51
|
Khan A, Paro S, McGurk L, Sambrani N, Hogg MC, Brindle J, Pennetta G, Keegan LP, O'Connell MA. Membrane and synaptic defects leading to neurodegeneration in Adar mutant Drosophila are rescued by increased autophagy. BMC Biol 2020; 18:15. [PMID: 32059717 PMCID: PMC7020516 DOI: 10.1186/s12915-020-0747-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/05/2020] [Indexed: 11/10/2022] Open
Abstract
Background In fly brains, the Drosophila Adar (adenosine deaminase acting on RNA) enzyme edits hundreds of transcripts to generate edited isoforms of encoded proteins. Nearly all editing events are absent or less efficient in larvae but increase at metamorphosis; the larger number and higher levels of editing suggest editing is most required when the brain is most complex. This idea is consistent with the fact that Adar mutations affect the adult brain most dramatically. However, it is unknown whether Drosophila Adar RNA editing events mediate some coherent physiological effect. To address this question, we performed a genetic screen for suppressors of Adar mutant defects. Adar5G1 null mutant flies are partially viable, severely locomotion defective, aberrantly accumulate axonal neurotransmitter pre-synaptic vesicles and associated proteins, and develop an age-dependent vacuolar brain neurodegeneration. Results A genetic screen revealed suppression of all Adar5G1 mutant phenotypes tested by reduced dosage of the Tor gene, which encodes a pro-growth kinase that increases translation and reduces autophagy in well-fed conditions. Suppression of Adar5G1 phenotypes by reduced Tor is due to increased autophagy; overexpression of Atg5, which increases canonical autophagy initiation, reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar mutant phenotypes tested. Endosomal microautophagy (eMI) is another Tor-inhibited autophagy pathway involved in synaptic homeostasis in Drosophila. Increased expression of the key eMI protein Hsc70-4 also reduces aberrant accumulation of synaptic vesicle proteins and suppresses all Adar5G1 mutant phenotypes tested. Conclusions These findings link Drosophila Adar mutant synaptic and neurotransmission defects to more general cellular defects in autophagy; presumably, edited isoforms of CNS proteins are required for optimum synaptic response capabilities in the brain during the behaviorally complex adult life stage.
Collapse
Affiliation(s)
- Anzer Khan
- CEITEC Masaryk University, Kamenice 735/5, A35, CZ 62 500, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Simona Paro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Leeanne McGurk
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Nagraj Sambrani
- CEITEC Masaryk University, Kamenice 735/5, A35, CZ 62 500, Brno, Czech Republic
| | - Marion C Hogg
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - James Brindle
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Giuseppa Pennetta
- Centre for Integrative Physiology, Euan MacDonald Centre for Motor Neurone Disease Research, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh, EH8 9XD, UK
| | - Liam P Keegan
- CEITEC Masaryk University, Kamenice 735/5, A35, CZ 62 500, Brno, Czech Republic. .,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| | - Mary A O'Connell
- CEITEC Masaryk University, Kamenice 735/5, A35, CZ 62 500, Brno, Czech Republic. .,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
52
|
Abstract
Autophagy is a major intracellular degradation system that derives its degradative abilities from the lysosome. The most well-studied form of autophagy is macroautophagy, which delivers cytoplasmic material to lysosomes via the double-membraned autophagosome. Other forms of autophagy, namely chaperone-mediated autophagy and microautophagy, occur directly on the lysosome. Besides providing the means for degradation, lysosomes are also involved in autophagy regulation and can become substrates of autophagy when damaged. During autophagy, they exhibit notable changes, including increased acidification, enhanced enzymatic activity, and perinuclear localization. Despite their importance to autophagy, details on autophagy-specific regulation of lysosomes remain relatively scarce. This review aims to provide a summary of current understanding on the behaviour of lysosomes during autophagy and outline unexplored areas of autophagy-specific lysosome research.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| |
Collapse
|
53
|
Tyra LK, Nandi N, Tracy C, Krämer H. Yorkie Growth-Promoting Activity Is Limited by Atg1-Mediated Phosphorylation. Dev Cell 2020; 52:605-616.e7. [PMID: 32032548 DOI: 10.1016/j.devcel.2020.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/26/2019] [Accepted: 01/09/2020] [Indexed: 01/31/2023]
Abstract
The expression of multiple growth-promoting genes is coordinated by the transcriptional co-activator Yorkie with its major regulatory input provided by the Hippo-Warts kinase cascade. Here, we identify Atg1/ULK1-mediated phosphorylation of Yorkie as an additional inhibitory input independent of the Hippo-Warts pathway. Two serine residues in Yorkie, S74 and S97, are Atg1/ULK1 consensus target sites and are phosphorylated by ULK1 in vitro, thereby preventing its binding to Scalloped. In vivo, gain of function of Atg1, or its activator Acinus, caused elevated Yorkie phosphorylation and inhibited Yorkie's growth-promoting activity. Loss of function of Atg1 or Acinus raised expression of Yorkie target genes and increased tissue size. Unlike Atg1's role in autophagy, Atg1-mediated phosphorylation of Yorkie does not require Atg13. Atg1 is activated by starvation and other cellular stressors and therefore can impose temporary stress-induced constraints on the growth-promoting gene networks under the control of Hippo-Yorkie signaling.
Collapse
Affiliation(s)
- Lauren K Tyra
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Nilay Nandi
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Charles Tracy
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Helmut Krämer
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
54
|
Molecular mechanisms of selective autophagy in Drosophila. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:63-105. [DOI: 10.1016/bs.ircmb.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
55
|
The Synaptic Autophagy Cycle. J Mol Biol 2019; 432:2589-2604. [PMID: 31866297 DOI: 10.1016/j.jmb.2019.12.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved pathway in which proteins and organelles are delivered to the lysosome for degradation. In neurons, autophagy was originally described as associated with disease states and neuronal survival. Over the last decade, however, evidence has accumulated that autophagy controls synaptic function in both the axon and dendrite. Here, we review this literature, highlighting the role of autophagy in the pre- and postsynapse, synaptic plasticity, and behavior. We end by discussing open questions in the field of synaptic autophagy.
