51
|
Briggs DEG, Mongiardino Koch N. A Silurian pseudocolonial pterobranch. Curr Biol 2023; 33:5225-5232.e3. [PMID: 37935193 DOI: 10.1016/j.cub.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023]
Abstract
Pterobranchs, a major group of the phylum Hemichordata, first appear in the fossil record during the Cambrian,1 and there are more than 600 fossil genera dominated by the mainly planktic graptolites of the Paleozoic, which are widely used as zone fossils for correlating sedimentary rock sequences.2 Pterobranchs are rare today; they are sessile marine forms represented by Rhabdopleura, which is considered the only living graptolite, and Cephalodiscus. Unlike their sister taxon, the colonial graptolites, cephalodiscids are pseudocolonial.3,4 Here, we describe a problematic fossil from the Silurian (Pridoli) Bertie Group of Ontario (420 mya), a sequence of near-shore sediments well known for its remarkably preserved diversity of eurypterids (sea scorpions).5 The fossil, Rotaciurca superbus, a new genus and species, was familiarly known as Ezekiel's Wheel,5 with reference to the unusual circular arrangement of the tubes that compose it. The structure and arrangement of the tubes identify Rotaciurca as a pterobranch, and phylogenetic analysis groups it with the cephalodiscids. We place it in a new family Rotaciurcidae to distinguish it from Cephalodiscidae. A large structure associated with the tubes is interpreted as a float, which would distinguish Rotaciurca as the only known planktic cephalodiscid-thus cephalodiscids, like the graptolites, invaded the water column. This mode of life reflects the rarity of pseudocolonial macroinvertebrates in planktic ocean communities, a role occupied by the tunicates (Chordata) known as salps today. Our estimates of divergence times, the first using relaxed total-evidence clocks, date the origins of both hemichordates and pterobranchs to the earliest Cambrian (Fortunian).
Collapse
Affiliation(s)
- Derek E G Briggs
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520, USA; Yale Peabody Museum, New Haven, CT 06520, USA.
| | - Nicolás Mongiardino Koch
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Drive #0202, La Jolla, CA 92093, USA.
| |
Collapse
|
52
|
Rocha DM, Nogueira FM, André T, de Araujo Mariath JE, Vanzela ALL. Evolutionary features of microspore and pollen grain development in Cyperaceae. PLANT REPRODUCTION 2023; 36:333-342. [PMID: 37532894 DOI: 10.1007/s00497-023-00477-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
KEY MESSAGE Asymmetric meiosis leading to the release of pollen grains as pseudomonads is a synapomorphy in Cyperaceae, but differences in microspore development are relevant in the family's evolutionary history. Cyperaceae members present atypical microsporogenesis, in which one meiotic product is functional while the other three degenerate, culminating in pseudomonad pollen formation. Differences during development, such as pseudomonad shape and degenerative microspore positioning, are seen throughout the family, but no phylogenetic interpretation has been made regarding these variances thus far. In this study, we analyzed the early- and late-diverging sedge genera Hypolytrum and Eleocharis, respectively, while comparing them to data available in the literature and conducting an ancestral character reconstruction for pseudomonad traits. Light microscopy results show that pseudomonad development in Hypolytrum is homologous to several other sedge genera, presenting apical degenerative microspores. However, pseudomonads are round and centrally arranged in the anther locule in this case, which consists of a pleisiomorphic trait for the family. The basal positioning of degenerative microspores is restricted to Rhynchospora, consisting of an apomorphic trait for this genus. Despite these differences, ultrastructural analysis of Eleocharis pseudomonad revealed shared features with other genera studied, which include variations in chromatin condensation and cytoplasmic turnover in functional cells. These common features seem related to the different cellular fates seen during microspore development and further corroborate the synapomorphic status of pseudomonads in sedges.
Collapse
Affiliation(s)
- Danilo Massuia Rocha
- Laboratório de Citogenética e Diversidade Vegetal (LCDV), Universidade Estadual de Londrina (UEL), Londrina, PR, 86057-970, Brazil.
| | - Fernanda Mayara Nogueira
- Faculdade de Filosofia Ciências e Letras de Ribeirao Preto (FFCLRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Thiago André
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Jorge Ernesto de Araujo Mariath
- Laboratório de Anatomia Vegetal - LAVeg, Instituto de Biociências, Departamento de Botânica, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - André Luís Laforga Vanzela
- Laboratório de Citogenética e Diversidade Vegetal (LCDV), Universidade Estadual de Londrina (UEL), Londrina, PR, 86057-970, Brazil
| |
Collapse
|
53
|
DeHaan LM, Burns MD, Egan JP, Bloom DD. Diadromy Drives Elevated Rates of Trait Evolution and Ecomorphological Convergence in Clupeiformes (Herring, Shad, and Anchovies). Am Nat 2023; 202:830-850. [PMID: 38033182 DOI: 10.1086/726894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractMigration can have a profound influence on rates and patterns of phenotypic evolution. Diadromy is the migration between marine and freshwater habitats for feeding and reproduction that can require individuals to travel tens to thousands of kilometers. The high energetic demands of diadromy are predicted to select for ecomorphological traits that maximize swimming and locomotor efficiency. Intraspecific studies have shown repeated instances of divergence among diadromous and nondiadromous populations in locomotor and foraging traits, which suggests that at a macroevolutionary scale diadromous lineages may experience convergent evolution onto one or multiple adaptive optima. We tested for differences in rates and patterns of phenotypic evolution among diadromous and nondiadromous lineages in Clupeiformes, a clade that has evolved diadromy more than 10 times. Our results show that diadromous clupeiforms show convergent evolution for some locomotor traits and faster rates of evolution, which we propose are adaptive responses to the locomotor demands of migration. We also find evidence that diadromous lineages show convergence into multiple regions of multivariate trait space and suggest that these respective trait spaces are associated with differences in migration and trophic ecology. However, not all locomotor traits and no trophic traits show evidence of convergence or elevated rates of evolution associated with diadromy. Our results show that long-distance migration influences the tempo and patterns of phenotypic evolution at macroevolutionary scales, but there is not a single diadromous syndrome.
Collapse
|
54
|
Berghäuser T, Nyakatura JA, Wölfer J. Evolution of gliding in squirrel-related rodents (Mammalia: Sciuromorpha) did not induce a new optimum on the cortical thickness of the scapular glenoid fossa. Anat Rec (Hoboken) 2023; 306:2716-2728. [PMID: 36583480 DOI: 10.1002/ar.25146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/31/2022]
Abstract
Many of the squirrel-related rodents (i.e., Sciuromorpha) are tree-dwelling species known to be very agile climbers. This taxon also includes the most diverse clade of gliding (aerial) mammals that likely descended from a non-gliding arboreal ancestor and evolved a patagium (i.e., a gliding membrane) to increase gliding performance. Glides can cover distances of up to 150 m and landing is typically accomplished by stalling the patagium to reduce impact velocity. It remains unclear if this behavior suffices to keep stresses on the locomotor apparatus similar to those experienced by their arboreal relatives or whether gliding behavior increases landing forces and stresses. The sparsely available support reaction force data are ambiguous, but bone microstructure is highly adaptable to changes in loading regime and likely provides insights into this question. Using μCT scans, we compared the cortical thickness of the glenoid fossa of the shoulder joint between arboreal and aerial Sciuromorpha using evolutionary model comparison, while also accounting for regional differences of the glenoid fossa. We did not find any differences between these locomotor behaviors, irrespective of the glenoid region. These findings agree with previous analyses of the microstructure of the femur in Sciuromorpha. We discuss different aspects that could explain the similarity in cortical thickness. According to our analysis of glenoid cortical thickness the loading regime appears not to have changed after the evolution of gliding locomotion, likely due to adjustments in landing performance.
Collapse
Affiliation(s)
- Timo Berghäuser
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John A Nyakatura
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Wölfer
- AG Vergleichende Zoologie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
55
|
Colwell RK, Rangel TF, Fučíková K, Sustaita D, Yanega GM, Rico-Guevara A. Repeated Evolution of Unorthodox Feeding Styles Drives a Negative Correlation between Foot Size and Bill Length in Hummingbirds. Am Nat 2023; 202:699-720. [PMID: 37963119 DOI: 10.1086/726036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractDifferences among hummingbird species in bill length and shape have rightly been viewed as adaptive in relation to the morphology of the flowers they visit for nectar. In this study we examine functional variation in a behaviorally related but neglected feature: hummingbird feet. We gathered records of hummingbirds clinging by their feet to feed legitimately as pollinators or illegitimately as nectar robbers-"unorthodox" feeding behaviors. We measured key features of bills and feet for 220 species of hummingbirds and compared the 66 known "clinger" species (covering virtually the entire scope of hummingbird body size) with the 144 presumed "non-clinger" species. Once the effects of phylogenetic signal, body size, and elevation above sea level are accounted for statistically, hummingbirds display a surprising but functionally interpretable negative correlation. Clingers with short bills and long hallux (hind-toe) claws have evolved-independently-more than 20 times and in every major clade. Their biomechanically enhanced feet allow them to save energy by clinging to feed legitimately on short-corolla flowers and by stealing nectar from long-corolla flowers. In contrast, long-billed species have shorter hallux claws, as plant species with long-corolla flowers enforce hovering to feed, simply by the way they present their flowers.
Collapse
|
56
|
Chung The H, Pham P, Ha Thanh T, Phuong LVK, Yen NP, Le SNH, Vu Thuy D, Chau TTH, Le Phuc H, Ngoc NM, Vi LL, Mather AE, Thwaites GE, Thomson NR, Baker S, Pham DT. Multidrug resistance plasmids underlie clonal expansions and international spread of Salmonella enterica serotype 1,4,[5],12:i:- ST34 in Southeast Asia. Commun Biol 2023; 6:1007. [PMID: 37789208 PMCID: PMC10547704 DOI: 10.1038/s42003-023-05365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
Salmonella enterica serotype 1,4,[5],12:i:- (Typhimurium monophasic variant) of sequence type (ST) 34 has emerged as the predominant pandemic genotype in recent decades. Despite increasing reports of resistance to antimicrobials in Southeast Asia, Salmonella ST34 population structure and evolution remained understudied in the region. Here we performed detailed genomic investigations on 454 ST34 genomes collected from Vietnam and diverse geographical sources to elucidate the pathogen's epidemiology, evolution and antimicrobial resistance. We showed that ST34 has been introduced into Vietnam in at least nine occasions since 2000, forming five co-circulating major clones responsible for paediatric diarrhoea and bloodstream infection. Most expansion events were associated with acquisitions of large multidrug resistance plasmids of IncHI2 or IncA/C2. Particularly, the self-conjugative IncA/C2 pST34VN2 (co-transferring blaCTX-M-55, mcr-3.1, and qnrS1) underlies local expansion and intercontinental spread in two separate ST34 clones. At the global scale, Southeast Asia was identified as a potential hub for the emergence and dissemination of multidrug resistant Salmonella ST34, and mutation analysis suggests of selection in antimicrobial responses and key virulence factors.
Collapse
Affiliation(s)
- Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| | - Phuong Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Son-Nam H Le
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Duong Vu Thuy
- Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | | | - Hoang Le Phuc
- Children's Hospital No. 1, Ho Chi Minh City, Vietnam
| | | | - Lu Lan Vi
- The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas R Thomson
- London School of Hygiene and Tropical Medicine, London, UK
- The Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Stephen Baker
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Diseases (CITIID), University of Cambridge, Cambridge, UK
| | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
57
|
Clark JW, Hetherington AJ, Morris JL, Pressel S, Duckett JG, Puttick MN, Schneider H, Kenrick P, Wellman CH, Donoghue PCJ. Evolution of phenotypic disparity in the plant kingdom. NATURE PLANTS 2023; 9:1618-1626. [PMID: 37666963 PMCID: PMC10581900 DOI: 10.1038/s41477-023-01513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
The plant kingdom exhibits diverse bodyplans, from single-celled algae to complex multicellular land plants, but it is unclear how this phenotypic disparity was achieved. Here we show that the living divisions comprise discrete clusters within morphospace, separated largely by reproductive innovations, the extinction of evolutionary intermediates and lineage-specific evolution. Phenotypic complexity correlates not with disparity but with ploidy history, reflecting the role of genome duplication in plant macroevolution. Overall, the plant kingdom exhibits a pattern of episodically increasing disparity throughout its evolutionary history that mirrors the evolutionary floras and reflects ecological expansion facilitated by reproductive innovations. This pattern also parallels that seen in the animal and fungal kingdoms, suggesting a general pattern for the evolution of multicellular bodyplans.
Collapse
Affiliation(s)
- James W Clark
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK.
| | - Alexander J Hetherington
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Jennifer L Morris
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | | | | | - Mark N Puttick
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | - Harald Schneider
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- The Natural History Museum, London, UK
- Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | | | | | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
58
|
Patel AK, Vilela P, Shaik TB, McEwen A, Hazemann I, Brillet K, Ennifar E, Hamiche A, Markov G, Laudet V, Moras D, Klaholz B, Billas IL. Asymmetric dimerization in a transcription factor superfamily is promoted by allosteric interactions with DNA. Nucleic Acids Res 2023; 51:8864-8879. [PMID: 37503845 PMCID: PMC10484738 DOI: 10.1093/nar/gkad632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.
