinetic model. In conclusion, for extraction of capsaicin from green chili, ethyl acetate was the most powerful amongst the solvents used in the present work and tween-80 had a notable positive effect on the efficiency of DCM and acetone.
Collapse
Affiliation(s)
- Muhammad Waqas
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Tariq Qamar
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
88
|
Yuan Y, Liu Y, He Y, Zhang B, Zhao L, Tian S, Wang Q, Chen S, Li Z, Liang S, Hou G, Liu B, Li Y. Intestinal-targeted nanotubes-in-microgels composite carriers for capsaicin delivery and their effect for alleviation of Salmonella induced enteritis. Biomaterials 2022; 287:121613. [PMID: 35700621 DOI: 10.1016/j.biomaterials.2022.121613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/05/2022] [Accepted: 05/30/2022] [Indexed: 02/09/2023]
Abstract
Salmonella is a word-wide food-borne pathogen, which can cause severe enteritis and intestinal microbiota imbalance. Capsaicin (Cap), a food-based bioactive ingredient, has antibacterial and anti-inflammatory properties. However, its low solubility, low bioavailability and the irritation to digestive tract greatly limit its applications. Here, an intestinal responsively "nanotubes-in-microgel" composite carrier was constructed by capturing α-lactalbumin (α-lac) nanotubes in low-methoxy pectin microgels (LMP-NT) (52 μm). Cap was loaded in such system via hydrophobic interaction with a loading capacity of 38.02 mg/g. The LMP microgels remained stable and protected NT/Cap from early releasing in the gastric condition. It showed an excellent mucoadhesive capacity, which can prolong the intestinal retention up to 12 h and control release NT/Cap in intestine. Afterward, NT/Cap could penetrate across the mucus layer deeply and enter the intestinal villi epithelial cells efficiently. LMP-NT microgels achieved a mucoadhesive-to-penetrating transition in response to intestinal pH, improving the epithelium absorption and the in vivo bioavailability of Cap. Oral administration of LMP-NT/Cap could effectively alleviate enteritis caused by Salmonella infection and maintain the homeostasis of gut microbiota. Overall, this work suggested that LMP-NT composite microgels were promising for intestine-targeted and oral delivery of hydrophobic bioactive food compounds.
Collapse
Affiliation(s)
- Yu Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Ying Liu
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yang He
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Liang Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Simin Tian
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qimeng Wang
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shanan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zekun Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuang Liang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Guohua Hou
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bin Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
89
|
Schäfer RC, Sohn A, Kersten A, Amr A, Held M, Wenger A. Quantification of Dermal Microcirculatory Changes after Topical Administration of Capsaicin: A Randomized Placebo-Controlled Study in 46 Subjects. J INVEST SURG 2022; 35:1673-1678. [PMID: 35836365 DOI: 10.1080/08941939.2022.2091694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Dermal blood flow is crucial for wound healing and survival of flaps in dermatologic surgery. To improve flap viability in cases of compromised perfusion topical agents can easily be applied. The aim of this placebo-controlled study was to characterize changes of DBF in healthy subjects by quantitatively assessing perfusion dynamics after application of capsaicin to establish a reference for measurements at injured sites. METHODS In 46 healthy subjects perfusion dynamics after local application with capsaicin and placebo was noninvasively assessed, determining cutaneous oxygen saturation, relative hemoglobin count and blood flow using an Oxygen-to-See device. RESULTS A significant raise in superficial (162% p = 0.000) and deep (144%, p = 0.000) skin oxygenation after 30 min was provoked. A highly significant raise in measurements of flow and velocity was present in superficial (523%, p = 0.000) and deep (242%, p = 0.000) sites. CONCLUSION With the introduced model applied to observe changes in parameters of dermal blood flow in healthy subjects the authors can reliably monitor effects of topically administered capsaicin. This baseline can be used as reference for further studies in the settings of endangered flap survival or critically perfused wounds as has been proven in animal studies.