Collapse
|
56
|
Albanese F, Novello S, Morari M. Autophagy and LRRK2 in the Aging Brain. Front Neurosci 2019; 13:1352. [PMID: 31920513 PMCID: PMC6928047 DOI: 10.3389/fnins.2019.01352] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a highly conserved process by which long-lived macromolecules, protein aggregates and dysfunctional/damaged organelles are delivered to lysosomes for degradation. Autophagy plays a crucial role in regulating protein quality control and cell homeostasis in response to energetic needs and environmental challenges. Indeed, activation of autophagy increases the life-span of living organisms, and impairment of autophagy is associated with several human disorders, among which neurodegenerative disorders of aging, such as Parkinson’s disease. These disorders are characterized by the accumulation of aggregates of aberrant or misfolded proteins that are toxic for neurons. Since aging is associated with impaired autophagy, autophagy inducers have been viewed as a strategy to counteract the age-related physiological decline in brain functions and emergence of neurodegenerative disorders. Parkinson’s disease is a hypokinetic, multisystemic disorder characterized by age-related, progressive degeneration of central and peripheral neuronal populations, associated with intraneuronal accumulation of proteinaceous aggregates mainly composed by the presynaptic protein α-synuclein. α-synuclein is a substrate of macroautophagy and chaperone-mediated autophagy (two major forms of autophagy), thus impairment of its clearance might favor the process of α-synuclein seeding and spreading that trigger and sustain the progression of this disorder. Genetic factors causing Parkinson’s disease have been identified, among which mutations in the LRRK2 gene, which encodes for a multidomain protein encompassing central GTPase and kinase domains, surrounded by protein-protein interaction domains. Six LRRK2 mutations have been pathogenically linked to Parkinson’s disease, the most frequent being the G2019S in the kinase domain. LRRK2-associated Parkinson’s disease is clinically and neuropathologically similar to idiopathic Parkinson’s disease, also showing age-dependency and incomplete penetrance. Several mechanisms have been proposed through which LRRK2 mutations can lead to Parkinson’s disease. The present article will focus on the evidence that LRRK2 and its mutants are associated with autophagy dysregulation. Studies in cell lines and neurons in vitro and in LRRK2 knock-out, knock-in, kinase-dead and transgenic animals in vivo will be reviewed. The role of aging in LRRK2-induced synucleinopathy will be discussed. Possible mechanisms underlying the LRRK2-mediated control over autophagy will be analyzed, and the contribution of autophagy dysregulation to the neurotoxic actions of LRRK2 will be examined.
Collapse
Affiliation(s)
- Federica Albanese
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Salvatore Novello
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Morari
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
57
|
Mesquita A, Pereira J, Jenny A. Streamlined particle quantification (SParQ) plug-in is an automated fluorescent vesicle quantification plug-in for particle quantification in Fiji/ImageJ. Autophagy 2019; 16:1711-1717. [PMID: 31752589 DOI: 10.1080/15548627.2019.1695400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The endolysosomal system is critical for protein homeostasis in cells. A common way of studying protein transport and degradation (e.g. via autophagy) is by labeling vesicular structures such as endosomes, autophagosomes, lysosomes, or model substrates with fluorescent tags or by fluorescent antibody staining. Detailed analyses require quantification of hundreds of structures under various conditions. Typically, the images are analyzed individually with software such as the widely available Fiji/ImageJ (https://imagej.net/Fiji/Downloads), adjusting and thresholding each image and channel independently, which is a very labor intensive and fastidious task. To streamline the process, we developed a plug-in that, integrated into Fiji, enables the automated quantification of vesicular (i.e. punctate) structures. Importantly, the process still allows the operator to evaluate and have control over all the phases of quantification process. ABBREVIATIONS CMA: chaperone-mediated autophagy; CSV: comma separated values; eMI: endosomal microautophagy; Fiji: Fiji is just ImageJ; MA: macroautophagy; SParQ: Streamlined Particle Quantification.
Collapse
Affiliation(s)
- Ana Mesquita
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine , New York, NY, USA
| | - Joao Pereira
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine , New York, NY, USA
| | - Andreas Jenny
- Department of Developmental and Molecular Biology and Department of Genetics, Albert Einstein College of Medicine , New York, NY, USA
| |
Collapse
|
58
|
Dash S, Aydin Y, Moroz K. Chaperone-Mediated Autophagy in the Liver: Good or Bad? Cells 2019; 8:E1308. [PMID: 31652893 PMCID: PMC6912708 DOI: 10.3390/cells8111308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection triggers autophagy processes, which help clear out the dysfunctional viral and cellular components that would otherwise inhibit the virus replication. Increased cellular autophagy may kill the infected cell and terminate the infection without proper regulation. The mechanism of autophagy regulation during liver disease progression in HCV infection is unclear. The autophagy research has gained a lot of attention recently since autophagy impairment is associated with the development of hepatocellular carcinoma (HCC). Macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA) are three autophagy processes involved in the lysosomal degradation and extracellular release of cytosolic cargoes under excessive stress. Autophagy processes compensate for each other during extreme endoplasmic reticulum (ER) stress to promote host and microbe survival as well as HCC development in the highly stressed microenvironment of the cirrhotic liver. This review describes the molecular details of how excessive cellular stress generated during HCV infection activates CMA to improve cell survival. The pathological implications of stress-related CMA activation resulting in the loss of hepatic innate immunity and tumor suppressors, which are most often observed among cirrhotic patients with HCC, are discussed. The oncogenic cell programming through autophagy regulation initiated by a cytoplasmic virus may facilitate our understanding of HCC mechanisms related to non-viral etiologies and metabolic conditions such as uncontrolled type II diabetes. We propose that a better understanding of how excessive cellular stress leads to cancer through autophagy modulation may allow therapeutic development and early detection of HCC.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
- Southeast Louisiana Veterans Health Care System, 2400 Canal Street, New Orleans, LA 70119, USA.
| | - Yucel Aydin
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | - Krzysztof Moroz
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|
59
|
Lystad AH, Simonsen A. Mechanisms and Pathophysiological Roles of the ATG8 Conjugation Machinery. Cells 2019; 8:E973. [PMID: 31450711 PMCID: PMC6769624 DOI: 10.3390/cells8090973] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Since their initial discovery around two decades ago, the yeast autophagy-related (Atg)8 protein and its mammalian homologues of the light chain 3 (LC3) and γ-aminobutyric acid receptor associated proteins (GABARAP) families have been key for the tremendous expansion of our knowledge about autophagy, a process in which cytoplasmic material become targeted for lysosomal degradation. These proteins are ubiquitin-like proteins that become directly conjugated to a lipid in the autophagy membrane upon induction of autophagy, thus providing a marker of the pathway, allowing studies of autophagosome biogenesis and maturation. Moreover, the ATG8 proteins function to recruit components of the core autophagy machinery as well as cargo for selective degradation. Importantly, comprehensive structural and biochemical in vitro studies of the machinery required for ATG8 protein lipidation, as well as their genetic manipulation in various model organisms, have provided novel insight into the molecular mechanisms and pathophysiological roles of the mATG8 proteins. Recently, it has become evident that the ATG8 proteins and their conjugation machinery are also involved in intracellular pathways and processes not related to autophagy. This review focuses on the molecular functions of ATG8 proteins and their conjugation machinery in autophagy and other pathways, as well as their links to disease.