Collapse
Affiliation(s)
- Abdul Kareem Mohideen Patel
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Pierre Vilela
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Tajith Baba Shaik
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Alastair G McEwen
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle Hazemann
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Karl Brillet
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Eric Ennifar
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Ali Hamiche
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit. Okinawa Institute of Science and Technology. 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan
| | - Dino Moras
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Bruno P Klaholz
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M L Billas
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
59
|
Evans KM, Larouche O, Gartner SM, Faucher RE, Dee SG, Westneat MW. Beaks promote rapid morphological diversification along distinct evolutionary trajectories in labrid fishes (Eupercaria: Labridae). Evolution 2023; 77:2000-2014. [PMID: 37345732 DOI: 10.1093/evolut/qpad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
The upper and lower jaws of some wrasses (Eupercaria: Labridae) possess teeth that have been coalesced into a strong durable beak that they use to graze on hard coral skeletons, hard-shelled prey, and algae, allowing many of these species to function as important ecosystem engineers in their respective marine habitats. While the ecological impact of the beak is well understood, questions remain about its evolutionary history and the effects of this innovation on the downstream patterns of morphological evolution. Here we analyze 3D cranial shape data in a phylogenetic comparative framework and use paleoclimate modeling to reconstruct the evolution of the labrid beak across 205 species. We find that wrasses evolved beaks three times independently, once within odacines and twice within parrotfishes in the Pacific and Atlantic Oceans. We find an increase in the rate of shape evolution in the Scarus+Chlorurus+Hipposcarus (SCH) clade of parrotfishes likely driven by the evolution of the intramandibular joint. Paleoclimate modeling shows that the SCH clade of parrotfishes rapidly morphologically diversified during the middle Miocene. We hypothesize that possession of a beak in the SCH clade coupled with favorable environmental conditions allowed these species to rapidly morphologically diversify.
Collapse
Affiliation(s)
- Kory M Evans
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Olivier Larouche
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Samantha M Gartner
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Rose E Faucher
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Sylvia G Dee
- Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX, United States
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| |
Collapse
|
60
|
García-Rodríguez J, Cunha AF, Morales-Guerrero A, González-Chaves A, Camacho A, Miranda LS, Serrano FC, Jaimes-Becerra A, Marques AC. Reproductive and environmental traits explain the variation in egg size among Medusozoa (Cnidaria). Proc Biol Sci 2023; 290:20230543. [PMID: 37528708 PMCID: PMC10394409 DOI: 10.1098/rspb.2023.0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Medusozoa (Cnidaria) are characterized by diverse life cycles, with different semaphoronts (medusa, medusoid, fixed gonophore, polyp) representing the sexual phase and carrying the gametes. Although egg size is often considered a proxy to understand reproductive and developmental traits of medusozoans, understanding of the processes influencing egg size variation in the group under an evolutionary context is still limited. We carried out a comprehensive review of the variation of egg size in Medusozoa to test whether this variation is related to biological/sexual or environmental traits. Egg size presents a strong phylogenetic signal (λ = 0.79, K = 0.67), explaining why closely related species with different reproductive strategies and different individual sizes have similar egg sizes. However, variation in egg size is influenced by the number of eggs, depth and temperature, with larger eggs frequently present in species with few eggs (1-15), in deep-sea species and in cold-water species. Conversely, the production of small eggs among cold-water species of Staurozoa might be associated with the development of a small benthic larvae in this group. Our study reinforces that egg sizes respond to reproductive and environmental traits, although egg size is highly conserved within medusa classes.
Collapse
Affiliation(s)
- Jimena García-Rodríguez
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Amanda Ferreira Cunha
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
- Departamento de Biologia Animal, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, 36570-900 Viçosa, Brazil
| | - Adriana Morales-Guerrero
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Adrian González-Chaves
- Department of Ecology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Agustín Camacho
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana, CSIC, Av. Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Lucília Souza Miranda
- Department of Zoology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
| | - Filipe C. Serrano
- Department of Ecology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| | - Adrian Jaimes-Becerra
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Antonio Carlos Marques
- Department of Zoology, Institute of Biosciences, University of São Paulo, R. Matão, Tv. 14, 101, 05508-090 São Paulo, Brazil
| |
Collapse
|
61
|
Wiens JJ. Trait-based species richness: ecology and macroevolution. Biol Rev Camb Philos Soc 2023; 98:1365-1387. [PMID: 37015839 DOI: 10.1111/brv.12957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
Understanding the origins of species richness patterns is a fundamental goal in ecology and evolutionary biology. Much research has focused on explaining two kinds of species richness patterns: (i) spatial species richness patterns (e.g. the latitudinal diversity gradient), and (ii) clade-based species richness patterns (e.g. the predominance of angiosperm species among plants). Here, I highlight a third kind of richness pattern: trait-based species richness (e.g. the number of species with each state of a character, such as diet or body size). Trait-based richness patterns are relevant to many topics in ecology and evolution, from ecosystem function to adaptive radiation to the paradox of sex. Although many studies have described particular trait-based richness patterns, the origins of these patterns remain far less understood, and trait-based richness has not been emphasised as a general category of richness patterns. Here, I describe a conceptual framework for how trait-based richness patterns arise compared to other richness patterns. A systematic review suggests that trait-based richness patterns are most often explained by when each state originates within a group (i.e. older states generally have higher richness), and not by differences in transition rates among states or faster diversification of species with certain states. This latter result contrasts with the widespread emphasis on diversification rates in species-richness research. I show that many recent studies of spatial richness patterns are actually studies of trait-based richness patterns, potentially confounding the causes of these patterns. Finally, I describe a plethora of unanswered questions related to trait-based richness patterns.
Collapse
Affiliation(s)
- John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, USA
| |
Collapse
|
62
|
Corpuz RL, Bellinger MR, Veillet A, Magnacca KN, Price DK. The Transmission Patterns of the Endosymbiont Wolbachia within the Hawaiian Drosophilidae Adaptive Radiation. Genes (Basel) 2023; 14:1545. [PMID: 37628597 PMCID: PMC10454618 DOI: 10.3390/genes14081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023] Open
Abstract
The evolution of endosymbionts and their hosts can lead to highly dynamic interactions with varying fitness effects for both the endosymbiont and host species. Wolbachia, a ubiquitous endosymbiont of arthropods and nematodes, can have both beneficial and detrimental effects on host fitness. We documented the occurrence and patterns of transmission of Wolbachia within the Hawaiian Drosophilidae and examined the potential contributions of Wolbachia to the rapid diversification of their hosts. Screens for Wolbachia infections across a minimum of 140 species of Hawaiian Drosophila and Scaptomyza revealed species-level infections of 20.0%, and across all 399 samples, a general infection rate of 10.3%. Among the 44 Wolbachia strains we identified using a modified Wolbachia multi-locus strain typing scheme, 30 (68.18%) belonged to supergroup B, five (11.36%) belonged to supergroup A, and nine (20.45%) had alleles with conflicting supergroup assignments. Co-phylogenetic reconciliation analysis indicated that Wolbachia strain diversity within their endemic Hawaiian Drosophilidae hosts can be explained by vertical (e.g., co-speciation) and horizontal (e.g., host switch) modes of transmission. Results from stochastic character trait mapping suggest that horizontal transmission is associated with the preferred oviposition substrate of the host, but not the host's plant family or island of occurrence. For Hawaiian Drosophilid species of conservation concern, with 13 species listed as endangered and 1 listed as threatened, knowledge of Wolbachia strain types, infection status, and potential for superinfection could assist with conservation breeding programs designed to bolster population sizes, especially when wild populations are supplemented with laboratory-reared, translocated individuals. Future research aimed at improving the understanding of the mechanisms of Wolbachia transmission in nature, their impact on the host, and their role in host species formation may shed light on the influence of Wolbachia as an evolutionary driver, especially in Hawaiian ecosystems.
Collapse
Affiliation(s)
- Renée L. Corpuz
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
| | - M. Renee Bellinger
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, P.O. Box 44, Hawaii National Park, HI 96718, USA
| | - Anne Veillet
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
| | - Karl N. Magnacca
- Department of Land and Natural Resources, Division of Forestry & Wildlife, Native Ecosystem Protection and Management, Hawaii Invertebrate Program, 1151 Punchbowl Street Rm. 325, Honolulu, HI 96813, USA;
| | - Donald K. Price
- Department of Biology, Tropical Conservation Biology and Environmental Science, University of Hawaii at Hilo, 200 West Kāwili Street, Hilo, HI 96720, USA (D.K.P.)
- School of Life Sciences, University of Nevada, Las Vegas, NV 89557, USA
| |
Collapse
|
63
|
Pereira AS, De Moor D, Casanova C, Brent LJN. Kinship composition in mammals. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230486. [PMID: 37476521 PMCID: PMC10354477 DOI: 10.1098/rsos.230486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023]
Abstract
Understanding the evolution of group-living and cooperation requires information on who animals live and cooperate with. Animals can live with kin, non-kin or both, and kinship structure can influence the benefits and costs of group-living and the evolution of within-group cooperation. One aspect of kinship structure is kinship composition, i.e. a group-level attribute of the presence of kin and/or non-kin dyads in groups. Despite its putative importance, the kinship composition of mammalian groups has yet to be characterized. Here, we use the published literature to build an initial kinship composition dataset in mammals, laying the groundwork for future work in the field. In roughly half of the 18 species in our sample, individuals lived solely with same-sex kin, and, in the other half, individuals lived with related and unrelated individuals of the same sex. These initial results suggest that it is not rare for social mammals to live with unrelated individuals of the same sex, highlighting the importance of considering indirect and direct fitness benefits as co-drivers of the evolution of sociality. We hope that our initial dataset and insights will spur the study of kinship structure and sociality towards new exciting avenues.
Collapse
Affiliation(s)
- André S. Pereira
- Centre for Research in Animal Behavior, University of Exeter, Exeter EX4 4QG, UK
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Delphine De Moor
- Centre for Research in Animal Behavior, University of Exeter, Exeter EX4 4QG, UK
| | - Catarina Casanova
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
- CAPP, ISCSP, University of Lisbon, 1300-663 Lisbon, Portugal
| | - Lauren J. N. Brent
- Centre for Research in Animal Behavior, University of Exeter, Exeter EX4 4QG, UK
| |
Collapse
|
64
|
Heinicke MP, Nielsen SV, Bauer AM, Kelly R, Geneva AJ, Daza JD, Keating SE, Gamble T. Reappraising the evolutionary history of the largest known gecko, the presumably extinct Hoplodactylus delcourti, via high-throughput sequencing of archival DNA. Sci Rep 2023; 13:9141. [PMID: 37336900 DOI: 10.1038/s41598-023-35210-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/21/2023] Open
Abstract
Hoplodactylus delcourti is a presumably extinct species of diplodactylid gecko known only from a single specimen of unknown provenance. It is by far the largest known gekkotan, approximately 50% longer than the next largest-known species. It has been considered a member of the New Zealand endemic genus Hoplodactylus based on external morphological features including shared toe pad structure. We obtained DNA from a bone sample of the only known specimen to generate high-throughput sequence data suitable for phylogenetic analysis of its evolutionary history. Complementary sequence data were obtained from a broad sample of diplodactylid geckos. Our results indicate that the species is not most closely related to extant Hoplodactylus or any other New Zealand gecko. Instead, it is a member of a clade whose living species are endemic to New Caledonia. Phylogenetic comparative analyses indicate that the New Caledonian diplodactylid clade has evolved significantly more disparate body sizes than either the Australian or New Zealand clades. Toe pad structure has changed repeatedly across diplodactylids, including multiple times in the New Caledonia clade, partially explaining the convergence in form between H. delcourti and New Zealand Hoplodactylus. Based on the phylogenetic results, we place H. delcourti in a new genus.
Collapse
Affiliation(s)
| | - Stuart V Nielsen
- Louisiana State University Shreveport, Shreveport, LA, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Ryan Kelly
- University of Michigan-Dearborn, Dearborn, MI, USA
| | | | - Juan D Daza
- Sam Houston State University, Huntsville, TX, USA
| | | | - Tony Gamble
- Marquette University, Milwaukee, WI, USA
- The Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
- Milwaukee Public Museum, Milwaukee, WI, USA
| |
Collapse
|
65
|
Ellis EA, Goodheart JA, Hensley NM, González VL, Reda NJ, Rivers TJ, Morin JG, Torres E, Gerrish GA, Oakley TH. Sexual Signals Persist over Deep Time: Ancient Co-option of Bioluminescence for Courtship Displays in Cypridinid Ostracods. Syst Biol 2023; 72:264-274. [PMID: 35984328 PMCID: PMC10448971 DOI: 10.1093/sysbio/syac057] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
Although the diversity, beauty, and intricacy of sexually selected courtship displays command the attention of evolutionists, the longevity of these traits in deep time is poorly understood. Population-based theory suggests sexual selection could either lower or raise extinction risk, resulting in high or low persistence of lineages with sexually selected traits. Furthermore, empirical studies that directly estimate the longevity of sexually selected traits are uncommon. Sexually selected signals-including bioluminescent courtship-originated multiple times during evolution, allowing the empirical study of their longevity after careful phylogenetic and divergence time analyses. Here, we estimate the first transcriptome-based molecular phylogeny and divergence times of Cypridinidae. We report extreme longevity of bioluminescent courtship, a trait important in mate choice and probably under sexual selection. Our relaxed-clock estimates of divergence times coupled with stochastic character mapping show luminous courtship evolved only once in Cypridinidae-in a Sub-Tribe, we name Luxorina-at least 151 millions of years ago from cypridinid ancestors that used bioluminescence only in antipredator displays, defining a Tribe we name Luminini. This time-calibrated molecular phylogeny of cypridinids will serve as a foundation for integrative and comparative studies on the biochemistry, molecular evolution, courtship, diversification, and ecology of cypridinid bioluminescence. The persistence of luminous courtship for hundreds of millions of years suggests that sexual selection did not cause a rapid loss of associated traits, and that rates of speciation within the group exceeded extinction risk, which may contribute to the persistence of a diverse clade of signaling species. [Ancestral state reconstruction; Biodiversity; co-option; divergence time estimates; macroevolution; Ostracoda; phylogenomics; sexual selection.].
