51
|
Jang D, Shin J, Shim E, Ohtani N, Jeon OH. The connection between aging, cellular senescence and gut microbiome alterations: A comprehensive review. Aging Cell 2024; 23:e14315. [PMID: 39148278 PMCID: PMC11464129 DOI: 10.1111/acel.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
The intricate interplay between cellular senescence and alterations in the gut microbiome emerges as a pivotal axis in the aging process, increasingly recognized for its contribution to systemic inflammation, physiological decline, and predisposition to age-associated diseases. Cellular senescence, characterized by a cessation of cell division in response to various stressors, induces morphological and functional changes within tissues. The complexity and heterogeneity of senescent cells, alongside the secretion of senescence-associated secretory phenotype, exacerbate the aging process through pro-inflammatory pathways and influence the microenvironment and immune system. Concurrently, aging-associated changes in gut microbiome diversity and composition contribute to dysbiosis, further exacerbating systemic inflammation and undermining the integrity of various bodily functions. This review encapsulates the burgeoning research on the reciprocal relationship between cellular senescence and gut dysbiosis, highlighting their collective impact on age-related musculoskeletal diseases, including osteoporosis, sarcopenia, and osteoarthritis. It also explores the potential of modulating the gut microbiome and targeting cellular senescence as innovative strategies for healthy aging and mitigating the progression of aging-related conditions. By exploring targeted interventions, including the development of senotherapeutic drugs and probiotic therapies, this review aims to shed light on novel therapeutic avenues. These strategies leverage the connection between cellular senescence and gut microbiome alterations to advance aging research and development of interventions aimed at extending health span and improving the quality of life in the older population.
Collapse
Affiliation(s)
- Dong‐Hyun Jang
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Ji‐Won Shin
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Eunha Shim
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| | - Naoko Ohtani
- Department of PathophysiologyOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Ok Hee Jeon
- Department of Biomedical SciencesKorea University College of MedicineSeoulRepublic of Korea
| |
Collapse
|
52
|
Ferguson Toll J, Solà E, Perez MA, Piano S, Cheng A, Subramanian AK, Kim WR. Infections in decompensated cirrhosis: Pathophysiology, management, and research agenda. Hepatol Commun 2024; 8:e0539. [PMID: 39365139 PMCID: PMC11458171 DOI: 10.1097/hc9.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024] Open
Abstract
Bacterial infections in patients with cirrhosis lead to a 4-fold increase in mortality. Immune dysfunction in cirrhosis further increases the risk of bacterial infections, in addition to alterations in the gut microbiome, which increase the risk of pathogenic bacteria. High rates of empiric antibiotic use contribute to increased incidence of multidrug-resistant organisms and further increases in mortality. Despite continous advances in the field, major unknowns regarding interactions between the immune system and the gut microbiome and strategies to reduce infection risk and improve mortality deserve further investigation. Here, we highlight the unknowns in these major research areas and make a proposal for a research agenda to move toward improving disease progression and outcomes in patients with cirrhosis and infections.
Collapse
Affiliation(s)
- Jessica Ferguson Toll
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Elsa Solà
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, California, USA
| | | | - Salvatore Piano
- Department of Medicine, University Hospital of Padova, Padova, Italy
| | - Alice Cheng
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Aruna K. Subramanian
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - W. Ray Kim
- Department of Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
53
|
Davis KL, Claudio-Etienne E, Frischmeyer-Guerrerio PA. Atopic dermatitis and food allergy: More than sensitization. Mucosal Immunol 2024; 17:1128-1140. [PMID: 38906220 PMCID: PMC11471387 DOI: 10.1016/j.mucimm.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/01/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
The increased risk of food allergy in infants with atopic dermatitis (AD) has long been recognized; an epidemiologic phenomenon termed "the atopic march." Current literature supports the hypothesis that food antigen exposure through the disrupted skin barrier in AD leads to food antigen-specific immunoglobulin E production and food sensitization. However, there is growing evidence that inflammation in the skin drives intestinal remodeling via circulating inflammatory signals, microbiome alterations, metabolites, and the nervous system. We explore how this skin-gut axis helps to explain the link between AD and food allergy beyond sensitization.
Collapse
Affiliation(s)
- Katelin L Davis
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; Comparative Biomedical Scientist Training Program, The Molecular Pathology Unit, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD, USA; Comparative Pathobiology Department, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Estefania Claudio-Etienne
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela A Frischmeyer-Guerrerio
- Food Allergy Research Section, Laboratory of Allergic Diseases, The National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
54
|
O'Hara MT, Shimozono TM, Dye KJ, Harris D, Yang Z. Surface hydrophilicity promotes bacterial twitching motility. mSphere 2024; 9:e0039024. [PMID: 39194233 PMCID: PMC11423576 DOI: 10.1128/msphere.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Twitching motility is a form of bacterial surface translocation powered by the type IV pilus (T4P). It is frequently analyzed by interstitial colony expansion between agar and the polystyrene surfaces of petri dishes. In such assays, the twitching motility of Acinetobacter nosocomialis was observed with MacConkey but not Luria-Bertani (LB) agar media. One difference between these two media is the presence of bile salts as a selective agent in MacConkey but not in LB. Here, we demonstrate that the addition of bile salts to LB allowed A. nosocomialis to display twitching. Similarly, bile salts enhanced the twitching of Acinetobacter baumannii and Pseudomonas aeruginosa in LB. These observations suggest that there is a common mechanism, whereby bile salts enhance bacterial twitching and promote interstitial colony expansion. Bile salts disrupt lipid membranes and apply envelope stress as detergents. Surprisingly, their stimulatory effect on twitching appears not to be related to a bacterial physiological response to stressors. Rather, it is due to their ability to alter the physicochemical properties of a twitching surface. We observed that while other detergents promoted twitching like bile salts, stresses applied by antibiotics, including the outer membrane-targeting polymyxin B, did not enhance twitching motility. More importantly, bacteria displayed increased twitching on hydrophilic surfaces such as those of glass and tissue culture-treated polystyrene plastics, and bile salts no longer stimulated twitching on these surfaces. Together, our results show that altering the hydrophilicity of a twitching surface significantly impacts T4P functionality. IMPORTANCE The bacterial type IV pilus (T4P) is a critical virulence factor for many medically important pathogens, some of which are prioritized by the World Health Organization for their high levels of antibiotic resistance. The T4P is known to propel bacterial twitching motility, the analysis of which provides a convenient assay for T4P functionality. Here, we show that bile salts and other detergents augment the twitching of multiple bacterial pathogens. We identified the underlying mechanism as the alteration of surface hydrophilicity by detergents. Consequently, hydrophilic surfaces like those of glass or plasma-treated polystyrene promote bacterial twitching, bypassing the requirement for detergents. The implication is that surface properties, such as those of tissues and medical implants, significantly impact the functionality of bacterial T4P as a virulence determinant. This offers valuable insights for developing countermeasures against the colonization and infection by bacterial pathogens of critical importance to human health on a global scale.
Collapse
Affiliation(s)
- Megan T O'Hara
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Tori M Shimozono
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Keane J Dye
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David Harris
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
55
|
Yuan H, Jung ES, Chae SW, Jung SJ, Daily JW, Park S. Biomarkers for Health Functional Foods in Metabolic Dysfunction-Associated Steatotic Liver Disorder (MASLD) Prevention: An Integrative Analysis of Network Pharmacology, Gut Microbiota, and Multi-Omics. Nutrients 2024; 16:3061. [PMID: 39339660 PMCID: PMC11434757 DOI: 10.3390/nu16183061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disorder (MASLD) is increasingly prevalent globally, highlighting the need for preventive strategies and early interventions. This comprehensive review explores the potential of health functional foods (HFFs) to maintain healthy liver function and prevent MASLD through an integrative analysis of network pharmacology, gut microbiota, and multi-omics approaches. We first examined the biomarkers associated with MASLD, emphasizing the complex interplay of genetic, environmental, and lifestyle factors. We then applied network pharmacology to identify food components with potential beneficial effects on liver health and metabolic function, elucidating their action mechanisms. This review identifies and evaluates strategies for halting or reversing the development of steatotic liver disease in the early stages, as well as biomarkers that can evaluate the success or failure of such strategies. The crucial role of the gut microbiota and its metabolites for MASLD prevention and metabolic homeostasis is discussed. We also cover state-of-the-art omics approaches, including transcriptomics, metabolomics, and integrated multi-omics analyses, in research on preventing MASLD. These advanced technologies provide deeper insights into physiological mechanisms and potential biomarkers for HFF development. The review concludes by proposing an integrated approach for developing HFFs targeting MASLD prevention, considering the Korean regulatory framework. We outline future research directions that bridge the gap between basic science and practical applications in health functional food development. This narrative review provides a foundation for researchers and food industry professionals interested in developing HFFs to support liver health. Emphasis is placed on maintaining metabolic balance and focusing on prevention and early-stage intervention strategies.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - James W. Daily
- Department of R&D, Daily Manufacturing Inc., Rockwell, NC 28138, USA;
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro79bungil, Asan 31499, Republic of Korea
| |
Collapse
|
56
|
Zhang T, Xiao Y, Wang H, Zhu J, Lu W, Zhang H, Chen W. Construction and characterization of stable multi-species biofilms formed by nine core gut bacteria on wheat fiber. Food Funct 2024; 15:8674-8688. [PMID: 39082112 DOI: 10.1039/d4fo01294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Microbial aggregation mainly occurs on the intestinal epithelium, mucosal layer and undigested food particles in the gastrointestinal tract (GIT). Undigested food particles are usually insoluble dietary fiber (IDF), which can be easily obtained through daily diet, but there are few studies investigating whether the gut bacteria adhering to undigested food particles can form multi-species biofilms. In this study, we prepared mono- and multi-species biofilms using 18 core gut bacteria via a dynamic fermentation method, and it was found that multi-species composed of nine core gut bacteria (M9) showed the best biofilm formation ability. Cell counts of the nine bacteria in multi-species biofilms were 9.36, 11.85, 10.17, 9.93, 12.88, 11.39, 10.089, 9.06, and 13.21 Log10 CFU mL-1. M9 was tightly connected and regularly stacked on wheat fiber and had larger particle sizes than mono-species biofilms. M9 retained biofilm formation ability under pH and bile salt stresses. A human feces invasion experiment demonstrated that M9 can stably adhere to wheat fiber under the interference of complex gut bacteria, and the M9 multi-species biofilm had positions that can be filled by various gut bacteria. Metabolome results indicated that the M9 multi-species biofilm had more metabolic productions and more complex interspecies interactions than mono-species biofilms. This study provides a dynamic fermentation method to prepare multi-species biofilms on wheat fiber in vitro. It will also offer a research basis for clarifying whether gut bacteria can utilize IDF to form biofilm structures in vivo and the possible interspecific interactions and physiological functions of bacteria in biofilms.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
57
|
Ng DZW, Low A, Tan AJH, Ong JH, Kwa WT, Lee JWJ, Chan ECY. Ex vivo metabolism kinetics of primary to secondary bile acids via a physiologically relevant human faecal microbiota model. Chem Biol Interact 2024; 399:111140. [PMID: 38992765 DOI: 10.1016/j.cbi.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/14/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Bile acids (BA) are synthesized in the human liver and undergo metabolism by host gut bacteria. In diseased states, gut microbial dysbiosis may lead to high primary unconjugated BA concentrations and significant perturbations to secondary BA. Hence, it is important to understand the microbial-mediated formation kinetics of secondary bile acids using physiologically relevant ex vivo human faecal microbiota models. Here, we optimized an ex vivo human faecal microbiota model to recapitulate the metabolic kinetics of primary unconjugated BA and applied it to investigate the formation kinetics of novel secondary BA metabolites and their sequential pathways. We demonstrated (1) first-order depletion of primary BA, cholic acid (CA) and chenodeoxycholic acid (CDCA), under non-saturable conditions and (2) saturable Michaelis-Menten kinetics for secondary BA metabolite formation with increasing substrate concentration. Notably, relatively lower Michaelis constants (Km) were associated with the formation of deoxycholic acid (DCA, 14.3 μM) and lithocholic acid (LCA, 140 μM) versus 3-oxo CA (>1000 μM), 7-keto DCA (443 μM) and 7-keto LCA (>1000 μM), thereby recapitulating clinically observed saturation of 7α-dehydroxylation relative to oxidation of primary BA. Congruently, metagenomics revealed higher relative abundance of functional genes related to the oxidation pathway as compared to the 7α-dehydroxylation pathway. In addition, we demonstrated gut microbial-mediated hyocholic acid (HCA) and hyodeoxycholic acid (HDCA) formation from CDCA. In conclusion, we optimized a physiologically relevant ex vivo human faecal microbiota model to investigate gut microbial-mediated metabolism of primary BA and present a novel gut microbial-catalysed two-step pathway from CDCA to HCA and, subsequently, HDCA.