Collapse
Affiliation(s)
- Alf Håkon Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 1112 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
60
|
Li F, Guo H, Yang Y, Feng M, Liu B, Ren X, Zhou H. Autophagy modulation in bladder cancer development and treatment (Review). Oncol Rep 2019; 42:1647-1655. [PMID: 31436298 PMCID: PMC6775810 DOI: 10.3892/or.2019.7286] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is a potentially life-threatening malignancy. Due to a high recurrence rate, frequent surveillance strategies and intravesical drug therapies, BC is considered one of the most expensive tumors to treat. As a fundamental evolutionary catabolic process, autophagy plays an important role in the maintenance of cellular environmental homeostasis by degrading and recycling damaged cytoplasmic components, including macromolecules and organelles. Scientific studies in the last two decades have shown that autophagy acts as a double-edged sword with regard to the treatment of cancer. On one hand, autophagy inhibition is able to increase the sensitivity of cancer cells to treatment, a process known as protective autophagy. On the other hand, autophagy overactivation may lead to cell death, referred to as autophagic cell death, similar to apoptosis. Therefore, it is essential to identify the role of autophagy in cancer cells in order to develop novel therapeutic agents. In addition, autophagy may potentially become a novel therapeutic target in human diseases. In this review, the current knowledge on autophagy modulation in BC development and treatment is summarized.
Collapse
Affiliation(s)
- Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Guo
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuxuan Yang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mingliang Feng
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiang Ren
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
61
|
Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. PLoS Biol 2019; 17:e3000301. [PMID: 31150375 PMCID: PMC6561683 DOI: 10.1371/journal.pbio.3000301] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 06/12/2019] [Accepted: 05/15/2019] [Indexed: 01/15/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) contributes to the lysosomal degradation of a selective subset of proteins. Selectivity lies in the chaperone heat shock cognate 71 kDa protein (HSC70) recognizing a pentapeptide motif (KFERQ-like motif) in the protein sequence essential for subsequent targeting and degradation of CMA substrates in lysosomes. Interest in CMA is growing due to its recently identified regulatory roles in metabolism, differentiation, cell cycle, and its malfunctioning in aging and conditions such as cancer, neurodegeneration, or diabetes. Identification of the subset of the proteome amenable to CMA degradation could further expand our understanding of the pathophysiological relevance of this form of autophagy. To that effect, we have performed an in silico screen for KFERQ-like motifs across proteomes of several species. We have found that KFERQ-like motifs are more frequently located in solvent-exposed regions of proteins, and that the position of acidic and hydrophobic residues in the motif plays the most important role in motif construction. Cross-species comparison of proteomes revealed higher motif conservation in CMA-proficient species. The tools developed in this work have also allowed us to analyze the enrichment of motif-containing proteins in biological processes on an unprecedented scale and discover a previously unknown association between the type and combination of KFERQ-like motifs in proteins and their participation in specific biological processes. To facilitate further analysis by the scientific community, we have developed a free web-based resource (KFERQ finder) for direct identification of KFERQ-like motifs in any protein sequence. This resource will contribute to accelerating understanding of the physiological relevance of CMA. Cells use a sophisticated code to sort proteins that must be retained for reuse from those that need to be sent to lysosomes for degradation and recycling. These authors develop tools to identify the selective lysosomal degradation motifs and use them to start breaking this code.
Collapse
|
62
|
Bhattacharjee A, Szabó Á, Csizmadia T, Laczkó-Dobos H, Juhász G. Understanding the importance of autophagy in human diseases using Drosophila. J Genet Genomics 2019; 46:157-169. [PMID: 31080044 DOI: 10.1016/j.jgg.2019.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/19/2022]
Abstract
Autophagy is a lysosome-dependent intracellular degradation pathway that has been implicated in the pathogenesis of various human diseases, either positively or negatively impacting disease outcomes depending on the specific context. The majority of medical conditions including cancer, neurodegenerative diseases, infections and immune system disorders and inflammatory bowel disease could probably benefit from therapeutic modulation of the autophagy machinery. Drosophila represents an excellent model animal to study disease mechanisms thanks to its sophisticated genetic toolkit, and the conservation of human disease genes and autophagic processes. Here, we provide an overview of the various autophagy pathways observed both in flies and human cells (macroautophagy, microautophagy and chaperone-mediated autophagy), and discuss Drosophila models of the above-mentioned diseases where fly research has already helped to understand how defects in autophagy genes and pathways contribute to the relevant pathomechanisms.
Collapse
Affiliation(s)
- Arindam Bhattacharjee
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári Krt. 62., Szeged, H-6726, Hungary
| | - Áron Szabó
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári Krt. 62., Szeged, H-6726, Hungary
| | - Tamás Csizmadia
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Sétány 1/C, Budapest, H-1117, Hungary
| | - Hajnalka Laczkó-Dobos
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári Krt. 62., Szeged, H-6726, Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári Krt. 62., Szeged, H-6726, Hungary; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Pázmány Sétány 1/C, Budapest, H-1117, Hungary.
| |
Collapse
|
63
|
Zhou F, Wu Z, Zhao M, Murtazina R, Cai J, Zhang A, Li R, Sun D, Li W, Zhao L, Li Q, Zhu J, Cong X, Zhou Y, Xie Z, Gyurkovska V, Li L, Huang X, Xue Y, Chen L, Xu H, Xu H, Liang Y, Segev N. Rab5-dependent autophagosome closure by ESCRT. J Cell Biol 2019; 218:1908-1927. [PMID: 31010855 PMCID: PMC6548130 DOI: 10.1083/jcb.201811173] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/09/2019] [Accepted: 03/29/2019] [Indexed: 01/08/2023] Open
Abstract
Zhou et al. identify the mechanism of autophagosome (AP) closure. They show that Rab5 GTPase regulates an interaction between the ESCRT subunit Snf7 and Atg17 to bring ESCRT to APs where it catalyzes AP closure. These findings highlight the convergence of the endocytic and autophagic pathways at this step. In the conserved autophagy pathway, autophagosomes (APs) engulf cellular components and deliver them to the lysosome for degradation. Before fusing with the lysosome, APs have to close via an unknown mechanism. We have previously shown that the endocytic Rab5-GTPase regulates AP closure. Therefore, we asked whether ESCRT, which catalyzes scission of vesicles into late endosomes, mediates the topologically similar process of AP sealing. Here, we show that depletion of representative subunits from all ESCRT complexes causes late autophagy defects and accumulation of APs. Focusing on two subunits, we show that Snf7 and the Vps4 ATPase localize to APs and their depletion results in accumulation of open APs. Moreover, Snf7 and Vps4 proteins complement their corresponding mutant defects in vivo and in vitro. Finally, a Rab5-controlled Atg17–Snf7 interaction is important for Snf7 localization to APs. Thus, we unravel a mechanism in which a Rab5-dependent Atg17–Snf7 interaction leads to recruitment of ESCRT to open APs where ESCRT catalyzes AP closure.