Collapse
Affiliation(s)
- Emily A Ellis
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jessica A Goodheart
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of
Oceanography, University of California, San Diego, La Jolla, CA 92037,
USA
| | - Nicholai M Hensley
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Neurobiology and Behavior, Cornell University,
Ithaca, NY 14850, USA
| | - Vanessa L González
- Department of Invertebrate Zoology, Smithsonian Institution, National
Museum of Natural History, 10th and Constitution NW, Washington, DC
20560-0105, USA
| | - Nicholas J Reda
- Biology Department, University of Wisconsin–La Crosse, La
Crosse, WI 54601, USA
| | - Trevor J Rivers
- Department of Ecology and Evolutionary Biology, University of Kansas
Lawrence, KS 66045, USA
| | - James G Morin
- Department of Ecology and Evolutionary Biology, Cornell
University, Ithaca, NY 14850, USA
| | - Elizabeth Torres
- Department of Biological Sciences, California State University Los
Angeles, Los Angeles, CA 90032, USA
| | - Gretchen A Gerrish
- Biology Department, University of Wisconsin–La Crosse, La
Crosse, WI 54601, USA
- Trout Lake Station, Center for Limnology, University of Wisconsin –
Madison, Boulder Junction, WI 54512, USA
| | - Todd H Oakley
- Department of Ecology, Evolution, and Marine Biology, University of
California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
66
|
Bartoszek K, Fuentes-González J, Mitov V, Pienaar J, Piwczyński M, Puchałka R, Spalik K, Voje KL. Model Selection Performance in Phylogenetic Comparative Methods Under Multivariate Ornstein-Uhlenbeck Models of Trait Evolution. Syst Biol 2023; 72:275-293. [PMID: 36575879 PMCID: PMC11302515 DOI: 10.1093/sysbio/syac079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
The advent of fast computational algorithms for phylogenetic comparative methods allows for considering multiple hypotheses concerning the co-adaptation of traits and also for studying if it is possible to distinguish between such models based on contemporary species measurements. Here we demonstrate how one can perform a study with multiple competing hypotheses using mvSLOUCH by analyzing two data sets, one concerning feeding styles and oral morphology in ungulates, and the other concerning fruit evolution in Ferula (Apiaceae). We also perform simulations to determine if it is possible to distinguish between various adaptive hypotheses. We find that Akaike's information criterion corrected for small sample size has the ability to distinguish between most pairs of considered models. However, in some cases there seems to be bias towards Brownian motion or simpler Ornstein-Uhlenbeck models. We also find that measurement error and forcing the sign of the diagonal of the drift matrix for an Ornstein-Uhlenbeck process influences identifiability capabilities. It is a cliché that some models, despite being imperfect, are more useful than others. Nonetheless, having a much larger repertoire of models will surely lead to a better understanding of the natural world, as it will allow for dissecting in what ways they are wrong. [Adaptation; AICc; model selection; multivariate Ornstein-Uhlenbeck process; multivariate phylogenetic comparative methods; mvSLOUCH.].
Collapse
Affiliation(s)
- Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping
University, Linköping, Östergötland, Sweden
| | | | | | - Jason Pienaar
- Department of Biological Sciences and the Institute of Environment, Florida
International University, Miami, FL 33199,
USA
| | - Marcin Piwczyński
- Department of Ecology and Biogeography, Nicolaus Copernicus University in
Toruń, Toruń, Kujawsko-Pomorskie, Poland
| | - Radosław Puchałka
- Department of Ecology and Biogeography, Nicolaus Copernicus University in
Toruń, Toruń, Kujawsko-Pomorskie, Poland
| | - Krzysztof Spalik
- Institute of Evolutionary Biology, Faculty of Biology, Biological and
Chemical Research Centre, University of Warsaw,
Warszawa, Poland
| | | |
Collapse
|
67
|
Kise H, Eduarda Alves Santos M, Julie Loïs Fourreau C, Iguchi A, Goto R, Davis Reimer J. Evolutionary patterns of host switching, lifestyle mode, and the diversification history in symbiotic zoantharians. Mol Phylogenet Evol 2023; 182:107732. [PMID: 36781031 DOI: 10.1016/j.ympev.2023.107732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Symbioses play important roles in forming the structural and distributional patterns of marine diversity. Understanding how interspecies interactions through symbioses contribute to biodiversity is an essential topic. Host switching has been considered as one of the main drivers of diversification in symbiotic systems. However, its process and patterns remain poorly investigated in the marine realm. Hexacoral species of the order Zoantharia (=zoantharians) are often epizoic on other marine invertebrates and generally use specific taxa as hosts. The present study investigates the patterns of host switching and the diversification history of zoantharians based on the most comprehensive molecular phylogenetic analyses to date, using sequences from three mitochondrial and three nuclear markers from representatives of 27 of 29 genera. Our results indicate that symbiotic zoantharians, in particular those within suborder Macrocnemina, diversified through repeated host switching. In addition, colonization of new host taxa appears to have driven morphological and ecological specialization in zoantharians. These findings have important implications for understanding the role of symbioses in the morphological and ecological evolution of marine invertebrates.
Collapse
Affiliation(s)
- Hiroki Kise
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan.
| | - Maria Eduarda Alves Santos
- Okinawa Institute of Science and Technology Graduate University, Evolution, Cell Biology, and Symbiosis Unit, Okinawa 904-0495, Japan
| | - Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan; Research Laboratory on Environmentally-conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Ryutaro Goto
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, 459 Shirahama, Nishimuro, Wakayama 649-2211, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan; Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
68
|
Lewinsohn MA, Bedford T, Müller NF, Feder AF. State-dependent evolutionary models reveal modes of solid tumour growth. Nat Ecol Evol 2023; 7:581-596. [PMID: 36894662 PMCID: PMC10089931 DOI: 10.1038/s41559-023-02000-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/26/2023] [Indexed: 03/11/2023]
Abstract
Spatial properties of tumour growth have profound implications for cancer progression, therapeutic resistance and metastasis. Yet, how spatial position governs tumour cell division remains difficult to evaluate in clinical tumours. Here, we demonstrate that faster division on the tumour periphery leaves characteristic genetic patterns, which become evident when a phylogenetic tree is reconstructed from spatially sampled cells. Namely, rapidly dividing peripheral lineages branch more extensively and acquire more mutations than slower-dividing centre lineages. We develop a Bayesian state-dependent evolutionary phylodynamic model (SDevo) that quantifies these patterns to infer the differential division rates between peripheral and central cells. We demonstrate that this approach accurately infers spatially varying birth rates of simulated tumours across a range of growth conditions and sampling strategies. We then show that SDevo outperforms state-of-the-art, non-cancer multi-state phylodynamic methods that ignore differential sequence evolution. Finally, we apply SDevo to single-time-point, multi-region sequencing data from clinical hepatocellular carcinomas and find evidence of a three- to six-times-higher division rate on the tumour edge. With the increasing availability of high-resolution, multi-region sequencing, we anticipate that SDevo will be useful in interrogating spatial growth restrictions and could be extended to model non-spatial factors that influence tumour progression.
Collapse
Affiliation(s)
- Maya A Lewinsohn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Trevor Bedford
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Nicola F Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
69
|
Joshi CH, Wiens JJ. Does haplodiploidy help drive the evolution of insect eusociality? Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1118748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Understanding the evolution of eusociality in insects has been a long-standing and unsolved challenge in evolutionary biology. For decades, it has been suggested that haplodiploidy plays an important role in the origin of eusociality. However, some researchers have also suggested that eusociality is unrelated to haplodiploidy. Surprisingly, there have been no large-scale phylogenetic tests of this hypothesis (to our knowledge). Here, we test whether haplodiploidy might help explain the origins of eusociality across 874 hexapod families, using three different phylogenetic comparative methods. Two of the methods used support the idea that the evolution of eusociality is significantly associated with haplodiploidy, providing possibly the first phylogenetic support for this decades-old hypothesis across insects. However, some patterns were clearly discordant with this hypothesis, and one phylogenetic test was non-significant. Support for this hypothesis came largely from the repeated origins of eusociality within the haplodiploid hymenopterans (and within thrips). Experimental manipulations of the data show that the non-significant results are primarily explained by the origins of eusociality without haplodiploidy in some groups (i.e., aphids, termites). Overall, our results offer mixed phylogenetic support for the long-standing hypothesis that haplodiploidy helps drive the evolution of eusociality.
Collapse
|
70
|
Martín-Hernanz S, Albaladejo RG, Lavergne S, Rubio E, Marín-Rodulfo M, Arroyo J, Aparicio A. Strong conservatism of floral morphology during the rapid diversification of the genus Helianthemum. AMERICAN JOURNAL OF BOTANY 2023; 110:e16155. [PMID: 36912727 DOI: 10.1002/ajb2.16155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 05/16/2023]
Abstract
PREMISE Divergence of floral morphology and breeding systems are often expected to be linked to angiosperm diversification and environmental niche divergence. However, available evidence for such relationships is not generalizable due to different taxonomic, geographical and time scales. The Palearctic genus Helianthemum shows the highest diversity of the family Cistaceae in terms of breeding systems, floral traits, and environmental conditions as a result of three recent evolutionary radiations since the Late Miocene. Here, we investigated the tempo and mode of evolution of floral morphology in the genus and its link with species diversification and environmental niche divergence. METHODS We quantified 18 floral traits from 83 taxa and applied phylogenetic comparative methods using a robust phylogenetic framework based on genotyping-by-sequencing data. RESULTS We found three different floral morphologies, putatively related to three different breeding systems: type I, characterized by small flowers without herkogamy and low pollen to ovule ratio; type II, represented by large flowers with approach herkogamy and intermediate pollen to ovule ratio; and type III, featured by small flowers with reverse herkogamy and the highest pollen to ovule ratio. Each morphology has been highly conserved across each radiation and has evolved independently of species diversification and ecological niche divergence. CONCLUSIONS The combined results of trait, niche, and species diversification ultimately recovered a pattern of potentially non-adaptive radiations in Helianthemum and highlight the idea that evolutionary radiations can be decoupled from floral morphology evolution even in lineages that diversified in heterogeneous environments as the Mediterranean Basin.
Collapse
Affiliation(s)
- Sara Martín-Hernanz
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Sébastien Lavergne
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Laboratoire d'Ecologie Alpine (LECA), FR-38000, Grenoble, France
| | - Encarnación Rubio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Macarena Marín-Rodulfo
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan Arroyo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Abelardo Aparicio
- Departamento de Biología Vegetal y Ecología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
71
|
Marsden GE, Vosloo D, Schoeman MC. Urban tolerance is phylogenetically constrained and mediated by pre-adaptations in African bats. Ecol Evol 2023; 13:e9840. [PMID: 36911303 PMCID: PMC9994473 DOI: 10.1002/ece3.9840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
With increasing urbanization, particularly in developing countries, it is important to understand how local biota will respond to such landscape changes. Bats comprise one of the most diverse groups of mammals in urban areas, and many species are threatened by habitat destruction and land use change. Yet, in Africa, the response of bats to urban areas is relatively understudied. Therefore, we collated data on urban presence, phylogenetic relationship, and ecological traits of 54 insectivorous bats in Africa from available literature to test if their response to urbanization was phylogenetically and/or ecologically driven. Ancestral state reconstruction of urban tolerance, defined by functional group and presence observed in urban areas, suggests that ancestral African bat species could adapt to urban landscapes, and significant phylogenetic signal for urban tolerance indicates that this ability is evolutionarily conserved and mediated by pre-adaptations. Specifically, traits of high wing loading and aspect ratio, and flexible roosting strategies, enable occupancy of urban areas. Therefore, our results identify the traits that predict which bat species will likely occur in urban areas, and which vulnerable bat clades conservation efforts should focus on to reduce loss of both functional and phylogenetic diversity in Africa. We, additionally, highlight several gaps in research that should be investigated in future studies to provide better monitoring of the impact urbanization will have on African bats.