Collapse
Affiliation(s)
- Ruth Christine Schäfer
- Department of Hand, Plastic and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Anna Sohn
- Department of Dermatology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anabel Kersten
- Department of Hand, Plastic and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Amro Amr
- Department of Hand, Plastic and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Manuel Held
- Department of Hand, Plastic and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Andrea Wenger
- Department of Hand, Plastic and Reconstructive Surgery, BG Unfallklinik Tübingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
90
|
Factors Associated with White Fat Browning: New Regulators of Lipid Metabolism. Int J Mol Sci 2022; 23:ijms23147641. [PMID: 35886989 PMCID: PMC9325132 DOI: 10.3390/ijms23147641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
Mammalian adipose tissue can be divided into white and brown adipose tissue based on its colour, location, and cellular structure. Certain conditions, such as sympathetic nerve excitement, can induce the white adipose adipocytes into a new type of adipocytes, known as beige adipocytes. The process, leading to the conversion of white adipocytes into beige adipocytes, is called white fat browning. The dynamic balance between white and beige adipocytes is closely related to the body’s metabolic homeostasis. Studying the signal transduction pathways of the white fat browning might provide novel ideas for the treatment of obesity and alleviation of obesity-related glucose and lipid metabolism disorders. This article aimed to provide an overview of recent advances in understanding white fat browning and the role of BAT in lipid metabolism.
Collapse
|
91
|
Razzak MA, Cho SJ. Molecular characterization of capsaicin binding interactions with ovalbumin and casein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
92
|
Barboza GE, García CC, Bianchetti LDB, Romero MV, Scaldaferro M. Monograph of wild and cultivated chili peppers ( Capsicum L., Solanaceae). PHYTOKEYS 2022; 200:1-423. [PMID: 36762372 PMCID: PMC9881532 DOI: 10.3897/phytokeys.200.71667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/27/2022] [Indexed: 06/01/2023]
Abstract
Capsicum L. (tribe Capsiceae, Solanaceae) is an American genus distributed ranging from the southern United States of America to central Argentina and Brazil. The genus includes chili peppers, bell peppers, ajíes, habaneros, jalapeños, ulupicas and pimientos, well known for their economic importance around the globe. Within the Solanaceae, the genus can be recognised by its shrubby habit, actinomorphic flowers, distinctive truncate calyx with or without appendages, anthers opening by longitudinal slits, nectaries at the base of the ovary and the variously coloured and usually pungent fruits. The highest diversity of this genus is located along the northern and central Andes. Although Capsicum has been extensively studied and great advances have been made in the understanding of its taxonomy and the relationships amongst species, there is no monographic treatment of the genus as a whole. Based on morphological and molecular evidence studied from field and herbarium specimens, we present here a comprehensive taxonomic treatment for the genus, including updated information about morphology, anatomy, karyology, phylogeny and distribution. We recognise 43 species and five varieties, including C.mirum Barboza, sp. nov. from São Paulo State, Brazil and a new combination C.muticum (Sendtn.) Barboza, comb. nov.; five of these taxa are cultivated worldwide (C.annuumL.var.annuum, C.baccatumL.var.pendulum (Willd.) Eshbaugh, C.baccatumL.var.umbilicatum (Vell.) Hunz. & Barboza, C.chinense Jacq. and C.frutescens L.). Nomenclatural revision of the 265 names attributed to chili peppers resulted in 89 new lectotypifications and five new neotypifications. Identification keys and detailed descriptions, maps and illustrations for all taxa are provided.
Collapse
Affiliation(s)
- Gloria E. Barboza
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Casilla de Correo 495, 5000 Córdoba, ArgentinaInstituto Multidisciplinario de Biología VegetalCórdobaArgentina
| | - Carolina Carrizo García
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Casilla de Correo 495, 5000 Córdoba, ArgentinaInstituto Multidisciplinario de Biología VegetalCórdobaArgentina
| | - Luciano de Bem Bianchetti
- Empresa Brasileira de Pesquisa Agropecuária—Centro Nacional de Pesquisa de Recursos Genéticos e Biotecnologia (EMBRAPA—Recursos Genéticos e Biotecnologia), PqEB Parque Estação Biológica, Av. W/5 final, Brasília-DF, CEP 70770–917, Caixa Postal 02372, BrazilCentro Nacional de Pesquisa de Recursos Genéticos e BiotecnologiaBrasíliaBrazil
| | - María V. Romero
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Casilla de Correo 495, 5000 Córdoba, ArgentinaInstituto Multidisciplinario de Biología VegetalCórdobaArgentina
| | - Marisel Scaldaferro
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Casilla de Correo 495, 5000 Córdoba, ArgentinaInstituto Multidisciplinario de Biología VegetalCórdobaArgentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, ArgentinaUniversidad Nacional de CórdobaCórdobaArgentina