Collapse
Affiliation(s)
- Fan Zhou
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Zulin Wu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Mengzhu Zhao
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Rakhilya Murtazina
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Juan Cai
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Ao Zhang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Rui Li
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Dan Sun
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Li
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhao
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Qunli Li
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Cong
- Department of Biochemistry and Molecular Biology, Dr. Li Dak Sam and Yap Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiting Zhou
- Department of Biochemistry and Molecular Biology, Dr. Li Dak Sam and Yap Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Valeriya Gyurkovska
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaoshuai Huang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yanhong Xue
- The National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Hui Xu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Haiqian Xu
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Yongheng Liang
- College of Life Sciences, Key Laboratory of Agricultural Environmental Microbiology of Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing, China
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
64
|
Panserat S, Marandel L, Seiliez I, Skiba-Cassy S. New Insights on Intermediary Metabolism for a Better Understanding of Nutrition in Teleosts. Annu Rev Anim Biosci 2019; 7:195-220. [DOI: 10.1146/annurev-animal-020518-115250] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rapid development of aquaculture production throughout the world over the past few decades has led to the emergence of new scientific challenges to improve fish nutrition. The diet formulations used for farmed fish have been largely modified in the past few years. However, bottlenecks still exist in being able to suppress totally marine resources (fish meal and fish oil) in diets without negatively affecting growth performance and flesh quality. A better understanding of fish metabolism and its regulation by nutrients is thus mandatory. In this review, we discuss four fields of research that are highly important for improving fish nutrition in the future: ( a) fish genome complexity and subsequent consequences for metabolism, ( b) microRNAs (miRNAs) as new actors in regulation of fish metabolism, ( c) the role of autophagy in regulation of fish metabolism, and ( d) the nutritional programming of metabolism linked to the early life of fish.
Collapse
Affiliation(s)
- S. Panserat
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - L. Marandel
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - I. Seiliez
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - S. Skiba-Cassy
- INRA, University of Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition, Metabolisme, Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| |
Collapse
|
65
|
Chauhan AS, Kumar M, Chaudhary S, Dhiman A, Patidar A, Jakhar P, Jaswal P, Sharma K, Sheokand N, Malhotra H, Raje CI, Raje M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways. FASEB J 2019; 33:5626-5640. [PMID: 30640524 DOI: 10.1096/fj.201802102r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During physiologic stresses, like micronutrient starvation, infection, and cancer, the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is trafficked to the plasma membrane (PM) and extracellular milieu (ECM). Our work demonstrates that GAPDH mobilized to the PM, and the ECM does not utilize the classic endoplasmic reticulum-Golgi route of secretion; instead, it is first selectively translocated into early and late endosomes from the cytosol via microautophagy. GAPDH recruited to this common entry point is subsequently delivered into multivesicular bodies, leading to its membrane trafficking through secretion via exosomes and secretory lysosomes. We present evidence that both pathways of GAPDH membrane trafficking are up-regulated upon iron starvation, potentially by mobilization of intracellular calcium. These pathways also play a role in clearance of misfolded intracellular polypeptide aggregates. Our findings suggest that cells build in redundancy for vital cellular pathways to maintain micronutrient homeostasis and prevent buildup of toxic intracellular misfolded protein refuse.-Chauhan, A. S., Kumar, M., Chaudhary, S., Dhiman, A., Patidar, A., Jakhar, P., Jaswal, P., Sharma, K., Sheokand, N., Malhotra, H., Raje, C. I., Raje. M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways.
Collapse
Affiliation(s)
- Anoop Singh Chauhan
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Surbhi Chaudhary
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Asmita Dhiman
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Anil Patidar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Priyanka Jakhar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Pallavi Jaswal
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Kapil Sharma
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Navdeep Sheokand
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Himanshu Malhotra
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | | - Manoj Raje
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
66
|
Yang Q, Wang R, Zhu L. Chaperone-Mediated Autophagy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1206:435-452. [DOI: 10.1007/978-981-15-0602-4_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
67
|
Thomas RE, Vincow ES, Merrihew GE, MacCoss MJ, Davis MY, Pallanck LJ. Glucocerebrosidase deficiency promotes protein aggregation through dysregulation of extracellular vesicles. PLoS Genet 2018; 14:e1007694. [PMID: 30256786 PMCID: PMC6175534 DOI: 10.1371/journal.pgen.1007694] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/08/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Mutations in the glucosylceramidase beta (GBA) gene are strongly associated with neurodegenerative diseases marked by protein aggregation. GBA encodes the lysosomal enzyme glucocerebrosidase, which breaks down glucosylceramide. A common explanation for the link between GBA mutations and protein aggregation is that lysosomal accumulation of glucosylceramide causes impaired autophagy. We tested this hypothesis directly by measuring protein turnover and abundance in Drosophila mutants with deletions in the GBA ortholog Gba1b. Proteomic analyses revealed that known autophagy substrates, which had severely impaired turnover in autophagy-deficient Atg7 mutants, showed little to no overall slowing of turnover or increase in abundance in Gba1b mutants. Likewise, Gba1b mutants did not have the marked impairment of mitochondrial protein turnover seen in mitophagy-deficient parkin mutants. Proteasome activity, microautophagy, and endocytic degradation also appeared unaffected in Gba1b mutants. However, we found striking changes in the turnover and abundance of proteins associated with extracellular vesicles (EVs), which have been proposed as vehicles for the spread of protein aggregates in neurodegenerative disease. These changes were specific to Gba1b mutants and did not represent an acceleration of normal aging. Western blotting of isolated EVs confirmed the increased abundance of EV proteins in Gba1b mutants, and nanoparticle tracking analysis revealed that Gba1b mutants had six times as many EVs as controls. Genetic perturbations of EV production in Gba1b mutants suppressed protein aggregation, demonstrating that the increase in EV abundance contributed to the accumulation of protein aggregates. Together, our findings indicate that glucocerebrosidase deficiency causes pathogenic changes in EV metabolism and may promote the spread of protein aggregates through extracellular vesicles.
Collapse
Affiliation(s)
- Ruth E. Thomas
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Gennifer E. Merrihew
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Marie Y. Davis
- Department of Neurology, University of Washington, Seattle, WA, United States of America
- Department of Neurology, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States of America
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
68
|
Deubiquitinating Enzymes Related to Autophagy: New Therapeutic Opportunities? Cells 2018; 7:cells7080112. [PMID: 30126257 PMCID: PMC6116007 DOI: 10.3390/cells7080112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an evolutionary conserved catabolic process that allows for the degradation of intracellular components by lysosomes. This process can be triggered by nutrient deprivation, microbial infections or other challenges to promote cell survival under these stressed conditions. However, basal levels of autophagy are also crucial for the maintenance of proper cellular homeostasis by ensuring the selective removal of protein aggregates and dysfunctional organelles. A tight regulation of this process is essential for cellular survival and organismal health. Indeed, deregulation of autophagy is associated with a broad range of pathologies such as neuronal degeneration, inflammatory diseases, and cancer progression. Ubiquitination and deubiquitination of autophagy substrates, as well as components of the autophagic machinery, are critical regulatory mechanisms of autophagy. Here, we review the main evidence implicating deubiquitinating enzymes (DUBs) in the regulation of autophagy. We also discuss how they may constitute new therapeutic opportunities in the treatment of pathologies such as cancers, neurodegenerative diseases or infections.