Collapse
Affiliation(s)
- Genevieve E. Marsden
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Dalene Vosloo
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | | |
Collapse
|
72
|
Macroevolutionary analyses point to a key role of hosts in diversification of the highly speciose eriophyoid mite superfamily. Mol Phylogenet Evol 2023; 179:107676. [PMID: 36535519 DOI: 10.1016/j.ympev.2022.107676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The superfamily Eriophyoidea includes >5000 named species of very small phytophagous mites. As for many groups of phytophagous invertebrates, factors responsible for diversification of eriophyoid mites are unclear. Here, we used an inferred phylogeny of 566 putative species of eriophyoid mites based on fragments of two mitochondrial genes and two nuclear genes to examine factors associated with their massive evolutionary diversification through time. Our dated phylogeny indicates a Carboniferous origin for gymnosperm-associated Eriophyoidea with subsequent diversification involving multiple host shifts to angiosperms-first to dicots, and then to monocots or shifts back to gymnosperms-beginning in the Cretaceous period when angiosperms diverged. Speciation rates increased more rapidly in the Eriophyidae + Diptilomiopidae (mostly infesting angiosperms) than in the Phytoptidae (mostly infesting gymnosperms). Phylogenetic signal, speciation rates, dispersal and vicariance results combined with inferred topologies show that hosts played a key role in the evolution of eriophyoid mites. Speciation constrained by hosts was probably the main driver behind eriophyoid mite diversification worldwide. We demonstrate monophyly of the Eriophyoidea, whereas all three families, most subfamilies, tribes, and most genera are not monophyletic. Our time-calibrated tree provides a framework for further evolutionary studies of eriophyoid mites and their interactions with host plants as well as taxonomic revisions above the species level.
Collapse
|
73
|
Sanabria GE, Sequera G, Aguirre S, Méndez J, Dos Santos PCP, Gustafson NW, Godoy M, Ortiz A, Cespedes C, Martínez G, García-Basteiro AL, Andrews JR, Croda J, Walter KS. Phylogeography and transmission of Mycobacterium tuberculosis spanning prisons and surrounding communities in Paraguay. Nat Commun 2023; 14:303. [PMID: 36658111 PMCID: PMC9849832 DOI: 10.1038/s41467-023-35813-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Recent rises in incident tuberculosis (TB) cases in Paraguay and the increasing concentration of TB within prisons highlight the urgency of targeting strategies to interrupt transmission and prevent new infections. However, whether specific cities or carceral institutions play a disproportionate role in transmission remains unknown. We conducted prospective genomic surveillance, sequencing 471 Mycobacterium tuberculosis complex genomes, from inside and outside prisons in Paraguay's two largest urban areas, Asunción and Ciudad del Este, from 2016 to 2021. We found genomic evidence of frequent recent transmission within prisons and transmission linkages spanning prisons and surrounding populations. We identified a signal of frequent M. tuberculosis spread between urban areas and marked recent population size expansion of the three largest genomic transmission clusters. Together, our findings highlight the urgency of strengthening TB control programs to reduce transmission risk within prisons in Paraguay, where incidence was 70 times that outside prisons in 2021.
Collapse
Affiliation(s)
| | - Guillermo Sequera
- Instituto de Salud Global de Barcelona (ISGLOBAL), Barcelona, Spain
- Programa Nacional de Control de la Tuberculosis, Ministerio de Salud Pública y Bienestar Social (MSPyBS), Asunción, Paraguay
| | - Sarita Aguirre
- Programa Nacional de Control de la Tuberculosis, Ministerio de Salud Pública y Bienestar Social (MSPyBS), Asunción, Paraguay
| | - Julieta Méndez
- Instituto Regional de Investigación en Salud, Caaguazú, Paraguay
| | - Paulo César Pereira Dos Santos
- Postgraduate Program in Infectious and Parasitic Diseases, Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Natalie Weiler Gustafson
- Laboratorio Central de Salud Pública (LCSP), Ministerio de Salud Publica y Bienestar Social (MSPyBS), Asunción, Paraguay
| | - Margarita Godoy
- Laboratorio Central de Salud Pública (LCSP), Ministerio de Salud Publica y Bienestar Social (MSPyBS), Asunción, Paraguay
| | - Analía Ortiz
- Instituto Regional de Investigación en Salud, Caaguazú, Paraguay
| | - Cynthia Cespedes
- Programa Nacional de Control de la Tuberculosis, Ministerio de Salud Pública y Bienestar Social (MSPyBS), Asunción, Paraguay
| | - Gloria Martínez
- Instituto Regional de Investigación en Salud, Caaguazú, Paraguay
| | - Alberto L García-Basteiro
- Instituto de Salud Global de Barcelona (ISGLOBAL), Barcelona, Spain
- Centro de Investigação em Saude de Manhiça (CISM), Maputo, Mozambique
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julio Croda
- Federal University of Mato Grosso do Sul - UFMS, Campo Grande, MS, Brazil
- Oswaldo Cruz Foundation Mato Grosso do Sul, Mato Grosso do Sul, Brazil
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, USA
| | - Katharine S Walter
- Division of Epidemiology, University of Utah, Salt Lake City, UT, 84105, USA.
| |
Collapse
|
74
|
Zhang T, Rurik I, Vďačný P. A holistic approach to inventory the diversity of mobilid ciliates (Protista: Ciliophora: Peritrichia). ORG DIVERS EVOL 2023. [DOI: 10.1007/s13127-022-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
75
|
Gorneau JA, Rayor LS, Rheims CA, Moreau CS. Molecular, morphological, and life history data to support research of huntsman spiders (Araneae: Sparassidae). Data Brief 2023; 46:108885. [PMID: 36699733 PMCID: PMC9868322 DOI: 10.1016/j.dib.2023.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/31/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023] Open
Abstract
This article on biodiversity and life history data in huntsman spiders (Araneae: Sparassidae) includes the following: molecular data deposited on GenBank for 72 individuals representing 27 species in seven subfamilies, life history and behavioral data on 40 huntsman species from over two decades of observations, and morphological data for 26 species in the subfamily Deleninae as well as an undescribed representative of the genus Damastes. Molecular data include the nuclear genes histone H3 (H3) and 28S ribosomal RNA (28S rRNA), mitochondrial genes cytochrome c oxidase subunit I (COI) and 16S ribosomal RNA (16S rRNA) were sequenced via Sanger sequencing by J.A. Gorneau. Life history data were collected in the field and in the lab by L.S. Rayor and include data on age at sexual maturity, lifespan, social classification, egg sac shape, how the egg sac is attached or carried, retreat location, retreat modification, retreat size relative to adult female body size, approximate mean body mass, and mean cephalothorax width. Morphological data on Deleninae and one Damastes sp. were scored by C.A. Rheims and includes information on the following characters: prosoma (fovea, posterior eye row shape (PER), anterior median eye (AME) diameter, AME-AME and PME-PME interdistances), male palp (embolic sclerite (PS), conductor sclerotized base (SB), tegular apophysis (TA), flange (f)) and female epigyne and vulva (epigynal sclerite (ES), spermathecal sacs (SS)). These data were used to clarify relationships among the Australian endemic Deleninae, as well as global patterns in sparassid evolution. The data demonstrate phylogenetic patterns in life history, social evolution, and natural history among the sparassids. These data contribute to future comparative research on sparassid systematics, evolution, and behavior. This data article complements a research article published in Molecular Phylogenetics and Evolution [1].
Collapse
Affiliation(s)
- Jacob A. Gorneau
- Department of Entomology, Cornell University, Ithaca, NY, United States 14853
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, United States 94118
- Corresponding author. @jacobgorneau
| | - Linda S. Rayor
- Department of Entomology, Cornell University, Ithaca, NY, United States 14853
| | - Cristina A. Rheims
- Laboratório de Coleções Zoológicas, Instituto Butantan, Av. Vital Brasil, 1500, 05503-900 São Paulo, SP, Brazil
| | - Corrie S. Moreau
- Department of Entomology, Cornell University, Ithaca, NY, United States 14853
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States 14853
| |
Collapse
|
76
|
Are dark septate endophytes an ancestral ecological state in the evolutionary history of the order Chaetothyriales? Arch Microbiol 2023; 205:55. [PMID: 36607426 DOI: 10.1007/s00203-023-03401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023]
Abstract
Dark septate endophytes (DSE) are pigmented fungi that colonize plant roots. They represent a morpho-functional status composed of many species belonging to the phylum Ascomycota, distributed in different orders. The order Chaetothyriales has representatives with diverse lifestyles, among which the rock-inhabiting one has been proposed to be the ancestral ecological character state. However, all taxa have the phenotypic characteristic of being highly melanized. This trait has been considered relevant in most Chaetothyriales because it allows them to tolerate extreme or toxic environmental conditions. In the present study, aiming to reconstruct the evolutionary history of this order, we analyzed the contribution of the DSE habit to the diversification of the Chaetothyriales. We also report the distribution of the DSE habit among the main families and/or clades within the order. Our results suggest that DSE had a key position in the evolution of the order Chaetothyriales, both as an ancestral ecological character and as a character from which other specialized forms such as Domatium probably derived.
Collapse
|
77
|
Nie LY, Zhang L, Liang ZL, Pollawatn R, Yan YH, Thi Lu N, Knapp R, Wan X, Cicuzza D, Cheng XX, Chen HF, Wang AH, Liao YJ, Wang FG, Zhang LB. Phylogeny, character evolution, and biogeography of the fern genus Bolbitis (Dryopteridaceae). Mol Phylogenet Evol 2023; 178:107633. [PMID: 36182051 DOI: 10.1016/j.ympev.2022.107633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/04/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022]
Abstract
Bolbitis is a pantropical fern genus of Dryopteridaceae with ca. 80 species mainly in tropical Asia. Earlier studies confirmed the monophyly of Bolbitis when Mickelia is excluded and identified three major clades in Bolbitis. However, earlier studies are based on relatively small sampling and the majority of Asian species are not sampled. In this study, DNA sequences of three plastid markers of 169 accessions representing ca. 68 (85 % of total) species of Bolbitis in nine out of the 10 series recognized by Hennipman (1977), and 54 accessions representing the five remaining bolbitidoid genera are used to infer a global phylogeny with a focus on Asian species. The major results include: (1) Bolbitis is strongly supported as monophyletic; (2) species of Bolbitis are resolved into four major clades and their relationships are: the Malagasy/Mascarene clade is sister to the rest, followed by the African clade which is sister to the American clade + the Asian clade; (3) six well-supported subclades are identified in the most speciose Asian clade; (4) the free-veined Egenolfia is embedded in Bolbitis and is paraphyletic in relation to species with anastomosing venation; (5) three series sensu Hennipman (1977), B. ser. Alienae, B. ser. Egenolfianae, and B. ser. Heteroclitae, are paraphyletic or polyphyletic; (6) evolution of six morphological characters is analyzed and free venation is found to have evolved from anastomosing venation and reversed to free venation in Bolbitis; and (7) biogeographical implications are drawn and it is shown that a single recent dispersal from Asia resulted in continental disjunction of closely related ferns of Bolbitis between Africa and America.
Collapse
Affiliation(s)
- Li-Yun Nie
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zhen-Long Liang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Rossarin Pollawatn
- Plant of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yue-Hong Yan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and the Orchid Conservation & Research Center of Shenzhen, Shenzhen, Guangdong 518114, China
| | - Ngan Thi Lu
- Department of Biology, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, 18th Hoang Quoc Viet Road, Ha Noi, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Ralf Knapp
- Correspondent of the Muséum National d'Histoire naturelle (MNHN, Paris, France), Steigestrasse 78, 69412 Eberbach, Germany
| | - Xia Wan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Daniele Cicuzza
- Universiti Brunei Darussalam Faculty of Science, Jalan Tungku Link, BE1410, Brunei Darussalam; Universiti Brunei Darussalam Botanical Research Centre, Institute for Biodiversity and Environmental Research, Jalan Tungku Link, BE1410, Brunei Darussalam
| | - Xin-Xin Cheng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Hong-Feng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Ai-Hua Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China; Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, Guangxi 530001, China
| | - Yu-Jie Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Fa-Guo Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China.
| | - Li-Bing Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
78
|
Boyce CK, Ibarra DE, Nelsen MP, D'Antonio MP. Nitrogen-based symbioses, phosphorus availability, and accounting for a modern world more productive than the Paleozoic. GEOBIOLOGY 2023; 21:86-101. [PMID: 35949039 DOI: 10.1111/gbi.12519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Evolution of high-productivity angiosperms has been regarded as a driver of Mesozoic ecosystem restructuring. However, terrestrial productivity is limited by availability of rock-derived nutrients such as phosphorus for which permanent increases in weathering would violate mass balance requirements of the long-term carbon cycle. The potential reality of productivity increases sustained since the Mesozoic is supported here with documentation of a dramatic increase in the evolution of nitrogen-fixing or nitrogen-scavenging symbioses, including more than 100 lineages of ectomycorrhizal and lichen-forming fungi and plants with specialized microbial associations. Given this evidence of broadly increased nitrogen availability, we explore via carbon cycle modeling how enhanced phosphorus availability might be sustained without violating mass balance requirements. Volcanism is the dominant carbon input, dictating peaks in weathering outputs up to twice modern values. However, times of weathering rate suppression may be more important for setting system behavior, and the late Paleozoic was the only extended period over which rates are expected to have remained lower than modern. Modeling results are consistent with terrestrial organic matter deposition that accompanied Paleozoic vascular plant evolution having suppressed weathering fluxes by providing an alternative sink of atmospheric CO2 . Suppression would have then been progressively lifted as the crustal reservoir's holding capacity for terrestrial organic matter saturated back toward steady state with deposition of new organic matter balanced by erosion of older organic deposits. Although not an absolute increase, weathering fluxes returning to early Paleozoic conditions would represent a novel regime for the complex land biota that evolved in the interim. Volcanism-based peaks in Mesozoic weathering far surpass the modern rates that sustain a complex diversity of nitrogen-based symbioses; only in the late Paleozoic might these ecologies have been suppressed by significantly lower rates. Thus, angiosperms are posited to be another effect rather than proximal cause of Mesozoic upheaval.