Collapse
Affiliation(s)
- Daniel Zhi Wei Ng
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Adrian Low
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Amanda Jia Hui Tan
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Jia Hui Ong
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Wit Thun Kwa
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Jonathan Wei Jie Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, MD6 Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, E7, 15 Kent Ridge Crescent, Singapore, 119276, Singapore; Division of Gastroenterology & Hepatology, Department of Medicine, National University Hospital, Singapore.
| | - Eric Chun Yong Chan
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore.
| |
Collapse
|
58
|
Abildinova GZ, Benberin VV, Vochshenkova TA, Afshar A, Mussin NM, Kaliyev AA, Zhussupova Z, Tamadon A. Global trends and collaborative networks in gut microbiota-insulin resistance research: a comprehensive bibliometric analysis (2000-2024). Front Med (Lausanne) 2024; 11:1452227. [PMID: 39211341 PMCID: PMC11358073 DOI: 10.3389/fmed.2024.1452227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background The human gut microbiota plays a crucial role in maintaining metabolic health, with substantial evidence linking its composition to insulin resistance. This study aims to analyze the global scholarly contributions on the relationship between intestinal microbiota and insulin resistance from 2000 to 2024. Methods A bibliometric analysis was conducted using data from Scopus and Web of Science Core Collection. The search strategy included terms related to "Gastrointestinal Microbiome" and "Insulin Resistance" in the title or abstract. Results The analysis of 1,884 relevant studies from 510 sources was conducted, revealing a mean citation of 51.36 per manuscript and a remarkable annual growth rate of 22.08%. The findings highlight the significant role of gut microbiota in insulin resistance, corroborating prior studies that emphasize its influence on metabolic disorders. The literature review of the current study showed key mechanisms include the regulation of short-chain fatty acids (SCFAs) and gut hormones, which are critical for glucose metabolism and inflammation regulation. The analysis also identifies "Food and Function" as the most productive journal and Nieuwdorp M. as a leading author, underscoring the collaborative nature of this research area. Conclusion The consistent increase in publications in the field of gut microbiota and insulin resistance indicates growing recognition of the gut microbiota's therapeutic potential in treating insulin resistance and related metabolic disorders. Future research should focus on standardizing methodologies and conducting large-scale clinical trials to fully realize these therapeutic possibilities.
Collapse
Affiliation(s)
- Gulshara Zh Abildinova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Valeriy V. Benberin
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
- Corporate Foundation, Institute of Innovative and Preventive Medicine, Astana, Kazakhstan
| | - Tamara A. Vochshenkova
- Gerontology Center, Medical Center Hospital of the President’s Affairs Administration of the Republic of Kazakhstan, Astana, Kazakhstan
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
- PerciaVista R&D Co., Shiraz, Iran
| | - Nadiar M. Mussin
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Asset A. Kaliyev
- Department of Surgery No. 2, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Zhanna Zhussupova
- Department of Neurology, Psychiatry and Narcology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Iran
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
59
|
Han L, Sun X, Kong J, Li J, Feng K, Bai Y, Wang X, Zhu Z, Yang F, Chen Q, Zhang M, Yue B, Wang X, Fu L, Chen Y, Yang Q, Wang S, Xin Q, Sun N, Zhang D, Zhou Y, Gao Y, Zhao J, Jiang Y, Guo R. Multi-omics analysis reveals a feedback loop amplifying immune responses in acute graft-versus-host disease due to imbalanced gut microbiota and bile acid metabolism. J Transl Med 2024; 22:746. [PMID: 39113144 PMCID: PMC11308528 DOI: 10.1186/s12967-024-05577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Acute graft-versus-host disease (aGVHD) is primarily driven by allogeneic donor T cells associated with an altered composition of the host gut microbiome and its metabolites. The severity of aGVHD after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is not solely determined by the host and donor characteristics; however, the underlying mechanisms remain unclear. Using single-cell RNA sequencing, we decoded the immune cell atlas of 12 patients who underwent allo-HSCT: six with aGVHD and six with non-aGVHD. We performed a fecal microbiota (16SrRNA sequencing) analysis to investigate the fecal bacterial composition of 82 patients: 30 with aGVHD and 52 with non-aGVHD. Fecal samples from these patients were analyzed for bile acid metabolism. Through multi-omic analysis, we identified a feedback loop involving "immune cell-gut microbes-bile acid metabolites" contributing to heightened immune responses in patients with aGVHD. The dysbiosis of the gut microbiota and disruption of bile acid metabolism contributed to an exaggerated interleukin-1 mediated immune response. Our findings suggest that resistin and defensins are crucial in mitigating against aGVHD. Therefore, a comprehensive multi-omic atlas incorporating immune cells, gut microbes, and bile acid metabolites was developed in this study and used to propose novel, non-immunosuppressive approaches to prevent aGVHD.
Collapse
Affiliation(s)
- Lijie Han
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlei Sun
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Li
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Feng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanliang Bai
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xianjing Wang
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Zhenhua Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyuan Yang
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhou Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Baohong Yue
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoqian Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liyan Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yaoyao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuya Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingxuan Xin
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Nannan Sun
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Danfeng Zhang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiwei Zhou
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanxia Gao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yong Jiang
- Henan Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine and Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rongqun Guo
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
60
|
Sum R, Lim SJM, Sundaresan A, Samanta S, Swaminathan M, Low W, Ayyappan M, Lim TW, Choo MD, Huang GJ, Cheong I. Clostridium septicum manifests a bile salt germinant response mediated by Clostridioides difficile csp gene orthologs. Commun Biol 2024; 7:947. [PMID: 39103440 PMCID: PMC11300598 DOI: 10.1038/s42003-024-06617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Clostridium septicum infections are highly predictive of certain malignancies in human patients. To initiate infections, C. septicum spores must first germinate and regain vegetative growth. Yet, what triggers the germination of C. septicum spores is still unknown. Here, we observe that C. septicum germinates in response to specific bile salts. Putative bile salt recognition genes are identified in C. septicum based on their similarity in sequence and organization to bile salt-responsive csp genes in Clostridioides difficile. Inactivating two of these csp orthologs (cspC-82 and cspC-1718) results in mutant spores that no longer germinate in the presence of their respective cognate bile salts. Additionally, inactivating the putative cspBA or sleC genes in C. septicum abrogates the germination response to all bile salt germinants, suggesting that both act at a convergent point downstream of cspC-82 and cspC-1718. Molecular dynamics simulations show that both CspC-82 and CspC-1718 bear a strong structural congruence with C. difficile's CspC. The existence of functional bile salt germination sensors in C. septicum may be relevant to the association between infection and malignancy.
Collapse
Affiliation(s)
- Rongji Sum
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sylvester Jian Ming Lim
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ajitha Sundaresan
- Temasek Life Sciences Laboratory, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | | | | - Wayne Low
- Temasek Life Sciences Laboratory, Singapore, Singapore
| | - Madhumitha Ayyappan
- Temasek Life Sciences Laboratory, Singapore, Singapore
- NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Ting Wei Lim
- Temasek Life Sciences Laboratory, Singapore, Singapore
- NUS High School of Mathematics and Sciences, Singapore, Singapore
| | - Marvin Dragon Choo
- Temasek Life Sciences Laboratory, Singapore, Singapore
- NUS High School of Mathematics and Sciences, Singapore, Singapore
| | | | - Ian Cheong
- Temasek Life Sciences Laboratory, Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
61
|
Meijnikman AS, Nieuwdorp M, Schnabl B. Endogenous ethanol production in health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:556-571. [PMID: 38831008 DOI: 10.1038/s41575-024-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome exerts metabolic actions on distal tissues and organs outside the intestine, partly through microbial metabolites that diffuse into the circulation. The disruption of gut homeostasis results in changes to microbial metabolites, and more than half of the variance in the plasma metabolome can be explained by the gut microbiome. Ethanol is a major microbial metabolite that is produced in the intestine of nearly all individuals; however, elevated ethanol production is associated with pathological conditions such as metabolic dysfunction-associated steatotic liver disease and auto-brewery syndrome, in which the liver's capacity to metabolize ethanol is surpassed. In this Review, we describe the mechanisms underlying excessive ethanol production in the gut and the role of ethanol catabolism in mediating pathogenic effects of ethanol on the liver and host metabolism. We conclude by discussing approaches to target excessive ethanol production by gut bacteria.
Collapse
Affiliation(s)
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, Netherlands
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
62
|
Peña-Vázquez GI, Arredondo-Arenillas A, Serrano-Sandoval SN, Antunes-Ricardo M. Functional foods lipids: unraveling their role in the immune response in obesity. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39073763 DOI: 10.1080/10408398.2024.2382942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Functional lipids are lipids that are found in food matrices and play an important role in influencing human health as their role goes beyond energy storage and structural components. Ongoing research into functional lipids has highlighted their potential to modulate immune responses and other mechanisms associated with obesity, along with its comorbidities. These lipids represent a new field that may offer new therapeutic and preventive strategies for these diseases by understanding their contribution to health. In this review, we discussed in-depth the potential food sources of functional lipids and their reported potential benefit of the major lipid classification: based on their composition such as simple, compound, and derived lipids, and based on their function such as storage and structural, by investigating the intricate mechanisms through which these lipids interact in the human body. We summarize the key insights into the bioaccessibility and bioavailability of the most studied functional lipids. Furthermore, we review the main immunomodulatory mechanisms reported in the literature in the past years. Finally, we discuss the perspectives and challenges faced in the food industry related to functional lipids.