Collapse
|
69
|
Jacomin AC, Gul L, Sudhakar P, Korcsmaros T, Nezis IP. What We Learned From Big Data for Autophagy Research. Front Cell Dev Biol 2018; 6:92. [PMID: 30175097 PMCID: PMC6107789 DOI: 10.3389/fcell.2018.00092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Autophagy is the process by which cytoplasmic components are engulfed in double-membraned vesicles before being delivered to the lysosome to be degraded. Defective autophagy has been linked to a vast array of human pathologies. The molecular mechanism of the autophagic machinery is well-described and has been extensively investigated. However, understanding the global organization of the autophagy system and its integration with other cellular processes remains a challenge. To this end, various bioinformatics and network biology approaches have been developed by researchers in the last few years. Recently, large-scale multi-omics approaches (like genomics, transcriptomics, proteomics, lipidomics, and metabolomics) have been developed and carried out specifically focusing on autophagy, and generating multi-scale data on the related components. In this review, we outline recent applications of in silico investigations and big data analyses of the autophagy process in various biological systems.
Collapse
Affiliation(s)
| | - Lejla Gul
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Padhmanand Sudhakar
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Gut Microbes and Health Programme, Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Ioannis P. Nezis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
70
|
Lund VK, Madsen KL, Kjaerulff O. Drosophila Rab2 controls endosome-lysosome fusion and LAMP delivery to late endosomes. Autophagy 2018; 14:1520-1542. [PMID: 29940804 PMCID: PMC6135592 DOI: 10.1080/15548627.2018.1458170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rab2 is a conserved Rab GTPase with a well-established role in secretory pathway function and phagocytosis. Here we demonstrate that Drosophila Rab2 is recruited to late endosomal membranes, where it controls the fusion of LAMP-containing biosynthetic carriers and lysosomes to late endosomes. In contrast, the lysosomal GTPase Gie/Arl8 is only required for late endosome-lysosome fusion, but not for the delivery of LAMP to the endocytic pathway. We also find that Rab2 is required for the fusion of autophagosomes to the endolysosomal pathway, but not for the biogenesis of lysosome-related organelles. Surprisingly, Rab2 does not rely on HOPS-mediated vesicular fusion for recruitment to late endosomal membranes. Our work suggests that Drosophila Rab2 is a central regulator of the endolysosomal and macroautophagic/autophagic pathways by controlling the major heterotypic fusion processes at the late endosome.
Collapse
Affiliation(s)
- Viktor Karlovich Lund
- a Department of Neuroscience, The Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Kenneth Lindegaard Madsen
- a Department of Neuroscience, The Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| | - Ole Kjaerulff
- a Department of Neuroscience, The Faculty of Health Sciences , University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
71
|
Issa AR, Sun J, Petitgas C, Mesquita A, Dulac A, Robin M, Mollereau B, Jenny A, Chérif-Zahar B, Birman S. The lysosomal membrane protein LAMP2A promotes autophagic flux and prevents SNCA-induced Parkinson disease-like symptoms in the Drosophila brain. Autophagy 2018; 14:1898-1910. [PMID: 29989488 PMCID: PMC6152503 DOI: 10.1080/15548627.2018.1491489] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 02/03/2023] Open
Abstract
The autophagy-lysosome pathway plays a fundamental role in the clearance of aggregated proteins and protection against cellular stress and neurodegenerative conditions. Alterations in autophagy processes, including macroautophagy and chaperone-mediated autophagy (CMA), have been described in Parkinson disease (PD). CMA is a selective autophagic process that depends on LAMP2A (lysosomal-associated membrane protein 2A), a mammal and bird-specific membrane glycoprotein that translocates cytosolic proteins containing a KFERQ-like peptide motif across the lysosomal membrane. Drosophila reportedly lack CMA and use endosomal microautophagy (eMI) as an alternative selective autophagic process. Here we report that neuronal expression of human LAMP2A protected Drosophila against starvation and oxidative stress, and delayed locomotor decline in aging flies without extending their lifespan. LAMP2A also prevented the progressive locomotor and oxidative defects induced by neuronal expression of PD-associated human SNCA (synuclein alpha) with alanine-to-proline mutation at position 30 (SNCAA30P). Using KFERQ-tagged fluorescent biosensors, we observed that LAMP2A expression stimulated selective autophagy in the adult brain and not in the larval fat body, but did not increase this process under starvation conditions. Noteworthy, we found that neurally expressed LAMP2A markedly upregulated levels of Drosophila Atg5, a key macroautophagy initiation protein, and that it increased the density of Atg8a/LC3-positive puncta, which reflects the formation of autophagosomes. Furthermore, LAMP2A efficiently prevented accumulation of the autophagy defect marker Ref(2)P/p62 in the adult brain under acute oxidative stress. These results indicate that LAMP2A can potentiate autophagic flux in the Drosophila brain, leading to enhanced stress resistance and neuroprotection. ABBREVIATIONS Act5C: actin 5C; a.E.: after eclosion; Atg5: autophagy-related 5; Atg8a/LC3: autophagy-related 8a; CMA: chaperone-mediated autophagy; DHE: dihydroethidium; elav: embryonic lethal abnormal vision; eMI: endosomal microautophagy; ESCRT: endosomal sorting complexes required for transport; GABARAP: GABA typeA receptor-associated protein; Hsc70-4: heat shock protein cognate 4; HSPA8/Hsc70: heat shock protein family A (Hsp70) member 8; LAMP2: lysosomal associated membrane protein 2; MDA: malondialdehyde; PA-mCherry: photoactivable mCherry; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PD: Parkinson disease; Ref(2)P/p62: refractory to sigma P; ROS: reactive oxygen species; RpL32/rp49: ribosomal protein L32; RT-PCR: reverse transcription polymerase chain reaction; SING: startle-induced negative geotaxis; SNCA/α-synuclein: synuclein alpha; SQSTM1/p62: sequestosome 1; TBS: Tris-buffered saline; UAS: upstream activating sequence.
Collapse
Affiliation(s)
- Abdul-Raouf Issa
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Jun Sun
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Céline Petitgas
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Ana Mesquita
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Amina Dulac
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Marion Robin
- ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Bertrand Mollereau
- ENSL, UCBL, CNRS, LBMC, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Baya Chérif-Zahar
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| |
Collapse
|
72
|
Soukup SF, Vanhauwaert R, Verstreken P. Parkinson's disease: convergence on synaptic homeostasis. EMBO J 2018; 37:embj.201898960. [PMID: 30065071 DOI: 10.15252/embj.201898960] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder, affects millions of people globally. There is no cure, and its prevalence will double by 2030. In recent years, numerous causative genes and risk factors for Parkinson's disease have been identified and more than half appear to function at the synapse. Subtle synaptic defects are thought to precede blunt neuronal death, but the mechanisms that are dysfunctional at synapses are only now being unraveled. Here, we review recent work and propose a model where different Parkinson proteins interact in a cell compartment-specific manner at the synapse where these proteins regulate endocytosis and autophagy. While this field is only recently emerging, the work suggests that the loss of synaptic homeostasis may contribute to neurodegeneration and is a key player in Parkinson's disease.