Collapse
Affiliation(s)
- C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| | - Daniel E Ibarra
- Department of Geological Sciences, Stanford University, Stanford, California, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California, USA
- Institute at Brown for Environment and Society and the Department of Earth, Environmental and Planetary Science, Brown University, Providence, Rhode Island, USA
| | - Matthew P Nelsen
- Negaunee Integrative Research Center, The Field Museum, Chicago, Illinois, USA
| | - Michael P D'Antonio
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
79
|
Mendoza JCE, Chan KO, Lai JCY, Thoma BP, Clark PF, Guinot D, Felder DL, Ng PKL. A comprehensive molecular phylogeny of the brachyuran crab superfamily Xanthoidea provides novel insights into its systematics and evolutionary history. Mol Phylogenet Evol 2022; 177:107627. [PMID: 36096461 DOI: 10.1016/j.ympev.2022.107627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022]
Abstract
Maximum likelihood and Bayesian phylogenies for the brachyuran crab superfamily Xanthoidea were estimated based on three mitochondrial and four nuclear genes to infer phylogenetic relationships and inform taxonomy. Habitat data was then used in conjunction with several diversification rates analyses (BAMM, BiSSE, HiSSE, and FiSSE) to test evolutionary hypotheses regarding the diversification of xanthoid crabs. The phylogenies presented are the most comprehensive to date in terms of global diversity as they include all four constituent families (Xanthidae, Panopeidae, Pseudorhombilidae, and Linnaeoxanthidae) spanning all oceans in which xanthoid crabs occur. Six Xanthoidea families are recognised. Panopeidae and Xanthidae sensu stricto are the two largest family-level clades, which are reciprocally monophyletic. Pseudorhombilidae is nested within and is here treated as a subfamily of Panopeidae. Former subfamilies or tribes of Xanthidae sensu lato are basally positioned clades in Xanthoidea and are here assigned family-level ranks: Garthiellidae, Linnaeoxanthidae, Antrocarcinidae, and Nanocassiopidae. The genera Linnaeoxantho and Melybia were recovered in separate clades with Linnaeoxantho being sister to the family Antrocarcinidae, while Melybia was recovered within the family Panopeidae. The existing subfamily classification of Xanthidae and Panopeidae is drastically restructured with 20 xanthid and four panopeid subfamilies provisionally recognised. Diversification-time analyses inferred the origin of Xanthoidea and Garthiellidae in the Eocene, while the other families originated during the Oligocene. The majority of genus- and species-level diversification took place during the Miocene. Ancestral state reconstruction based on depth of occurrence (shallow vs. deep water) shows some ambiguity for the most recent common ancestor of Xanthoidea and Nanocassiopidae. The most recent common ancestors of Antrocarcinidae and Panopeidae were likely deep-water species, while those of Garthiellidae and Xanthidae were probably shallow-water species. Several shifts in net diversification rates were detected but they were not associated with depth-related habitat transitions.
Collapse
Affiliation(s)
- Jose C E Mendoza
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore, Singapore.
| | - Kin Onn Chan
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore, Singapore.
| | - Joelle C Y Lai
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore, Singapore
| | - Brent P Thoma
- Department of Biology, Jackson State University, P.O. Box 18540, Jackson, MS 39217, USA
| | - Paul F Clark
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Danièle Guinot
- Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Institut de Systématique, Évolution, Biodiversité (ISYEB), Case Postale 53, 57 rue Cuvier, F-75231 Paris cedex 05, France
| | - Darryl L Felder
- Department of Biology and Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, 2 Conservatory Drive, 117377 Singapore, Singapore
| |
Collapse
|
80
|
Law CJ, Blackwell EA, Curtis AA, Dickinson E, Hartstone-Rose A, Santana SE. Decoupled evolution of the cranium and mandible in carnivoran mammals. Evolution 2022; 76:2959-2974. [PMID: 35875871 DOI: 10.1111/evo.14578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 01/22/2023]
Abstract
The relationship between skull morphology and diet is a prime example of adaptive evolution. In mammals, the skull consists of the cranium and the mandible. Although the mandible is expected to evolve more directly in response to dietary changes, dietary regimes may have less influence on the cranium because additional sensory and brain-protection functions may impose constraints on its morphological evolution. Here, we tested this hypothesis by comparing the evolutionary patterns of cranium and mandible shape and size across 100+ species of carnivoran mammals with distinct feeding ecologies. Our results show decoupled modes of evolution in cranial and mandibular shape; cranial shape follows clade-based evolutionary shifts, whereas mandibular shape evolution is linked to broad dietary regimes. These results are consistent with previous hypotheses regarding hierarchical morphological evolution in carnivorans and greater evolutionary lability of the mandible with respect to diet. Furthermore, in hypercarnivores, the evolution of both cranial and mandibular size is associated with relative prey size. This demonstrates that dietary diversity can be loosely structured by craniomandibular size within some guilds. Our results suggest that mammal skull morphological evolution is shaped by mechanisms beyond dietary adaptation alone.
Collapse
Affiliation(s)
- Chris J Law
- Department of Integrative Biology, University of Texas, Austin, Texas, 78712.,Department of Biology, University of Washington, Seattle, Washington, 98105.,Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, 98105.,Richard Gilder Graduate School, American Museum of Natural History, New York, New York, 10024.,Department of Mammalogy, American Museum of Natural History, New York, New York, 10024.,Division of Paleontology, American Museum of Natural History, New York, New York, 10024
| | - Emily A Blackwell
- Richard Gilder Graduate School, American Museum of Natural History, New York, New York, 10024.,Department of Mammalogy, American Museum of Natural History, New York, New York, 10024.,Division of Paleontology, American Museum of Natural History, New York, New York, 10024.,Department of Biological Sciences, Smith College, Northampton, Massachusetts, 01063
| | - Abigail A Curtis
- Department of Biology, University of Washington, Seattle, Washington, 98105.,Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, 98105
| | - Edwin Dickinson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695.,Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, New York, New York, 11545
| | - Adam Hartstone-Rose
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, 27695
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, Washington, 98105.,Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington, 98105
| |
Collapse
|
81
|
Pepato AR, Dos S Costa SG, Harvey MS, Klimov PB. One-way ticket to the blue: A large-scale, dated phylogeny revealed asymmetric land-to-water transitions in acariform mites (Acari: Acariformes). Mol Phylogenet Evol 2022; 177:107626. [PMID: 36096463 DOI: 10.1016/j.ympev.2022.107626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/11/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022]
Abstract
Acariform mites are an ancient and megadiverse lineage that may have experienced a complex pattern of invasions into terrestrial and aquatic habitats. These among-realm transitions may relate to periods of turmoil in Earth's history or be simply results of uneven biodiversity patterns across habitats. Here, we inferred a dated, representative acariform phylogeny (five genes, 9,200 bp aligned, 367 terminals belonging to 150 ingroup plus 15 outgroup families, 23 fossil calibration points) which was used to infer transitions between marine/freshwater/terrestrial habitats. We detected four unambiguous transitions from terrestrial to freshwater habitats (Hydrozetes, Naiadacarus, Fusohericia, Afronothrus, Homocaligus); one from freshwater to marine (Pontarachnidae), and four from marine to brackish or freshwater transitions (all among Halacaridae: Acarothrix; Halacarellus petiti; Copidognathus sp.; clade Limnohalacarus + Soldanellonyx + Porohalacarus + Porolohmannella). One transition to the sea was inferred ambiguously with respect to the ancestor being either terrestrial or freshwater (Hyadesiidae), and another must be most carefully examined by adding potential related taxa (Selenoribatidae + Fortuyniidae). Finally, we inferred a single, remarkable transition from aquatic to terrestrial habitats involving early evolution of the large and ecologically diverse lineage: the ancestor of the Halacaridae + Parasitengona clade was probably freshwater given our dataset, thus making terrestrial Parasitengona secondarily terrestrial. Overall, our results suggested a strong asymmetry in environmental transitions: the majority occurred from terrestrial to aquatic habitats. This asymmetry is probably linked to mites' biological properties and uneven biodiversity patterns across habitats rather than Earth's geological history. Since the land holds more acariform diversity than water habitats, a shift from the former is more likely than from the latter. We inferred the following relationships: alicid endeostigmatid + eriophyoid (Alycidae, (Nanorchestidae, (Nematalycidae, Eriophyoidea))) being sister group to the remaining Acariformes: (proteonematalycid Endeostigmata, alicorhagiid Endeostigmata, Trombidiformes, Oribatida (including Astigmata)). Trombidiform relationships had several novel rearrangements: (i) traditional Eupodina lacked support for the inclusion of Bdelloidea; (ii) Teneriffidae, traditionally placed among Anystina, was consistently recovered in a clade including Heterostigmata in Eleutherengona; (iii) several lineages, such as Adamystidae, Paratydeidae, Caeculidae and Erythracaridae, were recovered in a large clade along other Anystina and Eleutherengona, suggesting single origins of several fundamental character states, such as the reduction of the cheliceral fixed digit and development of the palpal thumb-claw complex.
Collapse
Affiliation(s)
- Almir R Pepato
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Zoologia, Laboratório de Sistemática e Evolução de Ácaros Acariformes, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte - MG ZIP: 31270-901, Brazil; Tyumen State University, X-BIO Institute, 10 Semakova Str., 625003 Tyumen, Russia.
| | - Samuel G Dos S Costa
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Zoologia, Laboratório de Sistemática e Evolução de Ácaros Acariformes, Av. Antonio Carlos, 6627, Pampulha, Belo Horizonte - MG ZIP: 31270-901, Brazil
| | - Mark S Harvey
- Collections & Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Pavel B Klimov
- Purdue University, Lilly Hall of Life Sciences, G-226, 915 W State St, West Lafayette, IN 47907, United States; Tyumen State University, X-BIO Institute, 10 Semakova Str., 625003 Tyumen, Russia
| |
Collapse
|
82
|
Leslie AB, Benson RBJ. Neontological and paleontological congruence in the evolution of Podocarpaceae (coniferales) reproductive morphology. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1058746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
IntroductionPodocarpaceae are a diverse, primarily tropical conifer family that commonly produce large leaves and highly reduced, fleshy seed cones bearing large seeds. These features may result from relatively recent adaptation to closed-canopy angiosperm forests and bird-mediated seed dispersal, although determining precisely when shifts in leaf and seed cone morphology occurred is difficult due to a sparse fossil record and relatively few surviving deep lineages.MethodsWe compare the fossil record of Podocarpaceae with results from ancestral state reconstruction methods and correlated character models using neontological data and a previously published molecular time-tree.ResultsAncestral state reconstructions suggest that small leaves, small seeds, and multi-seeded cones are ancestral in crown Podocarpaceae, with reduced cones bearing few seeds appearing in the Early Cretaceous and the correlated evolution of large leaves and large seeds occurring from the Late Cretaceous onwards. The exact timing of these shifts based on neontological data alone are poorly constrained, however, and estimates of leaf and seed size are imprecise.DiscussionThe fossil record is largely congruent with results based on the molecular time-tree, but provide important constraints on the range of leaf and seed sizes that were present in Cretaceous Podocarpaceae and the time by which changes in cone morphology and seed size likely occurred. We suggest in particular that reduced seed cones appeared in the Early Cretaceous and are linked to the contemporaneous diversification of small bodied avialans (birds), with shifts to larger seed sizes occurring after the Cretaceous in association with the spread of closed-canopy angiosperm forests.
Collapse
|
83
|
Chamberland L, Agnarsson I, Quayle IL, Ruddy T, Starrett J, Bond JE. Biogeography and eye size evolution of the ogre-faced spiders. Sci Rep 2022; 12:17769. [PMID: 36273015 PMCID: PMC9588044 DOI: 10.1038/s41598-022-22157-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/10/2022] [Indexed: 01/19/2023] Open
Abstract
Net-casting spiders (Deinopidae) comprise a charismatic family with an enigmatic evolutionary history. There are 67 described species of deinopids, placed among three genera, Deinopis, Menneus, and Asianopis, that are distributed globally throughout the tropics and subtropics. Deinopis and Asianopis, the ogre-faced spiders, are best known for their giant light-capturing posterior median eyes (PME), whereas Menneus does not have enlarged PMEs. Molecular phylogenetic studies have revealed discordance between morphology and molecular data. We employed a character-rich ultra-conserved element (UCE) dataset and a taxon-rich cytochrome-oxidase I (COI) dataset to reconstruct a genus-level phylogeny of Deinopidae, aiming to investigate the group's historical biogeography, and examine PME size evolution. Although the phylogenetic results support the monophyly of Menneus and the single reduction of PME size in deinopids, these data also show that Deinopis is not monophyletic. Consequently, we formally transfer 24 Deinopis species to Asianopis; the transfers comprise all of the African, Australian, South Pacific, and a subset of Central American and Mexican species. Following the divergence of Eastern and Western deinopids in the Cretaceous, Deinopis/Asianopis dispersed from Africa, through Asia and into Australia with its biogeographic history reflecting separation of Western Gondwana as well as long-distance dispersal events.