Collapse
Affiliation(s)
- Gloria Itzel Peña-Vázquez
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Ana Arredondo-Arenillas
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
| | - Sayra N Serrano-Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| | - Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Monterrey, NL, México
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Monterrey, NL, México
| |
Collapse
|
63
|
Pallozzi M, De Gaetano V, Di Tommaso N, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Role of Gut Microbial Metabolites in the Pathogenesis of Primary Liver Cancers. Nutrients 2024; 16:2372. [PMID: 39064815 PMCID: PMC11280141 DOI: 10.3390/nu16142372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatobiliary malignancies, which include hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are the sixth most common cancers and the third leading cause of cancer-related death worldwide. Hepatic carcinogenesis is highly stimulated by chronic inflammation, defined as fibrosis deposition, and an aberrant imbalance between liver necrosis and nodular regeneration. In this context, the gut-liver axis and gut microbiota have demonstrated a critical role in the pathogenesis of HCC, as dysbiosis and altered intestinal permeability promote bacterial translocation, leading to chronic liver inflammation and tumorigenesis through several pathways. A few data exist on the role of the gut microbiota or bacteria resident in the biliary tract in the pathogenesis of CCA, and some microbial metabolites, such as choline and bile acids, seem to show an association. In this review, we analyze the impact of the gut microbiota and its metabolites on HCC and CCA development and the role of gut dysbiosis as a biomarker of hepatobiliary cancer risk and of response during anti-tumor therapy. We also discuss the future application of gut microbiota in hepatobiliary cancer management.
Collapse
Affiliation(s)
- Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Valeria De Gaetano
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Natalia Di Tommaso
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Francesco Santopaolo
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (M.P.); (V.D.G.); (N.D.T.); (L.C.); (F.S.); (L.S.); (A.G.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
64
|
Özçam M, Lin DL, Gupta CL, Li A, Wheatley LM, Baloh CH, Sanda S, Jones SM, Lynch SV. Enhanced Gut Microbiome Capacity for Amino Acid Metabolism is associated with Peanut Oral Immunotherapy Failure. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.15.24309840. [PMID: 39072014 PMCID: PMC11275660 DOI: 10.1101/2024.07.15.24309840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Peanut Oral Immunotherapy (POIT) holds promise for remission of peanut allergy, though treatment is protracted and successful in only a subset of patients. Because the gut microbiome is linked to food allergy, we sought to identify fecal microbial predictors of POIT efficacy and to develop mechanistic insights into treatment response. Longitudinal functional analysis of the fecal microbiome of children (n=79) undergoing POIT in a first double-blind, placebo-controlled clinical trial, identified five microbial-derived bile acids enriched in fecal samples prior to POIT initiation that predicted treatment efficacy (AUC 0.71). Failure to induce disease remission was associated with a distinct fecal microbiome with enhanced capacity for bile acid deconjugation, amino acid metabolism, and increased peanut peptide degradation in vitro . Thus, microbiome mechanisms of POIT failure appear to include depletion of immunomodulatory secondary bile and amino acids and the antigenic peanut peptides necessary to promote peanut allergy desensitization and remission.
Collapse
|
65
|
Gupta S, Biswas P, Das B, Mondal S, Gupta P, Das D, Mallick AI. Selective depletion of Campylobacter jejuni via T6SS dependent functionality: an approach for improving chickens gut health. Gut Pathog 2024; 16:38. [PMID: 38997758 PMCID: PMC11245787 DOI: 10.1186/s13099-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The targeted depletion of potential gut pathogens is often challenging because of their intrinsic ability to thrive in harsh gut environments. Earlier, we showed that Campylobacter jejuni (C. jejuni) exclusively uses the Type-VI Secretion System (T6SS) to target its prey such as Escherichia coli (E. coli), and phenotypic differences between T6SS-negative and T6SS-positive C. jejuni isolates toward bile salt sensitivity. However, it remains unclear how the target-driven T6SS functionality prevails in a polymicrobial gut environment. Here, we investigated the fate of microbial competition in an altered gut environment via bacterial T6SS using a T6SS-negative and -positive C. jejuni or its isogenic mutant of the hemolysin-coregulated protein (hcp). We showed that in the presence of bile salt and prey bacteria (E. coli), T6SS-positive C. jejuni experiences enhanced intracellular stress leading to cell death. Intracellular tracking of fluorophore-conjugated bile salts confirmed that T6SS-mediated bile salt influx into C. jejuni can enhance intracellular oxidative stress, affecting C. jejuni viability. We further investigated whether the T6SS activity in the presence of prey (E. coli) perturbs the in vivo colonization of C. jejuni. Using chickens as primary hosts of C. jejuni and non-pathogenic E. coli as prey, we showed a marked reduction of C. jejuni load in chickens cecum when bile salt solution was administered orally. Analysis of local antibody responses and pro-inflammatory gene expression showed a reduced risk of tissue damage, indicating that T6SS activity in the complex gut environment can be exploited as a possible measure to clear the persistent colonization of C. jejuni in chickens.
Collapse
Affiliation(s)
- Subhadeep Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Prakash Biswas
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal, 741246, India.
| |
Collapse
|
66
|
Bilson J, Scorletti E, Swann JR, Byrne CD. Bile Acids as Emerging Players at the Intersection of Steatotic Liver Disease and Cardiovascular Diseases. Biomolecules 2024; 14:841. [PMID: 39062555 PMCID: PMC11275019 DOI: 10.3390/biom14070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Affecting approximately 25% of the global population, steatotic liver disease (SLD) poses a significant health concern. SLD ranges from simple steatosis to metabolic dysfunction-associated steatohepatitis and fibrosis with a risk of severe liver complications such as cirrhosis and hepatocellular carcinoma. SLD is associated with obesity, atherogenic dyslipidaemia, and insulin resistance, increasing cardiovascular risks. As such, identifying SLD is vital for cardiovascular disease (CVD) prevention and treatment. Bile acids (BAs) have critical roles in lipid digestion and are signalling molecules regulating glucose and lipid metabolism and influencing gut microbiota balance. BAs have been identified as critical mediators in cardiovascular health, influencing vascular tone, cholesterol homeostasis, and inflammatory responses. The cardio-protective or harmful effects of BAs depend on their concentration and composition in circulation. The effects of certain BAs occur through the activation of a group of receptors, which reduce atherosclerosis and modulate cardiac functions. Thus, manipulating BA receptors could offer new avenues for treating not only liver diseases but also CVDs linked to metabolic dysfunctions. In conclusion, this review discusses the intricate interplay between BAs, metabolic pathways, and hepatic and extrahepatic diseases. We also highlight the necessity for further research to improve our understanding of how modifying BA characteristics affects or ameliorates disease.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
- Division of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Christopher D. Byrne
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (E.S.)
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton, University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
67
|
Rodriguez Rodriguez ER, Nordvang RT, Petersson M, Rendsvig JKH, Arendrup EW, Fernández Quintero ML, Jenkins TP, Laustsen AH, Thrane SW. Fit-for-purpose heterodivalent single-domain antibody for gastrointestinal targeting of toxin B from Clostridium difficile. Protein Sci 2024; 33:e5035. [PMID: 38923049 PMCID: PMC11201815 DOI: 10.1002/pro.5035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Single-domain antibodies (sdAbs), such as VHHs, are increasingly being developed for gastrointestinal (GI) applications against pathogens to strengthen gut health. However, what constitutes a suitable developability profile for applying these proteins in a gastrointestinal setting remains poorly explored. Here, we describe an in vitro methodology for the identification of sdAb derivatives, more specifically divalent VHH constructs, that display extraordinary developability properties for oral delivery and functionality in the GI environment. We showcase this by developing a heterodivalent VHH construct that cross-inhibits the toxic activity of the glycosyltransferase domains (GTDs) from three different toxinotypes of cytotoxin B (TcdB) from lineages of Clostridium difficile. We show that the VHH construct possesses high stability and binding activity under gastric conditions, in the presence of bile salts, and at high temperatures. We suggest that the incorporation of early developability assessment could significantly aid in the efficient discovery of VHHs and related constructs fit for oral delivery and GI applications.
Collapse
Affiliation(s)
| | | | - Marcus Petersson
- Bactolife A/SCopenhagen EastDenmark
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | | | | | | - Timothy P. Jenkins
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Andreas H. Laustsen
- Bactolife A/SCopenhagen EastDenmark
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | | |
Collapse
|
68
|
Hansdah K, Lui JC. Emerging Insights into the Endocrine Regulation of Bone Homeostasis by Gut Microbiome. J Endocr Soc 2024; 8:bvae117. [PMID: 38957653 PMCID: PMC11215793 DOI: 10.1210/jendso/bvae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/04/2024] Open
Abstract
Gut microbiota plays an important role in the regulation of bone homeostasis and bone health. Recent studies showed that these effects could be mediated through microbial metabolites released by the microbiota like short-chain fatty acids, metabolism of endogenous molecules such as bile acids, or a complex interplay between microbiota, the endocrine system, and the immune system. Importantly, some studies showed a reciprocal relationship between the endocrine system and gut microbiota. For instance, postmenopausal estrogen deficiency could lead to dysbiosis of the gut microbiota, which could in turn affect various immune response and bone remodeling. In addition, evidence showed that shift in the indigenous gut microbiota caused by antibiotics treatment may also impact normal skeletal growth and maturation. In this mini-review, we describe recent findings on the role of microbiome in bone homeostasis, with a particular focus on molecular mechanisms and their interactions with the endocrine and immune system. We will also discuss the recent findings on estrogen deficiency and microbiota dysbiosis, and the clinical implications for the development of new therapeutic strategies for osteoporosis and other bone disorders.
Collapse
Affiliation(s)
- Kirtal Hansdah
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
69
|
Mohanty I, Allaband C, Mannochio-Russo H, El Abiead Y, Hagey LR, Knight R, Dorrestein PC. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024; 21:493-516. [PMID: 38575682 DOI: 10.1038/s41575-024-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
70
|
Li XJ, Fang C, Zhao RH, Zou L, Miao H, Zhao YY. Bile acid metabolism in health and ageing-related diseases. Biochem Pharmacol 2024; 225:116313. [PMID: 38788963 DOI: 10.1016/j.bcp.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.