Collapse
Affiliation(s)
- Sandra-Fausia Soukup
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Roeland Vanhauwaert
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
73
|
Lescat L, Herpin A, Mourot B, Véron V, Guiguen Y, Bobe J, Seiliez I. CMA restricted to mammals and birds: myth or reality? Autophagy 2018; 14:1267-1270. [PMID: 29929419 DOI: 10.1080/15548627.2018.1460021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis essential for the control of intermediary metabolism. So far, the absence of any identifiable LAMP2A - a necessary and limiting protein for CMA - outside of the tetrapod clade, led to the paradigm that this cellular function was (presumably) restricted to mammals and birds. However, after we identified expressed sequences displaying high sequence homology with the mammalian LAMP2A in several fish species, our findings challenge that view and suggest that CMA likely appeared much earlier during evolution than initially thought. Hence, our results do not only shed an entirely new light on the evolution of CMA, but also bring new perspectives on the possible use of complementary genetic models, such as zebrafish or medaka for studying CMA function from a comparative angle/view.
Collapse
Affiliation(s)
- Laury Lescat
- a UMR1419 Nutrition Metabolisme Aquaculture , INRA-UPPA , St-Pée-sur-Nivelle , France
| | - Amaury Herpin
- b INRA, UR1037 Fish Physiology and Genomics , Rennes , France
| | - Brigitte Mourot
- b INRA, UR1037 Fish Physiology and Genomics , Rennes , France
| | - Vincent Véron
- a UMR1419 Nutrition Metabolisme Aquaculture , INRA-UPPA , St-Pée-sur-Nivelle , France
| | - Yann Guiguen
- b INRA, UR1037 Fish Physiology and Genomics , Rennes , France
| | - Julien Bobe
- b INRA, UR1037 Fish Physiology and Genomics , Rennes , France
| | - Iban Seiliez
- a UMR1419 Nutrition Metabolisme Aquaculture , INRA-UPPA , St-Pée-sur-Nivelle , France
| |
Collapse
|
74
|
Mejlvang J, Olsvik H, Svenning S, Bruun JA, Abudu YP, Larsen KB, Brech A, Hansen TE, Brenne H, Hansen T, Stenmark H, Johansen T. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol 2018; 217:3640-3655. [PMID: 30018090 PMCID: PMC6168274 DOI: 10.1083/jcb.201711002] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/20/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023] Open
Abstract
Mejlvang et al. show that amino acid starvation of human fibroblasts and a lung cancer cell line induces a rapid and selective degradation of a subset of proteins, including autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4, that is independent from mTOR and canonical macroautophagy but dependent on endosomal microautophagy. It is not clear to what extent starvation-induced autophagy affects the proteome on a global scale and whether it is selective. In this study, we report based on quantitative proteomics that cells during the first 4 h of acute starvation elicit lysosomal degradation of up to 2–3% of the proteome. The most significant changes are caused by an immediate autophagic response elicited by shortage of amino acids but executed independently of mechanistic target of rapamycin and macroautophagy. Intriguingly, the autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4 are among the most efficiently degraded substrates. Already 1 h after induction of starvation, they are rapidly degraded by a process that selectively delivers autophagy receptors to vesicles inside late endosomes/multivesicular bodies depending on the endosomal sorting complex required for transport III (ESCRT-III). Our data support a model in which amino acid deprivation elicits endocytosis of specific membrane receptors, induction of macroautophagy, and rapid degradation of autophagy receptors by endosomal microautophagy.
Collapse
Affiliation(s)
- Jakob Mejlvang
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hallvard Olsvik
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Steingrim Svenning
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jack-Ansgar Bruun
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Yakubu Princely Abudu
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Andreas Brech
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tom E Hansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hanne Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terkel Hansen
- Department of Pharmacy, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
75
|
Li W, Dou J, Yang J, Xu H, She H. Targeting Chaperone-Mediated Autophagy for Disease Therapy. CURRENT PHARMACOLOGY REPORTS 2018; 4:261-275. [PMID: 34540559 PMCID: PMC8445509 DOI: 10.1007/s40495-018-0138-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF THE REVIEW To reason that targeting chaperone-mediated autophagy (CMA) represents a promising approach for disease therapy, we will summarize advances in researches on the relationship between CMA and diseases and discuss relevant strategies for disease therapy by targeting the CMA process. RECENT FINDINGS CMA is a unique kind of selective autophagy in lysosomes. Under physiological conditions, CMA participates in the maintenance of cellular homeostasis by protein quality control, bioenergetics, and timely regulated specific substrate-associated cellular processes. Under pathological conditions, CMA interplays with various disease conditions. CMA makes adaptive machinery to address stress, while disease-associated proteins alter CMA which is involved in pathogeneses of diseases. As more proteins are identified as CMA substrates and regulators, dysregulation of CMA has been implicated in an increasing number of diseases, while rectifying CMA alteration may be a benefit for these diseases. SUMMARY Alterations of CMA in diseases mainly including neurodegenerative diseases and many cancers raise the possibility of targeting CMA to recover cellular homeostasis as one potential strategy for therapy of relevant diseases.
Collapse
Affiliation(s)
- Wenming Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan Dou
- Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Jing Yang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haidong Xu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Hua She
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
76
|
Li W, Nie T, Xu H, Yang J, Yang Q, Mao Z. Chaperone-mediated autophagy: Advances from bench to bedside. Neurobiol Dis 2018; 122:41-48. [PMID: 29800676 DOI: 10.1016/j.nbd.2018.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
Protein homeostasis or proteostasis is critical for proper cellular function and survival. It relies on the balance between protein synthesis and degradation. Lysosomes play an important role in degrading and recycling intracellular components via autophagy. Among the three types of lysosome-based autophagy pathways, chaperone-mediated autophagy (CMA) selectively degrades cellular proteins with KFERQ-like motif by unique machinery. During the past several years, significant advances have been made in our understanding of how CMA itself is modulated and what physiological and pathological processes it may be involved in. One particularly exciting discovery is how other cellular stress organelles such as ER signal to CMA. As more proteins are identified as CMA substrates, CMA function has been associated with an increasing number of important cellular processes, organelles, and diseases, including neurodegenerative diseases. Here we will summarize the recent advances in CMA biology, highlight ER stress-induced CMA, and discuss the role of CMA in diseases.
Collapse
Affiliation(s)
- Wenming Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Tiejian Nie
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haidong Xu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Yang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zixu Mao
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
77
|
Bingol B. Autophagy and lysosomal pathways in nervous system disorders. Mol Cell Neurosci 2018; 91:167-208. [PMID: 29729319 DOI: 10.1016/j.mcn.2018.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved pathway for delivering cytoplasmic cargo to lysosomes for degradation. In its classically studied form, autophagy is a stress response induced by starvation to recycle building blocks for essential cellular processes. In addition, autophagy maintains basal cellular homeostasis by degrading endogenous substrates such as cytoplasmic proteins, protein aggregates, damaged organelles, as well as exogenous substrates such as bacteria and viruses. Given their important role in homeostasis, autophagy and lysosomal machinery are genetically linked to multiple human disorders such as chronic inflammatory diseases, cardiomyopathies, cancer, and neurodegenerative diseases. Multiple targets within the autophagy and lysosomal pathways offer therapeutic opportunities to benefit patients with these disorders. Here, I will summarize the mechanisms of autophagy pathways, the evidence supporting a pathogenic role for disturbed autophagy and lysosomal degradation in nervous system disorders, and the therapeutic potential of autophagy modulators in the clinic.