Collapse
Affiliation(s)
- Lisa Chamberland
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Ingi Agnarsson
- grid.14013.370000 0004 0640 0021Faculty of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 102 Reykjavik, Iceland
| | - Iris L. Quayle
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Tess Ruddy
- grid.267778.b0000 0001 2290 5183Vassar College, Poughkeepsie, NY 12604 USA
| | - James Starrett
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| | - Jason E. Bond
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology, University of California Davis, Davis, CA 95616 USA
| |
Collapse
|
84
|
Suzuki TA, Fitzstevens JL, Schmidt VT, Enav H, Huus KE, Ngwese MM, Grießhammer A, Pfleiderer A, Adegbite BR, Zinsou JF, Esen M, Velavan TP, Adegnika AA, Song LH, Spector TD, Muehlbauer AL, Marchi N, Kang H, Maier L, Blekhman R, Ségurel L, Ko G, Youngblut ND, Kremsner P, Ley RE. Codiversification of gut microbiota with humans. Science 2022; 377:1328-1332. [PMID: 36108023 PMCID: PMC10777373 DOI: 10.1126/science.abm7759] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The gut microbiomes of human populations worldwide have many core microbial species in common. However, within a species, some strains can show remarkable population specificity. The question is whether such specificity arises from a shared evolutionary history (codiversification) between humans and their microbes. To test for codiversification of host and microbiota, we analyzed paired gut metagenomes and human genomes for 1225 individuals in Europe, Asia, and Africa, including mothers and their children. Between and within countries, a parallel evolutionary history was evident for humans and their gut microbes. Moreover, species displaying the strongest codiversification independently evolved traits characteristic of host dependency, including reduced genomes and oxygen and temperature sensitivity. These findings all point to the importance of understanding the potential role of population-specific microbial strains in microbiome-mediated disease phenotypes.
Collapse
Affiliation(s)
- Taichi A. Suzuki
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - J. Liam Fitzstevens
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Victor T. Schmidt
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Hagay Enav
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Kelsey E. Huus
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Mirabeau Mbong Ngwese
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Anne Grießhammer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anne Pfleiderer
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Bayode R. Adegbite
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jeannot F. Zinsou
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Meral Esen
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Thirumalaisamy P. Velavan
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Vietnamese German Center for Medical Research, Hanoi, Vietnam
| | - Ayola A. Adegnika
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research, Tübingen, Germany
- Fondation pour la Recherche Scientifique, Cotonou, Bénin
| | - Le Huu Song
- Vietnamese German Center for Medical Research, Hanoi, Vietnam
- 108 Military Central Hospital, Hanoi, Vietnam
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Amanda L. Muehlbauer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA
| | - Nina Marchi
- Eco-anthropologie, Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Paris, France
| | - Hyena Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ran Blekhman
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Laure Ségurel
- Eco-anthropologie, Muséum National d’Histoire Naturelle, CNRS, Université de Paris, Paris, France
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, Université Lyon 1, Villeurbanne, France
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Nicholas D. Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Peter Kremsner
- Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
85
|
Valderrama E, Landis JB, Skinner D, Maas PJM, Maas-van de Kramer H, André T, Grunder N, Sass C, Pinilla-Vargas M, Guan CJ, Phillips HR, de Almeida AMR, Specht CD. The genetic mechanisms underlying the convergent evolution of pollination syndromes in the Neotropical radiation of Costus L. FRONTIERS IN PLANT SCIENCE 2022; 13:874322. [PMID: 36161003 PMCID: PMC9493542 DOI: 10.3389/fpls.2022.874322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/27/2022] [Indexed: 06/16/2023]
Abstract
Selection together with variation in floral traits can act to mold floral form, often driven by a plant's predominant or most effective pollinators. To investigate the evolution of traits associated with pollination, we developed a phylogenetic framework for evaluating tempo and mode of pollination shifts across the genus Costus L., known for its evolutionary toggle between traits related to bee and bird pollination. Using a target enrichment approach, we obtained 957 loci for 171 accessions to expand the phylogenetic sampling of Neotropical Costus. In addition, we performed whole genome resequencing for a subset of 20 closely related species with contrasting pollination syndromes. For each of these 20 genomes, a high-quality assembled transcriptome was used as reference for consensus calling of candidate loci hypothesized to be associated with pollination-related traits of interest. To test for the role these candidate genes may play in evolutionary shifts in pollinators, signatures of selection were estimated as dN/dS across the identified candidate loci. We obtained a well-resolved phylogeny for Neotropical Costus despite conflict among gene trees that provide evidence of incomplete lineage sorting and/or reticulation. The overall topology and the network of genome-wide single nucleotide polymorphisms (SNPs) indicate that multiple shifts in pollination strategy have occurred across Costus, while also suggesting the presence of previously undetected signatures of hybridization between distantly related taxa. Traits related to pollination syndromes are strongly correlated and have been gained and lost in concert several times throughout the evolution of the genus. The presence of bract appendages is correlated with two traits associated with defenses against herbivory. Although labellum shape is strongly correlated with overall pollination syndrome, we found no significant impact of labellum shape on diversification rates. Evidence suggests an interplay of pollination success with other selective pressures shaping the evolution of the Costus inflorescence. Although most of the loci used for phylogenetic inference appear to be under purifying selection, many candidate genes associated with functional traits show evidence of being under positive selection. Together these results indicate an interplay of phylogenetic history with adaptive evolution leading to the diversification of pollination-associated traits in Neotropical Costus.
Collapse
Affiliation(s)
- Eugenio Valderrama
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
- BTI Computational Biology Center, Boyce Thompson Institute, Ithaca, NY, United States
| | - Dave Skinner
- Le Jardin Ombragé, Tallahassee, FL, United States
| | - Paul J. M. Maas
- Section Botany, Naturalis Biodiversity Center, Leiden, Netherlands
| | | | - Thiago André
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Nikolaus Grunder
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, United States
| | - Chodon Sass
- University and Jepson Herbaria, University of California, Berkeley, Berkeley, CA, United States
| | - Maria Pinilla-Vargas
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Clarice J. Guan
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Heather R. Phillips
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | | | - Chelsea D. Specht
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| |
Collapse
|
86
|
Brignone NF, Pozner R, Denham SS. Macroevolutionary trends and diversification dynamics in Atripliceae (Amaranthaceae s.l., Chenopodioideae): a first approach. ANNALS OF BOTANY 2022; 130:199-214. [PMID: 35737947 PMCID: PMC9445597 DOI: 10.1093/aob/mcac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Atripliceae evolved and diversified by dispersals and radiations across continents in both hemispheres, colonizing similar semi-arid, saline-alkaline environments throughout the world. Meanwhile, its species developed different life forms, photosynthetic pathways, mono- or dioecy, and different morphological features in flowers, fruiting bracteoles and seeds. In this study, we introduce a first approach to the macroevolutionary patterns and diversification dynamics of the Atripliceae to understand how time, traits, speciation, extinction and new habitats influenced the evolution of this lineage. METHODS We performed molecular phylogenetic analyses and clade age estimation of Atripliceae to apply time-, trait- and geographic-dependent diversification analyses and ancestral state reconstructions to explore diversification patterns within the tribe. KEY RESULTS Opposite diversification dynamics within the two major clades of Atripliceae, the Archiatriplex and Atriplex clades, could explain the unbalanced species richness between them; we found low mean speciation rates in the Archiatriplex clade and one shift to higher speciation rates placed in the branch of the Atriplex core. This acceleration in diversification seems to have started before the transition between C3 and C4 metabolism and before the arrival of Atriplex in the Americas, and matches the Mid-Miocene Climatic Optimum. Besides, the American species of Atriplex exhibit slightly higher net diversification rates than the Australian and Eurasian ones. While time seems not to be associated with diversification, traits such as life form, photosynthetic pathway and plant sex may have played roles as diversification drivers. CONCLUSIONS Traits more than time played a key role in Atripliceae diversification, and we could speculate that climate changes could have triggered speciation. The extreme arid or saline environments where Atripliceae species prevail may explain its particular evolutionary trends and trait correlations compared with other angiosperms and highlight the importance of conservation efforts needed to preserve them as genetic resources to deal with climatic changes.
Collapse
Affiliation(s)
| | - Raúl Pozner
- Instituto de Botánica Darwinion (Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Ciencias Exactas, Físicas y Naturales), Labardén, Casilla de Correo, San Isidro, Buenos Aires, Argentina
| | - Silvia S Denham
- Instituto de Botánica Darwinion (Consejo Nacional de Investigaciones Científicas y Técnicas, Academia Nacional de Ciencias Exactas, Físicas y Naturales), Labardén, Casilla de Correo, San Isidro, Buenos Aires, Argentina
- Laboratorio de Investigaciones en Biotecnología Sustentable (LIBioS), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña, Bernal, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
87
|
Berardi AE, Betancourt Morejón AC, Hopkins R. Convergence without divergence in North American red-flowering Silene. FRONTIERS IN PLANT SCIENCE 2022; 13:945806. [PMID: 36147235 PMCID: PMC9485837 DOI: 10.3389/fpls.2022.945806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Combinations of correlated floral traits have arisen repeatedly across angiosperms through convergent evolution in response to pollinator selection to optimize reproduction. While some plant groups exhibit very distinct combinations of traits adapted to specific pollinators (so-called pollination syndromes), others do not. Determining how floral traits diverge across clades and whether floral traits show predictable correlations in diverse groups of flowering plants is key to determining the extent to which pollinator-mediated selection drives diversification. The North American Silene section Physolychnis is an ideal group to investigate patterns of floral evolution because it is characterized by the evolution of novel red floral color, extensive floral morphological variation, polyploidy, and exposure to a novel group of pollinators (hummingbirds). We test for correlated patterns of trait evolution that would be consistent with convergent responses to selection in the key floral traits of color and morphology. We also consider both the role of phylogenic distance and geographic overlap in explaining patterns of floral trait variation. Inconsistent with phenotypically divergent pollination syndromes, we find very little clustering of North American Silene into distinct floral morphospace. We also find little evidence that phylogenetic history or geographic overlap explains patterns of floral diversity in this group. White- and pink-flowering species show extensive phenotypic diversity but are entirely overlapping in morphological variation. However, red-flowering species have much less phenotypic disparity and cluster tightly in floral morphospace. We find that red-flowering species have evolved floral traits that align with a traditional hummingbird syndrome, but that these trait values overlap with several white and pink species as well. Our findings support the hypothesis that convergent evolution does not always proceed through comparative phenotypic divergence, but possibly through sorting of standing ancestral variation.
Collapse
Affiliation(s)
- Andrea E. Berardi
- Harvard University Herbaria, Cambridge, MA, United States
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- The Arnold Arboretum, Boston, MA, United States
| | - Ana C. Betancourt Morejón
- Department of Biology, University of Puerto Rico - Rio Piedras Campus, San Juan, Puerto Rico
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States
- The Arnold Arboretum, Boston, MA, United States
| |
Collapse
|
88
|
Legendre LJ, Choi S, Clarke JA. The diverse terminology of reptile eggshell microstructure and its effect on phylogenetic comparative analyses. J Anat 2022; 241:641-666. [PMID: 35758681 PMCID: PMC9358755 DOI: 10.1111/joa.13723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Reptile eggshell ensures water and gas exchange during incubation and plays a key role in reproductive success. The diversity of reptilian incubation and life history strategies has led to many clade-specific structural adaptations of their eggshell, which have been studied in extant taxa (i.e. birds, crocodilians, turtles, and lepidosaurs). Most studies on non-avian eggshells were performed over 30 years ago and categorized reptile eggshells into two main types: "hard" and "soft" - sometimes with a third intermediate category, "semi-rigid." In recent years, however, debate over the evolution of eggshell structure of major reptile clades has revealed how definitions of hard and soft eggshells influence inferred deep-time evolutionary patterns. Here, we review the diversity of extant and fossil eggshell with a focus on major reptile clades, and the criteria that have been used to define hard, soft, and semi-rigid eggshells. We show that all scoring approaches that retain these categories discretize continuous quantitative traits (e.g. eggshell thickness) and do not consider independent variation of other functionally important microstructural traits (e.g. degree of calcification, shell unit inner structure). We demonstrate the effect of three published approaches to discretizing eggshell type into hard, semi-rigid, and soft on ancestral state reconstructions using 200+ species representing all major extant and extinct reptile clades. These approaches result in different ancestral states for all major clades including Archosauria and Dinosauria, despite a difference in scoring for only 1-4% of the sample. Proposed scenarios of reptile eggshell evolution are highly conditioned by sampling, tree calibration, and lack of congruence between definitions of eggshell type. We conclude that the traditional "soft/hard/semi-rigid" classification of reptilian eggshells should be abandoned and provide guidelines for future descriptions focusing on specific functionally relevant characteristics (e.g. inner structures of shell units, pores, and membrane elements), analyses of these traits in a phylogenetic context, and sampling of previously undescribed taxa, including fossil eggs.