| |
Collapse
|
93
|
Saha K, Sarkar D, Khan U, Karmakar BC, Paul S, Mukhopadhyay AK, Dutta S, Bhattacharya S. Capsaicin Inhibits Inflammation and Gastric Damage during H pylori Infection by Targeting NF-kB–miRNA Axis. Pathogens 2022; 11:pathogens11060641. [PMID: 35745495 PMCID: PMC9227394 DOI: 10.3390/pathogens11060641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is considered as one of the strongest risk factors for gastric disorders. Infection triggers several host pathways to elicit inflammation, which further proceeds towards gastric complications. The NF-kB pathway plays a central role in the upregulation of the pro-inflammatory cytokines during infection. It also regulates the transcriptional network of several inflammatory cytokine genes. Hence, targeting NF-kB could be an important strategy to reduce pathogenesis. Moreover, treatment of H. pylori needs attention as current therapeutics lack efficacy due to antibiotic resistance, highlighting the need for alternative therapeutic approaches. In this study, we investigated the effects of capsaicin, a known NF-kB inhibitor in reducing inflammation and gastric complications during H. pylori infection. We observed that capsaicin reduced NF-kB activation and upregulation of cytokine genes in an in vivo mice model. Moreover, it affected NF-kB–miRNA interplay to repress inflammation and gastric damages. Capsaicin reduced the expression level of mir21 and mir223 along with the pro-inflammatory cytokines. The repression of miRNA further affected downstream targets such as e-cadherin and Akt. Our data represent the first evidence that treatment with capsaicin inhibits inflammation and induces antimicrobial activity during H. pylori infection. This alternative approach might open a new avenue in treating H. pylori infection, thus reducing gastric problems.
Collapse
Affiliation(s)
- Kalyani Saha
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
| | - Deotima Sarkar
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
| | - Uzma Khan
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
| | - Bipul Chandra Karmakar
- Department of Microbiology, National Institute of Cholera and Enteric Diseases (ICMR-NICED), Indian Council of Medical Research, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (B.C.K.); (S.P.); (A.K.M.)
| | - Sangita Paul
- Department of Microbiology, National Institute of Cholera and Enteric Diseases (ICMR-NICED), Indian Council of Medical Research, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (B.C.K.); (S.P.); (A.K.M.)
| | - Asish K. Mukhopadhyay
- Department of Microbiology, National Institute of Cholera and Enteric Diseases (ICMR-NICED), Indian Council of Medical Research, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (B.C.K.); (S.P.); (A.K.M.)
| | - Shanta Dutta
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India;
| | - Sushmita Bhattacharya
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
- Correspondence: ; Tel.: +91-97179-96740
| |
Collapse
|
94
|
Xiao W, Chen Y. TRPV1 in male reproductive system: focus on sperm function. Mol Cell Biochem 2022; 477:2567-2579. [PMID: 35595954 DOI: 10.1007/s11010-022-04469-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a receptor used to perceive external noxious stimuli and participates in the regulation of various pathophysiological mechanisms in vivo by integrating multiple signals. The explosive growth in knowledge of TRPV1 stemmed from research on neuronal pain and heat sensation over the last decades and is being expanded tremendously in peripheral tissue research. The discovery that TRPV1 is functionally active in male animal and human reproductive tissues have attracted increasing attention in recent years. Indeed, many studies have indicated that TRPV1 is an endocannabinoid receptor that mediates Anandamide's regulation of sperm function. Other characteristics of the TRPV1 channel itself, such as calcium penetration and temperature sensitivity, have also been investigated, especially the possibility that TRPV1 could act as a mediator for sperm thermotaxis. In addition, some reproductive diseases appear to be related to the protective effects of TRPV1 on oxidative stress and heat stress. A better understanding of TRPV1 in these areas should provide strategies for tackling male infertility. This paper is the first to review the expression and mechanism of TRPV1 in the male reproductive system from molecular and cellular perspectives. A focus is given on sperm function, including calcium homeostasis, crosstalk with endocannabinoid system, participation in cholesterol-related sperm maturation, and thermotaxis, hoping to capture the current situation of this rapidly developing field.
Collapse
Affiliation(s)
- Wanglong Xiao
- Institute of Life Science and School of Life Science, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, People's Republic of China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, No. 999 Xuefu Avenue, Honggutan District, Nanchang, 330031, Jiangxi, People's Republic of China.