Collapse
Affiliation(s)
- Xiao-Jun Li
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, No.13, Shi Liu Gang Road, Haizhu District, Guangzhou, Guangdong 510315, China
| | - Chu Fang
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Rui-Hua Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu, Sichuan 610106, China
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China; National Key Laboratory of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, China.
| |
Collapse
|
71
|
Stark KA, Rinaldi G, Costain A, Clare S, Tolley C, Almeida A, McCarthy C, Harcourt K, Brandt C, Lawley TD, Berriman M, MacDonald AS, Forde-Thomas JE, Hulme BJ, Hoffmann KF, Cantacessi C, Cortés A. Gut microbiota and immune profiling of microbiota-humanised versus wildtype mouse models of hepatointestinal schistosomiasis. Anim Microbiome 2024; 6:36. [PMID: 38918824 PMCID: PMC11201864 DOI: 10.1186/s42523-024-00318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Mounting evidence of the occurrence of direct and indirect interactions between the human blood fluke, Schistosoma mansoni, and the gut microbiota of rodent models raises questions on the potential role(s) of the latter in the pathophysiology of hepatointestinal schistosomiasis. However, substantial differences in both the composition and function between the gut microbiota of laboratory rodents and that of humans hinders an in-depth understanding of the significance of such interactions for human schistosomiasis. Taking advantage of the availability of a human microbiota-associated mouse model (HMA), we have previously highlighted differences in infection-associated changes in gut microbiota composition between HMA and wildtype (WT) mice. To further explore the dynamics of schistosome-microbiota relationships in HMA mice, in this study we (i) characterize qualitative and quantitative changes in gut microbiota composition of a distinct line of HMA mice (D2 HMA) infected with S. mansoni prior to and following the onset of parasite egg production; (ii) profile local and systemic immune responses against the parasite in HMA as well as WT mice and (iii) assess levels of faecal inflammatory markers and occult blood as indirect measures of gut tissue damage. We show that patent S. mansoni infection is associated with reduced bacterial alpha diversity in the gut of D2 HMA mice, alongside expansion of hydrogen sulphide-producing bacteria. Similar systemic humoral responses against S. mansoni in WT and D2 HMA mice, as well as levels of faecal lipocalin and markers of alternatively activated macrophages, suggest that these are independent of baseline gut microbiota composition. Qualitative comparative analyses between faecal microbial profiles of S. mansoni-infected WT and distinct lines of HMA mice reveal that, while infection-induced alterations of the gut microbiota composition are highly dependent on the baseline flora, bile acid composition and metabolism may represent key elements of schistosome-microbiota interactions through the gut-liver axis.
Collapse
Affiliation(s)
- K A Stark
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - G Rinaldi
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - A Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - S Clare
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - C Tolley
- Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - A Almeida
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - C McCarthy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - K Harcourt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - C Brandt
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - T D Lawley
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - M Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - A S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - J E Forde-Thomas
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - B J Hulme
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - K F Hoffmann
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - C Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - A Cortés
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Universitat de València, Valencia, Spain
| |
Collapse
|
72
|
Woelfel S, Silva MS, Stecher B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024; 32:820-836. [PMID: 38870899 DOI: 10.1016/j.chom.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial communities that colonize the human gastrointestinal (GI) tract defend against pathogens through a mechanism known as colonization resistance (CR). Advances in technologies such as next-generation sequencing, gnotobiotic mouse models, and bacterial cultivation have enhanced our understanding of the underlying mechanisms and the intricate microbial interactions involved in CR. Rather than being attributed to specific microbial clades, CR is now understood to arise from a dynamic interplay between microbes and the host and is shaped by metabolic, immune, and environmental factors. This evolving perspective underscores the significance of contextual factors, encompassing microbiome composition and host conditions, in determining CR. This review highlights recent research that has shifted its focus toward elucidating how these factors interact to either promote or impede enteric infections. It further discusses future research directions to unravel the complex relationship between host, microbiota, and environmental determinants in safeguarding against GI infections to promote human health.
Collapse
Affiliation(s)
- Simon Woelfel
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer-Institute for Hygiene and Clinical Microbiology, Ludwig Maximilian University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany.
| |
Collapse
|
73
|
de la Cuesta-Zuluaga J, Boldt L, Maier L. Response, resistance, and recovery of gut bacteria to human-targeted drug exposure. Cell Host Microbe 2024; 32:786-793. [PMID: 38870896 DOI: 10.1016/j.chom.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Survival strategies of human-associated microbes to drug exposure have been mainly studied in the context of bona fide pathogens exposed to antibiotics. Less well understood are the survival strategies of non-pathogenic microbes and host-associated commensal communities to the variety of drugs and xenobiotics to which humans are exposed. The lifestyle of microbial commensals within complex communities offers a variety of ways to adapt to different drug-induced stresses. Here, we review the responses and survival strategies employed by gut commensals when exposed to drugs-antibiotics and non-antibiotics-at the individual and community level. We also discuss the factors influencing the recovery and establishment of a new community structure following drug exposure. These survival strategies are key to the stability and resilience of the gut microbiome, ultimately influencing the overall health and well-being of the host.
Collapse
Affiliation(s)
- Jacobo de la Cuesta-Zuluaga
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; M3-Research Center for Malignome, Metabolome and Microbiome, University of Tübingen, Tübingen, Germany
| | - Leonardo Boldt
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; M3-Research Center for Malignome, Metabolome and Microbiome, University of Tübingen, Tübingen, Germany
| | - Lisa Maier
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany; M3-Research Center for Malignome, Metabolome and Microbiome, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
74
|
Leite G, Barlow GM, Rashid M, Hosseini A, Cohrs D, Parodi G, Morales W, Weitsman S, Rezaie A, Pimentel M, Mathur R. Characterization of the Small Bowel Microbiome Reveals Different Profiles in Human Subjects Who Are Overweight or Have Obesity. Am J Gastroenterol 2024; 119:1141-1153. [PMID: 38578969 PMCID: PMC11142649 DOI: 10.14309/ajg.0000000000002790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
INTRODUCTION Gut microbiome changes are linked to obesity, but findings are based on stool data. In this article, we analyzed the duodenal microbiome and serum biomarkers in subjects with normal weight, overweight, and obesity. METHODS Duodenal aspirates and serum samples were obtained from subjects undergoing standard-of-care esophagogastroduodenoscopy without colon preparation. Aspirate DNAs were analyzed by 16S rRNA and shotgun sequencing. Predicted microbial metabolic functions and serum levels of metabolic and inflammatory biomarkers were also assessed. RESULTS Subjects with normal weight (N = 105), overweight (N = 67), and obesity (N = 42) were identified. Overweight-specific duodenal microbial features include lower relative abundance (RA) of Bifidobacterium species and Escherichia coli strain K-12 and higher Lactobacillus intestinalis , L. johnsonii , and Prevotella loescheii RA. Obesity-specific features include higher Lactobacillus gasseri RA and lower L. reuteri (subspecies rodentium ), Alloprevotella rava , and Leptotrichia spp RA. Escalation features (progressive changes from normal weight through obesity) include decreasing Bacteroides pyogenes , Staphylococcus hominis , and unknown Faecalibacterium species RA, increasing RA of unknown Lactobacillus and Mycobacterium species, and decreasing microbial potential for biogenic amines metabolism. De-escalation features (direction of change altered in normal to overweight and overweight to obesity) include Lactobacillus acidophilus , L. hominis , L. iners , and Bifidobacterium dentium . An unknown Lactobacillus species is associated with type IIa dyslipidemia and overweight, whereas Alloprevotella rava is associated with type IIb and IV dyslipidemias. DISCUSSION Direct analysis of the duodenal microbiome has identified key genera associated with overweight and obesity, including some previously identified in stool, e.g., Bifidobacterium and Lactobacillus . Specific species and strains exhibit differing associations with overweight and obesity, including escalation and de-escalation features that may represent targets for future study and therapeutics.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Gillian M. Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Mohamad Rashid
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Daniel Cohrs
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, California, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, California, USA
| |
Collapse
|
75
|
Sargsian S, Mondragón-Palomino O, Lejeune A, Ercelen D, Jin WB, Varghese A, Lim YAL, Guo CJ, Loke P, Cadwell K. Functional characterization of helminth-associated Clostridiales reveals covariates of Treg differentiation. MICROBIOME 2024; 12:86. [PMID: 38730492 PMCID: PMC11084060 DOI: 10.1186/s40168-024-01793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/10/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.
Collapse
Affiliation(s)
- Shushan Sargsian
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Octavio Mondragón-Palomino
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alannah Lejeune
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Defne Ercelen
- Department of Medicine, Division of Gastroenterology and Hepatology, New York University Langone Health, New York, NY, 10016, USA
| | - Wen-Bing Jin
- Weill Cornell Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Cornell University, New York, NY, 10021, USA
| | - Alan Varghese
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yvonne A L Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chun-Jun Guo
- Weill Cornell Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Cornell University, New York, NY, 10021, USA
| | - P'ng Loke
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Ken Cadwell
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
76
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
77
|
Pham HN, Pham L, Sato K. Navigating the liver landscape: upcoming pharmacotherapies for primary sclerosing cholangitis. Expert Opin Pharmacother 2024; 25:895-906. [PMID: 38813599 DOI: 10.1080/14656566.2024.2362263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a bile duct disorder characterized by ductular reaction, hepatic inflammation, and liver fibrosis. The pathogenesis of PSC is still undefined, and treatment options for patients are limited. Previous clinical trials evaluated drug candidates targeting various cellular functions and pathways, such as bile acid signaling and absorption, gut bacteria and permeability, and lipid metabolisms. However, most of phase III clinical trials for PSC were disappointing, except vancomycin therapy, and there are still no established medications for PSC with efficacy and safety confirmed by phase IV clinical trials. AREAS COVERED This review summarizes the currently ongoing or completed clinical studies for PSC, which are phase II or further, and discusses therapeutic targets and strategies, limitations, and future directions and possibilities of PSC treatments. A literature search was conducted in PubMed and ClinicalTrials.gov utilizing the combination of the searched term 'primary sclerosing cholangitis' with other keywords, such as 'clinical trials,' 'antibiotics,' or drug names. Clinical trials at phase II or further were included for consideration. EXPERT OPINION Only vancomycin demonstrated promising therapeutic effects in the phase III clinical trial. Other drug candidates showed futility or inconsistent results, and the search for novel PSC treatments is still ongoing.