Collapse
Affiliation(s)
- Lucas J. Legendre
- Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Seung Choi
- Department of Earth SciencesMontana State UniversityBozemanMontanaUSA
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of SciencesInstitute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of SciencesBeijingChina
| | - Julia A. Clarke
- Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| |
Collapse
|
89
|
Cabral H, Cacciali P, Santana DJ. Evolution of the rostral scale and mimicry in the genus Xenodon Boie, 1826 (Serpentes: Dipsadidae: Xenodontinae). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Snakes are a stimulating life form from an evolutionary perspective. Despite the basic morphological body shape (limbless, with a tubular body), these vertebrates are extremely diverse. The Neotropical region is one of the most diverse regions for snakes in the world, with >650 known species. Within this great diversity, the genus Xenodon includes 12 species with interesting adaptations to terrestrial and semi-fossorial habitats. Members of this genus are mostly diurnal and terrestrial, feed mainly on anurans and exhibit Batesian mimicry of venomous snakes of the genera Bothrops or Micrurus. Here, through phylogenetic analysis and ancestral state estimation, we explore the evolution of the rostral scale and mimicry within the genus Xenodon. Our results suggest that the ancestral lineage of Xenodon had a rounded rostral scale and exhibited Bothrops mimicry. The evolution of the rostral scale in Xenodon might be related to abiotic factors, as an adaptation for open and forested habitats, and mimicry is likely to be related to biotic factors, as a defensive strategy resembling those of venomous snakes.
Collapse
Affiliation(s)
- Hugo Cabral
- Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista , São José do Rio Preto, SP , Brazil
- Instituto de Investigación Biológica del Paraguay , Del Escudo 1607, Asunción , Paraguay
- Asociación Guyra Paraguay , Avenida Coronel Carlos Bóveda, Parque Asunción Verde, Viñas Cué , Paraguay
| | - Pier Cacciali
- Instituto de Investigación Biológica del Paraguay , Del Escudo 1607, Asunción , Paraguay
- Asociación Guyra Paraguay , Avenida Coronel Carlos Bóveda, Parque Asunción Verde, Viñas Cué , Paraguay
| | - Diego José Santana
- Mapinguari Lab, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul , 79002-970, Campo Grande, MS , Brazil
| |
Collapse
|
90
|
Marcussen T, Ballard HE, Danihelka J, Flores AR, Nicola MV, Watson JM. A Revised Phylogenetic Classification for Viola (Violaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2224. [PMID: 36079606 PMCID: PMC9460890 DOI: 10.3390/plants11172224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The genus Viola (Violaceae) is among the 40-50 largest genera among angiosperms, yet its taxonomy has not been revised for nearly a century. In the most recent revision, by Wilhelm Becker in 1925, the then-known 400 species were distributed among 14 sections and numerous unranked groups. Here, we provide an updated, comprehensive classification of the genus, based on data from phylogeny, morphology, chromosome counts, and ploidy, and based on modern principles of monophyly. The revision is presented as an annotated global checklist of accepted species of Viola, an updated multigene phylogenetic network and an ITS phylogeny with denser taxon sampling, a brief summary of the taxonomic changes from Becker's classification and their justification, a morphological binary key to the accepted subgenera, sections and subsections, and an account of each infrageneric subdivision with justifications for delimitation and rank including a description, a list of apomorphies, molecular phylogenies where possible or relevant, a distribution map, and a list of included species. We distribute the 664 species accepted by us into 2 subgenera, 31 sections, and 20 subsections. We erect one new subgenus of Viola (subg. Neoandinium, a replacement name for the illegitimate subg. Andinium), six new sections (sect. Abyssinium, sect. Himalayum, sect. Melvio, sect. Nematocaulon, sect. Spathulidium, sect. Xanthidium), and seven new subsections (subsect. Australasiaticae, subsect. Bulbosae, subsect. Clausenianae, subsect. Cleistogamae, subsect. Dispares, subsect. Formosanae, subsect. Pseudorupestres). Evolution within the genus is discussed in light of biogeography, the fossil record, morphology, and particular traits. Viola is among very few temperate and widespread genera that originated in South America. The biggest identified knowledge gaps for Viola concern the South American taxa, for which basic knowledge from phylogeny, chromosome counts, and fossil data is virtually absent. Viola has also never been subject to comprehensive anatomical study. Studies into seed anatomy and morphology are required to understand the fossil record of the genus.
Collapse
Affiliation(s)
- Thomas Marcussen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Harvey E. Ballard
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Jiří Danihelka
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic
- Czech Academy of Sciences, Institute of Botany, Zámek 1, CZ-252 43 Průhonice, Czech Republic
| | - Ana R. Flores
- Independent Researcher, Casilla 161, Los Andes 2100412, Chile
| | - Marcela V. Nicola
- Instituto de Botánica Darwinion (IBODA, CONICET-ANCEFN), Labardén 200, Casilla de Correo 22, San Isidro, Buenos Aires B1642HYD, Argentina
| | - John M. Watson
- Independent Researcher, Casilla 161, Los Andes 2100412, Chile
| |
Collapse
|
91
|
Revell LJ, Toyama KS, Mahler DL. A simple hierarchical model for heterogeneity in the evolutionary correlation on a phylogenetic tree. PeerJ 2022; 10:e13910. [PMID: 35999851 PMCID: PMC9393011 DOI: 10.7717/peerj.13910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/27/2022] [Indexed: 01/19/2023] Open
Abstract
Numerous questions in phylogenetic comparative biology revolve around the correlated evolution of two or more phenotypic traits on a phylogeny. In many cases, it may be sufficient to assume a constant value for the evolutionary correlation between characters across all the clades and branches of the tree. Under other circumstances, however, it is desirable or necessary to account for the possibility that the evolutionary correlation differs through time or in different sections of the phylogeny. Here, we present a method designed to fit a hierarchical series of models for heterogeneity in the evolutionary rates and correlation of two quantitative traits on a phylogenetic tree. We apply the method to two datasets: one for different attributes of the buccal morphology in sunfishes (Centrarchidae); and a second for overall body length and relative body depth in rock- and non-rock-dwelling South American iguanian lizards. We also examine the performance of the method for parameter estimation and model selection using a small set of numerical simulations.
Collapse
Affiliation(s)
- Liam J. Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ken S. Toyama
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - D. Luke Mahler
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
92
|
Burress ED, Muñoz MM. Functional Trade-offs Asymmetrically Promote Phenotypic Evolution. Syst Biol 2022; 72:150-160. [PMID: 35961046 DOI: 10.1093/sysbio/syac058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/14/2022] Open
Abstract
Trade-offs are thought to bias evolution and are core features of many anatomical systems. Therefore, trade-offs may have far-reaching macroevolutionary consequences, including patterns of morphological, functional, and ecological diversity. Jaws, like many complex anatomical systems, are comprised of elements involved in biomechanical trade-offs. We test the impact of a core mechanical trade-off, transmission of velocity versus force (i.e., mechanical advantage), on rates of jaw evolution in Neotropical cichlids. Across 130 species representing a wide array of feeding ecologies, we find that the velocity-force trade-off impacts evolution of the surrounding jaw system. Specifically, rates of jaw evolution are faster at functional extremes than in more functionally intermediate or unspecialized jaws. Yet, surprisingly, the effect on jaw evolution is uneven across the extremes of the velocity-force continuum. Rates of jaw evolution are 4 to 10-fold faster in velocity-modified jaws, whereas force-modified jaws are 7 to 18-fold faster, compared to unspecialized jaws, depending on the extent of specialization. Further, we find that a more extreme mechanical trade-off resulted in faster rates of jaw evolution. The velocity-force trade-off reflects a gradient from specialization on capture-intensive (e.g., evasive or buried) to processing-intensive prey (e.g., attached or shelled), respectively. The velocity extreme of the trade-off is characterized by large magnitudes of trait change leading to functionally divergent specialists and ecological stasis. By contrast, the force extreme of the trade-off is characterized by enhanced ecological lability made possible by phenotypes more readily co-opted for different feeding ecologies. This asymmetry of macroevolutionary outcomes along each extreme is likely the result of an enhanced utility of the pharyngeal jaw system as force-modified oral jaws are adapted for prey that require intensive processing (e.g., algae, detritus, and molluscs). The velocity-force trade-off, a fundamental feature of many anatomical systems, promotes rapid phenotypic evolution of the surrounding jaw system in a canonical continental adaptive radiation. Considering that the velocity-force trade-off is an inherent feature of all jaw systems that involve a lower element that rotates at a joint, spanning the vast majority of vertebrates, our results may be widely applicable across the tree of life. [adaptive radiation; constraint; decoupling; jaws; macroevolution; specialization].
Collapse
Affiliation(s)
- Edward D Burress
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
93
|
Gao J, May MR, Rannala B, Moore BR. New Phylogenetic Models Incorporating Interval-Specific Dispersal Dynamics Improve Inference of Disease Spread. Mol Biol Evol 2022; 39:msac159. [PMID: 35861314 PMCID: PMC9384482 DOI: 10.1093/molbev/msac159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Phylodynamic methods reveal the spatial and temporal dynamics of viral geographic spread, and have featured prominently in studies of the COVID-19 pandemic. Virtually all such studies are based on phylodynamic models that assume-despite direct and compelling evidence to the contrary-that rates of viral geographic dispersal are constant through time. Here, we: (1) extend phylodynamic models to allow both the average and relative rates of viral dispersal to vary independently between pre-specified time intervals; (2) implement methods to infer the number and timing of viral dispersal events between areas; and (3) develop statistics to assess the absolute fit of discrete-geographic phylodynamic models to empirical datasets. We first validate our new methods using simulations, and then apply them to a SARS-CoV-2 dataset from the early phase of the COVID-19 pandemic. We show that: (1) under simulation, failure to accommodate interval-specific variation in the study data will severely bias parameter estimates; (2) in practice, our interval-specific discrete-geographic phylodynamic models can significantly improve the relative and absolute fit to empirical data; and (3) the increased realism of our interval-specific models provides qualitatively different inferences regarding key aspects of the COVID-19 pandemic-revealing significant temporal variation in global viral dispersal rates, viral dispersal routes, and the number of viral dispersal events between areas-and alters interpretations regarding the efficacy of intervention measures to mitigate the pandemic.
Collapse
Affiliation(s)
- Jiansi Gao
- Department of Evolution and Ecology, University of California, Storer Hall, Davis, CA 95616, USA
| | - Michael R May
- Department of Evolution and Ecology, University of California, Storer Hall, Davis, CA 95616, USA
- Department of Integrative Biology, University of California, 3060 VLSB, Berkeley, CA 94720-3140, USA
| | - Bruce Rannala
- Department of Evolution and Ecology, University of California, Storer Hall, Davis, CA 95616, USA
| | - Brian R Moore
- Department of Evolution and Ecology, University of California, Storer Hall, Davis, CA 95616, USA
| |
Collapse
|
94
|
Maher AE, Burin G, Cox PG, Maddox TW, Maidment SCR, Cooper N, Schachner ER, Bates KT. Body size, shape and ecology in tetrapods. Nat Commun 2022; 13:4340. [PMID: 35896591 PMCID: PMC9329317 DOI: 10.1038/s41467-022-32028-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Body size and shape play fundamental roles in organismal function and it is expected that animals may possess body proportions that are well-suited to their ecological niche. Tetrapods exhibit a diverse array of body shapes, but to date this diversity in body proportions and its relationship to ecology have not been systematically quantified. Using whole-body skeletal models of 410 extinct and extant tetrapods, we show that allometric relationships vary across individual body segments thereby yielding changes in overall body shape as size increases. However, we also find statistical support for quadratic relationships indicative of differential scaling in small-medium versus large animals. Comparisons of locomotor and dietary groups highlight key differences in body proportions that may mechanistically underlie occupation of major ecological niches. Our results emphasise the pivotal role of body proportions in the broad-scale ecological diversity of tetrapods. Here, the authors examine how body size, shape, and segment proportions correspond to ecology in models of 410 tetrapods. They find variable allometric relationships, differential scaling in small and large animals, and body proportions as a potential niche occupation mechanism.