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
95
|
Personalized Nutrition in the Management of Female Infertility: New Insights on Chronic Low-Grade Inflammation. Nutrients 2022; 14:nu14091918. [PMID: 35565885 PMCID: PMC9105997 DOI: 10.3390/nu14091918] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Increasing evidence on the significance of nutrition in reproduction is emerging from both animal and human studies, suggesting a mutual association between nutrition and female fertility. Different “fertile” dietary patterns have been studied; however, in humans, conflicting results or weak correlations are often reported, probably because of the individual variations in genome, proteome, metabolome, and microbiome and the extent of exposure to different environmental conditions. In this scenario, “precision nutrition”, namely personalized dietary patterns based on deep phenotyping and on metabolomics, microbiome, and nutrigenetics of each case, might be more efficient for infertile patients than applying a generic nutritional approach. In this review, we report on new insights into the nutritional management of infertile patients, discussing the main nutrigenetic, nutrigenomic, and microbiomic aspects that should be investigated to achieve effective personalized nutritional interventions. Specifically, we will focus on the management of low-grade chronic inflammation, which is associated with several infertility-related diseases.
Collapse
|
96
|
Sanitary Registries and Popular Medicinal Plants Used in Medicines and Herbal Remedies in Mexico (2001–2020): A Review and Potential Perspectives. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mexico, a megadiverse country, hosts approximately 10–12% of the world’s biodiversity and at least 21,989–23,424 vascular plants, 3350 of which are traditional medicinal flora. The Mexican Regulation categorizes herbal medicinal products into two groups: herbal medicines products and herbal remedies products. To date, there is no available information that describes and includes analyzed data about these two types of herbal medicinal products registered in Mexico. The purpose of the study was to analyze national sanitary registries of herbal products from 2001 to 2020 and identify native Mexican plants that are most used in herbal products. Further, the study aims to highlight the impact and relevance of this large number of medicinal plants, which represent a great source of information, genetic resources, bioactive compounds, and potential use in subsequent therapies based on scientific evidence. The future of medicines and herbal remedies is underestimated; thus, the significance of evaluating the great potential in studying plants for medicinal use must be taken into account.
Collapse
|
97
|
Fabrication and Characterization of Whey Protein—Citrate Mung Bean Starch—Capsaicin Microcapsules by Spray Drying with Improved Stability and Solubility. Foods 2022; 11:foods11071049. [PMID: 35407136 PMCID: PMC8998035 DOI: 10.3390/foods11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Capsaicin was microencapsulated in six different wall systems by spray drying whey protein and citrate mung bean starch at various ratios (10:0, 9:1, 7:3, 5:5, 3:7, 1:9, 0:10) to improve its stability and water solubility and reduce its pungency. The morphological, rheological, storage stability, and physicochemical properties of capsaicin emulsion and capsaicin microcapsules were characterized. As a result, the yield of six capsaicin microcapsules was 19.63–74.99%, the encapsulation efficiency was 26.59–94.18%, the solubility was 65.97–96.32%, the moisture content was lower than 3.63% in all systems, and particle size was broadly distributed in the range of 1–60 μm. Furthermore, microcapsules with high whey protein content in the encapsulation system had an excellent emulsifier effect and wetness, smooth particle surface, and higher lightness (L*). Moreover, the system formed by composite wall materials at a ratio of whey protein to citrate mung bean starch of 7:3 had the highest retention rate and the best stability. The overall results demonstrate that whey protein combined with citrate mung starch through spray drying could be a promising strategy to produce microcapsules of poorly water-soluble compounds such as capsaicin.