Collapse
Affiliation(s)
- Hoang Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh Pham
- Department of Science and Mathematics, Texas A&M University - Central Texas, Killeen, TX, USA
| | - Keisaku Sato
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
78
|
Wang H, He Y, Dang D, Zhao Y, Zhao J, Lu W. Gut Microbiota-Derived Tryptophan Metabolites Alleviate Allergic Asthma Inflammation in Ovalbumin-Induced Mice. Foods 2024; 13:1336. [PMID: 38731707 PMCID: PMC11082989 DOI: 10.3390/foods13091336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Asthma is a prevalent respiratory disease. The present study is designed to determine whether gut microbiota-derived tryptophan metabolites alleviate allergic asthma inflammation in ovalbumin (OVA)-induced mice and explore the effect and potential mechanism therein. Asthma model mice were constructed by OVA treatment, and kynurenine (KYN), indole-3-lactic acid (ILA), in-dole-3-carbaldehyde (I3C), and indole acetic acid (IAA) were administered by intraperitoneal injection. The percent survival, weight and asthma symptom score of mice were recorded. The total immunoglobulin E and OVA-specific (s)IgE in the serum and the inflammatory cytokines in the bronchoalveolar lavage fluid (BALF) were detected by the corresponding ELISA kits. The composition of the gut microbiota and tryptophan-targeted metabolism in mouse feces were analyzed using 16S rRNA gene sequencing and targeted metabolomics, respectively. The four tryptophan metabolites improved the percent survival, weight and asthma symptoms of mice, and reduced the inflammatory cells in lung tissues, especially I3C. I3C and IAA significantly (p < 0.05) downregulated the levels of OVA-IgE and inflammatory cytokines. KYN was observed to help restore gut microbiota diversity. Additionally, I3C, KYN, and ILA increased the relative abundance of Anaeroplasma, Akkermansia, and Ruminococcus_1, respectively, which were connected with tryptophan metabolic pathways. IAA also enhanced capability of tryptophan metabolism by the gut microbiota, restoring tryptophan metabolism and increasing production of other tryptophan metabolites. These findings suggest that tryptophan metabolites may modulate asthma through the gut microbiota, offering potential benefits for clinical asthma management.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuan He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Danting Dang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yurong Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (H.W.); (Y.H.); (D.D.); (Y.Z.); (J.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
79
|
Rätsep M, Kilk K, Zilmer M, Kuusik S, Kuus L, Vallas M, Gerulis O, Štšepetova J, Orav A, Songisepp E. Investigation of Effects of Novel Bifidobacterium longum ssp. longum on Gastrointestinal Microbiota and Blood Serum Parameters in a Conventional Mouse Model. Microorganisms 2024; 12:840. [PMID: 38674784 PMCID: PMC11052112 DOI: 10.3390/microorganisms12040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Representatives of the genus Bifidobacterium are widely used as probiotics to modulate the gut microbiome and alleviate various health conditions. The action mechanisms of probiotics rely on their direct effect on the gut microbiota and the local and systemic effect of its metabolites. The main purpose of this animal experiment was to assess the biosafety of the Bifidobacterium longum strain BIOCC1719. Additional aims were to characterise the influence of the strain on the intestinal microbiota and the effect on several health parameters of the host during 15- and 30-day oral administration of the strain to mice. The strain altered the gut microbial community, thereby altering luminal short-chain fatty acid metabolism, resulting in a shift in the proportions of acetic, butyric, and propionic acids in the faeces and serum of the test group mice. Targeted metabolic profiling of serum revealed the possible ability of the strain to positively affect the hosts' amino acids and bile acids metabolism, as the cholic acid, deoxycholic acid, aspartate, and glutamate concentration were significantly higher in the test group. The tendency to increase anti-inflammatory polyamines (spermidine, putrescine) and neuroprotective 3-indolepropionic acid metabolism and to lower uremic toxins (P-cresol-SO4, indoxyl-SO4) was registered. Thus, B. longum BIOCC1719 may exert health-promoting effects on the host through modulation of the gut microbiome and the host metabolome via inducing the production of health-promoting bioactive compounds. The health effects of the strain need to be confirmed in clinical trials with human volunteers.
Collapse
Affiliation(s)
- Merle Rätsep
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411 Tartu, Estonia; (K.K.)
| | - Mihkel Zilmer
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411 Tartu, Estonia; (K.K.)
| | - Sirje Kuusik
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Liina Kuus
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Mirjam Vallas
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Oksana Gerulis
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| | - Jelena Štšepetova
- Department of Microbiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411 Tartu, Estonia
| | - Aivar Orav
- Tartu Health Care College, Nooruse St. 5, 50411 Tartu, Estonia
| | - Epp Songisepp
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia (L.K.); (M.V.)
| |
Collapse
|
80
|
Zhao J, Hao S, Chen Y, Ye X, Fang P, Hu H. Tauroursodeoxycholic acid liposome alleviates DSS-induced ulcerative colitis through restoring intestinal barrier and gut microbiota. Colloids Surf B Biointerfaces 2024; 236:113798. [PMID: 38377705 DOI: 10.1016/j.colsurfb.2024.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Ulcerative colitis (UC) is a chronic and progressive inflammatory disease that damages the colonic mucosa and disrupts the intestinal epithelial barrier. The current clinical treatment for UC is mainly chemotherapy, which has the limited effectiveness and severe side effects. It mainly focuses on the treatment of inflammation while neglecting the repair of the intestinal mucosa and the restoration of the microbiota balance. Here, we aimed to address these challenges by using an amphipathic bile acid -tauroursodeoxycholic acid (TUDCA) to replace cholesterol (CHL) in conventional liposomes. We prepared TUDCA/Emodin liposomes by incorporating the hydrophobic drug emodin. The experimental results indicated that TUDCA/Emodin Lip had uniform particle size distribution, good stability, low cytotoxicity, and exhibited good mucus permeability and anti-inflammatory activity in in vitro experiments, and was able to protect cells from oxidative stress. After oral administration, TUDCA/Emodin Lip significantly alleviated the severity of UC. This was evidenced by increased colon length, decreased inflammation and reduced colonic endoplasmic reticulum stress (ERS). Furthermore, TUDCA/Emodin Lip maintained the normal levels of the tight junction proteins Claudin-1 and ZO-1, thereby restoring the integrity of the intestinal barrier. Importantly, TUDCA/Emodin Lip also promoted the ecological restoration of the gut microbiota, increased overall abundance and diversity. Taken together, TUDCA/Emodin Lip can fundamentally restore intestinal homeostasis, this work provides a new, efficient and easily transformable treatment for UC.
Collapse
Affiliation(s)
- Junke Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suqi Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxing Ye
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengchao Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
81
|
Németh K, Sterczer Á, Kiss DS, Lányi RK, Hemző V, Vámos K, Bartha T, Buzás A, Lányi K. Determination of Bile Acids in Canine Biological Samples: Diagnostic Significance. Metabolites 2024; 14:178. [PMID: 38668306 PMCID: PMC11052161 DOI: 10.3390/metabo14040178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The comprehensive examination of bile acids is of paramount importance across various fields of health sciences, influencing physiology, microbiology, internal medicine, and pharmacology. While enzymatic reaction-based photometric methods remain fundamental for total BA measurements, there is a burgeoning demand for more sophisticated techniques such as liquid chromatography-tandem mass spectrometry (LC-MS/MS) for comprehensive BA profiling. This evolution reflects a need for nuanced diagnostic assessments in clinical practice. In canines, a BA assessment involves considering factors, such as food composition, transit times, and breed-specific variations. Multiple matrices, including blood, feces, urine, liver tissue, and gallbladder bile, offer insights into BA profiles, yet interpretations remain complex, particularly in fecal analysis due to sampling challenges and breed-specific differences. Despite ongoing efforts, a consensus regarding optimal matrices and diagnostic thresholds remains elusive, highlighting the need for further research. Emphasizing the scarcity of systematic animal studies and underscoring the importance of ap-propriate sampling methodologies, our review advocates for targeted investigations into BA alterations in canine pathology, promising insights into pathomechanisms, early disease detection, and therapeutic avenues.
Collapse
Affiliation(s)
- Krisztián Németh
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Ágnes Sterczer
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Dávid Sándor Kiss
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Réka Katalin Lányi
- Faculty of Pharmacy, University of Szeged, Zrínyi u. 9, H-6720 Szeged, Hungary;
| | - Vivien Hemző
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Kriszta Vámos
- Department of Internal Medicine, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary;
| | - Tibor Bartha
- Department of Physiology and Biochemistry, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (K.N.); (D.S.K.); (V.H.); (T.B.)
| | - Anna Buzás
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| | - Katalin Lányi
- Institute of Food Chain Science, University of Veterinary Medicine, István u. 2, H-1078 Budapest, Hungary; (A.B.); (K.L.)
| |
Collapse
|
82
|
Trampert DC, Kunst RF, van de Graaf SFJ. Targeting bile salt homeostasis in biliary diseases. Curr Opin Gastroenterol 2024; 40:62-69. [PMID: 38230695 DOI: 10.1097/mog.0000000000000997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
PURPOSE OF REVIEW Advances in the understanding of bile salt synthesis, transport and signalling show the potential of modulating bile salt homeostasis as a therapeutic strategy in cholestatic liver diseases. Here, recent developments in (pre)clinical research in this field is summarized and discussed. RECENT FINDINGS Inhibition of the apical sodium-dependent bile salt transporter (ASBT) and Na + -taurocholate cotransporting polypeptide (NTCP) seems effective against cholestatic liver diseases, as well as Farnesoid X receptor (FXR) agonism or a combination of both. While approved for the treatment of primary biliary cholangitis (PBC) and intrahepatic cholestasis of pregnancy (ICP), ursodeoxycholic acid (UDCA) has retrospectively shown carefully promising results in primary sclerosing cholangitis (PSC). The side chain shortened derivate norUDCA is of further therapeutic interest since its mechanisms of action are independent of the bile salt transport machinery. In the pathogenesis of sclerosing cholangiopathies, a skewed T-cell response with alterations in gut microbiota and bile salt pool compositions are observed. In PSC pathogenesis, the bile salt receptor Takeda G-protein-coupled receptor 5 (TGR5) in cholangiocytes is implicated, whilst in immunoglobulin G4-related cholangitis the autoantigens annexin A11 and laminin 511-E8 are involved in protecting cholangiocytes. SUMMARY Modulating bile salt homeostasis has proven a promising treatment strategy in models of cholestasis and are continuously being further developed. Confirmatory clinical studies are needed in order to assess the proposed treatment strategies in patients allowing for a broader therapeutic arsenal in the future.