Collapse
Affiliation(s)
- Baris Bingol
- Genentech, Inc., Department of Neuroscience, 1 DNA Way, South San Francisco 94080, United States.
| |
Collapse
|
78
|
Oku M, Sakai Y. Three Distinct Types of Microautophagy Based on Membrane Dynamics and Molecular Machineries. Bioessays 2018; 40:e1800008. [PMID: 29708272 DOI: 10.1002/bies.201800008] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/02/2018] [Indexed: 01/13/2023]
Abstract
Microautophagy is originally defined as lysosomal (vacuolar) membrane dynamics to directly enwrap and transport cytosolic components into the lumen of the lytic organelle. Molecular details of microautophagy had remained unknown until genetic studies in yeast identified a set of proteins required for the process. Subsequent studies with other experimental model organisms resulted in a series of discoveries that accompanied an expansion of the definition of microautophagy to also encompass endosomal membrane dynamics. These findings, however, still impose puzzling, non-integrated images as to the molecular mechanism of microautophagy. By reviewing recent studies on microautophagy in various experimental systems, we propose the classification of microautophagy into three types, as the basis for developing a comprehensive view of the process.
Collapse
Affiliation(s)
- Masahide Oku
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.,Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
79
|
Mizushima N. A brief history of autophagy from cell biology to physiology and disease. Nat Cell Biol 2018; 20:521-527. [PMID: 29686264 DOI: 10.1038/s41556-018-0092-5] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
Abstract
The field of autophagy research has developed rapidly since the first description of the process in the 1960s and the identification of autophagy genes in the 1990s. Autophagy is now increasingly studied at the level of organismal pathophysiology and is being connected to the medical sciences. This Historical Perspective describes a brief history of autophagy and discusses unanswered cell biological questions in the field.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
80
|
Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J Biol Chem 2018; 293:5414-5424. [PMID: 29247007 PMCID: PMC5900761 DOI: 10.1074/jbc.r117.818237] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A variety of mechanisms deliver cytosolic materials to the lysosomal compartment for degradation through autophagy. Here, we focus on two autophagic pathways, the chaperone-mediated autophagy and the endosomal microautophagy that rely on the cytosolic chaperone hsc70 for substrate targeting. Although hsc70 participates in the triage of proteins for degradation by different proteolytic systems, the common characteristic shared by these two forms of autophagy is that hsc70 binds directly to a specific five-amino acid motif in the cargo protein for its autophagic targeting. We summarize the current understanding of the molecular machineries behind each of these types of autophagy.
Collapse
Affiliation(s)
- Kumsal Tekirdag
- From the Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Ana Maria Cuervo
- From the Department of Developmental and Molecular Biology, Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
81
|
Sanchez-Vera V, Kenchappa CS, Landberg K, Bressendorff S, Schwarzbach S, Martin T, Mundy J, Petersen M, Thelander M, Sundberg E. Autophagy is required for gamete differentiation in the moss Physcomitrella patens. Autophagy 2017; 13:1939-1951. [PMID: 28837383 PMCID: PMC5788497 DOI: 10.1080/15548627.2017.1366406] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/17/2017] [Accepted: 08/08/2017] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a major catabolic process in eukaryotes, was initially related to cell tolerance to nutrient depletion. In plants autophagy has also been widely related to tolerance to biotic and abiotic stresses (through the induction or repression of programmed cell death, PCD) as well as to promotion of developmentally regulated PCD, starch degradation or caloric restriction important for life span. Much less is known regarding its role in plant cell differentiation. Here we show that macroautophagy, the autophagy pathway driven by engulfment of cytoplasmic components by autophagosomes and its subsequent degradation in vacuoles, is highly active during germ cell differentiation in the early diverging land plant Physcomitrella patens. Our data provide evidence that suppression of ATG5-mediated autophagy results in reduced density of the egg cell-mediated mucilage that surrounds the mature egg, pointing toward a potential role of autophagy in extracellular mucilage formation. In addition, we found that ATG5- and ATG7-mediated autophagy is essential for the differentiation and cytoplasmic reduction of the flagellated motile sperm and hence for sperm fertility. The similarities between the need of macroautophagy for sperm differentiation in moss and mouse are striking, strongly pointing toward an ancestral function of autophagy not only as a protector against nutrient stress, but also in gamete differentiation.
Collapse
Affiliation(s)
- Victoria Sanchez-Vera
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Chandra Shekar Kenchappa
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Katarina Landberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | | | - Stefan Schwarzbach
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Tom Martin
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - John Mundy
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Mattias Thelander
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| | - Eva Sundberg
- Department of Plant Biology, Swedish University of Agricultural Sciences, The Linnean Centre of Plant Biology in Uppsala, Uppsala, Sweden
| |
Collapse
|
82
|
Monitoring and Measuring Autophagy. Int J Mol Sci 2017; 18:ijms18091865. [PMID: 28846632 PMCID: PMC5618514 DOI: 10.3390/ijms18091865] [Citation(s) in RCA: 778] [Impact Index Per Article: 111.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/12/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a cytoplasmic degradation system, which is important for starvation adaptation and cellular quality control. Recent advances in understanding autophagy highlight its importance under physiological and pathological conditions. However, methods for monitoring autophagic activity are complicated and the results are sometimes misinterpreted. Here, we review the methods used to identify autophagic structures, and to measure autophagic flux in cultured cells and animals. We will also describe the existing autophagy reporter mice that are useful for autophagy studies and drug testing. Lastly, we will consider the attempts to monitor autophagy in samples derived from humans.
Collapse
|
83
|
Lefebvre C, Legouis R, Culetto E. ESCRT and autophagies: Endosomal functions and beyond. Semin Cell Dev Biol 2017; 74:21-28. [PMID: 28807884 DOI: 10.1016/j.semcdb.2017.08.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/27/2017] [Accepted: 08/04/2017] [Indexed: 12/20/2022]
Abstract
ESCRT (endosomal sorting complex required for transport) machinery has been initially identified for its role during endocytosis, which allows membrane proteins and lipids to be degraded in the lysosome. ESCRT function is required to form intraluminal vesicles permitting internalization of cytosolic components or membrane embedded cargoes and promoting endosome maturation. ESCRT machinery also contributes to multiple key cell mechanisms in which it reshapes membranes. In addition, ESCRT actively participates in different types of autophagy processes for degrading cytosolic components, such as endosomal microautophagy and macroautophagy. During macroautophagy, ESCRT promotes formation of multivesicular bodies, which can fuse with autophagosomes to generate amphisomes. This latter fusion probably brings to autophagosomes key membrane molecules necessary for the subsequent fusion with lysosomes. Interestingly, during macroautophagy, ESCRT proteins could be involved in non-canonical functions such as vesicle tethering or phagophore membrane sealing. Additionally, ESCRT subunits could directly interact with key autophagy related proteins to build a closer connection between endocytosis and autophagy pathways.