Collapse
Affiliation(s)
- Alice E Maher
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Gustavo Burin
- Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Philip G Cox
- Department of Archaeology and Hull York Medical School, University of York, PalaeoHub, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Thomas W Maddox
- School of Veterinary Science, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Small Animal Teaching Hospital, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | - Susannah C R Maidment
- Department of Earth Sciences, Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Natalie Cooper
- Natural History Museum, London, Cromwell Road, London, SW7 5BD, UK
| | - Emma R Schachner
- Department of Cell Biology & Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Karl T Bates
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
95
|
de Brito V, Betancur-R R, Burns MD, Buser TJ, Conway KW, Fontenelle JP, Kolmann MA, McCraney WT, Thacker CE, Bloom DD. Patterns of Phenotypic Evolution Associated with Marine/Freshwater Transitions in Fishes. Integr Comp Biol 2022; 62:406-423. [PMID: 35675320 DOI: 10.1093/icb/icac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/12/2022] Open
Abstract
Evolutionary transitions between marine and freshwater ecosystems have occurred repeatedly throughout the phylogenetic history of fishes. The theory of ecological opportunity predicts that lineages that colonize species-poor regions will have greater potential for phenotypic diversification than lineages invading species-rich regions. Thus, transitions between marine and freshwaters may promote phenotypic diversification in trans-marine/freshwater fish clades. We used phylogenetic comparative methods to analyze body size data in nine major fish clades that have crossed the marine/freshwater boundary. We explored how habitat transitions, ecological opportunity, and community interactions influenced patterns of phenotypic diversity. Our analyses indicated that transitions between marine and freshwater habitats did not drive body size evolution, and there are few differences in body size between marine and freshwater lineages. We found that body size disparity in freshwater lineages is not correlated with the number of independent transitions to freshwaters. We found a positive correlation between body size disparity and overall species richness of a given area, and a negative correlation between body size disparity and diversity of closely related species. Our results indicate that the diversity of incumbent freshwater species does not restrict phenotypic diversification, but the diversity of closely related taxa can limit body size diversification. Ecological opportunity arising from colonization of novel habitats does not seem to have a major effect in the trajectory of body size evolution in trans-marine/freshwater clades. Moreover, competition with closely related taxa in freshwaters has a greater effect than competition with distantly related incumbent species.
Collapse
Affiliation(s)
- Victor de Brito
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5410, USA
| | - Ricardo Betancur-R
- Department of Biology, University of Oklahoma, 730 Van Vleet Oval, Room 314, Norman, OK 73019, USA
| | - Michael D Burns
- Cornell Lab of Ornithology, Cornell Museum of Vertebrates, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850-1923, USA
| | - Thaddaeus J Buser
- Department of BioSciences, Rice University, W100 George R. Brown Hall, 6100 Main Street, Houston, TX 77005, USA
| | - Kevin W Conway
- Department of Ecology and Conservation Biology and Biodiversity Research and Teaching Collections, Texas A&M University, College Station, TX 77843, USA
| | - João Pedro Fontenelle
- Institute of Forestry and Conservation, University of Toronto, 33 Willcocks St., Toronto, ON M5S 3E8, Canada
| | - Matthew A Kolmann
- Museum of Paleontology, Biological Sciences Building, University of Michigan, 1105 North University Ave, Ann Arbor, MI 48109-1085, USA
| | - W Tyler McCraney
- Department of Ecology and Evolutionary Biology, University of California, 612 Charles E. Young Drive South, Los Angeles, CA 90095-7246, USA
| | - Christine E Thacker
- Research and Collections, Section of Ichthyology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, USA.,Vertebrate Zoology, Santa Barbara Museum of Natural History, 2559 Puesta del Sol, Santa Barbara, CA 93105, USA
| | - Devin D Bloom
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5410, USA.,Institute of the Environment and Sustainability, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008-5419, USA
| |
Collapse
|
96
|
Padilla Perez DJ, DeNardo DF, Angilletta Jr MJ. The correlated evolution of foraging mode and reproductive effort in lizards. Proc Biol Sci 2022; 289:20220180. [PMID: 35673871 PMCID: PMC9174732 DOI: 10.1098/rspb.2022.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Life-history theory suggests that the optimal reproductive effort of an organism is affected by factors such as energy acquisition and predation risk. The observation that some organisms actively search for their prey and others ambush them creates the expectation of different energy needs and predation risk associated with each foraging behaviour, the so-called 'foraging-mode paradigm'. Although this paradigm has been around for decades, the empirical evidence consists of conflicting results derived from competing models based on different mechanisms. For instance, models within the foraging-mode paradigm suggest that widely foraging females have evolved low reproductive effort, because a heavy reproductive load decreases their ability to escape from predators. By contrast, a long-standing prediction of evolutionary theory indicates that organisms subject to high extrinsic mortality, should invest more in reproduction. Here, we present the first partial evidence that widely foraging species have evolved greater reproductive effort than have sit-and-wait species, which we attribute to a larger body size and greater mortality among mobile foragers. According to our findings, we propose a theoretical model that could explain the observed pattern in lizards, suggesting ways for evolutionary ecologists to test mechanistic hypotheses at the intraspecific level.
Collapse
Affiliation(s)
| | - Dale F. DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | |
Collapse
|
97
|
Ocampo M, Pincheira-Donoso D, Sayol F, Rios RS. Evolutionary transitions in diet influence the exceptional diversification of a lizard adaptive radiation. BMC Ecol Evol 2022; 22:74. [PMID: 35672668 PMCID: PMC9175459 DOI: 10.1186/s12862-022-02028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
Background Diet is a key component of a species ecological niche and plays critical roles in guiding the trajectories of evolutionary change. Previous studies suggest that dietary evolution can influence the rates and patterns of species diversification, with omnivorous (animal and plant, ‘generalist’) diets slowing down diversification compared to more restricted (‘specialist’) herbivorous and carnivorous diets. This hypothesis, here termed the “dietary macroevolutionary sink” hypothesis (DMS), predicts that transitions to omnivorous diets occur at higher rates than into any specialist diet, and omnivores are expected to have the lowest diversification rates, causing an evolutionary sink into a single type of diet. However, evidence for the DMS hypothesis remains conflicting. Here, we present the first test of the DMS hypothesis in a lineage of ectothermic tetrapods—the prolific Liolaemidae lizard radiation from South America. Results Ancestral reconstructions suggest that the stem ancestor was probably insectivorous. The best supported trait model is a diet-dependent speciation rate, with independent extinction rates. Herbivory has the highest net diversification rate, omnivory ranks second, and insectivory has the lowest. The extinction rate is the same for all three diet types and is much lower than the speciation rates. The highest transition rate was from omnivory to insectivory, and the lowest transition rates were between insectivory and herbivory. Conclusions Our findings challenge the core prediction of the DMS hypothesis that generalist diets represent an ‘evolutionary sink’. Interestingly, liolaemid lizards have rapidly and successfully proliferated across some of the world’s coldest climates (at high elevations and latitudes), where species have evolved mixed arthropod-plant (omnivore) or predominantly herbivore diets. This longstanding observation is consistent with the higher net diversification rates found in both herbivory and omnivory. Collectively, just like the evolution of viviparity has been regarded as a ‘key adaptation’ during the liolaemid radiation across cold climates, our findings suggest that transitions from insectivory to herbivory (bridged by omnivory) are likely to have played a role as an additional key adaptation underlying the exceptional diversification of these reptiles across extreme climates. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02028-3.
Collapse
Affiliation(s)
- Mauricio Ocampo
- Departamento de Biología, Doctorado en Ciencias Biológicas, Ecología de Zonas Áridas (EZA), Universidad de la Serena, Casilla 554, La Serena, Chile. .,Red de Investigadores en Herpetología-Bolivia, Los Pinos Zona Sur, Av. José Aguirre 260, La Paz, Bolivia. .,Unidad de Zoología, Instituto de Ecología, Universidad Mayor de San Andrés, Casilla 10077-Correo Central, La Paz, Bolivia.
| | - Daniel Pincheira-Donoso
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Ferran Sayol
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Rodrigo S Rios
- Departamento de Biología, Doctorado en Ciencias Biológicas, Ecología de Zonas Áridas (EZA), Universidad de la Serena, Casilla 554, La Serena, Chile.,Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| |
Collapse
|
98
|
Montoya-Sanhueza G, Šaffa G, Šumbera R, Chinsamy A, Jarvis JUM, Bennett NC. Fossorial adaptations in African mole-rats (Bathyergidae) and the unique appendicular phenotype of naked mole-rats. Commun Biol 2022; 5:526. [PMID: 35650336 PMCID: PMC9159980 DOI: 10.1038/s42003-022-03480-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
Life underground has constrained the evolution of subterranean mammals to maximize digging performance. However, the mechanisms modulating morphological change and development of fossorial adaptations in such taxa are still poorly known. We assessed the morpho-functional diversity and early postnatal development of fossorial adaptations (bone superstructures) in the appendicular system of the African mole-rats (Bathyergidae), a highly specialized subterranean rodent family. Although bathyergids can use claws or incisors for digging, all genera presented highly specialized bone superstructures associated with scratch-digging behavior. Surprisingly, Heterocephalus glaber differed substantially from other bathyergids, and from fossorial mammals by possessing a less specialized humerus, tibia and fibula. Our data suggest strong functional and developmental constraints driving the selection of limb specializations in most bathyergids, but more relaxed pressures acting on the limbs of H. glaber. A combination of historical, developmental and ecological factors in Heterocephalus are hypothesized to have played important roles in shaping its appendicular phenotype.
Collapse
Affiliation(s)
- Germán Montoya-Sanhueza
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic.
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa.
| | - Gabriel Šaffa
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, České Budějovice, 37005, Czech Republic
| | - Anusuya Chinsamy
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Jennifer U M Jarvis
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift 7701, Cape Town, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
99
|
Slavenko A, Dror L, Camaiti M, Farquhar JE, Shea GM, Chapple DG, Meiri S. Evolution of diel activity patterns in skinks (Squamata: Scincidae), the world's second-largest family of terrestrial vertebrates. Evolution 2022; 76:1195-1208. [PMID: 35355258 PMCID: PMC9322454 DOI: 10.1111/evo.14482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023]
Abstract
Many animals have strict diel activity patterns, with unique adaptations for either diurnal or nocturnal activity. Diel activity is phylogenetically conserved, yet evolutionary shifts in diel activity occur and lead to important changes in an organism's morphology, physiology, and behavior. We use phylogenetic comparative methods to examine the evolutionary history of diel activity in skinks, one of the largest families of terrestrial vertebrates. We examine how diel patterns are associated with microhabitat, ambient temperatures, and morphology. We found support for a nondiurnal ancestral skink. Strict diurnality in crown group skinks only evolved during the Paleogene. Nocturnal habits are associated with fossorial activity, limb reduction and loss, and warm temperatures. Our results shed light on the evolution of diel activity patterns in a large radiation of terrestrial ectotherms and reveal how both intrinsic biotic and extrinsic abiotic factors can shape the evolution of animal activity patterns.
Collapse
Affiliation(s)
- Alex Slavenko
- School of BiosciencesUniversity of SheffieldSheffieldSouth YorkshireUnited Kingdom
| | - Liat Dror
- School of ZoologyTel Aviv UniversityTel AvivIsrael
| | - Marco Camaiti
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Jules E. Farquhar
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Glenn M. Shea
- Sydney School of Veterinary Science B01University of SydneyNew South WalesAustralia,Australian Museum Research InstituteThe Australian MuseumSydneyNew South WalesAustralia
| | - David G. Chapple
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Shai Meiri
- School of ZoologyTel Aviv UniversityTel AvivIsrael,The Steinhardt Museum of Natural HistoryTel AvivIsrael
| |
Collapse
|
100
|
Meteyer CU, Dutheil JY, Keel MK, Boyles JG, Stukenbrock EH. Plant pathogens provide clues to the potential origin of bat white-nose syndrome Pseudogymnoascus destructans. Virulence 2022; 13:1020-1031. [PMID: 35635339 PMCID: PMC9176227 DOI: 10.1080/21505594.2022.2082139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
White-nose syndrome has killed millions of bats, yet both the origins and infection strategy of the causative fungus, Pseudogymnoascus destructans, remain elusive. We provide evidence for a novel hypothesis that P. destructans emerged from plant-associated fungi and retained invasion strategies affiliated with fungal pathogens of plants. We demonstrate that P. destructans invades bat skin in successive biotrophic and necrotrophic stages (hemibiotrophic infection), a mechanism previously only described in plant fungal pathogens. Further, the convergence of hyphae at hair follicles suggests nutrient tropism. Tropism, biotrophy, and necrotrophy are often associated with structures termed appressoria in plant fungal pathogens; the penetrating hyphae produced by P. destructans resemble appressoria. Finally, we conducted a phylogenomic analysis of a taxonomically diverse collection of fungi. Despite gaps in genetic sampling of prehistoric and contemporary fungal species, we estimate an 88% probability the ancestral state of the clade containing P. destructans was a plant-associated fungus.
Collapse
Affiliation(s)
- Carol Uphoff Meteyer
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin 53711
| | - Julien Y. Dutheil
- Molecular Systems Evolution, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - M. Kevin Keel
- School of Veterinary Medicine, Dept of Pathology, Microbiology & Immunology, University of California, Davis, California 95616
| | - Justin G. Boyles
- Cooperative Wildlife Research Laboratory and School of Biological Sciences, Southern Illinois University, Carbondale, Illinois 62901
| | - Eva H. Stukenbrock
- Environmental Genomics Group, Botanical Institute, Christian-Albrechts University of Kiel, Kiel, Germany and Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|