Collapse
Affiliation(s)
- David C Trampert
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Roni F Kunst
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam University Medical Centers
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
83
|
Charitos IA, Aliani M, Tondo P, Venneri M, Castellana G, Scioscia G, Castellaneta F, Lacedonia D, Carone M. Biomolecular Actions by Intestinal Endotoxemia in Metabolic Syndrome. Int J Mol Sci 2024; 25:2841. [PMID: 38474087 DOI: 10.3390/ijms25052841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Metabolic syndrome (MetS) is a combination of metabolic disorders that concurrently act as factors promoting systemic pathologies such as atherosclerosis or diabetes mellitus. It is now believed to encompass six main interacting conditions: visceral fat, imbalance of lipids (dyslipidemia), hypertension, insulin resistance (with or without impairing both glucose tolerance and fasting blood sugar), and inflammation. In the last 10 years, there has been a progressive interest through scientific research investigations conducted in the field of metabolomics, confirming a trend to evaluate the role of the metabolome, particularly the intestinal one. The intestinal microbiota (IM) is crucial due to the diversity of microorganisms and their abundance. Consequently, IM dysbiosis and its derivate toxic metabolites have been correlated with MetS. By intervening in these two factors (dysbiosis and consequently the metabolome), we can potentially prevent or slow down the clinical effects of the MetS process. This, in turn, may mitigate dysregulations of intestinal microbiota axes, such as the lung axis, thereby potentially alleviating the negative impact on respiratory pathology, such as the chronic obstructive pulmonary disease. However, the biomolecular mechanisms through which the IM influences the host's metabolism via a dysbiosis metabolome in both normal and pathological conditions are still unclear. In this study, we seek to provide a description of the knowledge to date of the IM and its metabolome and the factors that influence it. Furthermore, we analyze the interactions between the functions of the IM and the pathophysiology of major metabolic diseases via local and systemic metabolome's relate endotoxemia.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Maria Aliani
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Pasquale Tondo
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Maria Venneri
- Istituti Clinici Scientifici Maugeri IRCCS, Genomics and Proteomics Laboratory, "Istitute" of Bari, 70124 Bari, Italy
| | - Giorgio Castellana
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Francesca Castellaneta
- School of Clinical Biochemistry and Pathology, University of Bari (Aldo Moro), 70124 Bari, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
- Institute of Respiratory Diseases, Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Mauro Carone
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, "Istitute" of Bari, 70124 Bari, Italy
| |
Collapse
|
84
|
Cai H, Zhang J, Liu C, Le TN, Lu Y, Feng F, Zhao M. High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice. Foods 2024; 13:699. [PMID: 38472812 DOI: 10.3390/foods13050699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The altered circulating bile acids (BAs) modulate gut microbiota, energy metabolism and various physiological functions. BA profiles in liver, serum, ileum and feces of HFD-fed mice were analyzed with normal chow diet (NCD)-fed mice after 16-week feeding. Furthermore, gut microbiota was analyzed and its correlation analysis with BA was performed. The result showed that long-term HFD feeding significantly decreased hepatic and serum BA levels, mainly attributed to the inhibition of hepatic BA synthesis and the reduced reabsorption efficiency of BAs in enterohepatic circulation. It also significantly impaired glucose and lipid homeostasis and gut microbiota in mice. We found significantly higher bile salt hydrolase activity in ileal microbes and a higher ratio of free BAs to conjugated BA content in ileal contents in HFD groups compared with NCD group mice, which might account for the activated intestinal farnesoid X receptor signaling on liver BA synthesis inhibition and reduced ileal reabsorption. The decreased circulating BAs were associated with the dysregulation of the lipid metabolism according to the decreased TGR5 signaling in the ileum and BAT. In addition, it is astonishing to find extremely high percentages of taurocholate and 12-OH BAs in liver and serum BA profiles of both groups, which was mainly attributed to the high substrate selectivity for 12-OH BAs of the intestinal BAs transporter during the ileal reabsorption of enterohepatic circulation. This study revealed a significant effect of long-term HFD feeding on the decreased circulating BA pool in mice, which impaired lipid homeostasis and gut microbiota, and collectively resulted in metabolic disorders and obesity.
Collapse
Affiliation(s)
- Haiying Cai
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chang Liu
- School of Biological and Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Thanh Ninh Le
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
85
|
Juanola O, Francés R, Caparrós E. Exploring the Relationship between Liver Disease, Bacterial Translocation, and Dysbiosis: Unveiling the Gut-Liver Axis. Visc Med 2024; 40:12-19. [PMID: 38312368 PMCID: PMC10836950 DOI: 10.1159/000535962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
Background The global burden of liver disease and cirrhosis has been progressively increasing in the last decade. The interplay between gut microbiota and immune system and the bidirectional relationship with the liver, known as the gut-liver axis, has arisen as a fundamental aspect of liver disease. Summary Alterations of the gut microbiome have been described and include both dysbiotic microbial signatures and intestinal bacterial overgrowth. The integrity of the intestinal epithelial barrier is essential for preventing the access of harmful substances and bacterial products into the host. Bacterial translocation due to altered host-microbiota interactions triggers local immune cell activation and facilitates a chronic inflammatory state that can ultimately lead to immune exhaustion, characteristic of cirrhosis. In cirrhosis, breakdown of the gut vascular barrier allows access of bacterial products to portal blood circulation and facilitates their influx into the liver, further contributing to disease progression. Key Messages A better understanding of the contributing factors to pathological bacterial translocation and the impact of dysbiosis in liver disease will lead to achieve innovative therapeutic strategies in cirrhosis.
Collapse
Affiliation(s)
- Oriol Juanola
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Rubén Francés
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
- Instituto IDIBE, Universidad Miguel Hernández, Elche, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Caparrós
- Hepatic and Intestinal Immunobiology Group, Dpto. Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- IIS ISABIAL, Hospital General Universitario Dr. Balmis, Alicante, Spain
| |
Collapse
|
86
|
Yin Q, Yu J, Li J, Zhang T, Wang T, Zhu Y, Zhang J, Yao J. Enhancing milk quality and modulating rectal microbiota of dairy goats in starch-rich diet: the role of bile acid supplementation. J Anim Sci Biotechnol 2024; 15:7. [PMID: 38247003 PMCID: PMC10801996 DOI: 10.1186/s40104-023-00957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/29/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats. While bile acids (BAs) have been used as a lipid emulsifier in monogastric and aquatic animals, their effect on ruminants is not well understood. This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology, including milk composition, rumen fermentation, gut microbiota, and BA metabolism. RESULTS We randomly divided eighteen healthy primiparity lactating dairy goats (days in milk = 100 ± 6 d) into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet. The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk. BAs supplementation led to a reduction in saturated fatty acids (C16:0) and an increase in monounsaturated fatty acids (cis-9 C18:1), resulting in a healthier milk fatty acid profile. We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected. Furthermore, BAs supplementation induced significant changes in the composition of the gut microbiota, favoring the enrichment of specific bacterial groups and altering the balance of microbial populations. Correlation analysis revealed associations between specific bacterial groups (Bacillus and Christensenellaceae R-7 group) and BA types, suggesting a role for the gut microbiota in BA metabolism. Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism, suggesting that BAs supplementation has the potential to modulate lipid-related processes. CONCLUSION These findings highlight the potential benefits of BAs supplementation in enhancing milk production, improving milk quality, and influencing metabolic pathways in dairy goats. Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.
Collapse
Affiliation(s)
- Qingyan Yin
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Junjian Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Jiaxiao Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Tianci Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Tianyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China
| | - Yufei Zhu
- DAYU Bioengineering (Xi'an) Industrial Development Research Institute, Xi'an, 710000, Shaanxi, P.R. China
| | - Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, Shaanxi, P.R. China.
| |
Collapse
|
87
|
Skoufou M, Tsigalou C, Vradelis S, Bezirtzoglou E. The Networked Interaction between Probiotics and Intestine in Health and Disease: A Promising Success Story. Microorganisms 2024; 12:194. [PMID: 38258020 PMCID: PMC10818559 DOI: 10.3390/microorganisms12010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Probiotics are known to promote human health either precautionary in healthy individuals or therapeutically in patients suffering from certain ailments. Although this knowledge was empirical in past tomes, modern science has already verified it and expanded it to new limits. These microorganisms can be found in nature in various foods such as dairy products or in supplements formulated for clinical or preventive use. The current review examines the different mechanisms of action of the probiotic strains and how they interact with the organism of the host. Emphasis is put on the clinical therapeutic use of these beneficial microorganisms in various clinical conditions of the human gastrointestinal tract. Diseases of the gastrointestinal tract and particularly any malfunction and inflammation of the intestines seriously compromise the health of the whole organism. The interaction between the probiotic strains and the host's microbiota can alleviate the clinical signs and symptoms while in some cases, in due course, it can intervene in the underlying pathology. Various safety issues of the use of probiotics are also discussed.
Collapse
Affiliation(s)
- Maria Skoufou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Proctology Department, Paris Saint Joseph Hospital Paris, 75014 Paris, France
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
88
|
Fiebig A, Schnizlein MK, Pena-Rivera S, Trigodet F, Dubey AA, Hennessy MK, Basu A, Pott S, Dalal S, Rubin D, Sogin ML, Eren AM, Chang EB, Crosson S. Bile acid fitness determinants of a Bacteroides fragilis isolate from a human pouchitis patient. mBio 2024; 15:e0283023. [PMID: 38063424 PMCID: PMC10790697 DOI: 10.1128/mbio.02830-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 12/19/2023] Open
Abstract
IMPORTANCE The Gram-negative bacterium Bacteroides fragilis is a common member of the human gut microbiota that colonizes multiple host niches and can influence human physiology through a variety of mechanisms. Identification of genes that enable B. fragilis to grow across a range of host environments has been impeded in part by the relatively limited genetic tractability of this species. We have developed a high-throughput genetic resource for a B. fragilis strain isolated from a UC pouchitis patient. Bile acids limit microbial growth and are altered in abundance in UC pouches, where B. fragilis often blooms. Using this resource, we uncovered pathways and processes that impact B. fragilis fitness in bile and that may contribute to population expansions during bouts of gut inflammation.
Collapse
Affiliation(s)
- Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Matthew K. Schnizlein
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Selymar Pena-Rivera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Florian Trigodet
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Abhishek Anil Dubey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Miette K. Hennessy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Anindita Basu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sebastian Pott
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sushila Dalal
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - David Rubin
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - A. Murat Eren
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Oldenburg, Germany
| | - Eugene B. Chang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
89
|
Caparrós-Martín JA, Maher P, Ward NC, Saladié M, Agudelo-Romero P, Stick SM, Chan DC, Watts GF, O’Gara F. An Analysis of the Gut Microbiota and Related Metabolites following PCSK9 Inhibition in Statin-Treated Patients with Elevated Levels of Lipoprotein(a). Microorganisms 2024; 12:170. [PMID: 38257996 PMCID: PMC10818477 DOI: 10.3390/microorganisms12010170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of global mortality, often associated with high blood levels of LDL cholesterol (LDL-c). Medications like statins and PCSK9 inhibitors, are used to manage LDL-c levels and reduce ASCVD risk. Recent findings connect the gut microbiota and its metabolites to ASCVD development. We showed that statins modulate the gut microbiota including the production of microbial metabolites involved in the regulation of cholesterol metabolism such as short chain fatty acids (SCFAs) and bile acids (BAs). Whether this pleiotropic effect of statins is associated with their antimicrobial properties or it is secondary to the modulation of cholesterol metabolism in the host is unknown. In this observational study, we evaluated whether alirocumab, a PCSK9 inhibitor administered subcutaneously, alters the stool-associated microbiota and the profiles of SCFAs and BAs. METHODS We used stool and plasma collected from patients enrolled in a single-sequence study using alirocumab. Microbial DNA was extracted from stool, and the bacterial component of the gut microbiota profiled following an amplicon sequencing strategy targeting the V3-V4 region of the 16S rRNA gene. Bile acids and SCFAs were profiled and quantified in stool and plasma using mass spectrometry. RESULTS Treatment with alirocumab did not alter bacterial alpha (Shannon index, p = 0.74) or beta diversity (PERMANOVA, p = 0.89) in feces. Similarly, circulating levels of SCFAs (mean difference (95% confidence interval (CI)), 8.12 [-7.15-23.36] µM, p = 0.25) and BAs (mean difference (95% CI), 0.04 [-0.11-0.19] log10(nmol mg-1 feces), p = 0.56) were equivalent regardless of PCSK9 inhibition. Alirocumab therapy was associated with increased concentration of BAs in feces (mean difference (95% CI), 0.20 [0.05-0.34] log10(nmol mg-1 feces), p = 0.01). CONCLUSION In statin-treated patients, the use of alirocumab to inhibit PCSK9 leads to elevated levels of fecal BAs without altering the bacterial population of the gut microbiota. The association of alirocumab with increased fecal BA concentration suggests an additional mechanism for the cholesterol-lowering effect of PCSK9 inhibition.