Collapse
Affiliation(s)
- Christophe Lefebvre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France
| | - Renaud Legouis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| | - Emmanuel Culetto
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
84
|
Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 - a master regulator in protein degradation. FEBS Lett 2017; 591:2648-2660. [PMID: 28696498 DOI: 10.1002/1873-3468.12751] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
Proteostasis, the controlled balance of protein synthesis, folding, assembly, trafficking and degradation, is a paramount necessity for cell homeostasis. Impaired proteostasis is a hallmark of ageing and of many human diseases. Molecular chaperones are essential for proteostasis in eukaryotic cells, and their function has traditionally been linked to protein folding, assembly and disaggregation. More recent findings suggest that chaperones also contribute to key steps in protein degradation. In particular, Hsp70 has an essential role in substrate degradation through the ubiquitin-proteasome system, as well as through different autophagy pathways. Accumulated knowledge suggests that the fate of an Hsp70 substrate is dictated by the combination of partners (cochaperones and other chaperones) that interact with Hsp70 in a given cell context.
Collapse
Affiliation(s)
| | - Marcos Gragera
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
85
|
Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, Cuervo AM, Debnath J, Deretic V, Dikic I, Eskelinen EL, Fimia GM, Fulda S, Gewirtz DA, Green DR, Hansen M, Harper JW, Jäättelä M, Johansen T, Juhasz G, Kimmelman AC, Kraft C, Ktistakis NT, Kumar S, Levine B, Lopez-Otin C, Madeo F, Martens S, Martinez J, Melendez A, Mizushima N, Münz C, Murphy LO, Penninger JM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Santambrogio L, Scorrano L, Simon AK, Simon HU, Simonsen A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Kroemer G. Molecular definitions of autophagy and related processes. EMBO J 2017; 36:1811-1836. [PMID: 28596378 PMCID: PMC5494474 DOI: 10.15252/embj.201796697] [Citation(s) in RCA: 1138] [Impact Index Per Article: 162.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Université Paris Descartes/Paris V, Paris, France
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Medical Genetics, Department of Pediatrics, Federico II University, Naples, Italy
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - José Manuel Bravo-San Pedro
- Université Paris Descartes/Paris V, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Francesco Cecconi
- Department of Biology, University of Tor Vergata, Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Augustine M Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Charleen T Chu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrice Codogno
- Université Paris Descartes/Paris V, Paris, France
- Institut Necker-Enfants Malades (INEM), Paris, France
- INSERM, U1151, Paris, France
- CNRS, UMR8253, Paris, France
| | - Maria Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jayanta Debnath
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Ivan Dikic
- Institute of Biochemistry II, School of Medicine, Goethe University Frankfurt, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt Main, Germany
- Department of Immunology and Medical Genetics, University of Split School of Medicine, Split, Croatia
| | | | - Gian Maria Fimia
- National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David A Gewirtz
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Malene Hansen
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Gabor Juhasz
- Department of Anatomy, Cell and Developmental Biology, Eotvos Lorand University, Budapest, Hungary
- Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, USA
| | - Claudine Kraft
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Beth Levine
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute (HHMI), Dallas, TX, USA
| | - Carlos Lopez-Otin
- Department de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación en Red de Cáncer, Oviedo, Spain
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Sascha Martens
- Max F. Perutz Laboratories, Department of Biochemistry and Cell Biology, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Jennifer Martinez
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alicia Melendez
- Department of Biology, Queens College, Queens, NY, USA
- Graduate Center, City University of New York, New York, NY, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Leon O Murphy
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - Mauro Piacentini
- Department of Biology, University of Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Rome, Italy
| | - Fulvio Reggiori
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, The Francis Crick Institute, London, UK
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences Osaka University, Osaka, Japan
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France
| |
Collapse
|
86
|
Keller CW, Lünemann JD. Autophagy and Autophagy-Related Proteins in CNS Autoimmunity. Front Immunol 2017; 8:165. [PMID: 28289410 PMCID: PMC5326760 DOI: 10.3389/fimmu.2017.00165] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy comprises a heterogeneous group of cellular pathways that enables eukaryotic cells to deliver cytoplasmic constituents for lysosomal degradation, to recycle nutrients, and to survive during starvation. In addition to these primordial functions, autophagy has emerged as a key mechanism in orchestrating innate and adaptive immune responses and to shape CD4+ T cell immunity through delivery of peptides to major histocompatibility complex (MHC) class II-containing compartments (MIICs). Individual autophagy proteins additionally modulate expression of MHC class I molecules for CD8+ T cell activation. The emergence and expansion of autoreactive CD4+ and CD8+ T cells are considered to play a key role in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis. Expression of the essential autophagy-related protein 5 (Atg5), which supports T lymphocyte survival and proliferation, is increased in T cells isolated from blood or brain tissues from patients with relapsing-remitting MS. Whether Atgs contribute to the activation of autoreactive T cells through autophagy-mediated antigen presentation is incompletely understood. Here, we discuss the complex functions of autophagy proteins and pathways in regulating T cell immunity and its potential role in the development and progression of MS.
Collapse
Affiliation(s)
- Christian W Keller
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich , Zürich , Switzerland
| | - Jan D Lünemann
- Institute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zürich, Zürich, Switzerland; Department of Neurology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
87
|
Morozova K, Clement CC, Kaushik S, Stiller B, Arias E, Ahmad A, Rauch JN, Chatterjee V, Melis C, Scharf B, Gestwicki JE, Cuervo AM, Zuiderweg ERP, Santambrogio L. Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy. J Biol Chem 2016; 291:18096-106. [PMID: 27405763 DOI: 10.1074/jbc.m116.736744] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Indexed: 01/10/2023] Open
Abstract
hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 μm. This interaction is specific and involves a total of 4-5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes.
Collapse
Affiliation(s)
| | | | - Susmita Kaushik
- Developmental Molecular Biology, Albert Einstein College of Medicine, New York, New York 10461
| | - Barbara Stiller
- Developmental Molecular Biology, Albert Einstein College of Medicine, New York, New York 10461
| | - Esperanza Arias
- Developmental Molecular Biology, Albert Einstein College of Medicine, New York, New York 10461
| | - Atta Ahmad
- the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | - Jennifer N Rauch
- the Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158
| | | | | | | | - Jason E Gestwicki
- the Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, California 94158
| | - Ana-Maria Cuervo
- Developmental Molecular Biology, Albert Einstein College of Medicine, New York, New York 10461
| | - Erik R P Zuiderweg
- the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48105, and
| | | |
Collapse
|