Collapse
|
98
|
Abd El-Hack ME, El-Saadony MT, Elbestawy AR, Gado AR, Nader MM, Saad AM, El-Tahan AM, Taha AE, Salem HM, El-Tarabily KA. Hot red pepper powder as a safe alternative to antibiotics in organic poultry feed: an updated review. Poult Sci 2022; 101:101684. [PMID: 35168162 PMCID: PMC8850793 DOI: 10.1016/j.psj.2021.101684] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Globally, several studies have investigated the utilization and efficacy of promising medicinal herbal plants to enhance livestock and poultry production. The most commonly investigated phytobiotics in broiler ration were oregano, garlic, thyme, rosemary, black pepper, hot red pepper (HRP), and sage. Phytobiotics are classified on the basis of the medicinal properties of plants, their essential oil extracts, and their bioactive compounds. The majority of bioactive compounds in plants are secondary metabolites, such as terpenoids, phenolic, glycosides, and alkaloids. The composition and concentrations of these bioactive constitutes vary according to their biological factors and manufacturing and storage conditions. Furthermore, HRP is one of the most important and widely used spices in the human diet. Capsicum annum, that is, HRP, is a species of the plant genus Capsicum (pepper), which is a species native to southern North America and northern South America and is widely grown and utilized for its fresh or cooked fruits. Moreover, these fruits may be used as dried powders or processed forms of oleoresins. Researches have proven that C. annuum is the only plant that produces the alkaloid capsaicinoids. Approximately 48% of its active substances are capsaicin (8-methyl-N-vanillyl-6-nonemide), the main active compound responsible for the intense effects of HRP varieties and the main component inducing the hot flavor. This review aimed to highlight the effects of HRP as a phytobiotic in broiler nutrition and its mode of action as a possible alternative to antibiotics and clarify its impact on broiler and layer productivity.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Ahmed R Gado
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Maha M Nader
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Harry Butler Institute, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| |
Collapse
|
99
|
Mahalak KK, Bobokalonov J, Firrman J, Williams R, Evans B, Fanelli B, Soares JW, Kobori M, Liu L. Analysis of the Ability of Capsaicin to Modulate the Human Gut Microbiota In Vitro. Nutrients 2022; 14:nu14061283. [PMID: 35334939 PMCID: PMC8950947 DOI: 10.3390/nu14061283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/22/2022] Open
Abstract
Previous studies on capsaicin, the bioactive compound in chili peppers, have shown that it may have a beneficial effect in vivo when part of a regular diet. These positive health benefits, including an anti-inflammatory potential and protective effects against obesity, are often attributed to the gut microbial community response to capsaicin. However, there is no consensus on the mechanism behind the protective effect of capsaicin. In this study, we used an in vitro model of the human gut microbiota to determine how regular consumption of capsaicin impacts the gut microbiota. Using a combination of NextGen sequencing and metabolomics, we found that regular capsaicin treatment changed the structure of the gut microbial community by increasing diversity and certain SCFA abundances, particularly butanoic acid. Through this study, we determined that the addition of capsaicin to the in vitro cultures of the human gut microbiome resulted in increased diversity of the microbial community and an increase in butanoic acid. These changes may be responsible for the health benefits associated with CAP consumption.
Collapse
Affiliation(s)
- Karley K. Mahalak
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
- Correspondence: ; Tel.: +1-215-836-6922
| | - Jamshed Bobokalonov
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
| | - Jenni Firrman
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
| | - Russell Williams
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; (R.W.); (B.E.)
| | - Bradley Evans
- Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA; (R.W.); (B.E.)
| | - Brian Fanelli
- CosmosID Inc., 1600 East Gude Drive, Rockville, MD 20850, USA;
| | - Jason W. Soares
- Soldier Effectiveness Directorate, US Army Combat Capabilities Development Command Soldier Center, Middlesex, MA 01760, USA;
| | - Masuko Kobori
- Food Research Institute, National Agriculture and Food Research Organization, Tsukuba 305-8642, Japan;
| | - LinShu Liu
- Dairy and Functional Foods Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 600E Mermaid Lane, Montgomery, PA 19038, USA; (J.B.); (J.F.); (L.L.)
| |
Collapse
|
100
|
Speciale A, Muscarà C, Molonia MS, Cristani M, Cimino F, Saija A. Recent Advances in Glycyrrhetinic Acid-Functionalized Biomaterials for Liver Cancer-Targeting Therapy. Molecules 2022; 27:1775. [PMID: 35335138 PMCID: PMC8954912 DOI: 10.3390/molecules27061775] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common causes of cancer mortality worldwide. Chemotherapy and radiotherapy are the conventional therapies generally employed in patients with liver tumors. The major issue associated with the administration of chemotherapeutics is their high toxicity and lack of selectivity, leading to systemic toxicity that can be detrimental to the patient's quality of life. An important approach to the development of original liver-targeted therapeutic products takes advantage of the employment of biologically active ligands able to bind specific receptors on the cytoplasmatic membranes of liver cells. In this perspective, glycyrrhetinic acid (GA), a pentacyclic triterpenoid present in roots and rhizomes of licorice, has been used as a ligand for targeting the liver due to the expression of GA receptors on the sinusoidal surface of mammalian hepatocytes, so it may be employed to modify drug delivery systems (DDSs) and obtain better liver or hepatocyte drug uptake and efficacy. In the current review, we focus on the most recent and interesting research advances in the development of GA-based hybrid compounds and DDSs developed for potential employment as efficacious therapeutic options for the treatment of hepatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (C.M.); (M.S.M.); (M.C.); (A.S.)
| | | |
Collapse
|