Collapse
Affiliation(s)
- Jose A. Caparrós-Martín
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Patrice Maher
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Natalie C. Ward
- Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth, WA 6009, Australia
| | - Montserrat Saladié
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
| | - Patricia Agudelo-Romero
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- The University of Western Australia, Perth, WA 6009, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- The University of Western Australia, Perth, WA 6009, Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA 6008, Australia
| | - Dick C. Chan
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Gerald F. Watts
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA 6009, Australia
- Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Fergal O’Gara
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA 6009, Australia
- Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6102, Australia
- BIOMERIT Research Centre, School of Microbiology, University College Cork, T12 XF62 Cork, Ireland
| |
Collapse
|
90
|
Rätsep M, Kilk K, Zilmer M, Kuus L, Songisepp E. A Novel Bifidobacterium longum ssp. longum Strain with Pleiotropic Effects. Microorganisms 2024; 12:174. [PMID: 38258000 PMCID: PMC10818833 DOI: 10.3390/microorganisms12010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Postbiotics are gaining increasing interest among the scientific community as well as at the level of food processing enterprises. The aim of this preliminary study was to characterise the metabolic diversity of a novel Bifidobacterium longum strain, BIOCC 1719, of human origin. The change after 24 h cultivation in three media was assessed using a metabolomic approach. Milk-based substrates favoured the activity of the strain, promoting the production of B vitamins, essential amino acids, bile acids, and fatty acids. Vitamins B1, B2, B6, B7, and B12 (with an average increase of 20-30%) were produced in both whole milk and whey; the increased production in the latter was as high as 100% for B7 and 744% for B12. The essential amino acids methionine and threonine were produced (>38%) in both milk and whey, and there was an increased production of leucine (>50%) in milk and lysine (126%) in whey. Increases in the content of docosahexaenoic acid (DHA) by 20%, deoxycholic acid in milk and whey (141% and 122%, respectively), and cholic acid (52%) in milk were recorded. During the preliminary characterisation of the metabolic diversity of the novel B. longum strain, BIOCC 1719, we identified the bioactive compounds produced by the strain during fermentation. This suggests its potential use as a postbiotic ingredient to enrich the human diet.
Collapse
Affiliation(s)
- Merle Rätsep
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia; (M.R.)
| | - Kalle Kilk
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411 Tartu, Estonia
| | - Mihkel Zilmer
- Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411 Tartu, Estonia
| | - Liina Kuus
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia; (M.R.)
| | - Epp Songisepp
- BioCC OÜ, Riia St. 181A, 50411 Tartu, Estonia; (M.R.)
| |
Collapse
|
91
|
Zhang B, Jiang X, Yu Y, Cui Y, Wang W, Luo H, Stergiadis S, Wang B. Rumen microbiome-driven insight into bile acid metabolism and host metabolic regulation. THE ISME JOURNAL 2024; 18:wrae098. [PMID: 38836500 PMCID: PMC11193847 DOI: 10.1093/ismejo/wrae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Gut microbes play a crucial role in transforming primary bile acids (BAs) into secondary forms, which influence systemic metabolic processes. The rumen, a distinctive and critical microbial habitat in ruminants, boasts a diverse array of microbial species with multifaceted metabolic capabilities. There remains a gap in our understanding of BA metabolism within this ecosystem. Herein, through the analysis of 9371 metagenome-assembled genomes and 329 cultured organisms from the rumen, we identified two enzymes integral to BA metabolism: 3-dehydro-bile acid delta4,6-reductase (baiN) and the bile acid:Na + symporter family (BASS). Both in vitro and in vivo experiments were employed by introducing exogenous BAs. We revealed a transformation of BAs in rumen and found an enzyme cluster, including L-ribulose-5-phosphate 3-epimerase and dihydroorotate dehydrogenase. This cluster, distinct from the previously known BA-inducible operon responsible for 7α-dehydroxylation, suggests a previously unrecognized pathway potentially converting primary BAs into secondary BAs. Moreover, our in vivo experiments indicated that microbial BA administration in the rumen can modulate amino acid and lipid metabolism, with systemic impacts underscored by core secondary BAs and their metabolites. Our study provides insights into the rumen microbiome's role in BA metabolism, revealing a complex microbial pathway for BA biotransformation and its subsequent effect on host metabolic pathways, including those for glucose, amino acids, and lipids. This research not only advances our understanding of microbial BA metabolism but also underscores its wider implications for metabolic regulation, offering opportunities for improving animal and potentially human health.
Collapse
Affiliation(s)
- Boyan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Xianzhe Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Yue Yu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Yimeng Cui
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Sokratis Stergiadis
- Department of Animal Sciences, School of Agriculture Policy and Development, University of Reading, Reading RG6 6EU, United Kingdom
| | - Bing Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
92
|
Wen X, Wan F, Wu Y, Liu Y, Zhong R, Chen L, Zhang H. Caffeic acid modulates intestinal microbiota, alleviates inflammatory response, and enhances barrier function in a piglet model challenged with lipopolysaccharide. J Anim Sci 2024; 102:skae233. [PMID: 39158070 PMCID: PMC11401994 DOI: 10.1093/jas/skae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024] Open
Abstract
Young animals are highly susceptible to intestinal damage due to incomplete intestinal development, making them vulnerable to external stimuli. Weaning stress in piglets, for instance, disrupts the balance of intestinal microbiota and metabolism, triggering intestinal inflammation and resulting in gut damage. Caffeic acid (CA), a plant polyphenol, can potentially improve intestinal health. Here, we evaluated the effects of dietary CA on the intestinal barrier and microbiota using a lipopolysaccharide (LPS)-induced intestinal damage model. Eighteen piglets were divided into three groups: control group (CON), LPS group (LPS), and CA + LPS group (CAL). On the 21st and 28th day, six piglets in each group were administered either LPS (80 μg/kg body weight; Escherichia coli O55:B5) or saline. The results showed that dietary CA improved the intestinal morphology and barrier function, and alleviated the inflammatory response. Moreover, dietary CA also improved the diversity and composition of the intestinal microbiota by increasing Lactobacillus and Terrisporobacter while reducing Romboutsia. Furthermore, the LPS challenge resulted in a decreased abundance of 14 different bile acids and acetate, which were restored to normal levels by dietary CA. Lastly, correlation analysis further revealed the potential relationship between intestinal microbiota, metabolites, and barrier function. These findings suggest that dietary CA could enhance intestinal barrier function and positively influence intestinal microbiota and its metabolites to mitigate intestinal damage in piglets. Consuming foods rich in CA may effectively reduce the incidence of intestinal diseases and promote intestinal health in piglets.
Collapse
Affiliation(s)
- Xiaobin Wen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Wan
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - You Wu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yueping Liu
- College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
93
|
Pan Y, Zhang H, Li M, He T, Guo S, Zhu L, Tan J, Wang B. Novel approaches in IBD therapy: targeting the gut microbiota-bile acid axis. Gut Microbes 2024; 16:2356284. [PMID: 38769683 PMCID: PMC11110704 DOI: 10.1080/19490976.2024.2356284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent condition affecting the gastrointestinal tract. Disturbed gut microbiota and abnormal bile acid (BA) metabolism are notable in IBD, suggesting a bidirectional relationship. Specifically, the diversity of the gut microbiota influences BA composition, whereas altered BA profiles can disrupt the microbiota. IBD patients often exhibit increased primary bile acid and reduced secondary bile acid concentrations due to a diminished bacteria population essential for BA metabolism. This imbalance activates BA receptors, undermining intestinal integrity and immune function. Consequently, targeting the microbiota-BA axis may rectify these disturbances, offering symptomatic relief in IBD. Here, the interplay between gut microbiota and bile acids (BAs) is reviewed, with a particular focus on the role of gut microbiota in mediating bile acid biotransformation, and contributions of the gut microbiota-BA axis to IBD pathology to unveil potential novel therapeutic avenues for IBD.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Tingjing He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Sihao Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| |
Collapse
|
94
|
Li Z. Study on the Construction and Application of Engineering Bacteria. LECTURE NOTES IN COMPUTER SCIENCE 2024:329-342. [DOI: 10.1007/978-3-031-64636-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
95
|
Reuter MA, Tucker M, Marfori Z, Shishani R, Bustamante JM, Moreno R, Goodson ML, Ehrlich A, Taha AY, Lein PJ, Joshi N, Brito I, Durbin-Johnson B, Nandakumar R, Cummings BP. Dietary resistant starch supplementation increases gut luminal deoxycholic acid abundance in mice. Gut Microbes 2024; 16:2315632. [PMID: 38375831 PMCID: PMC10880513 DOI: 10.1080/19490976.2024.2315632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Bile acids (BA) are among the most abundant metabolites produced by the gut microbiome. Primary BAs produced in the liver are converted by gut bacterial 7-α-dehydroxylation into secondary BAs, which can differentially regulate host health via signaling based on their varying affinity for BA receptors. Despite the importance of secondary BAs in host health, the regulation of 7-α-dehydroxylation and the role of diet in modulating this process is incompletely defined. Understanding this process could lead to dietary guidelines that beneficially shift BA metabolism. Dietary fiber regulates gut microbial composition and metabolite production. We tested the hypothesis that feeding mice a diet rich in a fermentable dietary fiber, resistant starch (RS), would alter gut bacterial BA metabolism. Male and female wild-type mice were fed a diet supplemented with RS or an isocaloric control diet (IC). Metabolic parameters were similar between groups. RS supplementation increased gut luminal deoxycholic acid (DCA) abundance. However, gut luminal cholic acid (CA) abundance, the substrate for 7-α-dehydroxylation in DCA production, was unaltered by RS. Further, RS supplementation did not change the mRNA expression of hepatic BA producing enzymes or ileal BA transporters. Metagenomic assessment of gut bacterial composition revealed no change in the relative abundance of bacteria known to perform 7-α-dehydroxylation. P. ginsenosidimutans and P. multiformis were positively correlated with gut luminal DCA abundance and increased in response to RS supplementation. These data demonstrate that RS supplementation enriches gut luminal DCA abundance without increasing the relative abundance of bacteria known to perform 7-α-dehydroxylation.
Collapse
Affiliation(s)
- Melanie A. Reuter
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Madelynn Tucker
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Zara Marfori
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
| | - Rahaf Shishani
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Jessica Miranda Bustamante
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Rosalinda Moreno
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Michael L. Goodson
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California – Davis, Davis, CA, USA
| | - Allison Ehrlich
- Department of Environmental Toxicology, College of Agricultural and Environmental Sciences, University of California – Davis, Davis, CA, USA
| | - Ameer Y. Taha
- Department of Food Science and Technology, University of California - Davis, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| | - Nikhil Joshi
- Bioinformatics Core, UC Davis Genome Center, University of California – Davis, Davis, CA, USA
| | - Ilana Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Blythe Durbin-Johnson
- Bioinformatics Core, UC Davis Genome Center, University of California – Davis, Davis, CA, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Bethany P. Cummings
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California – Davis, Sacramento, CA, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
| |
Collapse
|
96
|
Bloom PP, Bajaj JS. The Current and Future State of Microbiome Therapeutics in Liver Disease. Am J Gastroenterol 2024; 119:S36-S41. [PMID: 38153225 DOI: 10.14309/ajg.0000000000002581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/31/2023] [Indexed: 12/29/2023]
Affiliation(s)
| | - Jasmohan S Bajaj
- Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| |
Collapse
|
97
|
Nenkov M, Shi Y, Ma Y, Gaßler N, Chen Y. Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. Int J Mol Sci 2023; 25:6. [PMID: 38203175 PMCID: PMC10778939 DOI: 10.3390/ijms25010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The farnesoid-X receptor (FXR), a member of the nuclear hormone receptor superfamily, can be activated by bile acids (BAs). BAs binding to FXR activates BA signaling which is important for maintaining BA homeostasis. FXR is differentially expressed in human organs and exists in immune cells. The dysregulation of FXR is associated with a wide range of diseases including metabolic disorders, inflammatory diseases, immune disorders, and malignant neoplasm. Recent studies have demonstrated that FXR influences tumor cell progression and development through regulating oncogenic and tumor-suppressive pathways, and, moreover, it affects the tumor microenvironment (TME) by modulating TME components. These characteristics provide a new perspective on the FXR-targeted therapeutic strategy in cancer. In this review, we have summarized the recent research data on the functions of FXR in solid tumors and its influence on the TME, and discussed the mechanisms underlying the distinct function of FXR in various types of tumors. Additionally, the impacts on the TME by other BA receptors such as takeda G protein-coupled receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and muscarinic receptors (CHRM2 and CHRM3), have been depicted. Finally, the effects of FXR agonists/antagonists in a combination therapy with PD1/PD-L1 immune checkpoint inhibitors and other anti-cancer drugs have been addressed.
Collapse
Affiliation(s)
- Miljana Nenkov
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yihui Shi
- California Pacific Medical Center Research Institute, Sutter Bay Hospitals, San Francisco, CA 94107, USA;
| | - Yunxia Ma
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Nikolaus Gaßler
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| | - Yuan Chen
- Section Pathology of the Institute of Forensic Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (M.N.); (Y.M.); (N.G.)
| |
Collapse
|
98
|
Rajapakse J, Khatiwada S, Akon AC, Yu KL, Shen S, Zekry A. Unveiling the complex relationship between gut microbiota and liver cancer: opportunities for novel therapeutic interventions. Gut Microbes 2023; 15:2240031. [PMID: 37615334 PMCID: PMC10454000 DOI: 10.1080/19490976.2023.2240031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has been linked to the gut microbiota, with recent studies revealing the potential of gut-generated responses to influence several arms of the immune responses relevant to HCC formation. The pro- or anti-tumor effects of specific bacterial strains or gut microbiota-related metabolites, such as bile acids and short-chain fatty acids, have been highlighted in many human and animal studies. The critical role of the gut microbiota in HCC development has spurred interest in modulating the gut microbiota through dietary interventions, probiotics, and fecal microbiota transplantation as a potential strategy to improve liver cancer outcomes. Encouragingly, preclinical and clinical studies have demonstrated that modulation of the gut microbiota can ameliorate liver function, reduce inflammation, and inhibit liver tumor growth, underscoring the potential of this approach to improve HCC outcomes. As research continues to unravel the complex and dynamic mechanisms underlying the gut-liver axis, the development of safe and effective interventions to target this pathway for liver cancer prevention and treatment appears to be on the horizon, heralding a significant advance in our ongoing efforts to combat this devastating disease.
Collapse
Affiliation(s)
- Jayashi Rajapakse
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Saroj Khatiwada
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Anna Camille Akon
- St George Hospital, Gastroenterology and Hepatology Department, Sydney, Australia
| | - Kin Lam Yu
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Sj Shen
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
| | - Amany Zekry
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales (UNSW), Sydney, Australia
- St George Hospital, Gastroenterology and Hepatology Department, Sydney, Australia
| |
Collapse
|
99
|
Liu TT, Wang J, Liang Y, Wu XY, Li WQ, Wang YH, Jing AR, Liang MM, Sun L, Dou J, Liu JY, Liu Y, Cui Z, Gao J. The level of serum total bile acid is related to atherosclerotic lesions, prognosis and gut Lactobacillus in acute coronary syndrome patients. Ann Med 2023; 55:2232369. [PMID: 37453928 PMCID: PMC10351454 DOI: 10.1080/07853890.2023.2232369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Bile acids play crucial roles in various metabolisms, as well as Lactobacillus in the intestine. But studies on their roles in acute coronary syndrome (ACS) are still insufficient. The aim of this study was to investigate their role and potential association with the severity of coronary lesions and the prognosis of ACS. METHODS Three hundred and sixty ACS patients were selected. Detection of gut Lactobacillus levels was done through 16S rDNA sequence analysis. Evaluation of the extent of lesions was done using the SYNTAX (SS) score. Mediation analysis was used to assess the relationship between serum total bile acid (TBA), Lactobacillus, atherosclerotic lesions and prognosis of ACS. RESULTS Logistic regressive analysis disclosed that serum TBA and Lactobacillus were independent predictors of coronary lesions (high vs. low SS: serum TBA adjusted odds ratio (aOR) = 0.8, 95% confidence interval (CI): 0.6-0.9, p < .01; Lactobacillus: aOR = 0.9, 95% CI: 0.9-1.0, p = .03). According to multivariate Cox regression analysis, they were negatively correlated with the overall risk of all-cause death (serum TBA: adjusted hazard ratio (aHR) = 0.1, 95% CI: 0.0-0.6, p = .02; Lactobacillus: aHR = 0.6, 95% CI: 0.4-0.9, p = .01), especially in acute myocardial infarction (AMI) but not in unstable angina pectoris (UAP). Ulteriorly, mediation analysis showed that serum TBA played an important role as a mediation effect in the following aspects: Lactobacillus (17.0%, p < .05) → SS association (per 1 standard deviation (SD) increase), Lactobacillus (43.0%, p < .05) → all-cause death (per 1 SD increase) and Lactobacillus (45.4%, p < .05) → cardiac death (per 1 SD increase). CONCLUSIONS The lower serum TBA and Lactobacillus level in ACS patients, especially in AMI, was independently linked to the risk of coronary lesions, all-cause death and cardiac death. In addition, according to our mediation model, serum TBA served as a partial intermediate in predicting coronary lesions and the risk of death by Lactobacillus, which is paramount to further exploring the mechanism of Lactobacillus and bile acids in ACS.KEY MESSAGESLower level of serum total bile acid (TBA) was highly associated with the severity of coronary lesions, myocardial damage, inflammation and gut Lactobacillus in acute coronary syndrome (ACS) patients, especially in acute myocardial infarction (AMI).Lower level of serum TBA was highly associated with mortality (including all-cause death and cardiac death) in patients with ACS, especially with AMI.Serum TBA had a partial mediating effect rather than regulating effect between gut Lactobacillus and coronary lesions and prognosis of ACS.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Graduate School, Tianjin Medical University, Tianjin, PR China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jie Wang
- Tianjin Children’s Hospital, Tianjin, PR China
| | - Yan Liang
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Xiao-Yuan Wu
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Wen-Qing Li
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Yu-Hang Wang
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - An-Ran Jing
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Miao-Miao Liang
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Li Sun
- Graduate School, Tianjin Medical University, Tianjin, PR China
| | - Jing Dou
- Thoracic Clinical College, Tianjin Medical University, Tianjin, PR China
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, PR China
| | - Jing-Yu Liu
- Thoracic Clinical College, Tianjin Medical University, Tianjin, PR China
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, PR China
| | - Yin Liu
- Thoracic Clinical College, Tianjin Medical University, Tianjin, PR China
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, PR China
| | - Zhuang Cui
- School of Public Health, Tianjin Medical University, Tianjin, PR China
| | - Jing Gao
- Thoracic Clinical College, Tianjin Medical University, Tianjin, PR China
- Chest Hospital, Tianjin University, Tianjin, PR China
- Cardiovascular Institute, Tianjin Chest Hospital, Tianjin, PR China
- Tianjin Key Laboratory of Cardiovascular Emergency and Critical Care, Tianjin, PR China
| |
Collapse
|
100
|
Shao T, Hsu R, Rafizadeh DL, Wang L, Bowlus CL, Kumar N, Mishra J, Timilsina S, Ridgway WM, Gershwin ME, Ansari AA, Shuai Z, Leung PSC. The gut ecosystem and immune tolerance. J Autoimmun 2023; 141:103114. [PMID: 37748979 DOI: 10.1016/j.jaut.2023.103114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The gastrointestinal tract is home to the largest microbial population in the human body. The gut microbiota plays significant roles in the development of the gut immune system and has a substantial impact on the maintenance of immune tolerance beginning in early life. These microbes interact with the immune system in a dynamic and interdependent manner. They generate immune signals by presenting a vast repertoire of antigenic determinants and microbial metabolites that influence the development, maturation and maintenance of immunological function and homeostasis. At the same time, both the innate and adaptive immune systems are involved in modulating a stable microbial ecosystem between the commensal and pathogenic microorganisms. Hence, the gut microbial population and the host immune system work together to maintain immune homeostasis synergistically. In susceptible hosts, disruption of such a harmonious state can greatly affect human health and lead to various auto-inflammatory and autoimmune disorders. In this review, we discuss our current understanding of the interactions between the gut microbiota and immunity with an emphasis on: a) important players of gut innate and adaptive immunity; b) the contribution of gut microbial metabolites; and c) the effect of disruption of innate and adaptive immunity as well as alteration of gut microbiome on the molecular mechanisms driving autoimmunity in various autoimmune diseases.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ronald Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Desiree L Rafizadeh
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Narendra Kumar
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Jayshree Mishra
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Suraj Timilsina
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - William M Ridgway
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|